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Fractality-induced topological phase squeezing and devil’s staircase
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We propose and experimentally demonstrate the first example of Chern fractal insulators in an acoustic
Sierpinski lattice. Through introducing fractality into the well-known Haldane model, we find that the topological
phase diagram is significantly squeezed by about 0.5 times, compared with that of the original Haldane model.
The energy spectra for different generations of a fractal lattice exhibits a hierarchy of self-similar energy bands
in the form of a devil’s staircase. With local acoustic measurements, we fabricate the sonic sample based on the
theoretical model and experimentally confirm the fractality-induced squeezing and observe the one-way edge
states that are protected by a robust mobility gap. Our work demonstrates the fundamental interplay between the
fractality and topological Haldane insulator, and may provide new directions for the advanced control of sound
waves.
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I. INTRODUCTION

Topological insulators [1,2] with the distinctive character-
istics of an insulating bulk and conducting edge states reveal a
topologically distinct phase of matter that cannot be described
by Landau’s theory of phase transitions. One important class
of topological systems is the Chern insulator or quantum
anomalous Hall effect, which has integer Hall conductivity
and no Landau levels. In 1988, Haldane [3] presented a
paradigmatic example of a Chern insulator on a honeycomb
lattice with staggered magnetic flux but a net magnetic field
of zero. This topological Haldane model utilizes both time-
reversal and inversion symmetry breaking to open a bandgap
at Dirac points. The competition between the two broken sym-
metries results in topologically nontrivial and trivial phases,
which can be characterized by Chern numbers [4]. While the
experimental realizations of the electronic Chern insulators
were challenging [5,6], a photonic version of the Chern in-
sulator was proposed by Haldane and Raghu [7] in 2008 and
experimentally observed with microwaves in a gyromagnetic
photonic crystal [8,9] shortly thereafter, which opened the
door to exploring topological physics in the classical wave
systems [10–14], including acoustics [15–25]. The acoustic
waves cannot respond to the external magnetic field and have
no spin. Therefore, the realization of acoustic Chern insulators
was not that straightforward dating back to 10 years ago.
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With the help of breaking of the time-reversal symmetry [19],
acoustic topological insulators were proposed based on the
artificial gauge fields induced by circulating airflows
[15,16,20]. However, the complex engineering of the circu-
lating flow is challenging for experiments. In parallel, another
proposal showed that the staggered magnetic flux in the two
dimensions can be constructed by introducing the chiral cou-
plings in an additional third dimension [17]. With this method,
the acoustic analogue of the topological Haldane model was
directly mapped and experimentally realized [21,22] later on.
Since then, many ideas have been proposed along these veins
based on artificial gauge fields and lattice symmetries. Nowa-
days, the acoustic system has become a feasible platform for
exploring various topological states [23,24,26] in integer di-
mensions ranging from the quantum Hall effect [15,16] to the
quantum spin Hall effect [27,28], valley Hall effect [29], Weyl
and Dirac semimetals [21,22,30], high-order topological in-
sulators [31–37], non-Abelian topological insulators [38–40],
and to aperiodic topological quasicrystals [41].

On the other hand, recent theoretical proposals show
that the topological states can even go beyond the inte-
ger dimensions and exist in the fractal lattices [42–47].
Fractals appearing the same at different scales are char-
acterized by fractal dimensions, self-similarity, and scale
invariance [48,49]. They do not have a well-defined bulk
like the integer-dimensional crystals, and yet they are able to
support topological edge states. Despite the increasing interest
in topological fractal insulators, their experimental realization
is not straightforward and an early attempt [50] revealed that
the fractality would turn off the topological properties. Until
recently, it has been reported that the Floquet topological
states were realized in a Sierpinski photonic fractal lattice
consisting of helical waveguides [46,51]. These advances,
both in condensed matter and photonics, have changed the
current understanding of bulk-edge correspondence: the topo-
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FIG. 1. Topological phase diagram of the honeycomb and fractal lattices. (a) A schematic of the fractal Haldane model that is composed
of two Sierpinski gaskets. Red and blue dots indicate A and B sublattices with the same number of sites. The NN and NNN couplings are
represented by black and gray lines. The NNN hopping along the red or blue arrows can accumulate a phase of φ. The inset is an enlarged
view of a hexagonal cell. (b) Topological phase diagram of the rhombic honeycomb lattice. In the original Haldane model, topological phase
transitions obey |m| = |3√

3t2sinφ|, which is marked by gray lines. The Bott indexes of 0, +1, and −1 are represented by white, blue, and red,
respectively. (c) The phase diagram of the fractal lattice is significantly squeezed by about 0.5 times along the vertical axis m. The coupling
parameters for theoretical calculations are t1 = 1, t2 = 0.2.

logical properties do not necessarily rely on the internal bulk.
However, thus far, little topological fractal physics has been
demonstrated, and the interplay between the topological phase
diagram and fractality still remains poorly understood.

Here we present and demonstrate the squeezed Chern in-
sulator in an acoustic fractal system. We begin with a fractal
lattice consisting of two Sierpinski gaskets with the same
number of A- and B-sites. By calculating the phase diagram
based on the real-space Bott index [52,53], we find that the
topological phase diagram is squeezed by about 0.5 times,
compared with that of the original Haldane model. The energy
spectra for different generations of topological fractal lattices
exhibit a hierarchy of self-similar energy bands in the form of
a devil’s staircase [54]. Importantly, we show that contrary
to conventional topological insulators, there exists a robust
mobility gap in our fractal model protecting the topological
edge states instead of the direct bandgaps. In experiments,
we observe the squeezing effect on the phase diagram and
investigate the dynamics of the topological edge states. We
show that sound waves can propagate along the outer and
inner edges without penetrating into the interior of the lattice
and backscattering in the presence of corners and defects.
Counterintuitively, we find the topological protection can be
preserved along the solely single-atom path around the defect.

II. NUMERICAL CALCULATION

Our starting point is a fractal Haldane model [Fig. 1(a)]
consisting of two Sierpinski gaskets with a fractal dimension
[48] of d f = ln(3)

ln(2) ≈ 1.585, which is calculated from the box-
counting method. More detail can be found in Supplementary
Material Sec. 1 [55]. The Hamiltonian of the system can be
written as

H =
∑
〈i j〉

t1c†
i c j +

∑
〈〈i j〉〉

t2eiφi j c†
i c j + m

(∑
i∈A

c†
i ci −

∑
i∈B

c†
i ci

)
,

(1)

where c†
i (ci, j) is the creation (annihilation) operator, t1 and t2

are nearest-neighbor (NN) and next-nearest-neighbor (NNN)

coupling strength, φi j is the phase accumulation when hop-
ping from site j to NNN site i, and m denotes the onsite
energy difference between sites A and B. The time-reversal
and inversion symmetry can be broken by changing φ and m,
respectively. In the original Haldane model, the competition
between the two broken symmetries can give rise to the topo-
logical phase transition [marked by the gray lines in Fig. 1(b)
and 1(c)]. Intuitively, one may wonder whether there is a
topological phase transition in our fractal system and where
the phase transition is.

To verify that the topological phase transition indeed ex-
ists in our fractal model, we need to characterize the system
by the topological invariant. Unfortunately, there is no well-
defined topological index in the fractal dimensions due to
the fragmented space and the lack of translation symmetry.
Therefore, we have to project the fractal lattice onto a two-
dimensional space and resort to an alternative invariant—the
Bott index [52,53]. The results of the Bott index (see details in
Supplemental Material Sec. 5 [55]) as a function of φ and
m are shown in Fig. 1(b) and 1(c). For a direct comparison,
we obtain the Bott index diagram for both the honeycomb
[Fig. 1(b)] and our fractal lattice [Fig. 1(c)]. The well-known
topological transition governed by |m| = |3√

3t2sinφ| in the
Haldane model is marked by gray lines, as shown in both pan-
els. These lines connect two regimes with a different Chern
number ν changing from 0 to +1 or to −1. For the honeycomb
lattice [Fig. 1(b)], the phase diagram calculated from the Bott
index is consistent with that calculated from the Chern num-
ber. The Bott indexes of 0, +1, and −1 are represented by
white, blue, and red, respectively. The transition between the
Bott indexes of ±1 and 0 overlaps with the theoretical pre-
diction (gray lines). For the fractal lattice, the phase diagram
[Fig. 1(c)] is significantly squeezed by about 0.5 times along
the vertical axis m, which is due to the reduction in the number
of lattice sites that require less intense inversion symmetry
breaking to balance the time-reversal symmetry breaking. The
phase diagrams of the different fractal generations are shown
in Supplemental Material Sec. 6, Fig. S6 [55] to examine the
validity of the diagram squeezing. These transitions are con-
sistent with that calculated from the real-space Chern numbers
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FIG. 2. Devil’s staircase and edge states in the fractal lattices. (a)–(c) Energy spectra for the topological fractal lattices of G(4) to G(6).
Red and blue dots indicate the external and dominant internal edge states. Gray dots correspond to a hierarchy of internal edge states localized
at the perimeters of various voids. The blue shaded region indicates the topological bandwidth, where the topological transmission can be
supported. The edge states in the black boxes in (a)–(c) iterate over the devil’s staircase, shown as gray curves. (d)–(f) The enlarged views of
the black boxes shown in (a)–(c). The blue and yellow dashed boxes in (d)–(f) double themselves at the next iterative generation of the fractal
lattice. (g)–(i) The field patterns of the edge states localized at the external and dominant internal edges (Supplemental Material Videos S1 and
S2). The external (internal) edge states have the state number of 224, 666, 2011 (222, 654, 1950).

(see Supplemental Material Sec. 7 [55]). Note that despite
the existence of topological phase transitions, the maximum
size of the topological bandgap for the fractal model is about
65% of that in the honeycomb lattice (Supplemental Mate-
rial, Sec 8 [55] for details), which indicates the relatively
weaker strength of topological protection (Supplemental Ma-
terial Sec. 10 [55]). In Supplemental Material Sec. 11 [55], we
further unravel that the phase transition in our model is funda-
mentally distinct from the honeycomb lattice with randomly
missed sites.

Having found there exists a topological phase transition in
the fractal model and the phase diagram is squeezed signifi-
cantly, we calculate the eigenvalues and eigenstates at point
X (nontrivial) for fractal lattices with φ = π

2 , m = 0. Point
X is labeled in Fig. 1(c). The energy spectra for generations
of G(4) to G(6) are shown in Figs. 2(a)–2(c). In the energy
spectra, the red and blue dots indicate the external and dom-
inant internal edge states, as shown in Figs. 2(g)–2(i). The
gray dots correspond to a hierarchy of internal edge states
and hybrid states localized at the perimeters of various voids
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FIG. 3. Observation of the fractal topological edge states. (a) Photo of the acoustic sample. The inset shows an enlarged view of A and
B meta-atoms. (b) Structure of the acoustic hexagonal cell, which is periodic along the z-axis and can be mapped onto the hexagonal cell in
Fig. 1(a). The complex NNN hopping is introduced by adding chiral tubes. An effective staggered magnetic flux can be included at a fixed
momentum kz [φ = kzdz ∈ (0, π )]. (c) and (d) Sound intensity distribution of the external topological edge states after three- and five-layer
propagation. (e) and (f) Moving the sound source leftward makes the acoustic wave propagate through the obtuse corner and farther down
along the edge. (g) and (h) Intensity distribution of the internal topological edge states after three- and five-layer propagation. (i) and (j)
Intensity distribution of the edge states after three- and five-layer propagation in the presence of a defect, indicated by blue arrows. Note that
the topological systems in this figure correspond to point X in Fig. 1(c). The red arrows point out the direction of the sound propagation.

(see Supplemental Material Sec. 3 [55] for more details) that
arise from the iterative generation of the fractal geometry.
The appearance of the internal edge states, in turn, makes the
fractal topological insulator consist entirely of “edges” and no
“bulk” [46,51]. Moreover, these abundant internal boundary
states can make their dimensionality consistent with the lattice
dimension [56]. In this work, these internal edge states allow
the energy spectrum to form a devil’s staircase. The iterative
generations of the fractal lattices can give rise to more and
more topological edge states (blue, red, and dark-gray dots)
that fill up the energy intervals and generate new staircases.
For example, in the G(5) lattice, the yellow dashed box [Fig.
2(e)] encompasses energies from 0.08 to 0.42. It includes one
longer staircase inherited from the G(4) lattice [Fig. 2(d)],
with an energy close to 0.28, as well as two new staircases
generated during the iteration, with energies close to 0.12
and 0.38, respectively. The nearly flat, long staircase con-
necting different dashed boxes includes a lot of internal edge
states localized at the perimeters of various interior voids. The
dashed boxes in Figs. 2(d)–2(f) with the same color share
the similar spectrum distribution of topological edge states.
Importantly, we can see that the spectra exhibiting a hierarchy
of self-similar staircases can be fitted into a form of a devil’s
staircase [48,54] [see gray lines in Figs. 2(a)–2(c) and Supple-
mental Material Sec. 12 [55] for details], which is continuous

everywhere and has a zero derivative everywhere, but its value
is still monotonically increasing.

III. EXPERIMENTAL OBSERVATION

As we know, the topological edge states only reside in the
bandgap in conventional topological insulators. However, the
topological propagation in our fractal model can even survive
in the presence of the trivial states with the energy close to
zero (see Supplemental Material Videos S3 to S5 [55]). The
reason is, because of the lack of the well-defined bulk, there
is negligible coupling between the edge states and the states
localized at the perimeters of the interior voids. Therefore,
there exists a robust mobility gap ranging from −0.46 to 0.46
[blue shaded region in Figs. 2(a)–2(c)] corresponding to a
Bott index of +1 that protects the topological edge states
instead of the direct bandgaps, which makes our fractal model
fundamentally distinct from the conventional topological band
insulator. Note that in Supplemental Material Video S6 [55],
we also show the topological transport survives as long as the
perimeter of the edge encloses an area that is larger than G(2).
Due to the finite-size effect, the edge enclosing a smaller area
cannot support one-way transport.

To demonstrate experimentally the topological edge states
in the fractal system, we design and fabricate a synthetic
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FIG. 4. The trapped sound in the trivial phase. (a) The energy spectrum for the trivial states, which correspond to point Y as labeled in
Fig. 1(c). (b) and (c) Sound intensity distribution of the acoustic wave after five-layer propagation. It can be seen that the sound waves are
clearly trapped. (d) Intensity distribution of the acoustic wave after five-layer propagation. We can see that the acoustic waves cannot propagate
along the edges and bypass the corners, compared with that in Fig. 3(h). The schematic speakers indicate the positions of the source array that
emits acoustic waves with a frequency of 10 506 Hz for (b)–(d). The output source array has a fixed momentum kz = π

2dz
.

acoustic lattice with direct printing. A full picture of our
sample is shown in Fig. 3(a), and the inset shows the enlarged
view of the A/B meta-atoms (see details in Supplemental
Material Secs. 13 and 15 [55]). First, in Figs. 3(c)–3(f), we
show the topological propagation of the edge states at point X
with φ = π

2 and m = 0. The schematic speakers point out the
positions of the source array that can emit acoustic waves with
a frequency of 11 718 Hz within the topological bandwidth
ranging from 11 109 Hz to 11 934 Hz (Supplemental Material
Sec. 16 [55]) and a fixed momentum kz = π

2dz
, which indicates

the acoustic waves move not only in the xy plane, but also in
the z plane (Supplemental Material Sec. 13 [55]). After three-
and five-layer propagation [Figs. 3(c) and 3(d)], we observe
that the acoustic wave propagates along the external edge
without penetrating into the interior of the fractal lattice and
without backscattering when encountering the sharp corner.
Moving the sound source leftward makes the acoustic wave
propagate through the obtuse corner and farther down along
the edge, as shown in Figs. 3(e) and 3(f). The same behavior
is observed for the edge states localized at the internal edges,
as shown in Figs. 3(g) and 3(h). Note that because of the
lossy nature of sound, the energy dissipation after propagating
through each layer is about 33% and the field intensity is
renormalized to the maximum value at each layer.

Furthermore, attributed to the topological protection, the
acoustic wave should propagate around the defect without
backscattering. We block one cavity at the position indicated
by the blue arrows in Figs. 3(i) and 3(j), then we use the
same method as shown in Figs. 3(c) and 3(d) to carry out the
experiment. Clearly, we observe that the acoustic wave moves
along the edge, encounters the top corner and defect, and
then continues moving downward along the left edge without
backscattering. We notice that around the defect where the
self-similarity is broken, the acoustic wave moves along a
single-atom path, which pushes the robust propagation into
the single-atom level. In Supplemental Material Sec. 17 [55],
we also show in simulations that the waves can propagate
around the defects located at different positions.

Contrary to the topological transmission displayed earlier,
we experimentally observe that the propagation of the acoustic
waves at trivial point Y, with φ = π

2 and m = 3.6t2, displays
trapped behaviors. In Fig. 4(a), the numerical energy spectrum
corresponding to point Y within the trivial regime includes no
topological edge states. Note that in Supplemental Material
Fig. S9 [55], we plot the field intensities of the suspicious
edge states with the state number of 175 with an energy of
−0.88 and the state number of 176 with an energy of −0.83.
The dynamical simulations show the states can penetrate into
the interior of the fractal lattice, and these states are not
topologically protected (Supplemental Material Videos S7
and S8 [55]). The onsite energy difference m between the A
and B sublattices is introduced by simply tuning the height
of the sound cavities (Supplemental Material Sec. 18 [55]).
After five-layer propagation, as shown in Figs. 4(b) and 4(c),
we can see that the acoustic waves penetrate into the interior
of the sample and scatter at the corners, as the source moves
from the upper right edge to the lower left edge. The operating
frequency is 10 506 Hz, corresponding to the energy of the
suspicious edge states. The trapped behavior is also observed
for sound propagating along the perimeter of the center void
[Fig. 4(d)], which is in sharp contrast to the result shown in
Fig. 3(h). Combined with the results at point X as shown in
Fig. 3, we have experimentally verified that introducing the
fractal lattice into the topological Haldane model retains the
topological phase transitions, whereas the topological phase
diagram is compressed.

IV. CONCLUSIONS

In summary, we have reported the observation of an acous-
tic Chern fractal insulator. The self-similar energy spectra and
topological protection by a mobility gap instead of a direct
bandgap made our fractal model distinct from conventional
topological insulators. We investigated the interplay between
the fractality and topological Haldane model, and pinpointed

023189-5



LI, SUN, MO, RUAN, AND YANG PHYSICAL REVIEW RESEARCH 5, 023189 (2023)

that the phase diagram is significantly compressed and the
energy spectra are in the form of a devil’s staircase. In ex-
periments, we confirmed the diagram squeezing and observed
the robust propagation along the outer and inner edges of the
fractal lattice. Our work paves the way to exploring further the
interplay between fractality [48] and non-Hermitian physics
[57–59], and shows potential in sensors [60] and robust
networks [61].
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