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Copycat process in the early stages of einselection
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We identify and describe unique early time behavior of a quantum system initially in a superposition, inter-
acting with its environment. This behavior—the copycat process—occurs after the system begins to decohere,
but before complete einselection. To illustrate this behavior analytic solutions for the system density matrix, its
eigenvalues, and eigenstates a short time after system-environment interactions begin are provided. Features of
the solutions and their connection to observables are discussed, including predictions for the continued evolution
of the eigenstates towards einselection, time dependence of spin expectation values, and an estimate of the
system’s decoherence time. In particular we explore which aspects of the early stages of decoherence exhibit
quadratic evolution to leading order, and which aspects exhibit more rapid linear behavior. Many features of
our early time perturbative solutions are agnostic of the spectrum of the environment. We also extend our work
beyond short time perturbation theory to compare with numerical work from a companion paper.
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I. INTRODUCTION

There are many reasons why one would want to study
the effects of decoherence and einselection on a quantum
system interacting with its environment: from interest in
theoretical interpretations of quantum mechanics to applica-
tions in quantum computing [1–8]. In [9] we introduced the
“adapted Caldeira Leggett” (ACL) model, a tool designed to
explore these phenomena using fully unitary calculations in
the combined system-environment space. This tool enables us
to examine behaviors outside of the standard approximation
schemes common in the field.

Our original aim was a study of the relationship between
einselection and the arrow of time. We present the outcome of
that work in [10]. On the path of exploring decoherence and
einselection with the ACL model numerically, we witnessed a
curious phenomenon—the copycat process—which we inves-
tigate in this paper. Figure 1 (Fig. 12 in [9]) gives a general
picture of this process.

The ACL model describes a simple harmonic oscillator
(SHO) coupled to an environment. For Fig. 1 the SHO was
set up in a “Schrödinger cat” superposition of coherent state
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classical wave packets. Over time, decoherence with the en-
vironment brings the SHO into a classical mixture of wave
packets described by a density matrix (ρ) with the wave pack-
ets as eigenstates. In this manner the classical wave packets
are specially selected by the specifics of the decoherence
physics; a process called “einselection.”

The evolution shown in Fig. 1 starts with the system and
environment in a product state. At that moment the SHO
density matrix, ρ, has only one nonzero eigenvalue. An instant
later a second nonzero (but infinitesimal) eigenvalue emerges.
As soon as this second eigenvalue becomes resolved in our
calculations, the corresponding eigenstate takes on the intrigu-
ing “mirror image” (copycat) form shown in Fig. 1. The first
and second eigenstates keep these forms as the second eigen-
value evolves over many decades in magnitude. Eventually on
a timescale given by the decoherence time, einselection takes
place.1,2

While initially the copycat phenomenon seemed striking
and unusual to us, and we were a bit concerned about the
possible role of numerical artifacts in our results, we have

1The SHO has a period of 2π . Thus, choosing t = 4π for the final
time shown in Fig. 1 simplifies our presentation. More details about
the behavior of the ACL model can be found in [9].

2In Fig. 1, q labels the discrete set of eigenvalues of the (dimen-
sionless) position operator of the ACL model [9], and ψ (q) used
here corresponds to ψα (q) (from Eq. (4) in [9]), the discrete set of
coefficients from expanding the state in eigenstates of position. In
the panels giving eigenstates the discrete set of points |ψ (q)|2 are
connected to guide the eye, but there is no actual continuum and
|ψ (q)|2 is dimensionless.
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FIG. 1. Copycats in the early stages of entanglement: A system
that is initially in a pure superposition of two coherent states becomes
entangled with the environment as it evolves. We plot the second
eigenvalue and eigenstates of the system density matrix ρ for early
times. The second eigenstate takes the mirror image “copycat” form
over several decades of evolution. The bottom row shows these two
states after einselection is complete, and the initial superposition has
become a mixture of classical wave packets. The eigenstate plots
show |ψ (q)|2 for the first two eigenstates, where q is a generalized
position. Time is shown in units where the oscillator period is 2π .
(The absence of phase information means the orthogonality of the
eigenstates is not manifest in these plots.)

come to understand this process in relatively simple physical
terms. The “transient stability” we observe relates to the slow
quadratic start to the early time evolution of the eigenstates.
Furthermore, the mirror image copycat form seems quite nat-
ural if one thinks of the two wave packets as spanning a
two-dimensional reduced Hilbert space (effectively a single
qubit). From that point of view, the form shown is the only
option for the second eigenstate of ρ until the first eigenstate
has time to evolve appreciably. In fact, the copycat picture
we describe here is implicit in standard results from nuclear
magnetic resonance (NMR) physics, although they have not
been previously presented from that point of view.

This work originally came about through our need to fully
understand the behaviors of the ACL model before applying
it to the new problems explored in [10]. Having satisfied
ourselves that the copycat process was indeed physical, and
having extended it in a number of directions, we decided
those explorations are worth reporting in this paper. We feel
they may be of interest to those studying the early stages of
decoherence, perhaps in the context of quantum technologies.
In particular we offer explorations of the extent to which the

early stages of decoherence are quadratic to leading order, and
which aspects evolve with a more rapid linear behavior.

The rest of this paper is devoted to describing and ana-
lytically deriving the copycat process. In Sec. II we briefly
review the ACL and reduced Caldeira-Leggett (RCL) models
as presented in [9]. Then in Sec. III we present perturbative
analysis of the copycat process by calculating the system
density matrix, associated eigenvalues, and eigenstates of a
two-state system entangled with its environment a short time
after system-environment interactions begin. In our deriva-
tions we chose to model the superposition of coherent states
in Eq. (3) as a two-state system, both for simplicity and be-
cause such coherent superpositions were observed to behave
as essentially a two-state system in our numerical work [9].
Section IV is a discussion of some specific features and ap-
plications of our derived solutions for the two state system,
including predictions for the continued evolution of the sys-
tem eigenstates, early time behavior of spin observables, and
an estimate of the system’s decoherence time. In Sec. V we
extend our solutions beyond short time perturbation theory to
compare with our numerical work in [9]. We also comment
on the duration of the perturbative copycat regime in Sec. V B
and graphically demonstrate that the perturbative solutions
can model the full numerical evolution for a sizable span of
time. Our further discussion and conclusions are provided in
Sec. VI, which includes discussion of how the copycat process
generalizes for initial states with larger numbers of “cats” and
comparisons of our work with existing literature.

The Appendix extends our technical results from a qubit
model to the qutrit case, providing additional perspective on
the possibility of linear behaviors (which we summarize is
Sec. VI). These investigations offer further nuance to the tech-
nical aspects of the copycat process discussed in the main text,
as we discover the possibility of linear time evolution in the
orthogonal eigenstates for some cases, even though the evolu-
tion of the eigenvalues and initial state remains quadratic, as in
the qubit case. We also illustrate how results from our qutrit
analysis are reflected in the behaviors of more complicated
ACL-like models with three wave packet Schrödinger cat
initial states.

II. FORMALISM

A. Basics

We consider a “world” Hilbert space, comprising a system
and an environment: w = s ⊗ e. We take |ψw〉 initially to be
a product state and study the entanglement caused by system-
environment interactions:

|ψw〉 = |ψs〉 |ψe〉 −−−−−−→
entanglement

∑
i, j

bi j |i〉s | j〉e . (1)

The onset of system-environment entanglement is called de-
coherence. Once entanglement has taken place, the system is
described by the density matrix

ρs = Tre(|ψw〉 〈ψw|). (2)

Einselection is the special case of decoherence where envi-
ronmental interactions induce the system density matrix to
become diagonal in a preferred basis. These preferred basis
states are called pointer states in the literature [2,11].
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Under certain conditions (which apply in Fig. 1) coherent
states will be einselected as the pointer states [1,9,12]. Under
those conditions, a system that starts in a superposition of
coherent states

|ψs〉 = a1 |α1〉 + a2 |α2〉 (3)

would evolve into the density matrix

ρs = |a1|2 |α1〉 〈α1| + |a2|2 |α2〉 〈α2| . (4)

Here we have labeled coherent states with the parameter α, a
standard convention articulated in detail for the ACL model
in [9]. Indeed Eq. (4) roughly describes what we see in Fig. 1.
[Inspection of the full analysis presented in [9] reveals that, in
this particular case, the finite form of the ACL model leads
to a number of small deviations from the idealized picture
described by Eq. (4).] It is in the early stages of the evolution
toward the Eq. (4) form that we notice the copycat behavior.

As illustrated in Fig. 1, at early times there is an eigenstate
of the system density matrix that resembles the initial state
and one that has the “copycat” form. The initial evolutions
of these eigenstates are quadratic in time—as we will prove
subsequently—or “slow,” hence the appearance of “transient
stability.” We call the appearance of a copycat state and its
subsequent behavior the “copycat process.” To the best of
our knowledge the copycat process and its implications have
not been directly explored in the literature, although we will
discuss how earlier work has come very close to this topic in
an indirect way.

B. The ACL model

As discussed in [9], the original Caldeira-Leggett (CL)
model is a toy model describing a system interacting with its
environment with a Hamiltonian of the form [1,7,13]

Hw = Hs
SHO ⊗ 1e + qSHO ⊗ He

I + He ⊗ 1s. (5)

In the CL model the system is a simple harmonic oscillator
(SHO) moving in the standard SHO potential, and the environ-
ment is an infinite set of SHOs. The system and environment
together describe a closed system undergoing unitary evolu-
tion, but generally the system and environment individually
do not have to evolve unitarily.

The adapted Caldeira-Leggett (ACL) model was intro-
duced as an adaptation of the CL model which operates in
a finite dimensional Hilbert space, so its evolution can be
investigated numerically in its full unitary form [9]. In the
ACL model, the Hamiltonian is also given by Eq. (5), but
the components are modified since the Hilbert space is finite;
for example, the system is given by a truncated SHO. Full
technical details are given in [9].

III. MODELING THE COPYCAT PROCESS

A. Setting up and the RCL model

We start our technical explorations of the copycat process
with the following observation: The ACL model used to pro-
duce Fig. 1 had parameters adjusted to make the coherent
states especially stable, making them the pointer states. We
also note that while the coherent state wave functions are
nowhere truly zero, the overlap between the two coherent

states shown in Fig. 1 is exponentially suppressed, making
the two coherent states essentially orthogonal. The SHO dy-
namics will ultimately move the two packets into positions
of greater overlap, but the copycat process takes place on
timescales short compared to the SHO evolution. We use both
the stability of the coherent states and their lack of overlap
to argue heuristically that they span a two- dimensional sub-
space, which is effectively decoupled from the rest of the SHO
Hilbert space at early times. Based on these considerations, we
model the superposition of coherent states in Eq. (3) (used to
generate Fig. 1) with a single qubit coupled to an environment
and undertake analytical calculations of early time behavior
using perturbation theory in the small time parameter.

As with the full SHO case, we start with a pure product
state at t = 0 with no initial entanglement. At t = 0 the sys-
tem (now just a qubit) is a two-state superposition and the
environment is in some pure state which we call |φe〉:

|ψw(0)〉 = |ψs(0)〉 |φe〉
= (a |↑〉 + b |↓〉) |φe〉 . (6)

Here a and b can be complex, and |a|2 + |b|2 = 1. We con-
sider a Hamiltonian given by

Hw ≡ H = λ(|↑〉 〈↑| H↑
e + |↓〉 〈↓| H↓

e ), (7)

where λ is a real parameter to adjust the strength of the
interaction, and H↑

e and H↓
e only operate in the subspace of

the environment. We will refer to Hw as H for brevity in what
follows.

We take H↑
e , H↓

e , and H to all be time independent, and we
generally allow H↑

e H↓
e 	= H↓

e H↑
e . For most of what follows, no

additional assumptions are made about the eigenvalue spectra
of the He’s or the dimensionality of the environment. We note
that H in Eq. (7) is very similar to what we call the “reduced
Caldeira-Leggett” (RCL) model Hamiltonian in [9], although
there we considered the special case where H↑

e = −H↓
e . We

call the model we use here an RCL model as well, and note
that as discussed in [9] this model will einselect the pointer
states |↑〉 and |↓〉.

Working in the Schrodinger picture with

ı h̄
∂

∂t
|ψ〉 = H |ψ〉 , U (t ) = e

−ıHt
h̄ (8)

we can perturbatively compute the state of the system and
environment at a short time t = 	, using the series expansion
of the time evolution operator

|ψw(	)〉 = U (	) |ψw(0)〉

=
(

1 − ıH	

h̄
− 1

2

(H	)2

h̄2 + O(	3)

)
|ψw(0)〉 .

(9)

The result is

|ψw(	)〉 = (a |↑〉 + b |↓〉) |φe〉

− ı	λ

h̄
(a |↑〉 H↑

e |φe〉 + b |↓〉 H↓
e |φe〉)

− 	2λ2

2h̄2 (a |↑〉 H↑
e H↑

e |φe〉 + b |↓〉 H↓
e H↓

e |φe〉).

(10)
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We have found that the important leading order behavior oc-
curs at second order, so we keep terms up to O(	2) in what
follows.

B. System reduced density matrix

We compute the reduced density matrix of the system after
a short time t = 	:

ρs(t = 	) = Tre(|ψw(	)〉 〈ψw(	)|). (11)

The result expressed in the |↑〉 , |↓〉 basis is

ρs(	) =
[

aa∗ ab∗(1 + ıβ	 − η	2)
ba∗(1 − ıβ	 − η∗	2) bb∗

]

(12)

where the coefficients β and η are given by

β = λ

h̄
(〈φe| H↓

e |φe〉 − 〈φe| H↑
e |φe〉), (13)

η = λ2

h̄2

( 〈φe| H↑
e H↑

e |φe〉 + 〈φe| H↓
e H↓

e |φe〉
2

− 〈φe| H↓
e H↑

e |φe〉
)

. (14)

To obtain the above it is necessary to recognize that
〈φe| H↓

e |φe〉 and 〈φe| H↑
e |φe〉 are real numbers, but that

〈φe| H↑
e H↓

e |φe〉 can be complex (since H↑
e H↓

e 	= H↓
e H↑

e ). This
requires β to be purely real, but allows η to be complex. It
follows that the system density matrix in Eq. (12) is Her-
mitian and properly normalized since ρ† = ρ, and Tr[ρ] =
|a|2 + |b|2 = 1.

C. Eigenvalues and eigenvectors of ρs

We use the general analytic form for the eigenvalues and
eigenstates of a 2 × 2 Hermitian matrix. After obtaining the
exact solutions from Eq. (12), we then compute the series
expansions in 	, keeping terms to O(	2), to obtain the fol-
lowing perturbative expressions:

|ψ1〉 =
(

b∗

|b|
)[

a

{
1 + ıβ	 + 	2

[
ε

(
2|a|2|b|2 + |a|2

2

)
− η

]}
|↑〉 + b

{
1 + 	2ε

(
2|a|2|b|2 − |a|2

2

)}
|↓〉

]
, (15)

|ψ2〉 =
(−a

|a|
)[

b∗
{

1 + ıβ	 + 	2

[
ε

(
2|a|2|b|2 + |b|2

2

)
− η

]}
|↑〉 − a∗

{
1 + 	2ε

(
2|a|2|b|2 − |b|2

2

)}
|↓〉

]
(16)

with associated eigenvalues

p1 = 1 − |a|2|b|2ε	2, (17)

p2 = |a|2|b|2ε	2, (18)

where the parameter ε is defined by

ε ≡ η + η∗ − β2. (19)

We note that ε can also be written as

ε = λ2

h̄2 [〈φe| (H↓
e − H↑

e )2 |φe〉 − (〈φe| (H↓
e − H↑

e ) |φe〉)2]

(20)
[using Eqs. (13) and (14)]. Equation (20) shows that ε is
just the variance of λ

h̄ (H↓
e − H↑

e ), so ε � 0 by definition.
Furthermore, ε = 0 is a degenerate case where einselection
does not occur; you can see, for example, that when ε = 0 the
second eigenvalue in Eq. (18) exactly disappears and the only
state remaining with any probability is the initial state. Thus,
for cases of interest here ε > 0. Also note that 〈ψ1|ψ2〉 =
〈ψ2|ψ1〉 = 0 + O(	3) and 〈ψ1|ψ1〉 = 〈ψ2|ψ2〉 = 1 + O(	3),
as you would expect from an O(	2) calculation.

Inspecting Eqs. (15) and (16), the zeroth-order terms iden-
tify |ψ1〉 with the original state of the system (|ψs(0)〉 from
Eq. (6) apart from an irrelevant overall phase) and |ψ2〉 as
the orthogonal state. In a two-dimensional Hilbert space, there
is (up to an overall phase) only one orthogonal state to |ψ1〉.
From the way a and b alternate locations in the expressions for
|ψ1〉 vs |ψ2〉, one can see that the two states have the “mirror

image” feature which led us to call the second eigenstate a
“copycat” state in Fig. 1. Thus, we see that at very early times
the copycat profile is achieved automatically in this simple
illustration.

We noted in the Introduction that the initial time evolution
of the copycat state appeared to be “slow” in our numerical
simulations. This is also apparent in our analytic solutions:
they show the time dependence of the eigenstates and their
associated probabilities to be quadratic to leading order mod-
ulo a linear complex phase (which we have by convention
placed in the coefficients of |↑〉). The quadratic early time
dependence of the eigenvalues has been anticipated before
by calculations in [3,14], where their “rate of deseparation”
is analogous to the quantity |a|2|b|2ε, but the eigenstate so-
lutions and their copycat nature is a new feature of our
analysis.

IV. FURTHER PERTURBATIVE ANALYSIS

A. Continued evolution of eigenstates

To investigate what happens to the system density matrix
eigenstates after the copycat state appears, let us again con-
sider Eqs. (15) and (16). At the onset of the copycat process,
for small t = 	, the system has already begun to decohere,
but einselection has hardly started. While the system and
environment are clearly entangled, the system density matrix
eigenstates are not yet described by the pointer states |↑〉 and
|↓〉 of the Hamiltonian in Eq. (7).
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We now explore the perturbative behavior as 	 increases.
Here we focus on |ψ |2 of each eigenstate, given by

〈ψ1|ψ1〉 = |a|2[1 + ε	2(2|a|2|b|2 − |b|2)] 〈↑ | ↑〉
+ |b|2[1 + ε	2(2|a|2|b|2 − |a|2)] 〈↓ | ↓〉 , (21)

〈ψ2|ψ2〉 = |b|2[1 + ε	2(2|a|2|b|2 − |a|2)] 〈↑ | ↑〉
+ |a|2[1 + ε	2(2|a|2|b|2 − |b|2)] 〈↓ | ↓〉 , (22)

where we have made use of Eq. (19).
For ε > 0, which is true in all cases where our analysis

holds [see the discussion below Eqs. (19) and (20)], we can
rewrite Eqs. (21) and (22) as

〈ψ1|ψ1〉 = |a|2[1 + C↑
1 (	)] 〈↑ | ↑〉

+ |b|2[1 + C↓
1 (	)] 〈↓ | ↓〉 , (23)

〈ψ2|ψ2〉 = |b|2[1 + C↑
2 (	)] 〈↑ | ↑〉

+ |a|2[1 + C↓
2 (	)] 〈↓ | ↓〉 (24)

and construct the following chart for the sign of the time
dependent coefficients as time increases:

Original state C↑
1 (	) C↓

1 (	) C↑
2 (	) C↓

2 (	)

|a|2 > |b|2 + − − +
|a|2 < |b|2 − + + −
|a|2 = |b|2 0 0 0 0

Comparing Eqs. (21) and (22) with Eqs. (23), (24), and the
chart illustrates that the subsequent evolution of the system
eigenstates towards einselection is determined by the hier-
archy of |a|2 and |b|2, the initial system probabilities, and
that interactions with the environment control how fast this
evolution occurs through the parameter ε.

For example, suppose the initial state of the system is such
that |a|2 > |b|2 at t = 0. As t = 	 grows we see that the prob-
ability to observe |ψ1〉 in the |↑〉 state increases, since C↑

1 (	)
is increasing over time, and that the probability of observing
|ψ1〉 in the |↓〉 state is decreasing by the same token. The exact
opposite trends occur in |ψ2〉, the orthogonal state. So long as
〈ψ1|ψ1〉 = 〈ψ2|ψ2〉 = 1 + O(	3) is preserved (namely that
the perturbation expansion remains valid), the full system
will exhibit these trends. The system approaches complete
einselection once 1 + C↓

1 (	) ≈ 1 + C↑
2 (	) ≈ 0. An exactly

analogous explanation occurs for the case of |a|2 < |b|2.
For the case of |a|2 = |b|2, all time dependent coefficients

vanish for a properly normalized state to leading order O(	2).
One could interpret this as evidence for a static system: that
after the onset of the copycat process no further evolution
of the eigenstates occurs. However, in the exactly degenerate
limit |a|2 = |b|2 all states are equally “good” eigenstates of
the system density matrix, so einselection into a specific basis
of pointer states has no meaning in this limit.3

3In cases with very small deviations away from complete degen-
eracy, small irregularities (due, for example, to the finite size of the
environment) can disrupt any tendency toward einselection. We have
seen this phenomenon in our numerical work, where for sufficiently
degenerate cases finite size effects introduced large random fluctua-
tions which dominated over the einselection process.

B. Decoherence time

Full einselection will take place on the timescale set by
the decoherence processes. A system that has fully einselected
will have the off-diagonal elements of its density matrix close
to zero when ρs is expressed in the pointer state basis [2].
Although this stage is only reached outside of the range of our
perturbative calculations, we can still estimate the decoher-
ence time by solving for the value of 	 where the off-diagonal
elements are zero for our perturbative calculations. Applying
this to Eq. (12) gives

ρ|↑〉〈↓| = ab∗(1 + ıβ	 − η	2) = 0,

ρ|↓〉〈↑| = ba∗(1 − ıβ	 − η∗	2) = 0, (25)

which can be rewritten as

ab∗ + ba∗ + ıβ	(ab∗ − ba∗) − 	2(ab∗η + ba∗η∗) = 0,

(26)

ab∗ − ba∗ + ıβ	(ab∗ + ba∗) − 	2(ab∗η − ba∗η∗) = 0.

(27)

Solving Eqs. (26) and (27) together and simplifying yields the
following perturbative estimate for the decoherence time:

	d =
√

2

η + η∗ , (28)

where η is given by Eq. (14). Note that this result is inde-
pendent of a and b (the initial state of the system). We have
compared this expression with our numerical work and found
it gives reasonable estimates of the decoherence time.

C. Spin observables

Here we consider the behavior of the Pauli spin operators
in our RCL solutions. This will allow contact to be made with
various experimental contexts such as NMR and quantum
computing [1,6,15].

Our basis states for our system density matrix, {|↑〉 , |↓〉},
can be identified with the Sz eigenbasis for spin 1

2 , so we can
compute the expectation values for the spin operators Sx, Sy,
and Sz by

〈Si〉 = Tr(ρsSi ) = h̄

2
Tr(ρsσi ), (29)

where the σi are the usual Pauli matrices

σx =
[

0 1
1 0

]
, σy =

[
0 −ı

ı 0

]
, σz =

[
1 0
0 −1

]
. (30)

This gives

〈Sz〉 = h̄

2
(|a|2 − |b|2), (31)

〈Sx〉 = h̄

2
(2 Re[ab∗] − 2β	 Im[ab∗] − 2	2 Re[ab∗η]),

(32)

〈Sy〉 = h̄

2
(−2 Im[ab∗] − 2β	 Re[ab∗] + 2	2 Im[ab∗η]).

(33)
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Note that the system will have fully decohered/completed
einselection when 〈Sx〉 = 〈Sy〉 = 0. For our perturbative ex-
pressions, this condition is the same as that imposed by
Eqs. (26) and (27).

V. BEYOND PERTURBATION THEORY

An intriguing part of the copycat process is that its general
features are agnostic about the spectrum of the environment.
The Hamiltonian in Eq. (7) used to derive our results thus far
makes no assumptions about the pieces that operate on the
state of the environment, H↑

e and H↓
e , except that they are

time independent. This gives our results a flavor of generality
often missing from canonical toy models in the literature—
reviewed in [1,7] and others—which typically make specific
assumptions of “Ohmic” environments and the like in order to
arrive at concrete mathematical expressions.

However, if we do further specify H↑
e and H↓

e we can
compute a nonperturbative version of the density matrix in
Eq. (12), closely following an approach by Zurek for a similar
model [11]. This has two benefits. First, it is possible to
rederive a form of the copycat results as leading order terms in
the time series expansion of the nonperturbative solutions, as
should be the case. Second, a nonperturbative approach allows
us to interpret the full time range of our numerical results
discussed in [9] from an analytic perspective.

A. An alternate derivation

To derive a nonperturbative version of Eq. (12), we begin
by specifying

H↑
e =

N∑
i

h̄ωi |ωi〉 〈ωi| , (34)

H↓
e =

N∑
i

h̄ f ↑↓ωi |ωi〉 〈ωi| (35)

so that

ω
↓
i = f ↑↓ω

↑
i , (36)

i.e., H↑
e and H↓

e are almost identical, except for a tuneable real
dimensionless constant f ↑↓. (The RCL model discussed in [9]
has this form with f ↑↓ = −1.) This simplifying assumption
about the relationship between H↑

e and H↓
e enables the analy-

sis which follows.
We can express the state of the environment in the energy

eigenbasis of H↑
e and H↓

e , so that

|φe〉 =
N∑
i

αi |ωi〉 (37)

with the normalization condition
N∑
i

|α↑
i |2 = 1. (38)

Both the ACL and RCL models operate within a finite
dimensional Hilbert space, so we have made that explicit in
our forms for H↑

e and H↓
e . The exact frequency spectrum of

the ωi’s is still arbitrary. However, when comparisons with
our numerical work are made in the next section, we will take

their distribution to be random and centered around zero, to
coincide with the random nature of H↑

e and H↓
e in the ACL

model [9].
Given the definitions in Eqs. (34)–(38), we can re-express

the original state of the system and environment as

|ψw(0)〉 = (a |↑〉 + b |↓〉) ⊗
N∑
i

αi |ωi〉 , (39)

and the RCL Hamiltonian originally given in Eq. (7) becomes:

Hw =
(

λ |↑〉 〈↑| ⊗
N∑
i

h̄ωi |ωi〉 〈ωi|
)

+
(

λ |↓〉 〈↓| ⊗
N∑
i

h̄ωi f ↑↓ |ωi〉 〈ωi|
)

. (40)

Since we have made the eigenvalues of our Hamiltonian
explicit from the start, we may write down the full time
evolved state as

|ψw(t )〉 =
(

a
N∑
i

αie
−ıλωit |↑〉 ⊗ |ωi〉

)

+
(

b
N∑
i

αie
−ıλ f ↑↓ωit |↓〉 ⊗ |ωi〉

)
. (41)

Tracing over the environment then gives the following system
density matrix:

ρs(t ) = |a|2 |↑〉 〈↑| + ab∗z(t ) |↑〉 〈↓|
+ ba∗z∗(t ) |↓〉 〈↑| + |b|2 |↓〉 〈↓| , (42)

where the quantity z(t ) has been called the correlation ampli-
tude or decoherence factor [2,6,11,15] for similar toy models,
and is given in our notation by

z(t ) =
N∑
i

|αi|2e−ıtλωi (1− f ↑↓ ). (43)

Note that z(t ) is a sum of complex exponentials that directly
depends on the difference in eigenvalues of our two envi-
ronmental Hamiltonians. As Zurek originally discussed in
[11], the quantity |αi|2 describes the probability of finding
the environment in the different eigenstates of the interaction
Hamiltonian, and it is possible to show that the average value
of z(t ) will approach zero for sufficiently long times, effec-
tively damping out the off-diagonal system density matrix
elements.

Together Eqs. (42) and (43) are the non-perturbative ver-
sion of the system density matrix in Eq. (12), for the specific
realization of environment parameters given by Eqs. (34)–
(38). To show how these results connect with the copycat
process solutions, first write z(t ) in terms of trigonometric
functions.

z(t ) =
N∑
i

|αi|2{cos[λωi(1 − f ↑↓)t] − ı sin[λωi(1 − f ↑↓)t]}
(44)

Then we take the limit t → 	 by keeping only the first non-
trivial term in each trigonometic function’s series expansion.
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We still keep the sum over the states of the environment; all
we are doing is an early time expansion. This yields

z(	) = 1 + ı

N∑
i

|αi|2λωi( f ↑↓ − 1)	

−
N∑
i

|αi|2ω2
i

λ2( f ↑↓ − 1)2

2
	2

= 1 + ıβ	 − η	2, (45)

which is exactly the time dependent off-diagonal element in
Eq. (12), given the definitions in Eqs. (34)–(38). One can
verify the equivalence between the two lines of Eq. (45) by
starting with the definitions of β and η given by Eqs. (13)
and (14), and then substituting in the specific forms of H↑

e ,
H↓

e , and |φe〉 given in this section; the result will be the same
as Eq. (45). An analogous expression for z∗(	) holds, which
enables us to reexpress Eq. (12) as

ρs(	) = |a|2 |↑〉 〈↑| + ab∗z(	) |↑〉 〈↓|
+ ba∗z∗(	) |↓〉 〈↑| + |b|2 |↓〉 〈↓| . (46)

From Eqs. (45) and (46), one can then go on to determine the
eigenvalues, eigenvectors, and decoherence time of the sys-
tem density matrix. The results will match the more general
calculations in Secs. III and IV, for the specific versions of η

and β given in Eq. (45).
To summarize, in this section we have derived a specific

realization of the copycat results as leading order terms in
the time series expansion of Eqs. (42) and (43). Note that
if the relationship between H↑

e and H↓
e in Eqs. (34) and

(35) was more complicated—if they did not share the same
energy eigenbasis or if the relationship between eigenvalues
was nonlinear, for example—then a derivation of the early
time density matrix from a non-perturbative approach might
not proceed as smoothly as we just described. However, the
early time results of Sec. III will have a more general range of
validity.

B. Comparison with numerical results

In this section we consider two quantities that depend
strongly on the off-diagonal elements of the system den-
sity matrix, the linear entropy and 〈Sx〉, and compare
numerical nonperturbative results to semianalytic early-time
expressions.

The linear entropy for a density matrix is defined as

Sl (ρ) = 1 − Tr[ρ2] (47)

which is bounded according to 0 � Sl � 1 [7]. For the system
density matrix given in our perturbative analysis [Eq. (12)],
this yields

Sl,P = 2|a|2|b|2ε	2 + O(	3) (48)

with ε given by

ε = λ2( f ↑↓ − 1)2

[
N∑
i

ω2
i |αi|2 −

(
N∑
i

ωi|αi|2
)2]

(49)

assuming Eqs. (34)–(38) from the previous section.

0 1 2 3 4 5
t

0

0.1

0.2

0.3

0.4

S

Numerical

Perturbative

FIG. 2. Linear entropy curves. Solid: Nonperturbative [corre-
sponding to numerically evaluating Eqs. (50) and (51)]. Dotted:
Perturbative expression from Eq. (48), using ε [given by Eq. (49)]
drawn from the same numerical calculation shown.

For the nonperturbative case, given Eqs. (42) and (43), one
obtains

Sl,NP = 1 − |a|4 − |b|4 − 2|a|2|b|2|z(t )|2 (50)

with

|z(t )|2 =
N∑
i, j

|αi|2|α j |2e−ıλ(1− f ↑↓ )(ωi−ω j )t . (51)

Figure 2 shows the perturbative and non-perturbative lin-
ear entropies as functions of time. To numerically generate
the nonperturbative solid curve, our simulations effectively
evaluate the summation in Eq. (51) followed by Eq. (50) at
each time step and plot the result. For the dotted curve corre-
sponding to Eq. (48), the summation in Eq. (49) is evaluated
once numerically and then the expression in Eq. (48) is plotted
for the same time steps as those used for Eq. (50). For both
curves, a = 1/

√
5, b = 2/

√
5, f ↑↓ = −1, and the distribution

of environmental frequencies, ωi, is taken to be random and
centered around zero, to coincide with the random nature of
H↑

e and H↓
e in the ACL model [9].

Next, consider 〈Sx〉. For the early-time regime we simply
have Eq. (32), reprinted here:

〈Sx〉P = h̄

2
(2 Re[ab∗] − 2β	 Im[ab∗] − 2	2 Re[ab∗η])

(52)
with the quantities η and β as defined in Eq. (45). For the
nonperturbative case we obtain

〈Sx〉NP = h̄

2
{2 Re[ab∗z(t )]} (53)

with z(t ) given by Eq. (43).
Figure 3 shows the perturbative and nonperturbative results

for 〈Sx〉 as a function of time. As with the linear entropy,
the nonperturbative curve was generated numerically in our
simulations essentially by evaluating Eq. (53) for each time
step, while the early-time result is the analytical function in
Eq. (52) with the summations for η and β in Eq. (45) evaluated
numerically. The values for a, b, f ↑↓, and ωi are the same as
in Fig. 2, and we take h̄ = 1.

We note here that the RCL model is not highly efficient at
completing the process of einselection, as evidenced by the
small oscillation around zero of the numerical curve in Fig. 3.
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0.5
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x>
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FIG. 3. 〈Sx〉, giving the real part of the off-diagonal element of
ρs. The solid curve is nonperturbative, corresponding to numerically
evaluating Eq. (53). The dotted curve corresponds to the early time
analytic expression in Eq. (52), with the quantities defined in Eq. (45)
drawn from the numerical calculation. We take h̄ = 1.

We further discuss the interpretation of these oscillations in
[9] and link them to phenomena seen in NMR experiments.
We also identify a modification to the RCL model which
reduces these oscillations, thereby further illuminating their
physical origins.

Both Figs. 2 and 3 demonstrate that the perturbative
regime—characterized by the copycat density matrix in
Eq. (12)—can be a sizable portion of the full time evolution
of the system’s linear entropy and 〈Sx〉. The duration may
vary somewhat for different system-environment coupling
strengths or environmental frequency spectra, but the overall
presence of a significant period of quadratic time behavior is
clear.

VI. DISCUSSION AND CONCLUSIONS

In this paper we have identified and described unique
early time behavior of a quantum system interacting with its
environment: the copycat process. The copycat process is a
new and potentially important addition to the narrative of
decoherence and einselection. By considering the evolution
of the system density matrix from an eigenstate perspective,
we were able to recognize the early-time emergence of a
distinct transiently stable “copycat” state, as illustrated in
Fig. 1. We derived the same effect analytically in Sec. III, and
then utilized the solutions and their implications to obtain new
insights into how small quantum systems einselect in Secs. IV
and V. Furthermore, the comparison with our numerical work
in Sec. V B demonstrates that one might expect key features
of the copycat process to dominate for a significant portion of
the full time to full einselection.

The generality of our results in Secs. III and IV is also
noteworthy. As we briefly commented in Sec. V, an intriguing
part of the copycat process is that it is agnostic about the
spectrum of the environment. The Hamiltonian in Eq. (7)
used to derive the copycat results makes no assumption of
any of the standard environmental spectra—such as “Ohmic”
environments—typically employed in the literature to make
analytical progress [1,7], and it also does not assume the
random environment that we utilize for our numerical work in
Sec. V B and [9]. This suggests that the onset of einselection

could begin with the copycat process in a wide variety of
cases.

While we acknowledge our analytical modeling of system-
environment interactions is fairly simplified in the RCL
model, our numerical work with the ACL model in [9] demon-
strates that the copycat process persists even in the presence
of strong self Hamiltonians of the system and environment.
Furthermore, we expect the copycat process to be present
in some form for larger and more complicated systems. The
orthogonal nature of the copycat eigenstates might be un-
surprising for the two-state system results—the small Hilbert
space greatly limits the possibilities—but we have also seen
that the same copycat behavior holds for superpositions of two
coherent states of an SHO.

When the evolution of the global (w) system is unitary, the
evolution of a subsystem density matrix is always determin-
istic. Thus (except for the case of degenerate eigenvalues) the
evolution the density matrix eigenstates is also deterministic.
The copycat process is an example of a form of this determin-
istic evolution which generically appears in two-state systems,
as well as some larger systems that are started in “two-cat”
states.

To explore further, in the Appendix we extend our analyt-
ical perturbative analysis to the case where the system is a
qutrit. There we see that many of the same copycat features
appear, although the pattern of early quadratic behavior is
partially broken by the possibility of linear evolution in the
(two-dimensional) system subspace orthogonal to the original
system state.

Exploring further still, Fig. 4 shows the evolution of a
particular example with a higher dimensional system, set up in
a form that might be thought of as “eight Schrödinger cats.” In
that case we did observe overall quadratic behavior to leading
order, resulting in the same transient stability. One would be
hard pressed to describe the states that appear in the right
column as “copycat states,” but these are the states which
emerge from the deterministic Schrödinger evolution in the
w space for the particular chosen initial state. These results
give some sense how the equivalent process can look in a more
complex situation.

There are several connections between the results we
present here and the existing literature. Early-time quadratic
decay of the off-diagonal elements of the system density ma-
trix for decohering systems has been mentioned to varying
degrees in several places [1,3,5–7,11,14–18]. However, these
references typically do not look explicitly at the eigenstates
of ρs. Other explorations of the early-time behavior of open
quantum systems appear in discussions of the “quantum Zeno
paradox” [7,19,20], where the behavior of the system density
matrix eigenstates is also typically not considered.

Generally, we have found that features of the evolution
that might be associated with “decay,” or the onset of en-
tanglement, are quadratic to leading order. Such features
are controlled by the eigenvalues of ρs, which are always
quadratic (to leading order) in our results and in the literature
we cite here. We have also quite generally found aspects of
the evolution which are linear at lowest order in time. These
aspects describe evolution of the system in ways not associ-
ated with the onset of entanglement. For example, the linear
piece ∝ β in Eqs. (15) and (16) describes the evolution of the
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FIG. 4. The evolution of an initial eight-cat state, showing the
top two eigenstates of ρs. The term “copycat” might not be a great
description of the second eigenstate, but we have found that the
quadratic transient stability is still present. The process of einselec-
tion is essentially complete at the final time shown. We use the RCL
model, with a d = 30 qudit system. The markers show the amplitude
squared for each basis vector, and the lines are added for illustrative
purposes.

relative phase between the coefficients of the pointer states,
and in the Appendix we saw a real linear part to the evolution
of the second and third eigenstates of ρs.

We also note that many approaches to studying decoher-
ence and einselection—see reviews in [1,7], for example—
utilize a master equation approach to analyze the time
evolution of the system density matrix. As discussed in [9],
this master equation approach typically carries with it assump-
tions of Markovian evolution and the resulting exponential
decay of off-diagonal system density matrix elements. Even
within the master equation approach it is known that ex-
ponential decay is not always valid [1,7,21], however the
exponential case remains the focus of much of the litera-
ture. There are some exceptions to this focus. Zurek and
collaborators [6,11,15] explicitly note the generally dominant
early quadratic behaviors and point out that, in the context
of the formalisms they develop, the exponential behavior is
a very special case. And Peres [22] offers a general analy-
sis of the diverse range of possible behaviors. Our approach
in this paper and in our numerical work [9] is agnostic of
Markovian assumptions by simply solving the Schrödinger
equation directly. This has led to us observing more compli-
cated non-Markovian time dependence in our system density
matrix, including the copycat regime.

Looking forward, we are curious whether our calculations
of the copycat process could provide a useful tool for study-
ing decoherence and einselection in open quantum systems.

Examining the time dependence of the system density ma-
trix eigenstates and eigenvalues allows one to see the system
smoothly transition from an initial quantum superposition to
a classical mixture of pointer states, with the copycat process
describing the first stages of this transition.
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APPENDIX: THE QUTRIT RCL

Here we extend our perturbative treatment of the RCL
model to the case where the single qubit system is replaced
with a qutrit. This enables us, among other things, to study
the evolution of three cat Schrödinger cat initial states.

Our results show that the early time behavior of the eigen-
values is quadratic to leading order, as we have already shown
analytically in the qubit case and have also observed numer-
ically in much larger systems. In many respects the behavior
of the eigenstates also reflects what we saw for the qubit case.
However, we have identified circumstances where the leading
behavior of the second and third eigenstates has a real linear
contribution, in contrast to the qubit case where the linear
piece just showed up in a relative phase.

The derivation is nearly identical to the treatment in
Sec. III, in that we begin with an initial state

|ψw(0)〉 = (a |1〉 + b |0〉 + c |−1〉) |φe〉 (A1)

with |a|2 + |b|2 + |c|2 = 1 and Hamiltonian of the form4

Hw = λ
( |1〉 〈1| H1

e + |0〉 〈0| H0
e + |−1〉 〈−1| H−1

e

)
. (A2)

Following the same methods as Sec. III, we obtained the
reduced density matrix

ρs =

⎡
⎢⎣ ρ|1〉〈1| ρ|1〉〈0| ρ|1〉〈−1|

ρ|0〉〈1| ρ|0〉〈0| ρ|0〉〈−1|
ρ|−1〉〈1| ρ|−1〉〈0| ρ|−1〉〈−1|

⎤
⎥⎦ (A3)

with entries defined as

ρ|1〉〈1| = aa∗,

ρ|1〉〈0| = ab∗(1 + ı	β10 − 	2η10 + ı	3ν10 + 	4κ10
)
,

ρ|1〉〈−1| = ac∗(1+ ı	β1−1− 	2η1−1+ ı	3ν1−1 + 	4κ1−1
)
,

ρ|0〉〈1| = ba∗(1 − ı	β10 − 	2η∗
10 − ı	3ν∗

10 + 	4κ∗
10

)
,

ρ|0〉〈0| = bb∗,

ρ|0〉〈−1| = bc∗(1+ ı	β0−1− 	2η0−1+ ı	3ν0−1+ 	4κ0−1
)
,

ρ|−1〉〈1| = ca∗(1− ı	β1−1− 	2η∗
1−1 − ı	3ν∗

1−1+ 	4κ∗
1−1

)
,

4Note that the “−1” superscript here is an index, not an inverse
operation.
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ρ|−1〉〈0| = cb∗(1− ı	β0−1− 	2η∗
0−1− ı	3ν∗

0−1+ 	4κ∗
0−1

)
,

ρ|−1〉〈−1| = cc∗. (A4)

It ends up being necessary to calculate the reduced density
matrix to O(	4), in order to not lose information when calcu-
lating the eigenvalues and eigenstates to O(	2). The β and η

parameters are defined analogously to Eqs. (13) and (14), i.e.,

βi j = λ

h̄

( 〈φe| H j
e |φe〉 − 〈φe| Hi

e |φe〉
)
, (A5)

ηi j = λ2

h̄2

( 〈φe| Hi
eHi

e |φe〉 + 〈φe| H j
e H j

e |φe〉
2

− 〈φe| H j
e Hi

e |φe〉
)

(A6)

with

εi j = ηi j + η∗
i j − β2

i j, (A7)

and the additional third and forth order parameters, νi j and κi j ,
are defined according to

νi j = λ3

h̄3

(
〈φe|

(
Hi

e

)3 |φe〉 − 〈φe|
(
H j

e
)3 |φe〉

6

+ 〈φe|
(
H j

e
)2

Hi
e |φe〉 − 〈φe| H j

e
(
Hi

e

)2 |φe〉
2

)
, (A8)

κi j = λ4

h̄4

(
〈φe|

(
Hi

e

)4 |φe〉 + 〈φe|
(
H j

e
)4 |φe〉

24

− 〈φe|
(
H j

e
)3

Hi
e |φe〉 + 〈φe| H j

e
(
Hi

e

)3 |φe〉
6

+ 〈φe|
(
H j

e
)2(

Hi
e

)2 |φe〉
4

)
. (A9)

Because this 3 × 3 system reduced density matrix is Her-
mitian, general analytical solutions for the eigenvalues and
eigenstates exist [23,24]. Using these exact solutions as a
starting point, we then performed another sequence of series
expansions for the small parameter t = 	 to obtain analytic
solutions. For the sequence of series expansions we kept terms
up to O(	4), only truncating the results to O(	2) at the end.
As mentioned earlier, this is essential to not lose information
when calculating the eigenvalues and eigenstates to O(	2);
for example, one needs to keep up to O(	4) to navigate the
series expansion of the ratio involving a square root in Eq. (9)
of [23] correctly. The eigenvalues to lowest order in time are
given by

p1 = 1 − 	2(|a|2|b|2ε10 + |a|2|c|2ε1−1 + |b|2|c|2ε0−1)

= 1 − 	2λ1, (A10)

p2 = 	2

2
(λ1 +

√
�)

= 	2λ2, (A11)

p3 = 	2

2
(λ1 −

√
�)

= 	2λ3 (A12)

with

� = λ2
1 + 4|a|2|b|2|c|2(|η0−1|2 + |η10|2 + |η1−1|2
+ β10β1−1 Re[η0−1] + β0−1β1−1 Re[η10]

− β0−1β10 Re[η1−1] − Re[η0−1η10]

− Re[η1−1η
∗
0−1] − Re[η1−1η

∗
10]

)
. (A13)

To obtain the above it is necessary to recognize that

(β0−1 + β10 − β1−1) = 0 (A14)

generically, simply following from the definition in Eq. (A5).
This sets the leading order time dependence of the eigenvalues
to be quadratic, as with the two-state results earlier in this
paper. Note the ±√

� part of Eqs. (A11) and (A12) is what
saves p2 and p3 from being degenerate at O(	2). In the limit
that any of the initial state coefficients a, b, or c are sent to
zero, we exactly recover the two state eigenvalues given by
Eqs. (17) and (18) from Eqs. (A10)–(A13).

The normalized eigenstate results have the general form

|ψ1〉 = χ1 |1〉 + γ1 |0〉 + ζ1 |−1〉 , (A15)

|ψ2,3〉 = χ2,3 |1〉 + γ2,3 |0〉 + ζ2,3 |−1〉 , (A16)

where for the top eigenstate χ , γ , and ζ are defined by

χ1 = x0

N0

[
1 + ı

x1

x0
	 +

(
x2

x0
− 1

2

N2

(N0)2

)
	2

]
, (A17)

γ1 = y0

N0

[
1 + ı

y1

y0
	 +

(
y2

y0
− 1

2

N2

(N0)2

)
	2

]
, (A18)

ζ1 = 1

N0

[
1 − 1

2

N2

(N0)2
	2

]
, (A19)

given

N0 =
√

1 + |x0|2 + |y0|2, (A20)

N2 = |x1|2 + |y1|2 + 2 Re[x0x∗
2] + 2 Re[y0y∗

2] (A21)

with

y0 = b

c
, (A22)

y1 = b

c
(β1−1 − β10), (A23)

y2 = b

c
[(β10 − β1−1)β1−1 + η∗

1−1 − η∗
10

+ |c|2(δ1 − ε0−1) + |b|2δ1] (A24)

and

x0 = a

c
, (A25)

x1 = a

c
β1−1, (A26)

x2 = a

c

1

|a|2
[
(1 − |c|2)(ε1−1 − η1−1) − λ1 − cb∗y2

+ |b|2[β2
0−1 − 2β0−1β1−1 − ε1−1 + η1−1 + η∗

0−1

]]
,

(A27)

where λ1 is defined in Eq. (A10), y2 in Eq. (A24), and δ1 is
shorthand for

δ1 = β0−1β10 + η∗
0−1 + η∗

10 − η∗
1−1. (A28)
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As with the two-state solutions, it is purely a matter of our
chosen convention (chosen for convenience) that the linear
complex phase is present in |1〉 and |0〉 but not |−1〉 in
Eqs. (A17)–(A19).

Additional complexity is present for |ψ2〉 and |ψ3〉. For
these eigenstates, χ2,3, γ2,3, and ζ2,3 are defined as

χ2,3 = u0

M0

[
1 + ı

u1

u0
	 + M1

(M0)2
	

+
(

u2

u0
+ u1M1

2u0(M0)2
− 3(M1)2

8(M0)4
− M2

2(M0)2

)
	2

]
,

(A29)

γ2,3 = v0

M0

[
1 + ı

v1

v0
	 + M1

(M0)2
	

+
(

v2

v0
+ v1M1

2v0(M0)2
− 3(M1)2

8(M0)4
− M2

2(M0)2

)
	2

]
,

(A30)

ζ2,3 = 1

M0

[
1 + M1

(M0)2
	 −

(
3(M1)2

8(M0)4
+ M2

2(M0)2

)
	2

]

(A31)

given

M0 =
√

1 + |u0|2 + |v0|2, (A32)

M1 = Im[u1u∗
0] + Im[v1v

∗
0 ], (A33)

M2 = |u1|2 + |v1|2 + 2 Re[u0u∗
2] + 2 Re[v0v

∗
2 ] (A34)

with

v0 =
(

b

c

)[
λ2,3 + |c|2(δ1 − ε0−1)

λ2,3 − |b|2δ1

]
, (A35)

v1 =
(

b

c

)[
1

(λ2,3 − |b|2δ1)2

]

×
[

[λ2,3 + |c|2(δ1 − ε0−1)][λ2,3β1−1 − |b|2δ3]

+ (λ2,3β10 − |c|2δ2)[|b|2δ1 − λ2,3]

]
, (A36)

v2 =
(

b

c

)[
1

(λ2,3 − |b|2δ1)3

]

× [
(λ2,3 − |b|2δ1)(λ2,3β1−1 − |b|2δ3)(λ2,3β10 − |c|2δ2)

− (λ2,3 − |b|2δ1)2(λ2,3η
∗
10 − |c|2δ4)

− [[λ2,3 − |c|2(δ1 − ε0−1)][(λ2,3β1−1 − |b|2δ3)2

− (λ2,3 − |b|2δ1)(|b|2δ5 + λ2,3η
∗
1−1)] ]

]
, (A37)

and

u0 =
( −1

ca∗

)
[|c|2 + v0cb∗], (A38)

10-3 t 10-1

10-10
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-5 0 5
0
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-5 0 5
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0.05

0.1

3rd eigenstate

-5 0 5
0

0.05

0.1

-5 0 5
0

0.05

0.1

-5 0 5
0

0.05

0.1

-5 0 5
q

0

0.05

0.1

-5 0 5
q

0

0.05

0.1

-5 0 5
q

0
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0.1

t=10-3 t=10-3
t=10-3

t=10-2 t=10-2 t=10-2

t=10-1 t=10-1 t=10-1

eigenvalues

FIG. 5. The evolution of an initial Schrödinger cat state formed
from three wave packets. Eigenstates and the second (circle markers)
and third (“×” markers) eigenvalues of ρs are shown in a similar
manner to Fig. 1. The Hamiltonians used are given by the origi-
nal ACL model [Eq. (5), solid curves] and a modified ACL model
[Eq. (A45), dashed curves]. These results allow us to link the qutrit
results from this Appendix to the behaviors of more complex sys-
tems. The quadratic (or faster) time dependence of the eigenvalues
and transient stability of the eigenstates express the main features of
the copycat process, even for these generalized cases. Note that the
solid and dashed curves for the first eigenstate overlap completely.

u1 =
( −1

ca∗

)
[|c|2β1−1 + cb∗[v1 + v0(β1−1 − β0−1)]],

(A39)

u2 =
(

1

ca∗

)[
λ2,3 + |c|2(η1−1 − ε1−1)

− cb∗[v2 + v1(β0−1 − β1−1)

+ v0(β0−1β1−1 + ε1−1 − η1−1 − η∗
0−1)]] (A40)

with the additional mixing parameters

δ2 = β1−1η0−1 − β0−1η1−1 + ν0−1 + ν∗
10 − ν∗

1−1, (A41)

δ3 = β10η
∗
0−1 − β0−1η

∗
10 − ν∗

0−1 − ν∗
10 + ν∗

1−1, (A42)

δ4 = β1−1ν0−1 − β0−1ν
∗
1−1 + η0−1η

∗
1−1

+ κ0−1 − κ∗
10 + κ∗

1−1, (A43)

δ5 = β10ν
∗
0−1 + β0−1ν

∗
10 − η∗

0−1η
∗
10

− κ∗
0−1 − κ∗

10 + κ∗
1−1, (A44)

where for |ψ2〉 one chooses λ2 defined in Eq. (A11), with a
similar convention for |ψ3〉.

These solutions for the eigenstates exhibit the increased
complexity present in the three-dimensional case. The nu-
merical factors in Eqs. (A22)–(A27) and Eqs. (A35)–(A40)
showcase a complicated interplay between the environmental
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factors βi j , ηi j , εi j , νi j , and κi j for the three different states.
The time dependence of the top eigenstate, |ψ1〉, is reminis-
cent of the two state solutions in that the leading order real
time dependence is quadratic with a linear complex phase.
However, note that for general H1

e , H0
e , and H−1

e the leading
order real time dependence for |ψ2〉 and |ψ3〉 is actually linear
if one considers Eqs. (A29)–(A31). However, this linear time
dependence will disappear if all the environmental factors
βi j , ηi j , εi j , and νi j are purely real, due to the vanishing of
Eq. (A33) in that limit.

In the case where the linear time dependence is present, one
can think of it this way: All aspects of the way in which the
initial state is being diminished are occurring at a quadratic
rate (to leading order). But in the qutrit case the probability is
flowing from the initial state into a two-dimensional subspace
orthogonal to the initial state. Under certain conditions it is
possible for the description of the system in this orthogonal
subspace to move around with a linear time dependence, even
as the profile of the evolution of the initial state remains
quadratic.

5Figure 5 shows a more narrow time range than Fig. 1 because
we had to wait until t ≈ 10−3 for the third eigenvalue to resolve
numerically, and the limited overall size of the system Hilbert space
forced us to place the three packets too close together to einselect
cleanly. The latter restriction is irrelevant to the points we make here
which are about early time behavior.

6In principle one could compare the forms of the eigenstates in
Fig. 5 with the analytical results for the qutrit—as well as derive the
qutrit versions of other quantities discussed in Secs. IV and V—but
we did not feel such an involved analysis would add much of interest
to this paper.

In this paper we took a phenomenon observed in the ACL
model and provided a systematic analysis in the simpler case
of the single qubit system, and in this Appendix we have
extended the analysis to the qutrit. We now circle back to
the more complicated ACL case. Figure 5 shows results from
calculations similar to the ACL calculations shown in Fig. 1,
but with an initial state comprised of three wave packets. The
broad features of the copycat process are also present in this
more complicated case.5,6

In our numerical explorations of different models we al-
ways found the second largest eigenvalue of ρs evolved as t2

at early times, and the smaller eigenvalues evolved as an even
power of t greater than or equal to 2. This faster than linear
evolution of the eigenvalues, in comparison with the slower
evolution of the eigenstates, is an essential part of the copycat
process. To achieve the t2 behavior for the third eigenvalue
shown by the dashed curve in Fig. 5 (which matches our qutrit
analysis) we used the ACL model with the interaction term
modified to give

Hw = Hs
SHO ⊗ 1e

+
(

10∑
i=1

|qi〉qi〈qi|
)

⊗ He
A +

(
20∑

i=11

|qi〉qi〈qi|
)

⊗ He
B

+
(

30∑
i=21

|qi〉qi〈qi|
)

⊗ He
C + He ⊗ 1s, (A45)

where He
A, He

B, and He
C are each independently generated

random Hermitian matrices and the three sums divide the
eigenstates of q (defined in the 30-dimensional system sub-
space) into three equal ranges. Note that Eq. (A45) is a more
direct generalization of Eq. (A2) (used for the qutrit) than the
original ACL Hamiltonian [Eq. (5)].
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