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Machine learning (ML) methods such as artificial neural networks are rapidly becoming ubiquitous in modern
science, technology, and industry. Despite their accuracy and sophistication, neural networks can be easily
fooled by carefully designed malicious inputs known as adversarial attacks. While such vulnerabilities remain
a serious challenge for classical neural networks, the extent of their existence is not fully understood in the
quantum ML setting. In this paper, we benchmark the robustness of quantum ML networks, such as quantum
variational classifiers (QVC), at scale by performing rigorous training for both simple and complex image
datasets and through a variety of high-end adversarial attacks. Our results show that QVCs offer a notably
enhanced robustness against classical adversarial attacks by learning features, which are not detected by the
classical neural networks, indicating a possible quantum advantage for ML tasks. Contrarily, and remarkably,
the converse is not true, with attacks on quantum networks also capable of deceiving classical neural networks.
By combining quantum and classical network outcomes, we propose an adversarial attack detection technology.
Traditionally quantum advantage in ML systems has been sought through increased accuracy or algorithmic
speed-up, but our study has revealed the potential for a kind of quantum advantage through superior robustness
of ML models, whose practical realization will address serious security concerns and reliability issues of ML
algorithms employed in a myriad of applications including autonomous vehicles, cybersecurity, and surveillance

robotic systems.
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I. INTRODUCTION

The past decade has seen an extraordinary multidisci-
plinary uptake of machine learning (ML) methods, driven
largely by the success of deep neural networks [1], in a diverse
set of scientific applications including, for example, image
classification [2], natural language processing [3], protein
structure prediction [4], and quantum circuit optimization [5].
At the same time, the rise of autonomous vehicles, drones, and
robots has seen ML technology increasingly enter industrial
and military use, with attention naturally turning to the reli-
ability of such ML tools in the face of malicious actors who
may seek to exploit them [6—10]. Most notably, a serious blow
to the prospect of reliably using neural networks in security
conscious environments has been delivered in the discovery
of adversarial attacks, and the resulting field of adversarial
ML [6-10]. The key finding of adversarial ML is that even
well trained, high performing neural networks will generally
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possess serious vulnerabilities to inputs, which have been
carefully crafted in order to deceive them, despite possibly
being all but indistinguishable [7] from genuine inputs, which
the network can classify easily. This discovery renders the
use of artificial neural networks in environments where the
input source cannot be trusted a dangerous proposition, and
is a key roadblock on the path to widespread deployment
of artificial intelligence in general scenarios [10]. Significant
efforts have been made to strengthen neural networks against
adversarial attacks [11-16], including, for example, the ju-
dicious injection of small amounts of randomness in order
to disturb any sensitively constructed adversarial inputs [15],
or the inclusion of adversarial examples at training time in
order to build robustness [11,16], but a universal and reliable
defense mechanism still remains elusive. While for now the
long-term prospects of classical neural networks in the face
of adversarial attacks remains unclear, recently attention has
been turning to how emerging quantum ML solutions will fare
against adversarial attacks.

Quantum ML is a new paradigm for the design of
ML solutions [17] with the possibility of exploiting the
capabilities of quantum computing for superior performance
in ML applications, either by utilizing quantum subroutines to
enhance the performance of classical ML classifiers [18,19],
or through the development of classifiers, which are them-
selves inherently quantum [20-26]. Remarkable advances
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FIG. 1. Adversarial machine learning benchmark framework. A flowchart diagram of the quantum/classical adversarial ML framework
developed to benchmark their robustness against a range of sophisticated adversarial attacks. (a) A variety of image datasets (MNIST, FMNIST,
CIFAR, and Celeb-A) are selected to train and test classical and quantum ML networks. (b) An example image from the FMNIST dataset along
with an adversarial attack and the attacked image is shown. For each image dataset, adversarial attacks (PGD, FGSM, and AutoAttack) are
generated with variable strengths controlled by € (with respect to the /,, norm). Importantly, we generate both quantum and classical attacks
to test their transferability across networks, i.e., quantum attacks on classical networks and vice versa. (c) Schematic diagram of a typical
classical neural network is illustrated. In our paper, two classical neural networks (ConvNet and ResNet) were trained to directly compare
their performance against the quantum ML networks. The exact configurations of the classical networks are described in the Appendix.
(d) Schematic diagram of a quantum variational classifier (QVC) network trained and tested in this paper. The QVC network consists of a data
loading layer where the input image data is amplitude encoded into a quantum state. The variational part of the QVC consists of a repeated
pattern of layers—only two such layers are shown. We trained and tested a number of QVC networks with varying number of repeated layers,
which are labeled based on the number of repeated layers, e.g., a QVC200 network contains 200 layers. The final stage of the network is a
measurement layer, which determines the classification label. [(e),(f)] Here we depict the performance of a quantum and a classical network
against an adversarial attack, where a small, carefully chosen perturbation is added to an image [as shown in (b)], which is then passed to both
a neural network and a QVC for classification. The probabilities that are assigned to various labels by the networks are shown as a function
of the strength of the attack. At a certain critical attack strength the correct label (“Shirts”, shown in orange) is no longer considered the most
probable by the classical network [see (e)], and the attack has succeeded in fooling the model. Contrarily, the same attacked image when
passed to a QVC is still correctly predicted as “Shirts” [see ()], even when the attack strength is increased well beyond what is tolerated by
the classical network.

in both quantum hardware and software development [27]
have led to a great interest in developing and benchmarking
a variety of quantum ML methods [28]. This naturally leads
to an important question: Can quantum ML algorithms be de-
signed to achieve superior defense against adversarial attacks
compared to their classical counterparts? This is the key open
question, which we aim to address in this paper. There have
been a few recent studies, which have explored the extent to

which quantum classifiers themselves suffer from adversarial
examples [24,29-36], giving birth to a new field of quantum
adversarial ML (QAML) [36]. However, the QAML literature
has to date been limited to only small-scale proof-of-concept
studies such as based on downscaled MNIST data [24,29] or
other simple binary classification problems [34]. Furthermore,
the field has so far primarily focused on the vulnerability
assessment for white-box adversarial attacks, wherein the
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FIG. 2. Transferability and defence. The accuracy achieved by classical and quantum networks on sets of 250 adversarially attacked test
images from each of the considered datasets in the cases of white-box PGD attacks on the convolutional network (top row), and 200 layer
quantum variational classifier (QVC200, bottom row) as a function of attack strength € (measured with the /,, norm). In both cases we see
the accuracy of the network under attack decrease sharply. The tendency of the accuracy of the independent networks to also decrease is
a manifestation of the transferability of adversarial examples—they are typically capable of fooling even networks, which they were not
explicitly designed to attack. We see an exception to this in the top row, with the quantum classifier largely resisting the attacks generated with
respect to the convolutional neural network. The behavior of QVCs of different depths under adversarial attacks is shown in Fig. 20.

adversary is assumed to have complete knowledge of the
target network [29,30,33,34]. In the case of a classical neural
network, this knowledge would include the architecture and
numerical values of all weights in the network, while for
a QVC it would include the architecture and the values of
all trainable parameters. In contrast to white-box attacks, a
black-box attack is one which is generated without precise
knowledge of the ML network structure, a more realistic
threat model for attacking production ML systems entrusted
with security-sensitive tasks. Typically, black-box attacks
are carried out by first implementing a white-box attack on
a network of one’s own, and then submitting the generated
adversarial example to the target network. The success of
this procedure is known as the transferability of adversarial
examples in the ML literature [7,37-39].

By developing an adversarial ML benchmark framework
(see Fig. 1 for a flowchart description), our paper evaluates
the robustness of quantum networks under true vulnerability
tests through benchmarking their performance at scale, i.e.,
based on full-sized simple and complex image datasets
without any downscaling and by creating both white and
black-box attacks. The presented detailed and systematic
study of defense and transferability of quantum and classical
ML networks in the presence of adversarial attacks not only
provides key insights, but also reveals a potential for future
quantum advantage in ML applications, which could be
unlocked in the next few years with the anticipated scale-up

of quantum processors coupled with the development of
sophisticated error correction schemes.

In this paper, we carried out a systematic set of quantum
and classical simulations across a range of image datasets
[40-43] and by creating a variety of adversarial attacks.
Our results analyze and compare both the defense of classi-
cal(quantum) networks against quantum(classical) adversarial
attacks, and the transferability of adversarial examples within
classical and quantum ML methods in black-box settings.
The focus of our paper is on comparing the performance
of quantum variational classifiers (QVCs), classical convolu-
tional neural networks (CNNs), and the well-known classical
neural network architecture ResNet18 [2]. Our results reveal
a surprising discovery that, while the adversarial examples
constructed by carrying out white-box attacks on the QVCs
tend to transfer well to the classical networks, the converse
is not true, with the QVCs displaying a remarkable resilience
to the classical adversarial attacks (see Fig. 1) in a black-box
setting. Based on the analysis of perturbations generated from
classical and quantum attacks, we interpret that the observed
difference between classical and quantum defense mecha-
nisms arises because the QVCs learn a different, but highly
meaningful, set of features to the classical networks, which
rely on informative but nonrobust features of the data. We also
investigate the performance of adversarial training of quantum
networks under both white-box and black-box settings, which
provides an important insight that while highly successful
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FIG. 3. Content of adversarial perturbations. The adversarial perturbations generated by ¢ = 0.1 PGD attacks on the convolutional neural
network, ResNet and the 500 layer quantum variational classifier (QVC500) are shown for several examples from the FMNIST and Celeb-A
databases. In the case of FMNIST the task is to distinguish between classes of images representing various types of clothing, e.g., T-shirts,
pants, shoes, while in the case of Celeb-A the classification problem is to determine whether or not the featured person has black hair. The
perturbations generated by the classical networks are incomprehensible to humans, exploiting the highly abstract features discovered by these
networks. The attack on the QVC, on the other hand, yields perturbations whose semantic content is clear; they constitute concrete steps
towards actually changing the label of the clean image (i.e., filling in the gap between the legs of the pants, adding sleeves to the T-shirt,
removing sleeves from the jumper, changing the hair color of the imaged person).

for classical networks [11,16], the benefits of adversarial
training are quite insignificant in further improving the per-
formance of already resilient quantum ML networks against
classical attacks. Interestingly, against the quantum attacks,
the computationally expensive adversarial training improves
the accuracy of quantum ML networks in a white-box setting,
but offers diminishing return in black-box scenarios. Finally,
we propose an adversarial attack detection technology, which
relies on classical and quantum ML frameworks both working
together to rapidly identify the presence of an adversarial
attack. Overall, our results have established that a future
deployment of quantum ML solutions in security conscious
practical applications could offer a kind of advantage in terms
of robustness of ML frameworks against adversarial attacks,
which will be in addition to commonly sought enhancements
in speed and/or accuracy.

II. RESULTS AND DISCUSSION

The testing and benchmarking of QAML models involve
selection of datasets, generation of adversarial attacks,
implementation of classical and quantum ML models, and a
systematic investigation of attack transferability and defense.
In this paper, we investigate QAML across a diverse set
of well-known image datasets, including both grey-scale
(MNIST [40] and FMNIST [41]), and RGB color (CIFAR
[42] and Celeb-A [43]) images. While we use all ten classes of
the MNIST and FMNIST datasets, although not a limitation of
our paper, we restrict to binary classification (ships vs trucks)
in the case of CIFAR in order to reduce the computational bur-

den of training the large quantum classifiers. The classification
challenge considered for the Celeb-A dataset is to determine
whether the pictured person has black hair. Example images
from each of the datasets are shown in Fig. 1(a).

After the selection of datasets, we implemented three dif-
ferent types of adversarial attacks: PGD [44], FGSM [45],
and AutoAttack [46]. These are some of the strongest attacks
commonly used in the classical ML literature to test and
benchmark the adversarial vulnerability of classical neural
networks. The details of how each of these attacks attempts
to find adversarial perturbations are given in Appendix B.
On the quantum side, our focus is on standard quantum vari-
ational classifiers (QVCs), while on the classical side we
consider convolutional neural networks (henceforth labeled as
ConvNet for simplicity) and the well-known neural network
architecture ResNet18 (henceforth labeled as ResNet for sim-
plicity) [2]. The architectures of ConvNet, ResNet, and the
QVCs are schematically shown in Fig. 6 below.

The first component of the QVCs is the data loading stage,
in which the images are encoded into a quantum state. There
are many popular strategies for encoding data into quantum
computers, including angle encoding [47], amplitude encod-
ing [47], matrix product state based block encoding [48],
and the flexible representation of quantum images (FRQI)
[48], each with their own advantages and disadvantages. In
this paper, owing to the high dimensionality of the image
data, we employ the method of amplitude encoding, which
is very efficient in terms of the number of qubits required.
While amplitude encoding is highly space efficient, it is not
specifically tailored for image data, and for example does
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FIG. 4. Quantum ML adversarial training. (a) The accuracies achieved by quantum ML networks are plotted as a function of attack
strength on a set of 250 adversarially attacked test images from the FMNIST dataset in the cases of white-box attacks on the ConvNet. The
attack is applied to QVC200 and adversarially trained QVC200 networks [QVC200%!, QVC200°2, and QVC200°%* where adversarial training
is performed with PGD attacks of (/) strength 0.1, 0.2, and 0.3 respectively]. The adversarial training makes a negligible difference to
the accuracy of the quantum network against classical attacks, which are already highly resilient. This resilience is strong enough that the
networks are almost entirely immune to increases in the strength of the attacks from € = 0.2 to € = 0.3, with their accuracies remaining
roughly constant. In fact, there is a small nonmonotonic component in the behavior of the adversarially trained QVCs, with increases of 0.04%
in test accuracy after an increase to the attack strength obtained by QVC200%! and QVC200%2. With 250 test examples, this corresponds to
correctly classifying one more of the images and is due to the perturbations, despite being “adversarial” from the classical network’s point
of view, looking essentially random to the QVCs. (b) The accuracies achieved by quantum ML networks are plotted as a function of attack
strength on a set of 250 adversarially attacked test images from the FMNIST dataset in the cases of white-box attacks on the QVC200. The
attack is applied to QVC200 and adversarially trained QVC200 networks [QVC200%!, QVC200°2, and QVC200°* where adversarial training
is performed with PGD attacks of (/) strength 0.1, 0.2, and 0.3 respectively]. The adversarial training significantly improves the accuracy
of the quantum network. [(c),(d)] The accuracies achieved by ConvNet, ConvNet™!, ConvNet®?, ConvNet’3, QVC200*', QVC200°2, and
QV(C200%3 on the FMNIST dataset in the case of white-box attacks on the QVC200. The classical networks exhibit high accuracy when
adversarially trained. As before, adversarial training makes negligible difference to the accuracy of the QVC200. [(e),(f)] The adversarial
perturbations generated by PGD attacks on QVC200, QVC200*', QVC200°2, and QVC200°3 are shown for a sample image from the MNIST
and FMNIST datasets. The perturbations corresponding to QVC200 show the presence of clear features, which actually change the label of
the clean image (i.e., adding sleeves to the T-shirt). The perturbations from adversarially trained QVCs are very similar to the QVC, which
underwent standard training.

not explicitly take into account spatial information such as
the relative closeness of pixels in the image. The exact role
of encoding schemes and in particular the investigation of
image-specific encoding schemes such as FRQI in the context
of the adversarial robustness of QML would be an interesting
question to investigate in a future study. Specifically, given an
input data vector x, amplitude encoding constructs the state

@) =Y xili).

We are therefore able to encode the 28 x28 grey-scale images
of the MNIST and FMNIST datasets into 10 qubits, and the
3x32x32 RGB images of CIFAR and Celeb-A into 12 qubits
(as 28x28 < 20 and 3x32x32 < 2'2).

After encoding, the resulting quantum state is processed by
a variable number of layers of parametrised (trainable) single-
qubit rotations and entangling CZ gates [refer to Figs. 1(c) and
6(c)]. The QVC networks are labeled based on the number
of layers in the architecture, e.g., QVC200 consists of 200
layers. Both classical and quantum networks were rigorously
trained to achieve high accuracies (see details in Figs. 7
and 8). We note that the learning accuracies of QVCs trained

in our paper are quite close to the outcomes from the clas-
sical networks even for complex RGB datasets (CIFAR and
Celeb-A) and despite that the classical networks utilize sig-
nificantly more resources than the QVCs. Furthermore, our
primary aim in this paper is to evaluate the robustness of
quantum ML in the presence of adversarial attacks, and
not so much on its performance for classification tasks,
hence QVC parameters were not fine tuned for this purpose.
Further details pertaining to the QVC architectures, CNNs,
ResNet, and their training procedures are provided in the
Appendix.

A. Adversarial attack transferability and defence

A complete testing and benchmarking process of classical
and quantum ML networks involves two steps: (1) Adversarial
examples created by various white-box attacks on a classical
network, e.g., ConvNet and their application to a different
classical network, e.g., ResNet, which analyses the transfer-
ability of attacks, as the attack generation and testing is done
on two entirely different architectures. In the quantum case,
this could be performed by generating adversarial examples
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FIG. 5. Attack detection technology. A flowchart diagram illus-
trating the proposed attack detection strategy based on a hybrid
quantum/classical approach. An attack is detected when the pre-
dictions of the classical and quantum networks disagree. A future
technology developed based on such a combination of classical and
quantum networks could provide the critical capability of rapid de-
tection of adversarial attacks on ML models.

on, e.g., QVC200 network and assessing its transferability
to a QVC500 network. (2) Adversarial examples created by
various white-box attacks on a classical network such as Con-
vNet and their application to a quantum network (such as
QVC200), which evaluates the defense of a quantum network
against that classical attack. This also involved the testing of
the defense of the classical networks (ConvNet and ResNet)
against the attacks generated from quantum networks such as
QVC200. Figure 9 provides a simple illustration that defines
defense mechanisms and transferability of attacks across clas-
sical and quantum networks.

Figure 2 plots our results benchmarking the transferability
and defense of both classical and quantum networks for all
four datasets in the presence of PGD attacks. The correspond-
ing results for FGSM and AutoAttack are plotted in Figs. 10
and 11 respectively, which exhibit very similar trends. Let us
first discuss the transferability of adversarial attacks (from one
classical network to another classical network, and from one
quantum network to another quantum network). Along the
top row [(a)—(d)] of Fig. 2, we witness the well-documented
transferability of adversarial examples between independent
classical networks: Adversarial examples created by various
white-box attacks on ConvNet transfer well to ResNet, de-
spite it having an entirely different architecture. Being under
white-box attack, the accuracy of the ConvNet itself falls
quickly (the red lines). The accuracy of an independent clas-
sical network, ResNet, also falls quite rapidly (the blue lines),

demonstrating the transferability of adversarial attacks in the
classical setting, and as seen in Figs. 2(a)-2(d).

Along the bottom row [(e)—(h)] of Fig. 2 we show, simi-
larly, a successful transfer of adversarial examples generated
by a white-box attack on QVC200 to an independently trained
QVC500 network, although the transferability across quan-
tum networks is relatively weak compared to the classical
case. This is perhaps due to the fact that both QVC200 and
QVC500 share the same architectural design, with the only
difference being the circuit depths, or number of layers. In the
future, it would be interesting to test transferability of quan-
tum networks with different architectural designs, e.g., how
well the attacks generated from a QVC network transfer to a
quantum convolutional network. Nevertheless, Figs. 2(e)-2(h)
show that the accuracy of QVC200 itself falls rapidly in the
face of the adversarial examples, which are being generated
specifically with respect to it (the black lines), as does that
of QVC500 (the green lines), demonstrating the successful
transferability between two QVC networks. While the trans-
ferability of adversarial examples between QVCs has to our
knowledge not been studied in the literature, we consider
this result unsurprising: QVC200 demonstrates a significant
vulnerability to white-box adversarial attack, consistent with
theoretical expectations [30] and previous empirical stud-
ies [29,34], and the successful transfer of these attacks to
QVC500 demonstrates that the quantum networks are inde-
pendently utilizing similar sets of nonrobust features, just
as their classical counterparts do [37], although to a weaker
extent.

Next, we turn our attention to the defense of classical net-
works against a quantum attack and vice versa. As exhibited
by the results plotted in Figs. 2(a)-2(d), in the presence of
PGD attacks generated from the classical ConvNet for vari-
ous datasets, the QVC200 network demonstrates far superior
robustness, retaining reasonable accuracies even in the face of
very strong attacks, i.e., € > 0.2. Conversely, the results plot-
ted in Figs. 2(e)-2(h) show a failure of the classical networks
to maintain their accuracy in the face of adversarial examples
generated by attacks on the QVC200 networks. Similar con-
clusions can be drawn from Figs. 10 and 11, where classical
and quantum defences are tested in the presence of adver-
sarial examples generated by FGSM and AutoAttack. One
might have expected, a priori, that the classical and quantum
networks would learn different features of the data, and that
therefore neither attack would transfer well across the clas-
sical/quantum divide. The success of the quantum adversarial
examples in deceiving the classical networks, however, neces-
sitates a more careful explanation, which will be discussed
in the next section based on an analysis of the underpinning
adversarial perturbations in the attacked images in both the
classical and quantum realms.

B. Adversarial perturbations

To gain further insight into the success of the quantum
networks in resisting the classical adversarial attacks, and con-
versely the failure of the classical networks to do the same, we
plot the adversarial perturbations generated by PGD attacks
on ConvNet, ResNet, and the 500 layer QVC on examples
from the FMNIST and Celeb-A datasets in Fig. 3. Similar
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examples from the MNIST and CIFAR datasets are shown
in Fig. 12, along with perturbations from the FGSM and
AutoAttack in Figs. 13 and 14. These perturbations highlight
a very similar trend. The perturbations generated in the attacks
on the classical networks display complicated high-frequency
patterns, which are not readily human understandable. The
fact that these “worst case” perturbations (from the networks’
perspective) take such a form is indicative of the fact that the
classical neural networks have learnt to classify the images by
identifying extremely complicated patterns in the data rather
than following the data distributions, or in other words using
a more human-like recognition of the large scale features in
the images. While these features may be highly informative,
the fact that classical networks tend to independently discover
similar sets of them contributes to the vulnerability of the
networks to transferred attacks, as the features can then be
simultaneously targeted by an adversarial attack on any one
of the classifiers individually. The inability of the classical
attacks to transfer to the QVCs then indicates that the quantum
models are utilizing a different set of features.

Indeed, the perturbations generated by attacking QVC200
demonstrate a markedly different story: in each case we can
clearly identify meaningful information in the perturbation.
For example, in the first column of Fig. 3, the perturbation is
filling in the gap between the legs of the pants, which would
indeed alter the true label of the image where the perturbation
strong enough. Similarly, in the second column we see the
attack adding sleeves to the T-shirt, and in the third column
removing them. On the right-hand side, where the classifica-
tion task is to determine whether or not the pictured person
has black hair, we can again see meaningful perturbations
generated by the QVC, either lightening or darkening the
hair of the pictured person so as to change the label of the
data sample image. The fact that, in the case of the QVC,
the “worst case perturbations” do genuinely correspond to
efficiently changing the true label of the sample, rather than
incomprehensible noise as is the case for classical networks,
implies that the QVC is learning more meaningful patterns
in the data, and so is not easily fooled except by meaning-
ful perturbations. This discovery is reminiscent of a similar
phenomenon observed in the case of (classical) adversari-
ally trained classifiers, where the adversarial perturbations of
classifiers, which have been explicitly designed to be robust
display more meaningful structure [37,38] than those which
have not. We will discuss adversarial training in more detail
in the next section. Remarkably, the ability of the QVCs to
display similar behavior despite having undergone only stan-
dard (nonadversarial) training is highly interesting and is an
indication of a kind of possible quantum advantage in ML
tasks.

The qualitative differences between the classical and quan-
tum perturbation landscapes explain both the success of the
QVC adversarial examples in transferring to the classical net-
works, and the failure of the adversarial examples generated
by attacking ConvNet to transfer to the QVCs. The classical
networks rely on nonrobust, but highly informative features,
which allow them to achieve high accuracy on clean data, but
are highly susceptible to adversarial attacks. As the QVCs
do not seem to rely on such features to the same extent, an
adversarial attack, which targets them is limited in its ability

to fool the QVCs, but the attacks on QVC200 transfer well to
the classical networks by virtue of their meaningful content.

These findings suggest extending the distinction drawn in
the classical adversarial ML literature [37,38] between robust
and nonrobust features to include a third category, classically
intractable features. While these classically intractable fea-
tures may themselves be robust or nonrobust, we expect them
to be robust against classically generated attacks in practice,
susceptible at most to perturbations generated by attacking a
quantum model. The QVCs studied in this paper have discov-
ered features consistent with this classically intractable but
nonrobust category, being susceptible to attacks transferred
from quantum models, but not classical ones. The investiga-
tion of quantum models, which are also robust against attacks
transferred from quantum classifiers is an interesting direction
for future work.

C. Adversarial training

The field of adversarial ML has seen a long battle
between new attacks, proposed defense mechanisms, refor-
mulated counterattacks, updated defense mechanisms, and so
on [12,14,39,49-55]. Throughout this evolving landscape of
attacks and defences, an enduring strategy on the defensive
side has been that of adversarial training, in which adversarial
examples are calculated and included in the training set of
the ML model [11,12,16,39]. Despite its simplicity, and the
lack of a rigorous guarantee of its success, adversarial training
has been found to be effective in practice, and is considered
to be one of the strongest methods for building adversarial
robustness in classical ML [11,16]. In this paper, we assess
the capability of adversarial training for quantum ML net-
works in the context of the FMNIST and MNIST datasets,
with the training-time adversarial examples generated by the
PGD, FGSM, and AutoAttack with € = 0.1, 0.2, and 0.3.
While a recent study considered adversarial training of a
shallow QVC in the context of only binary classification on
the MNIST dataset [29], we note that in this study a deep
quantum ML network has undergone adversarial training with
complex mutliclass data, i.e., all ten classes of the FMNIST
and MNIST datasets in Figs. 4(a)-4(d). Due to the extensive
computational requirements, we leave the adversarial training
of the 12-qubit classifiers employed for the CIFAR and Celeb-
A datasets to a future study.

We plot in Figs. 4(a)-4(d) the results generated by creating
adversarial attacks on ConvNet and QVC200, and applying
to adversarially trained QVC200 networks. In Figs. 4(a) and
4(c), ConvNet is attacked in a white-box setting and the attack
is transferred to traditionally trained QVC200 and adversari-
ally trained QVCs (black-box scenario). We use superscripts
to indicate the strength of the attacks used in the adversarial
training, i.e., the labels QVC200" indicate adversarial training
with perturbations of /,, norm x, where x € {0.1, 0.2, 0.3}.
Our results show that adversarial training of QVC200 for both
FMNIST and MNIST datasets makes only a minor difference
in the accuracy of quantum networks. This is in stark contrast
to classical ML where adversarial training has been shown
to work quite well. Interestingly, it has been reported in the
literature that adversarial training of classical ML also signif-
icantly reduces their clean learning accuracies (at € = 0), but
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for QVCs no considerable reduction is observed in our paper,
in particular for the FMNIST data. As the adversarial training
is notoriously computationally expensive, our results indi-
cate that in terms of QVC defense against classical attacks,
expensive adversarial training is not justified. However, we
acknowledge that these insights are based on the conducted
simulations and further studies may be needed to establish this
conclusion in a fully general set-up.

Next, we generate quantum attacks on QVC200 in a white-
box setting and evaluate the accuracy of adversarially trained
QVC200 networks in the presence of those quantum attacks.
Figures 4(b) and 4(d) plot our results for FMNIST and MNIST
datasets. In the quantum attack case, we show that the adver-
sarial training improves the accuracy of quantum networks,
although it does not completely restore it. We also note that the
extent of adversarial training (0.1 or 0.2 or 0.3) only has a little
impact, which is again in contrast to the classical ML literature
where the level of adversarial training makes a big perfor-
mance difference. The impact of QVC200 adversarial training
in the presence of FGSM and AutoAttack is qualitatively
similar to the PGD attacks as indicated from the comparison
of results between Figs. 4 and 16. Finally, we also tested the
resiliency of adversarially trained QVC200s in a black-box
setting and the results are plotted in Fig. 17. Here, the attacks
are generated in a white-box setting on QVC500 and trans-
ferred to QVC200 and adversarially trained QVC200s, which
indicate that adversarial training only negligibly improves the
accuracy.

To gain further insights into the adversarial training and its
impact on the accuracy of the quantum ML networks, we show
the perturbations generated by adversarial attacks on networks
both with and without adversarial training in Figs. 4(e) and
4(f). Further examples of such images are shown in Figs. 18,
16(e), and 16(f) show examples for FGSM and AutoAttack.
The overall conclusions from all these examples is the same
that the perturbations generated by attacks on the adversarially
trained QVC models display meaningful semantic content and
comparable to those generated by attacking the (regularly
trained) QVCs. The relatively weak impact of adversarial
training on QVC200 accuracy is perhaps due to the fact that,
even when undergoing standard training, the QVC networks
learnt features quite similar to those they learnt when undergo-
ing adversarial trainings. Also, the perturbation contents from
quantum attacks are fundamentally different from the contents
of classically generated perturbations (Fig. 3). Therefore, their
susceptibility (or lack thereof) to a given classical attack is
similar. This is in contrast to the classical networks, which
will default to learning nonrobust features unless they are
explicitly and rigorously trained in an adversarial setting (see
for example Fig. 15), and therefore adversarial training makes
a significant difference.

D. Prospects for future hardware implementation

The QVC results discussed in this paper are based on quan-
tum simulations in a noiseless environment. Here we briefly
discuss if/when the QVC networks benchmarked in our paper
can be implemented on quantum processors. The quantum
circuits corresponding to the QVC200 networks employed
for the MNIST and FMNIST datasets are made up of 200

layers, with each layer consisting of 39 quantum gates (single
qubit rotation gates and two-qubit CZ gates), as shown by
the schematic diagram in Fig. 6(c). The amplitude encoding
of the input data into an initial quantum state also requires
a few thousand quantum gates. Overall, we estimate that a
QVC200 network such as trained in our paper would consist
of 10°~10* quantum gates. The current generation of quantum
devices are not capable of implementing quantum circuits
with such deep circuit depths due to limitations imposed by
relatively high level of noise or errors. However, the impact
of noise can be analyzed to some extent by running quantum
simulations with noise models. In Fig. 19, we have plotted the
results obtained from QVC200 on the MNIST dataset in the
presence of four different noise models: depolarization noise,
amplitude damping noise, and bit-flip errors [56]. These noise
models are described in the Appendix. Based on the noisy
simulations, our results show that the accuracy is independent
of noise strength if the noise model is depolarizing noise [31]
and is only slightly reduced when the bit-flip error rate is
increased to 0.5%. On the other hand, the presence of the
amplitude damping noise severely impacts the accuracy of
the developed quantum solution. Similarly, the use of the
realistic hardware error models available within the Qiskit
simulation environment, which are designed to simulate the
noise found in real IBM devices, lead to low fidelity machine
learning predictions, which were overwhelmed with errors
and reduced to randomly guessing. This is anticipated as
the quantum circuit is very deep and therefore the cumula-
tive impact of the noise accumulated over several layers is
quite significant. Despite the limitations imposed by noise,
experimental work on a QAML implementation has already
begun, with a first experimental demonstration just performed
in the literature on superconducting quantum hardware [34],
where MNIST and magnetic resonance imaging datasets were
used for binary classification using 10-qubits and 26-layers,
showing accuracies of above 90%. Although this study is at
the proof-of-concept level, it is already indicating that near-
term quantum devices should be able to handle quantum ML
problems within the next few years. In our recent survey
article [36], we have discussed the prospects for a surface code
[57] based fault-tolerant implementation of QAML networks
and based on our qualitative estimates, we anticipate that
a fault-tolerant QAML implementation may be possible on
4000-qubit devices, which are expected to become available
in 2025 [56]. The theoretical analysis presented in our paper
has established a clear pathway for quantum advantage in
QAML and its future fault-tolerant implementation will be a
key milestone in the field of quantum computing, unlocking a
quantum advantage for a range of real-world ML applications.

E. Adversarial attack detection

The results plotted in Figs. 2, 10, and 11 show that quantum
networks defend remarkably well in the presence of classical
adversarial attacks. Based on these simulations, we formulate
an adversarial attack detection strategy, which will be highly
useful in practical settings where a rapid detection of adver-
sarial attacks is crucial for reliable ML based solutions. The
flowchart diagram in Fig. 5 illustrates our attack detection
technology, which is based on the hybrid operation of classical
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and quantum networks working in conjunction to detect the
presence of an adversarial attack. In this strategy, an attack is
detected if the outcomes from a classical (ConvNet or ResNet)
and a quantum network (QVC) disagree. We note that the
proposed attack detection technology is only conceptually
described here as it is limited by the clean accuracy of the
quantum ML network and its practical application would re-
quire further development and optimization of QVC networks
to attain clean learning accuracies (at € = 0) close to 1.0.
We tested the working of the technology by generating 500
clean and 500 attacked images with € = 0.1 PGD attacks.
This process was repeated 10 times. For the FMNIST case,
comparing the results of ConvNet and QVCS500 resulted in a
false positive rate of 22.3 £ 1.5% and a true positive rate of
79.0 £ 1.8%, whereas comparing ResNet and QVC500 led to
a false positive rate of 22.9 & 1.7% and a true positive rate of
67.2 £ 1.6%. Here, a false positive means an attack is erro-
neously detected on a clean image and a true positive means
an attack is detected on a perturbed image. These values are
consistent with the relatively low clean accuracy of QVC500
with a significant improvement in performance expected if
the clean accuracies of QVC500 can be improved in the
future.

III. SUMMARY AND OUTLOOK

Our study has performed a systematic and detailed assess-
ment of the QAML robustness in the presence of various
attacks and based on an analysis for a variety of datasets. The
presented results have revealed a number of important insights
into the working of QAML and bridge a critical knowledge
gap by answering key open questions such as: How well
will QAML fare against strong classical adversarial attacks,
to what extent will attacks transfer across the quantum and
classical boundaries, and whether promising classical defense
strategies such as adversarial training will work for QML net-
works. Our study will pave the way for future development of
the QAML field and may lead to experimental demonstration
of quantum advantage for ML tasks.

While our study provides many useful insights, which are
important to fully understand the working of QAML, there
still remains more work to be done for its practical implemen-
tation targeting real-world applications. Below, we highlight a
few important areas for future development:

(i) We have found that the adversarial training of our
QVCs produces relatively small improvements in accuracy,
compared to those seen classically in the literature, where
it significantly improves the accuracy of classical networks.
It will be important to investigate this further, in particular
by going beyond QVC architectures and by constructing
and benchmarking more complex quantum networks such as
quantum convolutional networks. This is of great significance
because quantum ML networks have been found to be
vulnerable against quantum attacks. If adversarial training
could work as well for quantum networks as it works for
classical networks, it may allow secure universal robustness
of quantum networks against both classical and quantum
attacks. Another important line of study would be to further
optimize quantum ML networks to improve their clean
learning accuracies.

TABLE I. The resource requirements for the different networks
considered. In all cases the quantum variational classifiers require
drastically less trainable parameters than their classical counterparts.
Due to computational restrictions QVC1000 was not run on the 12-
qubit datasets.

MNIST and FMNIST CIFAR-10 and Celeb-A
Network Nqubits Nqubits NMayers Nqubits Nparameters Mayers
ConvNet ~10° 5 ~10° 5
ResNet18 ~107 10 ~107 18
QVC200 10 6000 200 12 7200 200
QVC500 10 15000 500 12 18000 500

QVC1000 10 30000 1000

(i) While our paper has focused on image data, which
has been strongly represented throughout the adversarial ML
literature, the extent to which similar results may be found
on distinct data types (e.g., audio, text, the environment of
reinforcement learning agents, and fully quantum data, such
as that arising in problems of the phase classification of
quantum states [58]) also remains an interesting question for
future investigations, which will enable a wider adaptation of
QAML solutions.

(iii)) The construction of deeper QVCs is seen to have
limited effect on both the initial accuracy (Fig. 7) and the
robustness to the adversarial attacks (see Fig. 20). This may
be due to the generic form of the QVCs considered here not
being particularly well suited to image classification. Anal-
ogously to how the original fully connected artificial neural
networks were supplanted by convolutional neural networks
for image classification and feature detection, these general
purpose QVCs may be replaced by specialized quantum gen-
eralizations of convolutional neural networks [59] in order to
construct models whose performance on image data exhibits
more favorable scaling with model size. Moreover, beyond
a certain depth, the QVCs will become maximally express-
ible and further increases to the depth will not allow for the
finding of better solutions. This occurs at a point where the
circuits contain (O(2"a®it) trainable parameters and the rank of
the quantum Fisher information (QFI) matrix saturates [60].
Although we found that calculating the rank of the QFI matrix
was computationally intractable for the circuits, which we
used, the results of Fig. 7 suggest that we are operating in
this regime.

(iv) The quantum circuits considered in this paper are
quite large, consisting of 10 to 12 qubits, 200-1000 layers
of single qubit rotation gates and entangling CZ gates, for
a total of O(10%) quantum gates. The accurate evaluation
of such a circuit is beyond the capabilities of the noisy,
nonerror corrected quantum computers available today. How-
ever, it may be possible using sophisticated error correction
methods such as surface-code algorithms to implement the
proposed QAML solutions on quantum processors in the
near future. We qualitatively estimate that such implemen-
tations would require about 5000 or more qubits with error
rates requirements below 0.5% or so. While quantum pro-
cessors with such configurations may become available in
the next few years [56], it would still require significant
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development to transpile QAML circuits to error-corrected
versions directly implementable on a quantum processor.
Further optimization of the data loading step, which in our
current paper is very expensive, should ease resource re-
quirements for an implementation on a quantum processor,
further pushing forward the practical realisability of QAML
approaches.

In summary, vulnerability to adversarial examples has re-
cently emerged as a serious issue confronting classical ML
algorithms, raising ongoing concerns about their security and
reliability when classifying data from untrusted sources. In
the case of quantum ML, too, a similar susceptibility ex-
ists, and adversarial examples must be reckoned with if the
field is to achieve its expected revolutionary potential. We
address an important gap in the QAML literature by thor-
oughly studying the transferability of adversarial examples
between classical and quantum neural networks in the context
of common image datasets, discovering a surprising one-
way resiliency between quantum and classical networks. The
failure of the classical adversarial examples to transfer to
the QVCs is characterized as a result of the classical and
quantum networks learning different features of the vari-
ous image datasets, and the quantum ML networks being
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largely impervious to the specialized attacks, which targeted
the precise features employed by the classical networks. Al-
though demonstrated on various standard image datasets in
this paper, the consequence of the differences between the
architectures of the classical and quantum classifiers, which
allow quantum ML to learn from classically intractable and
robust features will only become more drastic in future
large-scale quantum classifiers. In this case we would sus-
pect even more strongly that classically generated adversarial
examples will fail to transfer to these powerful quantum clas-
sifiers, which are relying on features that are invisible to the
classical networks, and therefore cannot be targeted in an
attack. Such a scenario will offer a new form of advantage
in QML, orthogonal to the commonly anticipated gains in
terms of speed or accuracy—quantum ML classifiers, which
may not be necessarily more accurate than their classical
counterparts, but exhibit superior robustness to adversarial
attacks.
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APPENDIX A: CLASSIFIER DETAILS

Here we provide various further details regarding the
implementation of the classifiers and adversarial attacks em-
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ployed in this paper. The total number of trainable parameters
for each network may be found in Table I.

Classical network implementations. Our convolutional
neural network begins with three layers of 3x3 filters, con-
taining 64, 128, and 256 feature maps respectively, with
2x2 maxpooling and the ReLu activation function. These
convolutional layers are followed by two fully connected
layers, which also utilize the ReLu activation function. The
architecture of ResNetl8 is as described in [2]. The net-
works were implemented in Pytorch [61] and trained with
the Adam optimiser and the cross-entropy loss function [62].
Further details of the network architectures are shown in
Appendix A.

Quantum network implementations. Our QVCs follow a
standard three step process for processing the input image
data before outputting a predicted label. In the first step the
images are encoded into a quantum state via the method
of amplitude encoding [47]. In the second step the encoded
images are processed by passing through a parameterised
quantum circuit consisting of a variable number of layers,
with each layer consisting of a parameterised rotation to each
qubit followed by nearest neighbor CZ gates. In this paper
we employ deep circuits with 200, 500, or 1000 layers. Fi-
nally, in the third step we measure the z expectation value
of the first m qubits, where m is the number of classes in
the particular classification problem being considered. The
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FIG. 7. The accuracy achieved by the quantum variational classifiers on test sets of 250 images from each dataset throughout the training
process. We see consistent but modest gains in accuracy as a function of model size in the cases of MNIST and FMNIST (10 class classification
problems), but less consistency in the cases of CIFAR-2 and Celeb-A (binary classification problems). Architectures more suited to image
classification than QVCs (e.g., quantum convolutional neural networks [59]) may display better scaling behavior.

023186-11



MAXWELL T. WEST et al.

PHYSICAL REVIEW RESEARCH §, 023186 (2023)

Learning Accuracies

Datasets CONV Net RESNET QvC200 QVvC500
MNIST 1 0.992 0.832 0.916
FMNIST 0.932 0.9 0.74 0.74
CIFAR 0.944 0.84 0.764 0.812
Celeb-A 0.816 0.788 0.768 0.78

FIG. 8. Test accuracies achieved by classical and quantum net-
works for various datasets.

prediction of the QVC is defined to be the index of the
highest of these values. The QVCs are trained via a full
statevector simulation (i.e., using an infinite number of shots).
Further details may be found in Appendix B. The QVCs were
implemented in Pennylane [63] and trained with the Adam
optimiser and the cross-entropy loss function [62]. On a real
quantum computer, numerically evaluating gradients by mak-
ing very small changes to the parameters of the circuit may be
difficult to accomplish with high fidelity, and alternate tech-
niques such as the param-shift rule may need to be considered
[64].

Adversarial training. We employ adversarial training with
the PGD attack with three gradient descent steps. Each batch
of training examples consists of 50% clean and 50% adversar-
ial examples.

Quantum noise. We test our QVCs in the presence of
depolarization noise, amplitude damping, and bit flip noise.

Attack Generation Attack Application
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FIG. 9. A simple illustration to show our definition of transfer-
ability and defence. The attack is generated by either a classical
network or a quantum network (Attack Generation). The effective-
ness of the attack generated by a classical (quantum) network when
applied to a different classical (quantum) network is defined as Trans-
ferability. The robustness of a quantum (classical) network against a
classical (quantum) attack is defined as Defence.

The results are shown in Fig. 19. Depolarization noise: In this
model, the state of the system is replaced with the maximally
mixed state with probability p, which indicates the strength of
the noise. Amplitude damping: This model is a quantum chan-
nel, which gives a simple model for relaxation of an excited
state to the ground state. In the qubit case, with some proba-
bility there is a spontaneous transition |0) — |1). The lifetime
is governed by a parameter y, which determines the strength
of the noise. Bit-flip: In this model, an X gate is applied with
probability p, which determines the strength of the noise.

APPENDIX B: ADVERSARIAL MACHINE LEARNING

We begin with a brief review of the aspects of adversarial
machine learning relevant to our paper, drawing on both the
classical [7] and quantum [29] supervised machine learning
literature. The key discovery of adversarial machine learning
is that standard ML frameworks are highly susceptible to
being deceived by subtle, malicious tampering with their input
data [6-9]. The results of such tampering, adversarial exam-
ples, can be readily produced by taking a data sample (which
for a high performing ML method will likely be correctly
classified) and attempting to find a tiny perturbation, which
when added to the data causes a misclassification. By insisting
that the perturbation is small one guarantees that the true label
of the constructed adversarial example is the same as the label
of the original datapoint, despite the model classifying them
differently if the attack is successful.

Concretely, suppose that we are attempting to train a clas-
sifier to label data from a set X', with corresponding labels
from another set ). The goal of supervised machine learning
is then to learn a parameterised function Cy : X — ) in order
to minimize the empirical loss obtained on a given training set
consisting of pairs (x;, y;) of labeled examples,

-1

6 = argmin = > L(Cy(x). 1) (B1)
where © is the set of possible parameter values, and L is a
chosen loss function (e.g., the cross-entropy loss [62]). Alter-
nately, in the setting of adversarial machine learning, one is
given a trained classifier Cy and an input sample x, and seeks
to construct an adversarial perturbation §,qy by maximizing
the loss function,

Saav = arpmmax L(Cy(x +8),y) (B2)
€A

where A is the set of allowable (i.e., acceptably small) per-
turbations. While the optimization problem of Eq. (B2) may
be highly nonconvex and analytically intractable, many strong
strategies (“types of attacks”) have emerged for tackling it in
practice. In this paper we consider three standard attacks from
the classical ML literature, namely projected gradient descent
(PGD) [44], the fast gradient sign method (FGSM) [45], and
AutoAttack [46].

One of the first white-box algorithms proposed to attack
deep networks for image classification, FGSM obtains the
adversarial perturbation § by computing the contribution
of each element of the input vector x to the loss function,
restricted by the £, norm, by taking

8 = esign(V, L(C(x;0%), y)) (B3)
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FIG. 10. The accuracy achieved by classical and quantum networks on sets of 250 adversarially attacked test images from each of the
considered datasets in the cases of white-box FGSM attacks on the convolutional network (top row), and 200 layer quantum variational
classifier (QVC200, bottom row) as a function of attack strength (measured with the /., norm). In both cases we see the accuracy of the
network under attack decrease sharply. The tendency of the accuracy of the independent networks to also decrease is a manifestation of the
transferability of adversarial examples—they are typically capable of fooling even networks, which they were not explicitly designed to attack.
We see an exception to this in the top row, with the quantum classifier usually resisting the attacks generated with respect to the convolutional

neural network.

Despite its simplicity, FGSM can consistently and efficiently
generate perturbations that cause untargeted misclassifications
with a high confidence in deep networks, which is
hypothesized to be due to the linearity of typical neural
networks [45]. Another popular attack, PGD is essentially
an iterated extension of FGSM. Starting uniformly randomly
in the space of allowable perturbations A, it computes an
adversarial perturbation iteratively by taking

) = Unif(A), 8, = P8, + aVsLCx + 867, 7))
(B4)

given some step size «. After each gradient step the
perturbation is projected back onto the allowable region
A by the projector P (such as clipping individual values
between € under the £,, norm). PGD is an important attack
as it is conjectured that it is a universal first-order adversary
in the sense that no other polynomially bounded attacks
using first-order gradients will find a significantly better
perturbation [44]. Finally, AutoAttack is an ensemble method
in which multiple attacks are employed, with an input that
resists an attack being fed into the next attack in the list. Our
implementation follows Ref. [46].

An important classification of adversarial attacks is into
white-box and black-box attacks. In a white-box attack, the
adversary is assumed to have full access to the network un-
der attack, including familiarity with its architecture and the
values of its weights and biases. As a result, the adversary

possesses the ability to differentiate with respect to an input
to the network, and therefore carry out optimization based
attacks such as the PGD, FGSM, and AutoAttack considered
here. While such attacks generally have a devastating effect on
the accuracy of a network, the assumption of such intimate fa-
miliarity with the target network may not always be satisfied.
A more realistic case is that where the adversary has access
to the target network only through submitting queries, and is
therefore forced to attempt a black-box attack. The feasibility
of black-box attacks stems largely from the discovery of the
remarkable transferability of adversarial examples between
various ML frameworks: adversarial examples constructed to
attack a specific target tend to transfer to entirely independent
networks, deceiving them as well [7,37-39]. This discovery
alleviates the need for direct access to a network in order to re-
liably attack it; the adversary may construct a network of their
own, perform a white-box attack on it, and then simply submit
the generated adversarial examples to the target network. The
transferability of adversarial examples between classical and
quantum networks is the main topic of study in this paper.

APPENDIX C: QUANTUM MACHINE LEARNING

The quantum machine learning (QML) models which we
will consider throughout this paper belong to the category
of quantum variational classifiers (QVCs). As in the classical
case, these models will be parameterised functions Ag: X'+ ),
where we consider an input set X with associated labels
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FIG. 11. The accuracy achieved by classical and quantum networks on sets of 250 adversarially attacked test images from each of the
considered datasets in the cases of white-box AutoAttack on the convolutional network (top row), and 200 layer quantum variational classifier
(QVC200, bottom row) as a function of attack strength (measured with the /,, norm). In both cases we see the accuracy of the network under
attack decrease sharply. The tendency of the accuracy of the independent networks to also decrease is a manifestation of the transferability
of adversarial examples—they are typically capable of fooling even networks which they were not explicitly designed to attack. We see an
exception to this in the top row, with the quantum classifier largely resisting the attacks generated with respect to the convolutional neural
network.

from a further set ) and denote a QVC parameterised by
parameters 0 as Ag. Our QVCs follow a standard three step
process for processing the input image data before outputting

a predicted label. In the first step the images are encoded into
a quantum state. Due to the strong limitations on the num-
bers of qubits currently available to quantum computers and
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FIG. 12. The adversarial perturbations generated by € = 0.1 PGD attacks on the convolutional neural network, ResNet18 and the 500 layer
quantum variational classifier (QVC500) are shown for several examples from the MNIST and CIFAR databases.
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FIG. 13. The adversarial perturbations generated by € = 0.1 FGSM attacks on the convolutional neural network, ResNet18 and the 500
layer quantum variational classifier (QVC500) are shown for several examples from the FMNIST and Celeb-A databases.

simulators, and our need to encode high dimensional image where the set {|i)}l?;6‘ forms the computational basis of the

data, we employ the method of amplitude encoding [47].  Hilbert space. As amplitude encoding makes use of the entire
Having representgd the image by a vector x contamning its  Hilbert space, which has a dimension exponentially large in
pixel values, amplitude encoding is the mapping the number of qubits, it can encode a vector x € R™ into
[log,(m)] qubits. This extreme compression allows us to
o encode images into a manageable number of qubits; in the
X in| i) (C1)  case of the MNIST and FMNIST datasets, which consist of
i=0 28x28 greyscale images, only 10 qubits are needed, while for
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FIG. 14. The adversarial perturbations generated by € = 0.1 FGSM attacks on the convolutional neural network, ResNet18 and the 500
layer quantum variational classifier (QVC500) are shown for several examples from the MNIST and CIFAR databases.
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FIG. 15. [(a),(b)] The adversarial perturbations generated by PGD attacks on ConvNet, ConvNet”!, ConvNet"?, and ConvNet®? are shown
for sample images from the MNIST and FMNIST datasets. While the perturbation for ConvNet exhibits highly abstract features, which are
incomprehensible to humans, the perturbations from the adversarial training show hints of systematic features, reminiscence of quantum

networks.

the 3x32x32 RGB images from the CIFAR-10 and CelebA
datasets, 12 qubits are required. In both cases, zeros are ap-
pended to the input vectors in order to make their length a
power of two. Having loaded the images into the quantum
model in the first stage, in the second stage they are pro-
cessed by passing through a parameterised quantum circuit,
the parameters of which are updated during training to min-
imize the average cross entropy loss on the training dataset
as in Eq. (B1). We choose parameterised circuits consisting
of a variable number of layers, with each layer consisting of
a parameterised rotation to each qubit followed by nearest
neighbor CZ gates. In this paper we employ deep circuits with
200, 500, or 1000 layers. Finally, in the third stage a set of
measurements are performed in order to determine the pre-
dicted output label. In our case we measure the z expectation
value of the first m qubits, where m is the number of classes in
the particular classification problem being considered (10 for
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MNIST and FMNIST, two for CIFAR-10 and CelebA). Given
an input x, then, the final output of the quantum classifier is

Ay (x) = agmax Tr[Up (x)o} | (C2)
k<m

where we denote the unitary representing the action of the
parameterised quantum circuit on the input x by Uy(x). The
procedure is depicted in Fig. 1.

The accuracies obtained by the various QVCs on the con-
sidered datasets are shown in Fig. 7.

APPENDIX D: FURTHER DETAILS

This Appendix contains Figs. 6-20 supporting various as-
pects of this paper, including plots of adversarial accuracies
and perturbations omitted from the main text, diagrams of

Adversarial Perturbations

QVC200 QVC20001 QVC2000°2

QVC20003

FIG. 16. As in Fig. 4, but using the FGSM and AutoAttack for FMNIST dataset.
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FIG. 17. The accuracies achieved by quantum ML networks are
plotted as a function of attack strength on a set of 250 adversari-
ally attacked test images from the FMNIST dataset in the cases of
white-box attacks on the QVC500 network. The attack is applied to
QVC200 and adversarially trained QVC200 networks [QVC200°,
QV(C200°2, and QVC200°3 where adversarial training is performed
with PGD attacks of (/) strength 0.1, 0.2, and 0.3 respectively]. The
adversarial training makes a negligible difference to the accuracy of
the quantum network.
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FIG. 18. The adversarial perturbations generated by e = 0.1
PGD attacks on QVC200 networks, with and without adversarial

QVC200, MNIST
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FIG. 19. The test accuracies of QVC200 on the MNIST dataset
under various levels of QC noise in the simulation. The descrip-
tion of QC noise models is provided in the Methods section. We
sample Pyt ips Yaamp € {0, 0.01, 0.02, 0.03, 0.04, 0.05}, and pyepor €
{0,0.2,0.4,0.6, 0.8, 0.99}. The robustness to depolarization noise is
perfect for all pgepor < 1, as proven for this class of QML model in
Ref. [31].

the networks employed, the validation accuracy of the QVCs
throughout the training process, and the performance of the
QVCs in the presence of noise.
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FIG. 20. The accuracies of QVCs of various depths on images

training, for a few examples from the FMNIST dataset. The QVCs
display large-scale features whose meaning is often understandable,
unlike ConvNet with standard training.

generated by a PGD attack on ConvNet. We find that increasing the
depth of the quantum networks has a limited effect on both clean
accuracy and adversarial robustness.
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