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Geometric phase in quantum synchronization
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We consider a quantum limit-cycle oscillator implemented in a spin system whose quantization axis is slowly
rotated. Using a kinematic approach to define geometric phases in nonunitary evolution, we show that the
quantum limit-cycle oscillator attains a geometric phase when the rotation is sufficiently slow. In the presence
of an external signal, the geometric phase as a function of the signal strength and the detuning between
the signal and the natural frequency of oscillation shows a structure that is strikingly similar to the Arnold tongue
of synchronization. Surprisingly, this structure vanishes together with the Arnold tongue when the system is in
a parameter regime of synchronization blockade. We derive an analytic expression for the geometric phase of
this system, valid in the limit of slow rotation of the quantization axis and weak external signal strength, and we
provide an intuitive interpretation for this surprising effect.
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I. INTRODUCTION

In a seminal paper, Berry showed that a quantum sys-
tem initialized in an eigenstate of its parameter-dependent
Hamiltonian acquires a so-called geometric phase factor upon
adiabatic transport around a closed path in parameter space
[1]. Unlike the familiar dynamical phase, acquired by the
system due to its time evolution, the geometric phase (GP)
depends solely on the curvature of the parameter space and the
path taken through it and is thereby a purely geometric quan-
tity. Pancharatnam had already discovered a similar phase in
classical optics earlier [2] and Hannay generalized the concept
to classical mechanics afterwards [3]. A prominent example
of a GP in classical mechanics is provided by the Foucault
pendulum, whose plane of oscillation rotates by an angle that
depends only on the latitude of the pendulum if the period
of oscillation is much shorter than a day [4]. GPs appear in
diverse settings including light propagation in an optical fiber
[5], the Aharonov-Bohm effect [6–8], and the quantum Hall
effect [9]. GPs have also been proposed [10,11] as a way to
implement quantum gates that are robust against certain pulse
imperfections and parameter uncertainties [12–14], and such
gates have been experimentally demonstrated in a number of
systems [15–19].

Building on the work of Pancharatnam, the concept of a
quantum GP has been extended to nonadiabatic evolution [8],
noncyclic evolution [20], and mixed states [21–23] (including
periodic fermionic systems in mixed states [24]). A so-called
kinematic approach has been formulated [25], which is based
on the (time-dependent) density matrix along a path in state
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space and enables the concept of a GP to be generalized to
nonunitary evolution [26]. In classical nonlinear dynamics,
Kepler et al. [27,28] extended the concept of a GP to classical
dissipative systems with self-sustained oscillations (i.e., limit
cycles). They showed that, even though these systems are
nonconservative, cyclic adiabatic deformations of the limit
cycle lead to GP shifts which could potentially be observed
in certain chemical reactions.

In this paper, we analyze geometric phases in quantum
limit-cycle oscillations using the definition of a GP in nonuni-
tary quantum evolution proposed in Ref. [26]. We implement a
numerically stable algorithm to calculate the GP of a quantum
system undergoing dissipative time evolution. We use this
algorithm to demonstrate that a quantum limit-cycle oscillator
implemented in a spin-1 system acquires a GP that depends
only on the trajectory through parameter space if the direction
of its quantization axis changes slowly compared with the
timescales of its coherent and dissipative dynamics, similar
to the classical case [27,28].

We then consider the more general case of a quantum
limit-cycle oscillator subject to an external signal and show
that the GP has a tongue-like structure very similar to the well-
known Arnold tongue in synchronization [29]. Surprisingly,
this tongue-like structure of the GP vanishes together with the
conventional Arnold tongue of synchronization if the system
is in a regime of interference-based quantum synchronization
blockade [30]. To understand this surprising effect, we derive
an analytical formula for the GP, which is valid if the quanti-
zation axis is rotated sufficiently slowly.

This paper is structured as follows: In Sec. II, we summa-
rize the kinematic approach to the GP in an open quantum
system before we introduce the numerical algorithm to com-
pute the GP in a generic open quantum system in Sec. III.
In Sec. IV, we focus on the specific example of a van der
Pol (vdP) oscillator subject to a weak external signal. We
demonstrate the surprising similarities between the GP and
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the Arnold tongue of synchronization in this system. To gain
better insight into this phenomenon, we derive an analytical
expression for the GP in an arbitrary quantum limit-cycle os-
cillator with nondegenerate populations. Finally, we conclude
in Sec. V.

II. GEOMETRIC PHASE IN OPEN QUANTUM SYSTEMS

The GP of a quantum system can be defined as the dif-
ference between the global phase acquired during the time
evolution and the local phase changes accrued along the way
[31]. This subtraction is equivalent to enforcing a parallel-
transport condition [31]. To apply this definition to a quantum
system in a mixed state undergoing nonunitary evolution,
one has to consider the GP of a purification of the system,
which is measurable in principle [26] by an interferometric
measurement of the purified state. Note, however, that the
interferometric measurement requires unitary evolution of an
enlarged system comprising the system of interest and ancil-
lary degrees of freedom because the value of the GP depends
on the chosen purification [32] (see Appendix A for more
details). Given an open quantum system undergoing evolution
along a path P in the space of density matrices,

P : t ∈ [0, τ ] �→ ρ̂(t ) =
N∑

k=1

pk (t ) |φk (t )〉 〈φk (t )| , (1)

where ρ̂(t ) is the time-dependent density matrix of the system,
pk � 0 are its populations (which we assume to be nondegen-
erate functions for t ∈ [0, τ ]), |φk (t )〉 are the corresponding
eigenvectors, and N is the Hilbert-space dimension, Tong et al.
[26] proposed the following definition of the GP γ [P]:

γ [P] = arg

[
N∑

k=1

√
pk (0)pk (τ )〈φk (0)| φk (τ )〉

× exp

(
−

∫ τ

0
〈φk (t )| φ̇k (t )〉dt

)]
. (2)

Intuitively, Eq. (2) is the sum over the Pancharatnam phases
of each eigenstate |φk (t )〉 of the density matrix ρ̂(t ), weighted
by the corresponding population pk (t ) at the start and the end
of the path P , where the exponential factors subtract the local
phase changes accrued along P .

III. ALGORITHM TO CALCULATE THE GEOMETRIC
PHASE NUMERICALLY

Solutions to dissipative quantum systems in closed analyti-
cal form are rare: beyond the simplest models, it is impossible
to solve the differential equations arising from a quantum
master equation (QME) analytically. We therefore use a nu-
merical approach to evaluate Eq. (2) and calculate the time
evolution of a given quantum system by solving its QME
numerically exactly using the QUANTUMOPTICS package [33]
in JULIA [34]. This provides us with the density matrix ρ̂ j =
ρ̂(t j ) of the system at equidistant discrete time steps t j = j�t ,
j ∈ {0, . . . , nstep}, where �t = τ/nstep. Using this set of den-
sity matrices {ρ̂ j} we then evaluate Eq. (2) using Algorithm 1.

For each time step t j , we diagonalize ρ̂ j numerically to
find the populations pk (t j ) and the associated eigenvectors

Algorithm 1. Numerical calculation of the geometric phase using
Eq. (2).

Input : {ρ̂ j | j = 0, . . . , nstep} where ρ̂ j = ρ̂(t j ) and t j = j�t .

Output: Geometric phase γ [P] defined in Eq. (2).

1 Compute the eigenstates |φk (t j )〉 and populations (statistical
weights) pk (t j ) for each ρ̂ j and apply a phase convention;

2 Differentiate the eigenstates to obtain |φ̇k (t j )〉;
3 Integrate 〈φk (t j )|φ̇k (t j )〉 over time;

4 Evaluate Eq. (2) using the results of steps 1 and 3.

|φk (t j )〉 defined in Eq. (1). Note that, for the specific prob-
lem considered later, the populations pk (t ) are constant and
distinct, such that we can order them ascendingly and there is
no ambiguity in the labeling of the eigenvectors in different
time steps. Since the eigenvectors are only defined up to a
global phase factor, we use the convention that the kth entry
of the kth eigenvector is real and positive. This is equivalent to
choosing a particular gauge and does not affect the GP since
Eq. (2) is gauge-invariant.

In step 2 of Algorithm 1, the exponential phase fac-
tors in Eq. (2) are calculated by numerically differentiating
{|φk (t j )〉| j = 1, . . . , nstep} with respect to time using a sym-
metric difference quotient that is of fourth order in �t [35].
The overlaps {〈φk (t j )|φ̇k (t j )〉| j = 1, . . . , nstep} are then nu-
merically integrated over time by using an extended Simpson
rule in step 3, which is also of fourth order in �t [36]. The
specific choice of the gauge of the eigenvectors |φk (t j )〉 en-
sures that the overlaps are smooth functions of time and that
the numerical integration is stable.

We benchmarked this algorithm using the exactly solvable
case of a qubit subject to dephasing [26], see Appendix B for
more details.

IV. GEOMETRIC PHASE OF A QUANTUM
LIMIT-CYCLE OSCILLATOR

A. Quantum van der Pol oscillator

The numerical algorithm introduced in Sec. III can be
applied to any quantum system whose density matrix ρ̂(t ) is
known as a function of time and has distinct populations pk (t ).
In the following, we focus on a specific example, namely, a
quantum limit-cycle oscillator implemented in a spin-1 system
whose quantization axis changes slowly.

A classical limit-cycle oscillator is a nonlinear dynamical
system with an internal source of energy that excites the
system into self-sustained periodic motion at the so-called
natural frequency ω0 [29]. The phase of this oscillation is free,
such that the limit-cycle oscillator can adjust its frequency in
the presence of a weak periodic drive. A similar phenomenon
occurs if multiple limit-cycle oscillators are coupled and is
called mutual synchronization. Several proposals have been
put forward to generalize the concept of synchronization to
the quantum regime [30,37–46] and to quantify it [41,42,47–
54].

Here, we consider a quantum limit-cycle oscillator imple-
mented in a spin-1 system, which is convenient since it allows
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us to work with a finite-dimensional Hilbert space, N = 3. We
follow the framework introduced in Ref. [30], which defines
synchronization based on the phase-space dynamics of the
spin system. A quantum limit-cycle oscillator can be modeled
by a QME of the form (h̄ = 1)

d

dt
ρ̂ = −i[Ĥ0, ρ̂] +

M∑
j=1

D[�̂ j]ρ̂, (3)

where D[Ô] = Ôρ̂Ô† − {Ô†Ô, ρ̂}/2 is a Lindblad dissipa-
tor. The Hamiltonian Ĥ0 determines the natural frequency
of oscillation ω0 of the limit-cycle oscillator. We choose the
quantization axis to be the z direction and set

Ĥ0 = ω0Ŝz. (4)

The spin operators obey the commutation relation [Ŝ j, Ŝk] =
iε jkl Ŝl , where j, k, l ∈ {x, y, z}, and they are the generators of
the rotation group SO(3). A basis of the Hilbert space is given
by the joint eigenstates |S, m〉 of Ŝ2 = Ŝ2

x + Ŝ2
y + Ŝ2

z and Ŝz,
where S = 1 and m ∈ {+1, 0,−1}. The set of jump operators
{�̂1, . . . , �̂M} determines how the amplitude of the limit-cycle
oscillator is stabilized in phase space and should not introduce
any phase preference of the oscillation. For our numerical
examples, we consider a spin-1 implementation of a quantum
vdP oscillator [42,43], such that M = 2 and

�̂1 =
√

γg

2

(√
2ŜzŜ+ − Ŝ+Ŝz

)
, (5)

�̂2 =
√

γd

2
Ŝ2

−. (6)

Here, γg and γd denote the gain and damping rates, re-
spectively, and Ŝ± = Ŝx ± iŜy are the raising and lowering
operators. The specific form of the jump operators (5) and (6)
can be motivated as follows: In the quantum regime, γg � γd,
the bosonic quantum vdP oscillator populates only the lowest
three Fock states [42,43]. Thus, the bosonic system can be
approximated by a spin-1 system whose jump operators have
the same matrix representation as the corresponding bosonic
jump operators restricted to the lowest three Fock states [30].

B. Demonstration of a geometric phase in a quantum
van der Pol oscillator

Kepler et al. [27] demonstrated that a classical limit-cycle
oscillator acquires a geometric phase if its limit cycle is adia-
batically deformed along a closed path in parameter space. To
generate a similar effect in the quantum limit-cycle oscillator
defined in Eq. (3), we choose to rotate the direction of the
quantization axis along a path Plab in parameter space, i.e.,

Ĥ0 → R̂(α, t )Ĥ0R̂†(α, t ), (7)

�̂ j → R̂(α, t )�̂ j R̂
†(α, t ), (8)

where the rotation operator is

R̂(α, t ) = e−iωtn(α)·Ŝ. (9)

Here, Ŝ = (Ŝx, Ŝy, Ŝz )	 is the vector of spin operators, and the
unit vector n(α) = (sin α, 0, cos α)	 defines the symmetry
axis of a cone with opening angle α. The quantization axis

FIG. 1. (a) We consider a quantum limit-cycle oscillator, imple-
mented in a spin-1 system, whose quantization axis is rotated with
angular frequency ω on the surface of a cone with opening angle
α and symmetry axis n(α), as defined in Eq. (9). The quantization
axis rotates counterclockwise about n(α) and points along the z
direction at time t = 0. (b) Trajectory of the instantaneous eigenstate
|φ+1(t )〉 of the density matrix ρ̂(t ) on the spin-1 Bloch sphere in the
laboratory frame, obtained by numerical integration of Eq. (18). In
the limit-cycle state, i.e., without any external signal, the eigenstate
follows the rotation of the quantization axis (red line). If an external
signal Ĥsig(t ) 
= 0 is applied to synchronize the quantum limit-cycle
oscillator, |φ+1(t )〉 precesses about the instantaneous quantization
axis (blue line). The eigenstate |φ−1(t )〉 follows a similar trajectory
on the opposite part of the Bloch sphere (not shown). For presenta-
tion purposes, ω and the signal strength T have been chosen much
larger than in the numerical examples.

rotates on the surface of this cone, as shown in Fig. 1(a),
which constitutes the path Plab in parameter space. The time
evolution of the quantum system along the path Plab induces
the path P in the space of density matrices defined in Eq. (1),
for which we can calculate the geometric phase γ [P] using
Eq. (2). As discussed by Aharonov and Anandan [8] in the
context of unitary evolution, γ [P] can be viewed equally well
as a geometric phase of the path Plab in parameter space in
the limit of adiabatic evolution. In our scenario, adiabatic
evolution corresponds to a rotation frequency ω of the quanti-
zation axis that is much smaller than the relaxation rates and
the natural frequency of the system, ω � γg, γd, ω0 [55]. To
demonstrate the existence of a GP γ [P], which (in addition
to being a geometric quantity of the path P in the space of
density matrices) depends only the geometry of the path Plab

through parameter space, we simulate a full rotation of the
quantization axis for different values of the rotation frequency
ω, and compute the phase acquired along this path Plab with
Algorithm 1. For slow rotation of the quantization axis, i.e.,
adiabatic evolution, we expect the resultant phase to depend
only on the geometry of the path traced out by the rotation.
Therefore, reversing the rotation direction, Plab → −Plab,
should only flip the sign of the phase. Figure 2 demonstrates
that this is indeed the case if the rotation frequency ω is small
enough, thus, the limit-cycle oscillator indeed acquires a GP
in the regime ω � γg, γd, ω0 that depends only on the rotation
of the quantization axis in parameter space. Note that, in the
nonadiabatic case (i.e., for fast rotations of the quantization
axis compared with the relaxation rates and natural frequency
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FIG. 2. Demonstration of a geometric phase (GP) in a quantum
van der Pol limit-cycle oscillator whose quantization axis is slowly
rotated on the surface of a cone with opening angle α along the path
Plab, as shown in Fig. 1. If the rotation frequency ω is much smaller
than the natural frequency of oscillation ω0 and the dissipation rates
γg,d, the system acquires a purely geometric phase whose sign de-
pends only on the direction of the path Plab in parameter space (red
lines and markers). For larger ω, the evolution is no longer adiabatic
(blue lines and markers) and the GP for the respective path P in the
space of density matrices depends also on the velocity at which Plab

is traversed. The black dashed line shows an analytical formula for
the GP in the limit ω/ω0 → 0, given by Eq. (35). The parameters are
ω0/γd = 10, γg/γd = 0.1, and nstep = 108.

of the system), the geometric phase along the path P can no
longer be viewed as a geometric quantity of the path Plab in
parameter space, such that the geometric phases obtained for
Plab and −Plab differ. These numerical results in Fig. 2 can
be explained by the following heuristic argument: In the limit
of infinitely slow rotation, i.e., ω → 0, we expect the system
always to remain in the steady state along the current direction
of the quantization axis, i.e., ρ̂(t ) is well approximated by the
steady-state solution of Eq. (3) rotated by R̂(α, t ). Sjöqvist
et al. [22] showed that the GP of a mixed state ρ̂(t ) undergoing
unitary evolution is the weighted sum of the GPs acquired by
each eigenvector |φk (t )〉, i.e., we find

γ [P] = arg
[
p+1e+2π i cos α + p0 + p−1e−2π i cos α

]
, (10)

where the populations are

p+1 = γg

3γd + γg
, p0 = γd

3γd + γg
, p−1 = 2γd

3γd + γg
.

(11)

The phase factors given by the exponential functions measure
the solid angle traced out by each eigenvector |φk (t )〉 and are
a generalization of Berry’s result to a spin-1 system [1]. As
shown in Fig. 2, this formula for the GP in the limit ω → 0
matches perfectly with the numerical results. Note that we will
provide a more rigorous derivation of the GP in Sec. IV D,
where we show that the heuristically motivated result given
by Eqs. (10) and (11) is a limiting case of a more general
calculation.

C. Arnold tongue of the geometric phase in the presence
of an external signal

So far, we have shown that a single isolated quantum limit-
cycle oscillator acquires a geometric phase upon adiabatic
rotation of its quantization axis. Quantum limit-cycle oscilla-
tors are of particular interest because they can be synchronized
to an external signal at frequency ω̃. In this so-called entrain-
ment phenomenon, the external signal causes the limit-cycle
oscillator to deviate from its natural frequency ω0. The degree
to which the frequency of oscillation is modified depends
on the detuning � = ω̃ − ω0 and the strength of the signal.
In general, the entrainment is strongest on resonance, � =
0, and the range of detuning where synchronization occurs
grows with increasing signal strength T . This gives rise to
the so-called Arnold tongue of synchronization, a roughly
triangular-shaped region in the �-T parameter space [29].
To describe the presence of an external signal, we replace
Ĥ0 → Ĥ0 + Ĥsig(t ) in Eq. (3) with the signal Hamiltonian

Ĥsig(t ) = T cos (ω̃t + ϕ̃)Ŝx, (12)

which aims to rotate the state of the limit-cycle oscillator
about an axis in the equatorial plane at an angle ϕ̃ with respect
to the positive x axis. In the remaining parts of this paper, we
focus on the GP of a quantum limit-cycle oscillator subject to
the external signal given by Eq. (12), and we discover striking
similarities between the Arnold tongue of synchronization and
a corresponding plot of the GP as a function of � and T .
As a preparation, we first calculate the Arnold tongue of syn-
chronization of the system for a fixed quantization axis, i.e.,
for ω = 0. In a frame rotating at the signal frequency ω̃ and
using a rotating-wave approximation, Eq. (3) becomes time-
independent and, to first order in the small signal strength T ,
its steady state has the form

ρ̂ss =
(

p+1
p0

p−1

)
+ T

(
c+1,0

c∗
+1,0 c0,−1

c∗
0,−1

)
+O(T 2).

(13)

For the quantum vdP oscillator considered here, the popula-
tions pm are given in Eq. (11) and the coherences T cm,m′ are

c+1,0 = a

b
, (14)

a = −ie−iϕ̃[(4 + 3
√

2)γgγd − 2
√

2iγd�

−
√

2γg(3γg − 2i�)],

b = 4(3γd + γg)(γd + γg − i�)(3γg − 2i�),

c0,−1 = −ie−iϕ̃γd√
2(3γd + γg)(3γg − 2i�)

. (15)

Following Refs. [46] and [30], we define a phase-space
quasiprobability distribution of the limit-cycle oscillator by
calculating its Husimi Q function Q(θ, φ|ρ̂) = 〈θ, φ| ρ̂ |θ, φ〉,
where |θ, φ〉 = e−iφŜz e−iθ Ŝy |S = 1, m = +1〉 are coherent
spin states [56]. Since we are working in a frame rotating
at ω̃, the variable φ determines the relative phase between
the limit-cycle oscillator and the applied signal. From the Q
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FIG. 3. (a) Arnold tongue of a quantum van der Pol oscillator
subject to a semiclassical signal given by Eq. (12). The limit-cycle
oscillator is synchronized to the external signal in the bright region
where the synchronization measure S(ρ̂ss ), defined in Eq. (17), is
nonzero. The plot is symmetric about the � = 0 axis and we only
show the left half. The dissipation rates have the ratio γg/γd =
0.5. (c) The right side of the same plot in a parameter regime
where an interference-based quantum synchronization blockade oc-
curs (γg/γd ≈ 2.84). (b) Plot of the GP for the same parameter values
as in panel (a) and nstep = 104, which shows a strikingly similar
Arnold-tongue-like structure. Again, the plot is symmetric about
the � = 0 axis. (d) For the interference-based quantum synchro-
nization blockade parameters of (c) and nstep = 106, this structure
in the GP disappears. For all four cases, the remaining parameters
are ω0/γd = 1, τω0 = 200, ϕ̃ = 0, α = π/4, ω/γd = 0.05, and ω̃ =
ω0 + �. Note that the color scales in panels (b) and (d) are periodic
since the GP is a 2π -periodic quantity [unlike the synchronization
measure S(ρ̂ss )].

function, we obtain the shifted phase distribution of ρ̂,

S(φ|ρ̂) =
∫ π

0
dθ sin (θ )Q(θ, φ|ρ̂ ) − 1

2π
, (16)

which is zero if the relative phase is uniformly distributed (no
synchronization) and nonzero if there is a preferred relative
phase. A single-number measure of synchronization can be
obtained by considering the maximum of S(φ|ρ̂),

S (ρ̂ ) = max
φ∈[0,2π )

S(φ|ρ̂ ) = 3

8
√

2
T |c1,0 + c0,−1|. (17)

S is positive (zero) if there is (no) synchronization and
the particular value of φmax = − arg(c1,0 + c0,−1) maximizing
S(φ|ρ̂ ) determines the relative phase lag between the limit-
cycle oscillator and the signal.

The Arnold tongue of quantum synchronization can now
be visualized by plotting S (ρ̂ss) as a function of � and T ,
which is shown in Fig. 3(a). In contrast with the classical case,
quantum noise smears out the synchronization transition and

leads to a smooth crossover from no synchronization at large
detunings and weak signal strength (dark colors) to a roughly
triangular-shaped region of synchronization for sufficiently
large signal strength around resonance (bright colors).

We now analyze the GP of a limit-cycle oscillator with an
applied signal whose quantization axis is slowly rotated, ω 
=
0, as shown in Fig. 1(a). Numerically integrating the QME,

d

dt
ρ̂ = −i[R̂(α, t )(Ĥ0 + Ĥsig(t ))R̂†(α, t ), ρ̂]

+
M∑

j=1

D[R̂(α, t )�̂ j R̂
†(α, t )]ρ̂, (18)

and using the algorithm described in Sec. III to calculate the
GP γ [P], we find the GP shown in Fig. 3(b). Comparing
Figs. 3(a) and 3(b), we find a striking similarity between the
GP and the Arnold tongue of synchronization: Both quanti-
ties take a constant value at large detuning and small signal
strength and vary strongly in a triangular region around reso-
nance whose width grows with increasing signal strength.

One may argue that this coincidence is not surprising since
both S (ρ̂ ) and γ [P] depend on the density matrix of the
system. For T → 0 or |�| → ∞, the external signal cannot
significantly affect the limit-cycle oscillator and its density
matrix is essentially independent of T and � and equivalent
to that of an unperturbed vdP oscillator. Close to resonance
and for large enough T , however, the signal will significantly
affect the oscillation dynamics and changes in both the syn-
chronization measure and the GP are to be expected.

However, the similarities between the GP and the synchro-
nization measure do not end here. In Fig. 3(c), we plot S (ρ̂ss)
for parameters in a so-called interference-based quantum-
synchronization-blockade regime [30]. In this regime, the gain
and damping rates, γg and γd, respectively, are chosen such
that the coherences entering the definition of S (ρ̂ ) in Eq. (17)
have the same magnitude but opposite signs, c1,0 = −c0,−1.
On resonance, this relation takes the following form:

γg

γd
= 4 + 5

√
2 +

√
48 − (4 + 5

√
2)2

6
√

2
≈ 2.84. (19)

In this regime, each coherence is nonzero, i.e., the signal does
modify the dynamics of the limit-cycle oscillator appreciably,
but an interference effect prevents phase localization such that
S (ρ̂ss) = 0. Therefore, the Arnold tongue of synchronization
vanishes, as shown in Fig. 3(c).

Surprisingly, the Arnold-tongue-like structure in the plot
of the GP vanishes in the synchronization-blockade regime,
too, even though the S (ρ̂ss ) and γ [P] measure very different
properties of the density matrix. This result suggests a deeper
connection between synchronization and the GP.

D. Approximate analytic expression for the geometric phase

To get a better understanding for the numerical results
shown in Fig. 3, we now derive approximate analytic expres-
sions for the GP of a quantum limit-cycle oscillator whose
quantization axis is slowly rotated as described by the QME
(18). In a first step, we use the fact that the rotation R̂(α, t )
is adiabatic, i.e., the timescale 2π/ω on which the direction
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of the quantization axis changes is much longer than any
other timescale of the system. An approximate solution for
ρ̂(t ) can thus be obtained by calculating the steady state of
the system for a fixed orientation of the quantization axis,
and then rotating this steady state according to R̂(α, t ). This
motivates us to introduce the frame which corotates with the
quantization axis,

χ̂ (t ) = R†(α, t )ρ̂(t )R̂(α, t ), (20)

which gives rise to the effective QME

d

dt
χ̂ = −i[Ĥ0 + Ĥsig(t ) + Ĥaxis, χ̂ ] +

M∑
j=1

D[�̂ j]χ̂ , (21)

where Ĥaxis = −iR̂†(α, t )∂t R̂(α, t ) = −ωn(α) · Ŝ is the cor-
rection term to the Hamiltonian due to the slow rotation
of the quantization axis. It causes a small tilt of the effec-
tive quantization axis in the corotating frame, ω0Ŝz → [ω0 −
ω cos α]Ŝz − ω sin(α)Ŝx.

Naively, one may now attempt to simplify Eq. (21) by
switching to a rotating frame with respect to the signal, and
by performing a rotating-wave approximation. However, this
approach eliminates the Ŝx correction to the quantization axis
and leads to incorrect results. To preserve this term, we first
diagonalize the modified Hamiltonian Ĥ0 + Ĥaxis to leading
order in ω/ω0 using a Schrieffer-Wolff transformation

χ̂SW = eŴ χ̂e−Ŵ , (22)

with the generator

Ŵ = − iω sin α

ω0 − ω cos α
Ŝy. (23)

The QME for the density matrix χ̂SW in this new frame is

d

dt
χ̂SW = −i[eŴ (Ĥ0 + Ĥaxis + Ĥsig(t ))e−Ŵ , χ̂SW]

+
M∑

j=1

D[eŴ �̂ je
−Ŵ ]χ̂SW. (24)

The Schrieffer-Wolff transformation rotates the spin basis
states such that Ĥ0 + Ĥaxis becomes diagonal up to quadratic
corrections,

eŴ (Ĥ0 + Ĥaxis )e−Ŵ = (ω0 − ω cos α)Ŝz + O

(
ω2

ω2
0

)
, (25)

whereas the signal acts now along a combination of the x and
z directions,

eŴ Ĥsig(t )e−Ŵ = T

(
Ŝx − ω sin α

ω0 − ω cos α
Sz

)
cos (ω̃t + ϕ̃)

+ O

(
ω2

ω2
0

)
. (26)

We can now finally switch to a frame rotating at the signal
frequency ω̃,

χ̂rot = Û †(t )χ̂SWÛ (t ), (27)

Û (t ) = exp(−iω̃t Ŝz ), (28)

and perform a rotating-wave approximation. The resulting
QME is

d

dt
χ̂rot = −i[Ĥ, χ̂rot] +

M∑
j=1

D[�̂ j]χ̂rot, (29)

Ĥ = (ω0 − ω̃ + ω cos α)Ŝz + T

4
(e−iϕ̃ Ŝ+ + eiϕ̃ Ŝ−), (30)

which differs from the naive approach to simplify Eq. (21)
outlined above by the fact that χ̂rot is given in a basis which
is rotated by eŴ compared with the basis of χ̂ in Eq. (21). In
this way, we retain information on the Ŝx term in Ĥaxis.

The steady state χ̂rot,ss of Eq. (29) has the same form as
shown in Eqs. (13) to (15), except that the detuning now
contains a correction term due to Ĥaxis, � → � − ω cos α =
ω̃ − ω0 − ω cos α.

Assuming the populations {p+1, p0, p−1} to be nondegen-
erate, we can now diagonalize χ̂rot,ss perturbatively in the
signal strength T and find the eigenvectors

|p+1〉 ∝
(

1,
T c∗

+1,0

p1 − p0
, 0

)	
+ O(T 2), (31)

|p0〉 ∝
(

− T c+1,0

p1 − p0
, 1,

T c∗
0,−1

p0 − p−1

)	
+ O(T 2), (32)

|p−1〉 ∝
(

0,− T c0,−1

p0 − p−1
, 1

)	
+ O(T 2). (33)

Their corresponding eigenvalues p+1, p0, and p−1 remain
unchanged up to corrections of O(T 2). To obtain the lab-frame
density matrix ρ̂, we now undo the transformations (27), (22),
and (20). The frequency ω appears twice in these transforma-
tions, namely, as the small expansion parameter ω/ω0 in the
Schrieffer-Wolff transformation, and as the potentially large
rotation angle ωt of the quantization axis. To separate these
different roles of ω clearly, we introduce two new parame-
ters for the back-transformation, ω → ωSW in Eq. (22) and
ω → ωR in Eq. (20), such that we can work perturbatively in
ωSW/ω0 while keeping all orders of ωR/ω0,

|φm(t )〉 = R̂(t, α, ωR )
[
1̂ − Ŵ (ωSW)

]
Û (t ) |pm〉 , (34)

where m ∈ {+1, 0,−1}. At the end of the calculation, we
will set ωR = ωSW = ω. The full expressions for the eigen-
vectors |φm(t )〉 are lengthy and nontransparent. Simplified
expressions for the overlaps 〈φm(0)|φm(τ )〉 and the inte-
grals − ∫ τ

0 dt〈φm(t )|φ̇m(t )〉 entering Eq. (2) are given in
Appendix C. For cyclic evolution, τ → 2π/ω, they reduce to
γ [P] = arg(z) with

z =p+1 exp

[
+2π i cos (α) +

√
2iT sin (α)

ω

ω0

Imc+1,0

p1 − p0

]

+ p0 exp

[√
2iT sin (α)

ω

ω0

(
Imc0,−1

p0 − p−1
− Imc+1,0

p1 − p0

)]

+ p−1 exp

[
−2π i cos (α) −

√
2iT sin (α)

ω

ω0

Imc0,−1

p0 − p−1

]
.

(35)

If no signal is applied, T → 0, this result reduces to our guess
for the GP of an unperturbed quantum limit-cycle oscillator
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FIG. 4. Line-cuts through the different regions shown in Fig. 4
(data points), compared with the approximate analytic expressions
for the GP from Appendix C (solid lines). The red dots and lines cor-
respond to the synchronization-blockade parameters of Fig. 4(d) and
are magnified by a factor of 102. The blue dots and lines correspond
to the parameters of Fig. 4(b).

given in Eq. (10). These analytical formulas are in excellent
agreement with the numerical results shown in Figs. 3(b) and
3(d) if ω and T are small, as demonstrated in Fig. 4.

We stress that the derivation presented in this section and
the result (10) are not specific to the quantum van der Pol
oscillator considered in our numerical examples. Any spin-1
limit-cycle oscillator subject to a semiclassical signal of the
form (12) will have a density matrix of the form (13) [30].
Only the specific formulas for the populations pm and the
coherences T cm,m′ will differ depending on the dissipators �̂k

stabilizing the limit cycle. The results can thus be directly
applied to other limit-cycle oscillators (as long as all nonzero
populations pk are distinct), and they can be easily generalized
to other spin numbers S.

E. Interpretation of the Arnold tongue of the geometric phase

The derivation of the approximate expression (35) for the
GP of a quantum limit-cycle oscillator provides an intuitive
understanding of the results shown in Fig. 3. As shown in
Fig. 1(a), the quantization axis slowly rotates on the sur-
face of a cone. In the absence of an external signal, T = 0,
each eigenstate |S, m〉 traces out a path with a solid angle
2π (1 − cos α)|m| subtended from the origin of the Bloch
sphere, as shown by the red curve in Fig. 1(b). The time-
dependent signal Hamiltonian Ĥsig(t ) in Eq. (18) tries to tilt
the states |S, m〉 away from the instantaneous quantization axis
and causes them to precess, as shown by the blue curve in

Fig. 1(b). The action of the drive is counteracted by the dis-
sipative limit-cycle stabilization mechanism, which attempts
to relax the system to a state without any coherences in the
basis defined by the instantaneous direction of the quanti-
zation axis. In a reference frame that corotates with Ĥsig(t )
about the instantaneous quantization axis [see Eq. (27)], the
density matrix thus acquires constant coherences, as shown
in Eq. (13). Since their magnitude increases with the signal
strength T and decreases with increasing detuning |�|, the GP
changes in an Arnold-tongue-like region around resonance.

In the case of cyclic evolution shown in Eq. (35), only the
imaginary part of the coherences modifies the phase factor of
each eigenstate |φm〉. For noncyclic evolution, the coherences
also change the overlap 〈φm(0)|φm(t )〉 between eigenstates,
see Appendix C for details. In both cases, however, the func-
tional dependence of γ [P] on the coherences T cm,m′ is more
complex than the simple sum of coherences encountered in
the synchronization measure S (ρ̂). Therefore, the suppres-
sion of the Arnold tongue of the GP for parameters in the
synchronization-blockade regime must have a different origin
than the destructive interference of coherences that causes the
Arnold tongue of synchronization to vanish.

The surprising disappearance of the Arnold tongue of the
GP in Fig. 3(d) can be traced back to a more general suppres-
sion of coherences in the synchronization blockade regime.
As shown in Eqs. (14) and (15), the coherences are in general
different functions of the gain and dissipation rates γg and γd.
Focusing on the resonant case � = 0, we find

c+1,0 ∝ 4γgγd + 3
√

2γg(γd − γg)

12γg(3γd + γg)(γd + γg)

≈ − 1

2
√

2γd

1

γ
+ O(γ −2), (36)

c0,−1 ∝ γd

3
√

2γg(3γd + γg)

≈ + 1

3
√

2γd

1

γ 2
+ O(γ −3), (37)

where we introduced the ratio γ = γg/γd and considered the
limit of large γ . For generic values of γg and γd, the co-
herences T c+1,0 and T c0,−1 will have different magnitudes
and will not interfere destructively. However, the expressions
in the first lines of Eqs. (36) and (37) show that the coher-
ences tend to zero with increasing dissipation rates γd or γg

because the limit-cycle stabilization scheme dominates over
the influence of the signal. Therefore, one can find specific
combinations of dissipation rates for which the destructive
interference occurs, e.g., by increasing the ratio γg/γd. This
fine-tuning of the ratio γg/γd, however, comes at the cost of an
overall reduction of the magnitude of the coherences (about
an order of magnitude for our parameters), which leads to a
slower change of the GP when T or � are changed. This effect
causes the disappearance of the Arnold tongue of the GP in
Fig. 3(d).

V. CONCLUSION

Based on the kinematic approach to the geometric phase
(GP) proposed by Tong et al. [26], we have developed a
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numerically stable algorithm to calculate the GP in an open
quantum system. We used it to demonstrate the existence of
a GP in a spin-1 implementation of a quantum vdP oscillator
whose quantization axis is slowly rotated. We have shown that
if the quantum vdP oscillator is synchronized to an external
signal, the GP plotted as a function of the detuning and signal
strength exhibits a structure similar to the Arnold tongue of
synchronization: the GP changes strongly in a roughly tri-
angular region around resonance whose width increases with
increasing signal strength. Surprisingly, this Arnold tongue of
the GP vanishes if the system is in a parameter regime where
an interference-based quantum synchronization blockade oc-
curs.

These striking similarities between the Arnold tongue of
the synchronization measure S (ρ̂ ) and the structure of the
GP naturally lead to the question if there is a deeper connec-
tion between GPs and quantum synchronization. For instance,
could quantum synchronization be an indicator of a nonzero
GP or vice versa? In general, a nonzero GP does not imply
that a quantum system is synchronized because, even in the
absence of an external signal, the quantum vdP limit-cycle
oscillator shows a GP (see Sec. IV B) but it is clearly not syn-
chronized. Moreover, GPs occur even in completely unitary
evolution [1], i.e., in quantum systems that are no limit-cycle
oscillators at all. Conversely, the numerical data presented in
Sec. IV C suggests that a nonzero synchronization measure
S (ρ̂ ) could be an indicator of changes in the GP relative
to its value in an unperturbed limit-cycle oscillator. Using
perturbation theory in the small frequency ω of the rotation
of the quantization axis and in the small signal strength T , we
have derived an approximate analytical expression for the GP,
which reveals that the mechanism leading to the suppression
of the GP (namely, a suppression of the coherences compared
with a regime of regular synchronization) is different from the
mechanism leading to a suppression of the synchronization
measure (namely, destructive interference of the coherences).
Despite these differences, the synchronization measure S (ρ̂ )
and the GP show qualitatively the same behavior in a quantum
vdP oscillator. It is an exciting direction for further research to
understand if this is a generic feature that holds for arbitrary
limit-cycle oscillators and external signals. Since the assump-
tions in our derivation of a perturbative analytic formula for
the GP in Sec. IV D are very general, the same technique could
be applied to other quantum limit-cycle oscillators to address
this open question.

Kepler et al. [27,28] developed a general approach to the
GP in classical limit-cycle systems, but the deformations of
the classical limit cycle they analyzed differ from the rotation
of the quantization axis we considered here. It would therefore
be interesting to connect and compare these results by analyz-
ing the classical equivalent of a quantum vdP oscillator whose
quantization axis slowly rotates.
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APPENDIX A: INTERFEROMETRIC MEASUREMENT
OF THE GEOMETRIC PHASE

In this Appendix, we comment on the possibility to mea-
sure the GP of a mixed state undergoing nonunitary evolution
in an interferometric measurement.

In the case of a pure initial state and unitary evolution,
the GP is uniquely defined and can be measured in an inter-
ferometric measurement, as shown in Fig. 5. The first beam
splitter transforms the initial pure state into a superposition
of pure states propagating along the two arms of the Mach-
Zehnder interferometer (MZI). The state in the upper arm
undergoes adiabatic unitary evolution along the desired path
P and acquires a GP γ [P], whereas the state in the lower
arm acquires only a controllable U(1) reference phase χ .
Having passed through the two arms, the states interfere at
the second beam splitter and the probabilities p0 and p1 of
finding the system in the two output ports are measured. These
probabilities depend on the relative phase γ [P] − χ between
the two arms and show an interference profile of the form

p0,1 = 1
2 [1 ± ν cos(χ − γ [P])]. (A1)

The dynamical phase can be eliminated from the measure-
ment by enforcing the parallel-transport condition in the upper
arm or by choosing a specific path along which the dynami-
cal phase vanishes. Other possibilities include canceling the
dynamical phase using spin-echo techniques, or comparing
different paths where the relative signs between the dynamical
and GPs differ. One can then use the controllable phase χ to
map out Eq. (A1) and determine the GP γ [P].

The GP of a mixed state is defined via a purification of the
state in a larger Hilbert space [21–23]. Since a given mixed
state can be purified in many different ways, one may worry
that the GP can no longer be uniquely defined. However,
Sjöqvist et al. [22] showed that, for mixed states undergoing
unitary evolution, the GP can still be measured in the MZI
setup shown in Fig. 5 and turns out to be the statistical average
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of the GPs of the pure eigenstates of the density matrix.
Such an interferometric measurement has been experimen-
tally demonstrated in a NMR system [57].

In the following, we calculate the measurement probabili-
ties of a mixed state in a MZI undergoing nonunitary evolution
and show that the interferometric measurement of the GP of
mixed state cannot be extended to nonunitary evolution.

Analogously to the treatment of the unitary case in
Ref. [22], we model the MZI in a combined Hilbert space
HB ⊗ HS , where HB = {|0〉B , |1〉B} encodes the two different
paths the system can take inside the interferometer, and HS is
the Hilbert space of the system. The beam splitters implement
the unitary transformation

ÛBS = 1√
2

[|0〉 〈0|B + |0〉 〈1|B + |1〉 〈0|B − |1〉 〈1|B], (A2)

where the superscript B denotes that this operator acts only on
the subspace HB. After the first beam splitter, a phase shift χ

is applied in the |0〉B path,

Û B
PS = eiχ |0〉 〈0|B + |1〉 〈1|B . (A3)

Along the |1〉B path, the system evolves in its Hilbert space
HS under a QME of the same form as Eq. (3),

d

dt
ρ̂S (t ) = −i[ĤS (t ), ρ̂S (t )] +

M∑
j=1

D
[
�̂S

j (t )
]
ρ̂S (t )

= LS (t )ρ̂S (t ), (A4)

with a Hamiltonian ĤS (t ) and a set of Lindblad operators
{�̂S

j (t )}.
We now lift these operations from the individual Hilbert

spaces HS and HB into the combined Hilbert space HB ⊗ HS ,

ÛBS = Û B
BS ⊗ 1̂

S
, (A5)

Ĥ (t ) = |1〉 〈1|B ⊗ ĤS (t ) − χ

τ
|0〉 〈0|B ⊗ 1̂

S
, (A6)

�̂ j (t ) = |1〉 〈1|B ⊗ �̂S
j (t ), (A7)

where 1̂
S

(1̂
B
) denotes the identity operator on HS (HB). The

second term in the Hamiltonian (A6) is the generator of the
phase-shift transformation (A3). It ensures that the system has
acquired a phase shift χ in the |0〉B arm by the time τ when
it exits the interferometer. Inside the interferometer, the time
evolution of the entire system is governed by the following
QME for the density matrix ρ̂(t ) defined on HB ⊗ HS ,

d

dt
ρ̂(t ) = −i[Ĥ (t ), ρ̂(t )] +

∑
i

D[�̂i(t )]ρ̂(t ). (A8)

To calculate an expression for the phase shift and the vis-
ibility in Eq. (A1), we consider the following product state
entering the MZI:

ρ̂0 = |0〉 〈0|B ⊗ ρ̂S (0), (A9)

which is transformed into ρ̂1 = ÛBSρ̂0Û
†
BS at the first beam

splitter. The time evolution after the first beam splitter is given

by

d

dt
ρ̂(t ) = 1

2

[ − i |1〉 〈0|B ⊗ ĤS
eff (t )ρ̂S (t )

+ i |0〉 〈1|B ⊗ ρ̂S (t )ĤS†
eff (t )

+ |1〉 〈1|B ⊗ LS (t )ρ̂S (t )
]
, (A10)

where we defined the effective non-Hermitian Hamiltonian

ĤS
eff (t ) = ĤS (t ) − i

2

M∑
j=1

�̂
S†
j �̂S

j + χ

τ
. (A11)

The time evolution acts separately on the subspaces spanned
by the populations and coherences of HB, such that we can
formally solve it by introducing the effective time-evolution
operator

Û S
eff (t ) = T exp

[
−i

∫ t

0
dt ′ĤS

eff

(
t ′)]

= e−iχt/τŨ S
eff (t ), (A12)

where T denotes time ordering, as well as the effective time-
evolution superoperator US

eff (t ) solving Eq. (A4). The explicit
form of US

eff (t ) is irrelevant in the following, and we only
need its property to preserve the trace of ρ̂S (t ). With these
definitions, a formal solution for the state between the two
beam splitters is

ρ̂2(t ) = 1
2

(|1〉 〈0|B ⊗ Û S
eff (t )ρ̂S (0)

+ |0〉 〈1|B ⊗ ρ̂S (0)Û S†
eff (t )

+ |1〉 〈1|B ⊗ US
eff (t )ρ̂S (0) + |0〉 〈0|B ⊗ ρ̂S (0)

)
.

(A13)

The final state exiting the interferometer after the second beam
splitter is ρ̂3 = ÛBSρ̂2(τ )Û †

BS and the detection probabilities of
the two detectors are

p0 = 〈0|B TrS[ρ̂3] |0〉B

= 1
4 TrS

[
US

eff (τ )ρ̂S (0) + ρ̂S (0) + Û S
eff (τ )ρ̂S (0)

+ ρ̂S (0)Û S†
eff

]
= 1

2 {1 + ν(τ ) cos [χ − γ (τ )]}, (A14)

p1 = 1 − p0, (A15)

where we used TrS[Û S
eff (τ )ρ̂S (0)] = TrS[ρ̂S (0)Û S†

eff (τ )]∗ and
defined the visibility ν(τ ) and phase shift γ (τ ) as follows.

ν(τ ) = ∣∣TrS
[
Ũ S

eff (τ )ρ̂S (0)
]∣∣, (A16)

γ (τ ) = arg
(
TrS

[
Ũ S

eff (τ )ρ̂S (0)
])

. (A17)

The presence of the non-Hermitian term
−(i/2)

∑M
j=1 �̂

S†
j �̂S

j in ĤS
eff (t ) implies that ν(τ ) decays

to zero with increasing evolution time τ . For instance, for
the spin-1 quantum vdP oscillator introduced in Sec. IV and
ignoring the time-dependent rotation of the quantization axis
for a moment, the effective unitary operator is

Ûeff (τ ) = e−iχ−iĤ0τ− 1
2 (�̂†

1 �̂1+�̂
†
2 �̂2 )τ , (A18)
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FIG. 6. Deviation of the numerically calculated GP from the
exact solution for a qubit undergoing pure dephasing, modeled by
the quantum master equation (B1). The GP is computed using Algo-
rithm 1 for a fixed evolution time τ = 2π/η and different numbers
nstep of time steps. The dashed line indicates a 1/n4

step scaling. The
parameters are �/η = 0.2 and θ0 = π/4.

where the Hamiltonian Ĥ0 and the Lindblad operators �̂1, �̂2

are defined in Eqs. (4) to (6). Hence, the visibility decays pro-
portional to e−min(γg,γd ) τ . For large damping and gain rates or
for long times τ , the visibility of the interference pattern tends
to zero, ν → 0, and detection of any phase shift becomes
impossible. Moreover, γ (τ ) has a very different form than the
definition of a GP in nonunitary evolution, Eq. (2), such that
γ (τ ) 
= γ [P].

In conclusion, for mixed states and nonunitary time evolu-
tion, the interferometric measurement considered here cannot
be used to determine the GP. Since the GP for nonunitary
evolution is defined via a purification procedure [21,26] and

since the choice of the purification matters [32,58], one has to
enforce this purification during the interferometric measure-
ment. This implies that one has to perform an interferometric
measurement using unitary evolution of the combined system
and ancilla [58–61], which is experimentally very demanding
for large quantum systems.

The phase γ (τ ) defined in Eq. (A17) is related to a def-
inition of geometric phases in open quantum systems using
a quantum-jump unraveling of the dissipative dynamics [62].
A geometric phase can then be defined by adding up the
phase changes at quantum jumps and during nonunitary time
evolution between quantum jumps, but the value of the phase
still depends on the chosen unraveling [63]. In our calculation,
the effective time-evolution operator Ũ S

eff (τ ) describes the
dynamics of the system between two quantum-jump events
and γ (τ ) thus corresponds to the special (and rare) trajectory
where no jumps occur during the entire duration τ .

APPENDIX B: GEOMETRIC PHASE
OF A DEPHASING QUBIT

In this Appendix, we demonstrate the convergence of the
numerical algorithm introduced in Sec. III of the main text
on a simple analytically solvable example. Tong et al. [26]
considered the GP of a two-level system subject to pure de-
phasing, defined by the QME

d

dt
ρ̂ = −i

[
η

2
σ̂z, ρ̂

]
+ �

2
D[σ̂z]ρ̂, (B1)

where σ̂z denotes the Pauli z matrix. Starting in the initial state

ρ̂(0) = 1 + r · σ̂

2
, (B2)

where σ̂ = (σ̂x, σ̂z, σ̂z )	 denotes the vector of Pauli matrices
and r = (sin θ0, 0, cos θ0)	, the GP at time τ > 0 is given by

γ (τ ) = arg

[
e−iητ/2 cos

(
θτ

2

)
cos

(
θ0

2

)
+ e+iητ/2 sin

(
θτ

2

)
sin

(
θ0

2

)]

+ η

4�
ln

(1 − cos θ0)(
√

cos2(θ0) + sin2(θ0)e−2�τ + cos θ0)

(1 + cos θ0)(
√

cos2(θ0) + sin2(θ0)e−2�τ − cos θ0)
, (B3)

where θτ = [arctan(e−�τ tan θ0) + π ] mod π . For a total evolution time τ = 2π/η and cos θ0 � 0, this result simplifies to
Eq. (21) of Ref. [26]. With this analytical formula for the GP at hand, we benchmarked the accuracy of our numerical algorithm
described in Sec. III. We solved Eq. (B1) numerically, calculated the GP using Algorithm 1, and compared the result with
Eq. (B3). For all tested parameters η and �, and for all initial conditions r, we observed quartic convergence in the number of
time steps, similar to the result shown in Fig. 6.

APPENDIX C: APPROXIMATE EXPRESSION FOR THE GEOMETRIC PHASE

In this Appendix, we provide simplified expressions for the overlaps 〈φm(0)|φm(τ )〉 and the integrals − ∫ τ

0 dt〈φm(t )|φ̇m(t )〉
entering Eq. (2). These results generalize Eq. (35) of the main text. Ignoring fast oscillating terms ∝e±iω̃t , assuming a resonant
drive, � = 0, and taking the limit ωSW → 0, we find the following expressions for the overlap of the eigenstates of the density
matrix ρ̂(t ),

〈φ+1(0)|φ+1(τ )〉 =
(

cos
ωτ

2
− i cos α sin

ωτ

2

)[(
cos

ωτ

2
− i cos α sin

ωτ

2

)
−

√
2iT

c+1,0

p+1 − p0
sin α sin

ωτ

2

]
, (C1)
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〈φ0(0)|φ0(τ )〉 =
[

cos2 α + sin2 α cos ωτ −
√

2iT sin α sin
ωτ

2

[
−

(
cos

ωτ

2
− i cos α sin

ωτ

2

)
c∗
+1,0

p+1 − p0

+
(

cos
ωτ

2
+ i cos α sin

ωτ

2

)
c0,−1

p0 − p−1

]]
, (C2)

〈φ−1(0)|φ−1(τ )〉 =
(

cos
ωτ

2
+ i cos α sin

ωτ

2

)[(
cos

ωτ

2
+ i cos α sin

ωτ

2

)
+

√
2iT

c∗
0,−1

p0 − p−1
sin α sin

ωτ

2

]
. (C3)

Moreover, the integrals determining the phase factors in Eq. (2) are given by

−
∫ τ

0
dt 〈φ+1(t )|φ̇+1(t )〉 = +iωτ cos α +

√
2iωT sin α

ω0

Imc+1,0

p1 − p0
, (C4)

−
∫ τ

0
dt 〈φ0(t )|φ̇0(t )〉 =

√
2iωT sin α

ω0

(
Imc0,−1

p0 − p−1
− Imc+1,0

p1 − p0

)
, (C5)

−
∫ τ

0
dt 〈φ−1(t )|φ̇−1(t )〉 = −iωτ cos α −

√
2iωT sin α

ω0

Imc0,−1

p0 − p−1
. (C6)
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