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Probing the nonexponential decay regime in open quantum systems
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The most important law of radioactivity is that of the exponential decay. In the realm of quantum mechanics,
however, this decay law is neither rigorous nor fundamental. The deviations from the exponential decay have
been observed experimentally at the early stage of a decay process, but there is little evidence for nonexponential
behavior at long times. Yet such long-term nonexponentiality is expected theoretically to probe the nonresonant
background components of the initial wave function which preserve the structural interference and the memory
of how the state was created. In this paper, we propose new observables that can be used for experimental
investigations of the post-exponential decay regime, including the decay of threshold resonances, particle
correlations in three-body decays, and interference between near-lying resonances. While the specific examples
presented in this work pertain to atomic nuclei, the properties of nonexponential decay are generic, i.e., they
apply to other many-body open quantum systems, such as hadrons, atoms, molecules, and nanostructures.

DOI: 10.1103/PhysRevResearch.5.023183

I. INTRODUCTION

The classical concept of radioactive decay comes from
the understanding that the rate of decay must be propor-
tional to the amount of available material. An important
assumption behind this is that decay is a stochastic process
at the level of individual decaying particles; this implies
that the probability of decay does not depend on the previ-
ous history. The first quantum theory of radioactive decays
has been developed in the late 1920s [1–3]. Since then, it
became evident that the exponential decay law is the re-
sult of somewhat delicate approximations [4] and cannot be
exact [5–15].

At the initial time corresponding to the formation of
radioactive state, the decay rate must vanish [13,16]. The
resulting initial-stage nonexponentiality has been verified ex-
perimentally [17]. The early-time dynamics is closely tied
to questions of memory effect, quantum state preparation,
eigenstate thermalization [13,18–20], measurement theory,
and Zeno paradox [21–23]. The behavior of decaying systems
at long times has also been discussed extensively, see, e.g.,
Refs. [24–28]. In spite of compelling theoretical arguments
for decay’s nonexponentiality at long times, the experimental
evidence for this phenomenon is still missing for isolated
resonances [29–31]. One confirmed case of turnover into
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the nonexponential decay regime comes from the study of
organic molecules interacting with the solvent environment
which results in energy broadening [32]. For such cases, the
broadening of the exponent of multiple sources results in a
1/t2 distribution at long times [10].

Following the idea that the properties of an open quan-
tum system can be influenced by its environment [27,33,34],
the nonexponential decay has been investigated in cosmol-
ogy [35,36], nanocrystals [37], and quantum dots [38,39].
However, the direct measurement of the post-exponential de-
cay for a single metastable state still represents an appreciable
challenge. This is because a large amount of radioactive ma-
terial is needed and/or a long observation period is required
for such tests, and also because environmental decoherence
effects are expected [14,40].

In this paper, we discuss the properties of the quantum
decay at long times, with a focus on the low-energy behavior
and observables that shed light on the transition to the post-
exponential regime. Specifically, we discuss such observables
in three dripline isotopes: (i) the newly discovered proton-
rich 9N, in which broad threshold resonances are expected
[41]; (ii) the two-proton (2p) emitter 6Be [42], illustrating the
general case of the three-body decay; and (iii) an artificially
unbound neutron-rich 6He, called 6He′. We want to empha-
size that the purpose of this work is to explore the universal
properties of post-exponential decay in dripline nuclei, how
such effects could be observed, and what can generally be
learned about open quantum systems from these observations.
For this reason, we do not make detailed predictions for
concrete nuclei. Still, we suggest promising candidates for
experimental searches.
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II. METHOD

A. Hamiltonian and wave function

To capture the long-time behavior of a decaying system, we
utilize a recently-developed time-dependent approach [43].
The intrinsic Hamiltonian of the N-body system of constituent
clusters of masses mi and momenta pi can be written as

Ĥ =
N∑
i

p̂2
i

2mi
+

N∑
i< j

V̂i j (ri j ) − T̂c.m., (1)

where V̂i j represents the pairwise interaction between the
constituents as a function of relative distance ri j ; and T̂c.m.

stands for the kinetic energy of the center-of-mass. In practice,
relative Jacobi coordinates are used since they are more appro-
priate for describing the asymptotic behavior of the decaying
system.

The initial wave function �(0) is propagated using the
time evolution operator exp(−iĤt/h̄). The exact form of
the initial real-energy wave packet �(0) is important for
our studies. Any such packet has a resonant part associated
with the complex-energy Gamow pole(s) nearby, as well as
a nonresonant scattering component. The former exhibits the
usual exponential decay, while the latter is responsible for
the nonexponential decay at remote times [16,44,45]. In the
complex-energy framework, the Gamow state has the purely
outgoing wave asymptotics, and has a fixed structure that does
not carry any dynamical information related to its formation.
It is associated with complex energy Ẽ = Er − i�/2 where
� is the decay width that defines the half-life. To generate
the initial state, we start with a complex-energy resonant
state �̃(0) generated by the Gamow coupled-channel (GCC)
method [46,47], in which the Schrödinger equation is solved
by utilizing the Berggren ensemble [48–50] in the complex-
momentum k space. This wave function is then projected onto
the real-energy initial state �̃(0) → �(0) by expanding �̃(0)
in real-momentum space through a Fourier-Bessel transfor-
mation within a 15 fm spherical box [47].

B. Spectral function

The Gamow resonant state is the eigenstate in the complex-
energy plane. In the Hilbert space, this state becomes a wave
packet whose wave function |�〉 can be expanded in the
basis of scattering states [43,45], which are the real-energy
eigenstates |E〉′s of the Hermitian Hamiltonian above the de-
cay threshold. Due to the many-body correlations, both the
resonant and scattering states contain multiple configuration
components. Unlike the pure outgoing boundary condition
that the resonant state obeys, the scattering states are de-
scribed by both incoming and outgoing probability current
in the asymptotic region [51]. Consequently, for a given E ,
a system/Hamiltonian can have multiple degenerated scatter-
ing states. Since the nuclear interaction is short ranged, the
asymptotic region can be decoupled and dominated by the ki-
netic term of the Hamiltonian (and long-ranged Coulomb for
the charged particles). Through the unitary transformation, the
degenerate scattering states can be rearranged to make each
governed by asymptotic configuration ci [52]. Consequently,

the resonance wave packet �(t ) can be written as

�(t ) =
∫ ∑

i

ai(E ) e−i E
h̄ t |E , ci〉 dE , (2)

where ai(E ) represents the amplitude of each asymptotic
configuration ci, and the corresponding weight is Wi(E ) =
|ai(E )|2. In practice, ai(E ) can be obtained by analyzing the
asymptotic wave function or the decaying products during the
time propagation.

The survival amplitude A(t ) is defined as the overlap be-
tween the initial state �(0) and the propagated state �(t ) at
time t . In our work, A(t ) is evaluated through the Fourier
transformation of the spectral function ρ(E ) [53]:

A(t ) = 〈�(0)|�(t )〉 =
∫ +∞

0
ρ(E )e−i E

h̄ t dE , (3)

where ρ(E ) = |〈E |�〉|2 can be obtained by expanding � in
the real-energy eigenstates, or analyzing the asymptotic wave
function at long times. Both ways are used to cross-check
the results. The survival probability is directly obtained from
A(t ): S (t ) = |A(t )|2.

The spectral function ρ(E ) links the nonexponential decay
to the broad near-threshold structures. Based on Eq. (2), it can
be written as

ρ(E ) =
∑

i

|〈E , ci|�(t )〉|2 =
∑

i

Wi(E ). (4)

Since the time evolution operator only changes the phase of
the real-energy eigenstate |E〉, ρ does not depend on time t .

Alternatively, the spectral function ρ can be obtained by
the energy derivative of the scattering phase shift δ� [31],
i.e., the level density [54]. Due to the centrifugal barrier, the
near-threshold behavior of ρ depends on the orbital angular
momentum � in the two-body system. By making use of the
Mittag-Leffler expansion, in the absence of Coulomb interac-
tion, the near-threshold spectral function becomes [55]

ρ(E ) = 2� + 1

π

dδ�

dE
= Im

∑
n

2� + 1

π Ẽ �+1/2
n

E �+1/2

Ẽn − E
, (5)

where Ẽn is the complex energy of the S-matrix pole. In the
three-body framework, the kinetic operator is [50,56]

T̂ = − h̄2

2m

(
1

R5/2

∂2

∂R2
R5/2 − K̂2 + 15/4

R2

)
, (6)

where R is the hyperradius. The eigenvalues of the five-
dimensional angular momentum operator K̂2 + 15/4 are
(K + 3/2)(K + 5/2), and K is the hyperspherical quantum
number. Noticing that the second term in Eq. (6) represents the
centrifugal barrier, one can replace � with K + 3/2 in Eq. (5)
[55]. This yields ρ(E ) ∝ EK+2 at near-threshold energies for
the charge-less systems. The strong channel dependence of
ρ(E ) gives rise to deviations from the Breit-Wigner form
factor at low energies.

C. Nucleon-nucleon correlations

In three-body (two-nucleon) decay experiments, the en-
ergy and angular correlations of the emitted particles can
be directly measured. Since the nucleon-nucleon correlation
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strongly depends on the structural information, especially the
asymptotic configurations shown in spectral function ρ, it is
impacted by the presence of the nonexponential component in
A(t ). Expressing the energy correlation C in Jacobi-T coor-
dinates, it can be written in terms of solutions propagated for
long times:

C(Epp, E ) = lim
t→∞〈�(t )|δ

(
ε − Epp

E

)
|�(t )〉, (7)

where E corresponds to the decay energy Q2p for the 2p decay
and ε is the ratio between the kinetic energy of the relative
motion of the emitted nucleons and E . Utilizing Eq. (2) and
the fact that ε only depends on the hyperspherical harmonics
in momentum space [56], C(Epp, E ) becomes

C(Epp, E ) =
∑
i, j

a∗
i (E )a j (E )〈ci|δ

(
ε − Epp

E

)
|c j〉,

=
∑

i

Wi(E )〈ci|δ
(

ε − Epp

E

)
|ci〉

+
∑
i 	= j

a∗
i (E )a j (E )〈ci|δ

(
ε − Epp

E

)
|c j〉. (8)

As shown below, for each configuration ci, the diagonal part
〈ci|δ(ε − Epp/E )|ci〉 shows a distinct energy correlations as
quantum numbers (K, �x, �y) change. Similar to the spec-
tral function, the energy dependence of the relative weight
Wi/

∑
Wi or amplitude ci will also manifest itself in the

asymptotic correlation, and this can be used to quantify the
presence of the nonexponential decay component.

D. Model space and parameters

The extremely proton-rich 9N was recently discovered
to have a 1/2+ ground state with a one-proton decay en-
ergy Qp = 2.5 MeV and a width � = 1.8 MeV [41]. This
state is the analog of the 1/2+ ground state of 9He,
which is also a good candidate for observing nonexponen-
tial decay. Additionally, the first excited state of 9He has
a spin-parity Jπ = 1/2−, and the measured one-neutron de-
cay energy is Qn = 2.2 MeV with a width � = 0.1 MeV
[57]. Due to the large spectroscopic factor [41], the nu-
cleus 9N (9He) can be described at low energies as a
8C +p(n) two-body system. The effective Hamiltonian used
for this study includes a core-valence potential with nu-
clear and Coulomb parts, which have been taken in the
Woods-Saxon (WS) and dilatation-analytic forms [50], re-
spectively. The WS potential parameters are: depth −64 MeV,
spin-orbit strength 15 MeV, diffuseness 0.7 fm, and radius
2.2 fm. The predicted three lowest Gamow poles of 9N in
our model are: Ẽ (1/2+) = (1.14 − i1.54) MeV, Ẽ (1/2−) =
(1.99 − i0.39) MeV, and Ẽ (5/2+) = (5.31 − i1.00) MeV.

To study the long-time behavior of two-nucleon decay, we
focus on the lightest 2p emitter 6Be, whose 2p decay energy is
measured to be Q2p = 1.372 MeV with the width � = 92 keV
[57]. In our framework, the system is viewed as an α +
p + p three-body system. The corresponding configurations
in the Jacobi coordinates are labeled by quantum numbers
(K, �x, �y), where �x is the orbital angular momentum of the
neutron pair with respect to their center of mass, and �y is

the pair’s orbital angular momentum with respect to the core.
The Pauli-forbidden states occupied by the core nucleons are
eliminated according to Ref. [58]. The valence-nucleon inter-
action is represented by the finite-range Minnesota force with
the parameters of Ref. [59], except for the exchange-mixture
coefficient u = 0.9. The effective α-n interaction is described
by a WS potential with parameters from Ref. [50], except
for depth −49 MeV. The obtained ground state of 6Be has a
complex energy (1.39 − i0.04) MeV.

For the two-body initial states of 9N and 9He, the Berggren
basis is adopted with a deformed scattering contour in the
complex momentum plane along the path: k = 0 → −0.2 −
i0.3 → 0.3 − i0.3 → 0.6 → 6.0 (in fm−1). Each segment
was discretized with 70 scattering states. The initial state of
6Be is calculated in the three-body framework. To investi-
gate the universal property of three-body decay, we have also
constructed an artificial two-neutron (2n) emitter 6He′ with
identical parameters except for the WS depth V0 = −43 MeV.
The three-body calculations of 6Be and 6He′ were carried
out in a model space defined by max(�x, �y) � 7 and for a
maximal hyperspherical quantum number Kmax = 20. In the
hyperradial part, we used the Berggren basis for the K � 7
channels and the harmonic oscillator basis with the oscillator
length of 1.75 fm and Nmax = 20 for the remaining channels.
For the GCC calculation of the initial state, the complex-
momentum scattering contour is given by the path k = 0 →
0.2 − i0.05 → 0.4 → 1.0 → 6.0 (in fm−1), and discretized
with 70 scattering states for each segment.

To study time evolution, the initial complex-energy
Gamow state is decomposed into real-momentum scatter-
ing states using the Fourier-Bessel series expansion in the
real-energy Hilbert space [12] and then propagated with the
corresponding real-momentum contour. Each segment is dis-
cretized with 140 scattering states, and 420 more are added
in the energy interval [Er − 2�, Er + 2�] to increase the
precision. The spectral function ρ is obtained with the wave
function �(t ) taken at a long time t = 40T1/2. Since the
Coulomb potential and kinetic energy do not commute in the
asymptotic region, there is analytical solution for the charged
three-body system. Therefore, for 6Be, we only consider the
interactions inside the sphere of radius 400 fm, but the wave
function is still defined in the momentum space beyond this
cutoff.

III. SCENARIOS TO PROBE NONEXPONENTIAL DECAY

A. Nonexponential decay of a threshold resonance

The survival probability of decaying state depends on the
energy distribution of the underlying spectral function. For a
system that decays exponentially, one expects a Breit-Wigner
type distribution. However, this does not hold for near-
threshold states having large decay widths [6,12,14,15,60]. In
fact, the time evolution of any resonance involves exponential
and nonexponential components [44,45]. Since exponential
components decay faster, a transition to a power-law regime
is bound to take place eventually [see Figs. 1(a) and 1(c)].

While this behavior is universal, the actual dynamics is
determined by the structure of the initial state, decay channel,
and most of all, the nature of the scattering continuum that
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FIG. 1. Survival probability S(t ) as a function of time (relative
to T1/2) for (a) the 1/2− state of 9He for different depths V0 of the
WS potential, and (c) the low-lying states of 9N. The near-threshold
behavior of the spectral function ρ (relative to the Breit-Wigner
distribution) is shown in (b) for neutron and in (d) for proton s, p, d
partial waves. The polar angle ϕ indicates the location of the resonant
state in the complex-k plane. Also shown is the survival probability
for the virtual 1/2+ state in 9He. For this state, T1/2 was assumed to
be 20 fm/c.

drives the post-exponential decay. To illustrate this concept,
we have analyzed the survival probability of the 1/2− reso-
nant state in 9He by varying the depth of the WS potential.
The obtained resonant states are identified by the polar angle
ϕ = − cot−1(2E/�)/2, which reveals their location in the
complex-k plane and provides an estimation of the nonexpo-
nential component. As seen in Fig. 1(a), the deviation from the
exponential decay quickly increases as ϕ moves toward −45◦.
This agrees with the finding of earlier studies [14,25,32] sug-
gesting that the post-exponential decay is expected to take
over rather quickly—hence, easier to be observed—in thresh-
old resonances with Er ≈ �.

In this sense, unbound nuclides, such as the proton-rich 9N,
could be the perfect candidates for observing the nonexpo-
nential decay. Similar to 9He, the predicted 1/2+ and 5/2+
states of 9N with relatively large decay widths are expected to
transition to the power-law decay earlier than the 1/2− state
[see Fig. 1(c)] as their structure is strongly influenced by the
scattering continuum. Moreover, as the analog of the s-wave
virtual state [46,61], the 1/2+ state is dominated by nonres-
onant components. Consequently, for this state, the transition
from exponential to nonexponential decay is fairly gradual.

The channel-� dependence of the nonexponential decay
can be related to the Wigner cusp phenomenon [62], and it
manifests itself in different threshold behavior of the spectral
function. Generally, the spectral function ρ is governed by
the centrifugal barrier and the Coulomb interaction near the

FIG. 2. (a) Predicted spectral functions for the ground state of
9N versus decay energy for different WS depths |V0|. The arrow
shows the direction of evolution of the spectral function and complex
energy (in the insert) as |V0| decreases from 64 to 54 MeV. (b) The
near-threshold behavior of the spectral functions relative to the Breit-
Wigner distribution.

threshold, and it approaches the Breit-Wigner distribution as
the energy increases (see Fig. 2). For the neutrons, the spec-
tral functions corresponding to states with different � values
approach the low-energy scattering limit quite differently [see
Fig. 1(b)], which results in a power law behavior S ∝ 1/t2�+3

at long times [13,16,27]. For protons, the Coulomb interac-
tion greatly reduces the � dependence at low energies, see
Fig. 1(d).

Formally, the onset of nonexponential decay at long times
is determined by the low-energy scattering impacting the near-
threshold properties of the spectral function. The two most
important factors here are the behavior of the density of states
in the particular channel and the structural properties of the
system. While in dripline nuclei the continuum appears at very
low energies, their production rates are usually low, and this
makes it more suitable for the experiment with high statistics
to observe the transition directly in S (t ).

B. Two-particle decay observables

The two-nucleon ground-state decay is a rare process ob-
served in a handful of nuclides [63–65]. In contrast to a
two-body final state, in the three-body case the conserva-
tion of energy, momentum, and angular momentum is not
sufficient to uniquely identify the asymptotic state. This
allows for configuration mixing and competition between
different intrinsic configurations [46,47]. This structural infor-
mation is seen in the asymptotic nucleon-nucleon correlations
that can be directly measured [63,66]. The presence of the
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FIG. 3. Survival probability of the 6Be ground-state 2p decay,
in which � (solid lines) and � ′ (dashed lines) represent the ini-
tial wave functions obtained by the expansion of the Gamow state
in the real-momentum Fourier-Bessel basis and harmonic-oscillator
basis, respectively. Two cases are considered: (a) Ground state with
� = 79 keV and (b) broad resonance with � = 776 keV. (c) Calcu-
lated spectral functions of the different configuration components ci

of the 6Be ground state; the insert shows the ratio between the pre-
dicted energy distribution and the Breit-Wigner form factor. (d) The
weights of ci as a function of the 2p decay energy Q2p. Asymptotic
energy (e) and angular (f) correlations for different energy ranges in
Jacobi-T (left) and Jacobi-Y (right) coordinates.

nonexponential component in A(t ) is expected to affect
nucleon-nucleon correlations, thus providing a unique win-
dow into the decay process.

To demonstrate the post-exponential characteristics of two-
nucleon decay, we consider the case of 2p decay of 6Be. The
precise form of the initial state is likely to be influenced by the
specific production mechanism, which may not necessarily
result in a Gamow state. To assess the associated uncertainty,
in addition to the real-momentum projected Gamow state
�(0), we consider an initial state � ′(0) generated by the
harmonic-oscillator expansion of �̃(0). Both yield practically
identical results for the survival probability even for a broad
resonance [see Figs. 3(a) and 3(b)]. This is due to the fact that,

FIG. 4. Nucleon-nucleon correlations 〈ci|δ(ε − Epp/Q2p)|ci〉 in
the individual Jacobi configurations ci’s. Epp is the relative kinetic
energy between the emitted neutrons, and Q2p is the decay energy.

once a resonance is formed, the main component of the wave
function inside and around the nucleus is almost fixed.

For 6Be, the transition from exponential to power-law de-
cay takes place at t ≈ 20T1/2. This indicates that—in order to
extract information about the post-exponential decay directly
from the spectral function—one requires an energy resolution
that is much finer than the resonance width, as dictated by
the uncertainty principle. Nevertheless, it doesn’t necessar-
ily impact other physical observables, especially for those
with accumulated effects. As shown in Fig. 3(d), the ground
state of this three-body system is composed of multiple
Jacobi-coordinate configurations, whose relative weights in
the spectral function undergo significant variations as a func-
tion of the decay energy. Furthermore, although suppressed
by the Coulomb interaction, each individual configuration ci

possesses a distinct spectral function that deviates from the
Breit-Wigner shape [see Fig. 3(c)]. This can be attributed to
the hyperspherical quantum number K , which represents the
centrifugal barrier for three-body decays [50,56].

Due to the factor that the long-time behavior is deter-
mined by the asymptotic three-body configuration (K, �x, �y)
distinctively (see Fig. 4), these cumulative changes among
configuration components leave an imprint on the asymptotic
correlation of emitted nucleons, which results in appreciably
different patterns in different regions of Q2p as shown in
Figs. 3(e) and 3(f). Therefore, by binning the resonance peak
at different energies, one should be able to assess the Q2p-
evolution of the energy- and angular correlations. This could
provide useful information on nuclear structure and provide
an indirect evidence for the transition to the nonexponential
decay regime. This is supported by Ref. [42], where the 2p en-
ergy correlation in the 6Be decay becomes more pronounced
for both small and large Epp/Q2p as Q2p increases, consistent
with our predictions.

The energy dependence of asymptotic correlations and
the nonexponential behavior are universal in three-body de-
cays, as long as the decaying structure is not too narrow or
dominated by a single configuration. This is satisfied for two-
nucleon emitters in light nuclei. In particular, as illustrated by
an example of 6He′ shown in Fig. 5, similar post-exponential
behavior is expected to be present in the 2n decay. In this case,
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FIG. 5. (a) Survival probability of the 6He′ 2n decay, the ground
state of 6He′ has a complex energy (1.28 − i0.15) MeV. (b) Calcu-
lated spectral functions of the different configuration components ci

of the 6He′ ground state; the inset shows the ratio between the pre-
dicted energy distribution and the Breit-Wigner form factor, which is
approximately proportional to QK+2

2n (solid gray lines) in the plotted
range of Q2n. (c) The weights of ci as a function of Q2n. Asymptotic
energy (d) and angular (e) correlations for different energy ranges in
Jacobi-T (left) and Jacobi-Y (right) coordinates.

the energy dependence of particle correlations is enhanced in
the absence of the Coulomb interaction.

C. Interference between near-lying states

Threshold effects may impact resonance structures, espe-
cially when two or more states with the same spin-parity
lie close in energy [67–69]. In this case, the overlapped res-
onances rearrange the decay widths by increasing coupling
with the continuum [70–73]. As a result, the decay width
of one of the resonances becomes collectively enhanced. To
illustrate this point and to show the effect of the contin-
uum coupling on the spectral functions of the overlapping
resonances, we consider a two-level 0+ system in 6He′ by
readjusting the depth of the WS potential.

The excited state |1〉 is dominated by the d2 configuration
while the ground state |2〉 is primarily p2. Figure 6 shows

the evolution of the spectral functions and corresponding
survival probabilities for different energy splittings �E =
|Er (1) − Er (2)| of the doublet. When �E is large, there is
only a small suppression at the tail of spectral function of |2〉
and both states are characterized by comparable widths. As
the states begin to overlap, a strong interference occurs that
significantly impacts the spectral functions of the doublet [see
Figs. 6(e) and 6(f)]. The corresponding survival probabilities
show dramatic deviations from the exponential decay regime.
In particular, the state |1〉 decays much faster than suggested
by its intrinsic decay width, whilst the state |2〉 exhibits a
remarkably slow decay, which is in accord with the discussion
of Refs. [71,73].

Such exponentiality during the decay process could occur
between any near-lying resonances of the same spin-parity,
due to the virtual transition governed by the scattering
continuum and the difference between the orbital angular
momentum structure of the doublet states. Assuming that the
initial wave packet is a mixture of |1〉 and |2〉, one notices
that the survival amplitude (3) impacted by the overlaps of the
near-lying resonances at different times, namely 〈1(0)|2(t )〉
and 〈2(0)|1(t )〉. Due to the Hermitian property of the time
evolution operator, one obtains

〈1(δt )|2(0)〉 = 〈1(0)|1(−δt )〉 = 〈1(ta)|2(tb)〉 , (9)

where δt = ta − tb. This means that, while the wave func-
tion undergo an overall exponential decay, their remaining
components are “translationally” invariant with respect to the
choice of the initial time. Hence, the intrinsic changes in the
resonant wave function depend on the difference ta − tb. In
the case of 6He′, the overlaps of the two unbound 0+ states
have been calculated and shown in Fig. 7. When ta > tb,
| 〈1(ta)|2(tb)〉 | is more likely to be larger than | 〈2(ta)|1(tb)〉 |,
it indicates that time-delayed (ta − tb > 0) transition is more
likely to occur from |2〉 to |1〉 while the time-prompt transition
(ta − tb < 0)—from |1〉 to |2〉.

Although the system discussed here is artificial, experi-
mental candidates for doublet states with appreciably different
decay widths have been suggested in Ref. [73]. In particu-
lar, the two near-lying 3/2+ resonances in 13N have been
generated simultaneously through the proton transfer reac-
tion 12C(3He, d ) 13N∗ [77], and the twisted spectral functions
have been observed. In this scenario, the nonexponential de-
cay can be characterized by directly observing the decay
pattern or through the analysis of the spectral function. We
note that the presence of the interference dramatically reduces
the need for a stringent energy resolution.

IV. SUMMARY

A wave function collapse onto a stationary state is one
of the fundamental principles of quantum mechanics. Res-
onances and their long-term features studied in this work
offer a remarkable intermediate perspective on a nondestruc-
tive collapse where part of the wave function carries initial
information. The phenomenon of a nonexponential decay of
an open quantum system at long times can be traced back to
spectral function exhibiting characteristic threshold behavior.
Consequently, decays of near-threshold states/structures are
expected to directly probe the nonexponential decay regime.
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FIG. 6. Interference between two close-lying 0+ resonances in 6He′ for the three values of the energy splitting of the doublet �E (in MeV).
Left: Spectral functions versus decay energy. The arrow indicates the suppression of the spectral function of |2〉. Right: The time dependence
of the corresponding survival probabilities. The decay widths (in keV) of the doublet (�1, �2) are (34, 60), (30, 52), and (6, 68) for large,
moderate, and small values of �E , respectively.

The wealth of the current results on two-particle decays
of rare isotopes and studies of overlapping resonances offer
new opportunities for investigations of the nonexponential
component. The decay scenarios discussed in this paper
are summarized in Table I. In particular, we demonstrate
that useful insights into survival amplitude A(t ) can be of-
fered by analyzing the energy dependence of the asymptotic
particle-particle correlations. From such data, one could ob-
tain structural information about the decaying state that would
enable one to conclude whether the nonexponential decay
phase has indeed been reached. Another phenomenon with
possible experimental consequences is the interference of
near-lying decaying states of the same quantum numbers. In
this case, the states may decay nonexponentially through a
virtual transition.

FIG. 7. Transition rate (overlap) between one state of the doublet
(at time ta) and the second state (at time tb) in 6He′. The decay
diagram is shown in the inset. The virtual transition between the
doublet states is marked by the arrow.

Admittedly, the direct observation of the nonexponential
component of S (t ) is going to be difficult. Still, we believe
that the scenarios proposed in this work can offer an indirect
evidence for this fundamental property of open quantum sys-
tems and offer new avenues for future explorations.

TABLE I. Different scenarios to access nonexponential decay
and their characteristics (advantages A and requirements R). The
promising candidates for experimental tests are listed.

Scenario Characteristics Candidates

Threshold
resonance

A: Pronounced
nonexponentiality; very short
half-life.

9N [41], 9He
[57,74]

R: Low partial waves involved;
sufficient statistics

Three-body
decay

A: Nucleon-nucleon correlations
accessible; accumulated energy
dependence.

6Be [42], 13Li
[75], 16Be [76]

R: Appreciable decay width
allowing for energy binning;
configuration mixing involved;
high statistics required

Near-lying
resonances

A: Pronounced
nonexponentiality; distorted
spectral function due to
interference effects.

13C [57,73], 13N
[77]

R: Doublets of states with
identical Jπ quantum numbers;
high statistics required
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