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Tunable Feshbach resonances in collisions of ultracold molecules in 2�
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We consider the magnetically tunable Feshbach resonances that may exist in ultracold mixtures of molecules
in 2� states and alkali-metal atoms. We focus on Rb+CaF as a prototype system. There are likely to be Feshbach
resonances analogous to those between pairs of alkali-metal atoms. We investigate the patterns of near-threshold
states and the resonances that they cause, using coupled-channel calculations of the bound states and low-energy
scattering on model interaction potentials. We explore the dependence of the properties on as-yet-unknown
potential parameters. There is a high probability that resonances will exist at magnetic fields below 1000 G,
and that these will be broad enough to control collisions and form triatomic molecules by magnetoassociation.
We consider the effects of CaF rotation and anisotropy of the interaction potential, and conclude that they may
produce additional resonances but should not affect the existence of rotation-free resonances.
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I. INTRODUCTION

Ultracold molecules have many applications that are now
emerging, ranging from quantum simulation [1,2], quantum
computing [3–5] and the study of novel quantum phases [6,7]
to tests of fundamental physics [8–10]. The key to most of
these applications are polar molecules, which can have long-
range anisotropic interactions resulting from their permanent
dipoles. Many such molecules have been produced at mi-
crokelvin temperatures by association of pairs of alkali-metal
atoms, followed by laser transfer to the vibrational ground
state [11–20]. Another class of molecules, exemplified by
CaF and SrF, have been cooled directly by magneto-optical
trapping followed by sub-Doppler laser cooling [21–26].

Elastic and inelastic collisions are at the heart of ultracold
physics. For ultracold atoms, it is often possible to control ul-
tracold collisions by adjusting an applied magnetic field close
to a zero-energy Feshbach resonance [27]. Such a resonance
occurs whenever a molecular bound state can be tuned across
a scattering threshold as a function of applied field. The s-
wave scattering length then passes through a pole as a function
of field, allowing the effective interaction strength to be tuned
to any desired value. This control has been applied in many
areas of ultracold physics, including condensate collapse [28],
soliton creation [29], Efimov physics [30], and investigations
of the BCS-BEC crossover in degenerate Fermi gases [31].
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Feshbach resonances are also used for magnetoassociation, in
which pairs of ultracold atoms are converted to weakly bound
diatomic molecules by sweeping a magnetic field across the
resonance [32,33].

Much new physics will become accessible when atom-
molecule collisions can be controlled with tunable Feshbach
resonances. Control of the s-wave scattering length may allow
sympathetic cooling of molecules to quantum degeneracy, and
the formation of atom-molecule mixtures with novel proper-
ties. It may also be possible to form polyatomic molecules by
magnetoassociation. Feshbach resonances have now been ob-
served in collisions between ultracold 40K atoms and 23Na 40K
molecules in singlet states [18,34–37], and between 23Na
atoms and 6Li 23Na molecules in triplet states [38]. These
systems have also been investigated theoretically [34,38–40].
Resonances have not yet been observed in collisions of laser-
cooled molecules such as CaF and SrF, with 2� ground states,
but we have recently succeeded in making ultracold mixtures
of CaF molecules and Rb atoms, and studied their inelastic
collisions in both magnetic traps [41] and magneto-optical
traps [42]. Several laser-coolable molecules have been cooled
to 5 µK [24,25] and confined in optical traps [23] and optical
tweezers [43], opening the way to experiments in controlled
magnetic fields.

The purpose of the present paper is to investigate the res-
onances that are expected in collisions between molecules in
2� states and alkali-metal atoms. These systems have strong
similarities to pairs of alkali-metal atoms, particularly for the
long-range states that are most likely to cause magnetically
tunable Feshbach resonances. We show that there is a high
probability that tunable Feshbach resonances will exist at
magnetic fields below 1000 G, and that they will be broad
enough to control collisions and form triatomic molecules by
magnetoassociation. There are additional complications and
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additional resonances that arise from the rotational structure
of the molecule and the anisotropy of the interaction potential,
but we find that these are unlikely to affect the general features
of the scattering. We focus on 87Rb +40Ca 19F as a prototype
system, but many of the features are transferable to other
molecules such as SrF and other alkali-metal atoms. In the
following we mostly omit isotopic masses and write Rb+CaF
for 87Rb +40Ca 19F.

The structure of the paper is as follows. Section II describes
the underlying theory, including monomer Hamiltonians, in-
teraction potentials, and computational methods. Section III A
describes the near-threshold levels that can exist for Rb+CaF
and the Feshbach resonances they can cause, using a simple
model that omits rotational degrees of freedom. Section IV
considers the effects of CaF rotation and potential anisotropy.
Section V considers the possible effects of quantum chaos at
short range. Section VI presents conclusions and offers per-
spectives for future work to take advantage of the resonances.

II. THEORY

A. Monomer Hamiltonians and levels

The Hamiltonian of an alkali-metal atom A in its ground
2S state is

ĥA = ζA îA · ŝA + (gs,AŝA,z + giîA,z )μBB, (1)

where ŝA and îA are vector operators for the electron and
nuclear spin, ŝA,z and îA,z are their components along the z axis
defined by the magnetic field B, ζA is the hyperfine coupling
constant, and gs,A and gi,A are the g factors for the electron and
nuclear spins [44]. The nuclear spins vary from 1 for 6Li to
9/2 for 40K, and the hyperfine splittings Ahfs = ζA(iA + 1

2 )/h
vary from 228 MHz for 6Li to 9.19 GHz for 133Cs. We focus
here on 87Rb with i = 3/2 and Ahfs ≈ 6.83 GHz. The resulting
levels are well known, but are shown in Fig. 1(a) for conve-
nience. At zero field the levels are labeled by total angular
momentum fRb = 1 and 2. When a field is applied, each level
splits into 2 fRb + 1 sublevels, color-coded according to the
projection m f ,Rb. At sufficiently high field, pairs of levels with
fRb = 1 and 2 but the same value of m f ,Rb mix sufficiently that
the levels are better described by ms,Rb and mi,Rb than by fRb.
For 87Rb this transition is still incomplete at 2000 G, but it
occurs at much lower fields for alkali-metal atoms with small
hyperfine splittings, such as Li and Na.

The CaF or SrF molecule may be treated at different lev-
els of complexity. The stable isotopes 40Ca, 88Sr, 86Sr, and
84Sr all have zero nuclear spin, while 87Sr has i = 9/2; only
the spin-zero isotopes will be considered here. The simplest
useful approximation is to neglect the molecular rotation, and
in this case the molecular Hamiltonian ĥn=0

CaF is the same as
Eq. (1), with iF = 1/2 for 19F in CaF. However, when rotation
is included, several extra terms are needed. The ones impor-
tant here are

ĥrfhf
CaF = b0n̂2 + γ ŝCaF · n̂ + t

√
6T 2(C) · T 2(îF, ŝCaF), (2)

where n̂ is the vector operator for the molecular rotation. The
first term represents the rotational energy of a molecule in its
vibrational ground state, treated as a rigid rotor. The second
term represents the electron spin-rotation interaction, and the

third accounts for the anisotropic interaction between elec-
tron and nuclear spins: T 2(î, ŝ) is the rank-2 spherical tensor
formed from î and ŝ, and T 2(C) is a spherical tensor whose
components are the Racah-normalized spherical harmonics
C2

q (θ, φ) involving the orientation of the molecular axis. Val-
ues of b0/h ≈ 10.3 GHz, γ /h ≈ 40 MHz, ζF/h ≈ 120 MHz,
and t/h ≈ 14 MHz are taken from Refs. [45,46]. A more
complete version of Eq. (2), including additional contributions
of the order of kHz that are unimportant here, has been given
in Ref. [47].

The full Hamiltonian for CaF is ĥCaF = ĥn=0
CaF + ĥrfhf

CaF. The
resulting level diagram is shown as a function of magnetic
field in Fig. 1(b), with expanded views for n = 0 and 1 in
Figs. 1(c) and 1(d). There are only very small matrix elements
that are off-diagonal in n, so the levels for n = 0 are very
similar to those of an alkali-metal atom with iF = 1/2. The
hyperfine splitting is small, so iF and sCaF are mostly decou-
pled by 50 G. At higher field, the states are well described by
ms,CaF and mi,F.

In a rotating molecule at low field, iF and sCaF = 1/2
couple to give a resultant g = 0 or 1, and g couples to the
rotational angular momentum n to produce the total molecular
angular momentum fCaF. For n = 1, there are zero-field levels
with fCaF = 0, 1, 1, 2, as labeled on Fig. 1(d). The lower level
with f = 1 is predominantly g = 0 and the remaining three
are predominantly g = 1. In a magnetic field, however, iF,
sCaF, and n are again mostly decoupled by 50 G; at higher
fields, the states are better described by ms,CaF, mi,F, and
mn than by g and fCaF. States of different ms,CaF are well
separated; within the group for a particular value of ms,CaF,
there are two subgroups with mi,F = ± 1

2 , with splitting about
ζ/2 = 60 MHz, and each subgroup is further divided into
states with different mn, with adjacent states separated by
about γ /2 = 20 MHz. The projection quantum numbers are
not fully conserved, but these qualitative arguments help to
understand the general patterns at high field.

B. Calculations of bound states and scattering

The Hamiltonian for an alkali-metal atom interacting with
a CaF molecule is

Ĥ = h̄2

2μ

(
−R−1 d2

dR2
R + L̂

2

R2

)
+ ĥA + ĥCaF + V̂int, (3)

where R is the intermolecular distance, μ is the reduced
mass, L̂

2
is the operator for relative rotation of the pair, and

V̂int is the interaction operator described below. We carry
out calculations of both bound states and scattering using
coupled-channel methods [27,48,49]. The total wave function
is expanded as

�(R, ξ ) = R−1
∑

j

	 j (ξ )ψ j (R). (4)

Here {	 j (ξ )} is a set of basis functions that span all co-
ordinates except R, including the relative rotation; these
coordinates are collectively designated ξ . In the coupled-
channel calculations described in Sec. III A, ξ includes only
electron and nuclear spins. However, in more complete
treatments, it may also include basis functions for overall
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FIG. 1. Energies as a function of magnetic field for (a) 87Rb atom in ground 2S state; (b) Lowest two rotational levels of CaF, with expanded
views of n = 0 and 1 in (c) and (d), respectively; (e) Scattering thresholds of 87Rb + CaF, with expanded views of ( fRb, n) = (1, 0), (2,0),
(1,1), and (2,1) in (f) and (g), (h) and (i), respectively. All level energies are shown relative to the ground state at zero field and are color-coded
as shown in the legend according to mf ,Rb, mf ,CaF or MF = mf ,Rb + mf ,CaF, as appropriate; negative values are indicated by dashed lines.

rotation of the collision complex, and rotation and vibration
of CaF.

Substituting the expansion (4) into the total Schrödinger
equation produces a set of coupled differential equations that
are solved by propagation with respect to the internuclear dis-
tance R. The coupled equations are identical for bound states
and scattering, but the boundary conditions are different.

Scattering calculations are performed with the MOLSCAT

package [50,51]. Such calculations produce the scattering

matrix S, for a single value of the collision energy and mag-
netic field each time. The complex s-wave scattering length
a(k0) is obtained from the diagonal element of S in the in-
coming channel, S00,

a(k0) = 1

ik0

(
1 − S00(k0)

1 + S00(k0)

)
, (5)

where k0 is the incoming wave number, related to the collision
energy Ecoll by Ecoll = h̄2k2

0/(2μ). The scattering length a(k0)
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becomes constant at sufficiently low Ecoll, with limiting value
a. In the present work, s-wave scattering lengths are calcu-
lated at Ecoll/kB = 10 nK, which is low enough to neglect the
dependence on k0.

A zero-energy Feshbach resonance occurs where a bound
state of the atom-molecule pair (triatomic molecule) crosses
a scattering threshold as a function of applied field. At the
lowest threshold, or in the absence of inelastic processes,
the scattering length is real. Near a resonance, a(B) passes
through a pole, and is approximately

a(B) = abg

(
1 − �

B − Bres

)
, (6)

where Bres is the position of the resonance, � is its width, and
abg is a slowly varying background scattering length. In the
presence of inelastic processes, a(B) is complex and the pole
is replaced by an oscillation [52]. MOLSCAT can converge on
Feshbach resonances automatically and characterize them to
obtain Bres, �, and abg (and the additional parameters needed
in the presence of inelasticity) as described in Ref. [53].

Coupled-channel bound-state calculations are performed
using the packages BOUND and FIELD [54,55], which converge
upon bound-state energies at fixed field, or bound-state fields
at fixed energy, respectively. The methods used are described
in Ref. [56].

In the present work, the coupled equations for both scatter-
ing and bound-state calculations are solved using the fixed-
step symplectic log-derivative propagator of Manolopoulos
and Gray [57] from Rmin = 3 a0 to Rmid = 15 a0, with an
interval size of 0.001 a0, and the variable-step Airy propagator
of Alexander and Manolopoulos [58] between Rmid and Rmax,
where Rmax = 300 a0 for BOUND and FIELD and 3000 a0 for
MOLSCAT.

C. The interaction operator

Rb(2S) and CaF(2�) interact to give two electronic sur-
faces of 1A′ and 3A′ symmetry. These are, to some extent,
analogous to the singlet and triplet curves of alkali-metal
dimers: the singlet surface is expected to be deep, and the
triplet surface much shallower. The surfaces have not been
characterized in any detail, either experimentally or theoreti-
cally, but both of them are expected to be strongly anisotropic
at short range. We designate them V S (R, θ ), with S = 0 for
the singlet and S = 1 for the triplet. Here θ is the angle
between the CaF bond and the intermolecular axis in Jacobi
coordinates. The interaction operator is

V̂int = V 0(R, θ )P̂0 + V 1(R, θ )P̂1 + V̂ d, (7)

where P̂0 and P̂1 are projection operators onto the singlet and
triplet spin spaces, respectively, and V̂ d is a small electron
spin-spin term described below.

The Feshbach resonances of interest here depend mostly
on the properties of near-threshold states. These are bound by
amounts comparable to the hyperfine and Zeeman splittings
of Rb and CaF and (to a lesser extent) the low-lying rotational
states of CaF. The most important states are those with bind-
ing energies less than about 30 GHz below their respective
thresholds; this is considerably less than 0.1% of the expected
singlet well depth. The binding energies of these states are

dependent mostly on long-range dispersion and induction
forces, which are the same for the singlet and triplet surfaces.
The leading term is of the form

V S (R, θ ) = [−C(0)
6 − C(2)

6 P2(cos θ )
]
R−6, (8)

with C(0)
6 ≈ 3084 Eha6

0 [59]. For C(2)
6 there is substantial can-

cellation between the dispersion and induction contributions;
we estimate C(2)

6 ≈ 100(20) Eha6
0. For Rb+CaF, the outer

turning point at a binding energy of 30 GHz is near 30 a0.
Potential terms that are the same for the singlet and triplet

surfaces cannot cause couplings between orthogonal spin
states. They are therefore unlikely to cause magnetically tun-
able Feshbach resonances. The most important interactions
that mix different spin states are spin-exchange interactions,
due to the difference between the singlet and triplet surfaces.
Julienne et al. [60] have shown that, for a pair of atoms,
spin-exchange interactions can cause nonadiabatic transitions
between coupled channels at distances RX where the interac-
tion approximately matches the asymptotic energy difference
between the channels concerned. For 87Rb this occurs around
22 a0 [60]. The strength of the interaction is modulated by
overall phases due to the short-range parts of the potentials
for the channels concerned, and (if the long-range potentials
are identical from RX to ∞) is smallest when the two channels
have the same scattering length.

There is also a spin-spin term V̂ d in the interaction operator
that results from magnetic dipole-dipole interactions between
the electron spins on Rb and CaF, supplemented at short range
by second-order spin-orbit terms that have the same overall
dependence on spin coordinates. This term is important for
heavy alkali-metal atoms such as Cs [61], and may cause
additional weak resonances in Rb+CaF as discussed below,
but its effect is not considered in detail in the present work.

D. Thresholds

Figure 1(e) shows the scattering thresholds for
87Rb + CaF, which are simply sums of energies of Rb
and CaF. Figures 1(f)–1(i) show expanded views of
each group. The thresholds are color-coded according to
MF = m f ,Rb + m f ,CaF, because this quantity is conserved in
collisions if anisotropic terms in Vint are neglected.

The importance of the thresholds lies in the fact that near-
threshold levels lie approximately parallel to them, within
well-defined energy intervals known as bins. This concept
will be used extensively in discussing the patterns of near-
threshold levels and the resulting resonances in the following
sections.

E. Near-threshold levels

Each scattering threshold j supports a series of levels of the
collision complex that have binding energies Eb

jη(B) below the
threshold concerned. Here η is a vibrational quantum num-
ber, defined so that the least-bound rotationless state below
each threshold is labeled η = −1 and successively deeper
levels are labeled −2, −3, etc. To a first approximation, the
near-threshold levels retain the character of the threshold that
supports them. Because of this, each level lies approximately
parallel to the threshold that supports it and may be described
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in a single-channel approximation. There are nevertheless
interactions between levels supported by different channels
j, which cause B-dependent shifts and avoided crossings
between levels. These interactions, and the strengths of the
resulting avoided crossings, generally become larger as |η|
increases; these will be discussed below.

For a single-channel system with an asymptotic potential
−C6R−6, the least-bound s-wave state (with L = 0 and η =
−1) lies within ∼36Ē of threshold, where Ē = h̄2/(2μā2)
and ā is the mean scattering length of Gribakin and Flam-
baum [62], ā = (2μC6/h̄2)1/4 × 0.4779888 . . . . We refer to
this energy interval as the top bin. The position of the bound
state within this bin depends on the background scattering
length abg for the channel concerned, neglecting resonances
(which themselves arise from couplings between channels).
Each subsequent level (η = −2, −3, etc.) lies within its own
bin, with successive bins becoming wider and bin boundaries
at energies roughly proportional to (|η| + 1

8 )3 [63,64]. For
Rb+CaF, ā = 67.3 a0, Ē/h = 11.4 MHz, and the first five
bin boundaries are at about 410, 2900, 9100, 21 000, and
40 000 MHz. These values may be shifted by the influence
of terms beyond −C6R−6. In general, the levels lie near the
top of their bins when abg � ā and toward the bottom of the
bins for abg � ā.

III. BOUND STATES AND RESONANCES
IN THE ABSENCE OF ANISOTROPY

A. Bound states below the lowest threshold

The coupling between CaF rotational levels is fairly small
at long range. It is driven mostly by the anisotropic part of
the long-range interaction potential, characterized by C(2)

6 .
The effects of the anisotropy will be considered in Sec. IV.
In this section we will consider a simpler model, with the
anisotropy neglected. This is expected to be a reasonably good
approximation for collisions involving CaF (n = 0), though it
will neglect some additional resonances considered later.

If anisotropy is neglected, the scattering is largely
controlled by the isotropic dispersion coefficient C(0)

6 and by
scattering lengths as and at that characterize overall phases
due to the short-range parts of the singlet and triplet poten-
tials. These scattering lengths are completely unknown for
Rb+CaF, so we explore the pattern of near-threshold bound
states, and the resulting Feshbach resonances, for a represen-
tative sample of values of them.

Scattering lengths take values from −∞ to +∞, but some
values are more likely than others [62]. The most likely value
is the mean scattering length ā defined above, and for a ran-
domly chosen potential curve that decays as −C6R−6 at long
range there is a 50% probability of a scattering length between
0 and 2ā. To a good approximation, different interaction po-
tentials that produce the same as and at, and have the same
value of C6, have the same low-energy scattering properties
and near-threshold bound states.

We use singlet and triplet potential curves based on those
for Cs [61], but with the value of C6 replaced with C(0)

6 for
Rb+CaF. These potentials are then adjusted at short range to
give the desired scattering length as described in Ref. [61].
As an initial sample, we pick three values as = −79, 71, and

242 a0 and at = −47, 86, and 297 a0. These are purposely not
exact multiples of ā, because such values can produce shape
resonances at atypically low energy, and are slightly different
for as and at, because as = at is a special case that produces
unusually weak interchannel couplings [60]. We consider all
nine combinations of these values of as and at.

The solid lines in Fig. 2 show the near-threshold energy
levels for four combinations of as and at, obtained from
coupled-channel calculations using the package BOUND. In
this case we use a basis set of fully uncoupled functions [65],
including only rotationless functions, n = 0 and L = 0. All
energies are shown with respect to the (field-dependent) en-
ergy of the lowest threshold, which has approximate quantum
numbers ( fRb, m f ,Rb, ms,CaF, mi,F) = (1, 1,− 1

2 , 1
2 ) at fields

above 50 G. All states shown have MF = 1, which is the same
as the lowest threshold, because spin-exchange interactions
cannot change MF . Also shown are dashed and dot-dashed
lines, parallel to thresholds but offset from them: these rep-
resent hypothetical states that would exist in the absence of
interchannel couplings; the real states may be interpreted in
terms of these, but with shifts and avoided crossings of various
strengths due to the couplings.

The simplest case is that in Fig. 2(a), for as = 71 a0 and
at = 86 a0. Here the real states lie close to the uncoupled
ones, with only small shifts and weak avoided crossings. as

and at are close to one another, so the interchannel coupling
is weak, and they are comparable to ā, so each state lies fairly
high in its bin. The near-horizontal states are those supported
by the lowest threshold in the first and second bins. There is
also a pair of states that originate near −1.0 GHz at zero field;
the thresholds that support these have approximate quantum
numbers (1, 0, 1

2 , 1
2 ) (upper) and (1, 1, 1

2 ,− 1
2 ) (lower). In first

order the spin-exchange coupling can change fRb, m f ,Rb, and
ms,CaF by ±1 while conserving m f ,Rb + ms,CaF, but cannot
change mi,F. There is therefore a much wider avoided crossing
between the near-threshold horizontal state and the upper state
of the sloping pair, which is predominantly mi,F = 1

2 , than
with the lower one, which is predominantly mi,F = − 1

2 .
A case with somewhat stronger coupling is shown in

Fig. 2(b), for as = −79 a0 and at = −47 a0. Here as and at

are negative, so the states lie much deeper in their bins than
in (a). The real states still lie close to the uncoupled ones, but
there is a strong avoided crossing between the states shown
as red dashed and blue dot-dashed lines. States approximately
parallel to the thresholds with fRb = 1 can again be identi-
fied, with the states in the second bin now originating from
around −2.3 GHz at zero field. These are echoed by similar
states in the top bin. However, there are two further pairs of
states; these are supported by thresholds with fRb = 2, and
lie in the third bin beneath their thresholds. The pair origi-
nating near −1.6 GHz have approximate quantum numbers
(2, 1,− 1

2 , 1
2 ) (lower, involving ground-state CaF but excited

Rb) and (2, 2,− 1
2 ,− 1

2 ) (upper), while the pair originating
near −1.2 GHz have (2, 0, 1

2 , 1
2 ) (lower) and (2, 1, 1

2 ,− 1
2 )

(upper). Once again the strong avoided crossings are those
between states with the same values of mi,F.

Figures 2(c) and 2(d) show further examples for cases
with much stronger coupling, with as and at substantially
different. For these cases the identification of the dashed and
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FIG. 2. Near-threshold levels of Rb+CaF with MF = 1, neglecting anisotropy, shown relative to the energy of the lowest threshold, for
four representative combinations of the singlet and triplet scattering lengths. Solid black lines show results from coupled-channel calculations.
Dashed (dot-dashed) lines show uncoupled states parallel to thresholds with fRb = 1 (2). Values of ms,CaF are encoded with red (blue) for 1

2
(− 1

2 ), with darker (lighter) colors for mi,F = 1
2 (− 1

2 ). mf ,Rb is given by MF − ms,CaF − mi,F. Above each plot of energies is the corresponding
plot of scattering length, with Feshbach resonances where states cross threshold.

dot-dashed lines is less certain, because real states are sub-
stantially shifted from the uncoupled states by interchannel
couplings. Plausible assignments are shown with the same
coding as in Figs. 2(a) and 2(b).

Additional bound states exist with MF 	= 1. These are not
connected to the lowest incoming threshold by spin-exchange
coupling. However, there are additional small couplings due
to the spin-spin interaction V̂ d. This has matrix elements off-
diagonal in fRb, m f ,Rb, and ms,CaF by ±1, but can change
m f ,Rb + ms,CaF by up to ±2, with ML changing by up to ∓2
to conserve Mtot = MF + ML. Rotationally excited states with
L = 2 and MF from −1 to 3 can therefore cause additional
resonances at the lowest threshold. These are expected to

be narrow, and are not included in the present calculations
because there is no information available on the strength of
second-order spin-orbit coupling for Rb+CaF. States with
other values of L and MF might in principle cause resonances,
but with higher-order coupling via V̂ d, so the resonances will
be even narrower.

B. Resonances

Each bound state with MF = 1 causes a magnetically
tunable Feshbach resonance where it crosses threshold as a
function of B. For all the cases considered, several such reso-
nances exist at fields below 1000 G. However, their widths
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TABLE I. Feshbach resonance positions, widths, and background scattering lengths for different combinations of as and at. The approxi-
mate quantum numbers of the uncoupled state that causes the resonance are given in each case. Asterisks indicate cases where this uncoupled
state is substantially mixed with the least-bound state in the incoming channel where it crosses threshold.

as (a0) at (a0) Bres (G) � (G) abg (a0) fRb mf ,Rb ms,CaF mi,F η

−79 −47 50 −6.8 × 10−4 −47 1 0 1
2

1
2 −1

81 −2.3 × 10−4 −47 1 1 1
2 − 1

2 −1

319 −8.2 × 10−3 −46 2 1 1
2 − 1

2 −3

375 −4.8 × 10−1 −46 2 0 1
2

1
2 −3

658 −1.7 × 10−2 −46 1 0 1
2

1
2 −2

692 −1.0 × 10−2 −46 2 2 − 1
2 − 1

2 −3

843 −8.6 × 10−4 −45 1 1 1
2 − 1

2 −2

914 −1.1 −46 2 1 − 1
2

1
2 −3

−79 86 164 16 112 1 0 1
2

1
2 −2 *

188 3.3 27 1 1 1
2 − 1

2 −2

688 49 87 1 0 1
2

1
2 −3 *

806 3.0 × 10−2 51 1 1 1
2 − 1

2 −3

−79 297 124 1.8 273 1 1 1
2 − 1

2 −1

599 88 383 1 0 1
2

1
2 −2 *

725 5.7 × 10−2 117 1 1 1
2 − 1

2 −2

934 9.5 × 10−2 294 2 1 1
2 − 1

2 −3

953 3.8 × 10−1 292 2 0 1
2

1
2 −3

71 −47 99 −32 −83 1 0 1
2

1
2 −1

134 −2.4 × 10−1 −144 1 1 1
2 − 1

2 −1

343 −1.9 × 10−1 −49 2 1 1
2 − 1

2 −2

455 −27 −51 2 0 1
2

1
2 −2

689 −3.2 −50 1 0 1
2

1
2 −2

776 −3.9 × 10−2 −49 1 1 1
2 − 1

2 −2

71 86 312 1.1 × 10−1 85 1 0 1
2

1
2 −2

413 9.4 × 10−4 85 1 1 1
2 − 1

2 −2

71 297 172 18 202 1 0 1
2

1
2 −2 *

285 9.5 × 10−2 185 1 1 1
2 − 1

2 −2

860 2.9 × 10−2 279 2 1 1
2 − 1

2 −3

952 3.2 × 10−1 294 2 0 1
2

1
2 −3

242 −47 61 −2.8 −65 1 0 1
2

1
2 −1

99 −1.8 × 10−1 −67 1 1 1
2 − 1

2 −1

331 −9.6 × 10−2 −50 2 1 1
2 − 1

2 −3

413 −10 −54 2 0 1
2

1
2 −3

678 −1.4 −50 1 0 1
2

1
2 −2

766 −4.4 × 10−2 −48 1 1 1
2 − 1

2 −2

242 86 248 4.0 93 1 0 1
2

1
2 −2 *

302 1.4 × 10−1 86 1 1 1
2 − 1

2 −2

242 297 134 3.3 × 10−3 300 1 0 1
2

1
2 −2

187 1.9 × 10−4 300 1 1 1
2 − 1

2 −2

838 7.8 × 10−4 302 2 1 1
2 − 1

2 −3

951 1.3 × 10−1 301 2 0 1
2

1
2 −3

990 1.8 × 10−4 300 1 0 1
2

1
2 −3
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vary greatly. Figure 2 includes a panel above each energy-
level plot that shows the variation of scattering length with
magnetic field. In addition, we have characterized the reso-
nances to extract Bres, �, and abg for all resonances below
1000 G for all nine of our representative combinations of as

and at, using the method of Ref. [53], and the results are given
in Table I.

The resonance widths may be rationalized using the same
arguments about interchannel couplings used to interpret the
strength of avoided crossings in Sec. III A. First, the reso-
nances are generally broadest in cases where as and at are
substantially different, providing strong spin-exchange cou-
pling. Secondly, for any given combination of as and at, the
strongest resonances are those where the bound state causing
the resonance has a substantial component with the same
value of mi,F as the incoming channel, which for the lowest
threshold is dominated by mi,F = 1

2 at fields above 50 G.
The specific uncoupled states that cause the widest reso-
nances are (1, 0, 1

2 , 1
2 ), (2, 1,− 1

2 , 1
2 ), and (2, 0, 1

2 , 1
2 ), though

in some cases their character is spread across more than one
real state.

It is noteworthy that, even when as ≈ at and spin-exchange
coupling is weak, there are resonances that are wide enough
to use to control collisions or form triatomic molecules by
magnetoassociation.

IV. THE ROLE OF CaF ROTATION

There can also be resonances due to states supported by
rotationally excited thresholds. This section will consider the
structure of such states and the likelihood that they produce
resonances at experimentally accessible fields.

The thresholds for CaF (n = 1) are from 20 to 30 GHz
above the lowest threshold, so states that can cause Fesh-
bach resonances must be bound by about this amount. The
outer turning point at this depth is at around R = 30 a0. The
potential anisotropy at this distance, due to dispersion and
induction, is around 1 GHz. This is substantially less than
the CaF rotational spacing, so will cause only weak mixing
between different CaF rotational states at this distance. How-
ever, it is substantially larger than the rotational constant of the
triatomic complex, B = h̄2/(2μR2), which is about 60 MHz at
this distance. It is also larger than the spin-rotation coupling
constant, γ ≈ 40 MHz. The long-range anisotropy is thus
sufficient to quantize n along the intermolecular axis, with
projection K , instead of along the axis of the field. This is ex-
actly analogous to the situation for Van der Waals complexes
in coupling case two [66].

For each CaF rotational level (n, K ) there will be
a set of spin states, labeled at fields above 50 G by
( fRb, m f ,Rb, ms,CaF, mi,F). Each such set (n, K ) will sample
the short-range singlet and triplet potentials over a different
range of Jacobi angles θ , so each group will be character-
ized by different singlet and triplet scattering lengths as(n, K )
and at(n, K ). These will probably be unrelated to the cor-
responding quantities for the channels with n = 0, as(0, 0)
and at(0, 0) (designated simply as and at in Sec. III A). For a
particular interaction potential, the sets of spin states for n > 0
may therefore lie at quite different depths within their bins
from those for n = 0. The patterns of levels will nevertheless

be characterized by as(n, K ) and at(n, K ) and by quantum
numbers ( fRb, m f ,Rb, ms,CaF, mi,F), in a similar way to those
for the states with n = 0 described above.

For Rb+CaF, the spin-exchange interaction may be char-
acterized in terms of an anisotropic surface V −(R, θ ) that is
half the difference between the singlet and triplet surfaces,

V −(R, θ ) = 1
2 [V 0(R, θ ) − V 1(R, θ )]. (9)

This may be expanded in Legendre polynomials,

V −(R, θ ) =
∑

λ

V −
λ (R)Pλ(cos θ ). (10)

Such a potential is diagonal in K , but each term in the
expansion can couple (n, K ) = (0, 0) to (λ, 0). The term
V −

1 (R) can thus couple an incoming state at the lowest thresh-
old to states with (n, K ) = (1, 0). The spin selection rules
are the same as for n = 0, so the strongest resonances will
be those due to states dominated by mi,F = 1

2 . As for n = 0,
there are three such uncoupled states, with quantum num-
bers ( fRb, m f ,Rb, ms,CaF, mi,F) = (1, 0, 1

2 , 1
2 ), (2, 1,− 1

2 , 1
2 ),

and (2, 0, 1
2 , 1

2 ). V −(R, θ ) is strongly anisotropic at short
range, so there will always be some intermolecular distance
R where it matches the separation between the incoming and
resonant thresholds, where nonadiabatic couplings can occur
by extension of the theory of Ref. [60].

For a potential with long-range form −C6R−6, the binding
energy of a state that lies below the top bin is approximately
proportional to (|η| + 1

8 )3 [62,63]. Here η is a noninteger
vibrational quantum number, with integer values at the bin
boundaries. For an unknown potential of sufficient depth, the
fractional part of η may be regarded as a uniform random
variable. Since there is one state in each bin, this allows
calculation of the probability that there is a state within any
particular range of energies.

As seen in Sec. III A, the states that can cause strong reso-
nances traverse about 3 GHz of binding energy between zero
field and 1000 G. Since the thresholds with (n, fRb) = (1, 1)
lie about 20 GHz above (0,1), the zero-field binding energy
of a state must be between 20 and 23 GHz if it is to cause a
Feshbach resonance below 1000 G. For an unknown potential,
there is only about a 19% probability that there is a state with
a binding energy in this range. The corresponding probability
for n = 2 is about 9%, and the probabilities decrease for
successively higher n, because the bins are correspondingly
wider at the required binding energy.

The overall conclusion of this section is that there may be
resonances due to states involving rotationally excited CaF,
but that they will occur at fields below 1000 G for a fairly
small subset of possible interaction potentials. In any case,
the mixing between rotational states of CaF due to long-range
anisotropy is weak enough that it will not affect the likelihood
of resonances due to the ground rotational state.

V. POTENTIAL EFFECTS OF CHAOS

The interaction potentials for Rb+CaF are very strongly
anisotropic at short range, and provide strong coupling be-
tween CaF rotational and vibrational states. It is quite likely
that Rb+CaF will possess short-range states that exhibit quan-
tum chaos, in the same way as alkali-metal three-atom [39,67]
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and four-atom systems [68,69]. The onset of chaos has also
been studied in Li+CaH and Li+CaF [70].

For Rb+CaF, the density of short-range singlet vibrational
states at the energy of the lowest threshold has been estimated
as 4 K−1 [41], corresponding to a mean spacing of 5 GHz. If
these states are fully chaotic, it is likely to produce structure
in the singlet scattering length on this energy scale. How-
ever, the hyperfine couplings in singlet states will be small,
probably dominated by nuclear electric quadrupole couplings
of no more that a few MHz, which is tiny compared to the
state separations. Furthermore, Zeeman shifts are very small
for singlet states, though they do differ from those for the
incoming threshold. At most, the presence of chaos at short
range might make the singlet scattering length different for
collisions involving Rb( f = 1) and Rb( f = 2). This would
affect the details of the level structure, but not the probabilities
of observing Feshbach resonances.

The density of short-range triplet states at threshold is
likely to be much smaller, perhaps by an order of magnitude.
This corresponds to a mean spacing of order 50 GHz. The dif-
ference arises because the density of states for an atom-diatom
system scales approximately with D3/2 [39], where D is the
well depth, and the triplet surface of Rb+CaF is expected
to be substantially shallower than the singlet surface, as for
the alkali-metal dimers. The hyperfine couplings for triplet
states will be comparable to those for the separated atom and
molecule (6.8 GHz for Rb, 120 MHz for CaF) but these are
still substantially smaller than the likely spacings between
short-range triplet states. Zeeman effects are also much larger
for triplet states than for singlet states, but are still only a
few GHz at fields below 1000 G, so will not cause substantial
mixings between short-range triplet states.

It thus appears that the qualitative arguments in this paper
about the patterns of energy levels and likelihood of Feshbach
resonances will remain valid even if the short-range levels of
Rb+CaF exhibit quantum chaos.

VI. CONCLUSIONS

We have investigated magnetically tunable Feshbach reso-
nances that may be expected in collisions between molecules
in 2� states and alkali-metal atoms, focusing on the prototype
system Rb+CaF. The details of the short-range interaction po-
tential are unknown, but are expected to have minor influence,
except to determine singlet and triplet scattering lengths as

and at. We have carried out coupled-channel calculations of
the near-threshold bound states and scattering properties for
a variety of values of these scattering lengths. We find that
the large majority of plausible interaction potentials produce
multiple resonances at magnetic field below 1000 G, which
are likely to be experimentally accessible. In each case, at
least some of these resonances are wide enough to be exper-
imentally useful for tuning scattering lengths or for forming
triatomic molecules by magnetoassociation.

The patterns of bound states may be understood in terms of
underlying uncoupled states that lie parallel to atom-molecule

thresholds as a function of magnetic field. There are varying
degrees of coupling between these states, which depend on the
values of as and at. The coupling is weakest when as and at

are similar. The widths of the resonances may be explained in
terms of the nature of the states that cross threshold, together
with effects due to the scattering lengths.

We have considered the effect of potential anisotropy,
which causes coupling between CaF rotational states. This
coupling is very strong at short range. Even at long range, it
is sufficient to quantize the CaF rotation along the intermolec-
ular axis instead of along the magnetic field. It is likely that
each rotational state of CaF will be characterized by different
values of the singlet and triplet scattering lengths. We have
found that there is a small but significant probability of addi-
tional wide resonances due to states supported by rotationally
excited thresholds. We have also considered the potential in-
fluence of chaotic behavior for short-range states of Rb+CaF.
We expect that, even if present, it will have limited effects on
the long-range states that are principally responsible for the
resonances and will not change the qualitative conclusions.

This work indicates that atom-molecule systems such as
Rb+CaF will have a rich spectrum of magnetically tunable
Feshbach resonances at experimentally accessible magnetic
fields. The resonances can be used to form a more detailed
understanding of the atom-diatom potential energy surfaces.
Much new physics will be accessible when these resonances
are located. For example, a resonance can be used to tune
the s-wave scattering length for interspecies collisions. In this
way we can expect to find favorable conditions for sympa-
thetic cooling, which can greatly increase the phase-space
density of the molecular gas. The resonances may also be used
to form polyatomic molecules by magnetoassociation. Many
applications have already been identified for such molecules.
They have unique advantages for probing interactions be-
yond the standard model that violate time-reversal symmetry
[71,72] and for testing theories of ultralight dark matter [73].
Their usefulness for quantum information processing has been
highlighted [74,75], and the very large number of stable, ac-
cessible internal states make them interesting as qudits [76].
They can also be used to explore a rich diversity of many-body
phenomena such as quantum magnetism [77].

For the purpose of open access, the authors have applied
a Creative Commons Attribution (CC BY) licence to any
Author Accepted Manuscript version arising from this sub-
mission.

The data presented in this work are available from Durham
University [78].
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