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In this paper, we determine the volume-fraction reduction of sheared fragile glass-forming liquids. We
consider a group of hypothetical systems that consist of particles with anisotropic size modulations yet have
almost the same average particle configuration as actual systems under shear flow. Our molecular dynamics
(MD) simulations demonstrate that one specific hypothetical system can reproduce the relaxation dynamics of an
actual sheared system, and we identify the shear-flow effect on the particle size with anisotropic size modulation
of this specific system. Then based on the determination of the particle size and the resultant volume fraction, we
rationalize how slight decreases in the volume fraction significantly reduce the viscosity and provide a nonlinear
constitutive equation. Notably, the obtained rheological predictions, including the crossover shear rate from
Newtonian to non-Newtonian behavior, can be expressed only in terms of experimental observables, showing
good agreement with the MD simulation results. Our perspective on the volume fraction under shear flow may
provide insights into the conventional concept of free volume.
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I. INTRODUCTION

Shear thinning is one of the most ubiquitous non-
Newtonian flow behaviors in glassy materials [1-17]. When
an imposed shear rate y is smaller than the crossover value
¥e, the shear viscosity 7 and the structural relaxation time £,
under a given flow are the same as those at equilibrium (y =
0), 7@ and 7., respectively. In contrast, when y > 7, #
and 7, decrease significantly as y increases. This nonlinear
flow response usually causes more complex phenomena, such
as shear banding and fracture, drastically altering the me-
chanical properties. Thus, understanding and controlling the
shear thinning properties are of particular importance in the
design of processing of glassy materials; however, there is still
no general consensus regarding the underlying mechanism of
shear thinning.

Among many attempts (see Refs. [18-36] and the refer-
ences therein) to understand the mechanism of shear thinning,
the free-volume model is intuitively appealing and thus has
been extensively investigated. Nevertheless, the physical sub-
stance of free volume is still unclear, and we do not have
enough quantitative pieces of knowledge to determine how
and to what extent the free volume (volume fraction) increases
(decreases) in an external flow field.

For many fragile glass formers under equilibrium con-
ditions, it is known that the density n and the temperature
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T are not independent parameters, whereas their combined
variable determines physical states, i.e., the so-called (power
law) density scaling [37-44]. The density scaling is naively
interpreted as follows: increasing (decreasing) the tempera-
ture increases (decreases) thermal fluctuations and overlap
between neighboring particles, which results in an effective
decrease (increase) in the particle size and the volume frac-
tion. In the sense of the density scaling, determining the
effective volume fraction by setting the temperature and the
(number or mass) density and then evaluating how the effec-
tive volume fraction changes by varying these parameters are
fundamental. Now we may ask how such a physical picture
for equilibrium liquids is modified for nonequilibrium liquids
under an external flow field. In an applied flow field, the
interaction potential remains unchanged, while the average
structural configuration is anisotropically distorted according
to the flow symmetry. This distortion subsequently modifies
the overlap properties from those at equilibrium which can in-
fluence determining the effective particle size. In other words,
the shear rate y, in addition to the temperature 7 and the
density n, may serve as an extra parameter to control the
effective particle size.

In this paper, we address these issues with the aid of
molecular dynamics (MD) simulations of model fragile glass
formers. Attempts to quantitatively estimate the free volume
or the effective volume fraction by directly analyzing actual
sheared systems have not yet succeeded. Instead, in this pa-
per, we consider a group of hypothetical liquid systems with
different particle sizes but with the same two-body pair cor-
relation function as an actual sheared system. We find one
such hypothetical system that can reproduce the relaxation
dynamics of the actual sheared system. Then we determine
the effective particle size of the actual system by identifying
it with the particle size of the specific hypothetical system.
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https://orcid.org/0000-0001-9364-2667
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.5.023181&domain=pdf&date_stamp=2023-06-23
https://doi.org/10.1103/PhysRevResearch.5.023181
https://creativecommons.org/licenses/by/4.0/

AKIRA FURUKAWA

PHYSICAL REVIEW RESEARCH §, 023181 (2023)

The detailed approach is as follows. (i) During the structural
relaxation period %, the particle configurations, on average,
are preserved. Thus, in a flow field with shear rate y, the
average structure undergoes shear deformation with a strain
of y = y1,. The two-body pair correlation function describes
the extension (compression) of the particle configurations
along the extension (compression) axis by y /2 relative to the
equilibrium state. However, we notice that the two-body pair
correlation function can be interpreted differently. As shown
in Sec. II, the particle configuration under shear flow can be
reproduced by hypothetical anisotropic distortion operations
applied to particles: We can prepare a group of hypothetical
systems that share two-body pair correlation functions that
are almost identical to that of the actual sheared system. (ii)
The hypothetical distortion operation reproducing the steady
structure under shear flow is described by two parameters:
the degree of shear distortion and the particle overlap. There
is arbitrariness in setting these parameters. Nevertheless, as
shown in Sec. III B, a specific distortion operation can even re-
produce the relaxation dynamics of the actual sheared system,
whereby such arbitrariness can be removed. By identify-
ing this specific operation with the actual shear-flow effect
controlling the effective volume fraction, we provide a pre-
scription for quantitatively determining the volume-fraction
reduction in sheared fragile glass-forming liquids. The effec-
tive particle size along the extension axis of an externally
applied flow field is the invariant reference, while in other
directions, it anisotropically decreases. (iii) Furthermore, in
Sec. III C, by incorporating the volume fraction under shear
flow, determined above, into the Doolittle equation of the
structural relaxation time, we give a nonlinear constitutive
equation. This constitutive equation can explain how a slight
decrease (increase) in the volume fraction (free volume)
significantly reduces the viscosity with high predictability.
Although we previously derived similar rheological predic-
tions based on more heuristic arguments in Refs. [32,33], here,
we provide a detailed numerical investigation of the physical
origin of the shear-induced reduction of the volume fraction
or enhancement of the free volume.

II. THEORETICAL BACKGROUND

In this section, we first provide a detailed explanation of
the theoretical background of our study, whose validity is
examined in the following section using MD simulations. A
binary particle system is employed in our MD simulations
to prevent crystallization, whereas in this section, a monodis-
perse system is assumed for the simplicity of the expressions.
The generality of the discussion presented below is not lost
under this assumption.

We assume that the constituent particles interact via the
following inverse power-law (IPL) potential:

¢
U“%ﬂ=e(%>, 1)

where r is the distance between two particles, and ¢ is an
exponent that is sufficiently >1. Hereafter, a system whose
constituent particles interact via U (r) is referred to as an A
system.

A. Effective volume fraction

In typical simulation studies of liquids, the thermal en-
ergy scale is comparable with €. For such a case, when ¢ >
1, neighboring particles are strongly prevented from getting
closer than a distance o to each other. Therefore, in most
literature, o is conventionally set to the (soft) core or the par-
ticle size. In this setting, the particle volume and the volume
fraction are simply given as

v = %na3, 2

and

Nv©®
Vv

@ = =, A3

respectively. Here, N is the total number of particles, V is the
system volume, and the particle number density is denoted as
n(=N/V).

Although the above setting of the volume fraction is sim-
ple, the nature of particle packings intrinsically depends on
the temperature. That is, as stated in the introduction, increas-
ing (decreasing) temperature increases (decreases) thermal
fluctuations, and therefore, even at a fixed n, the overlap be-
tween neighboring particles is enhanced (reduced), resulting
in an effective decrease (increase) in the particle size and the
volume fraction. Such a competing effect between repulsive
interparticle interactions and thermal fluctuations is incorpo-
rated in the effective volume fraction as follows. In the present
system with the IPL potential Eq. (1), the physical state is
characterized by a scaling variable [45—47]:

e\
¢=n0‘<—) ; )

where the temperature 7 is measured in units of the Boltz-
mann constant. A similar scaling variable can be defined in
binary mixtures with the additive IPL potentials [48] and even
in more general fragile systems that can be mapped onto those
of effective IPL systems [49]. In Eq. (4), the factor (¢/ T)3¢
characterizes the degree of the particle overlap, and therefore,
we interpret ¢ as the effective volume fraction at equilibrium.
However, whether the somewhat simplified volume fraction ¢
or the effective volume fraction ¢ is used does not matter in
a practical sense. When n is varied at a fixed T, ¢ and ¢ are
essentially the same. On the contrary, when T is varied at a
fixed n, the physical states are usually characterized not by ¢
but by T'.

Under an applied flow field, the particle structures and
the resultant particle overlaps are anisotropically modulated
according to the given flow symmetry. We would like to
naively ask whether such a flow-induced anisotropy affects
the above scaling. More specifically, we want to know whether
the effective volume fraction is changed by varying the shear
rate y even at fixed n and 7. If so, we may further raise
a question about how ¢ is changed and its impact on the
relaxation dynamics. In the following, we provide a detailed
explanation of our perspective on these issues and the physical
background.
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B. Particle configurations under stationary shear flow

First, let us consider the average particle configurations
under shear flow. In this paper, a simple shear flow with the
following mean velocity profile is assumed:

(v) = 1R, &)

where the x axis is along the direction of the mean flow, the
y axis is along the mean velocity gradient, and X is the unit
vector along the x axis. For a fixed T condition, ¢ and ¢ are
essentially the same at y = 0. Therefore, we hereafter reset
the reference size and the volume fraction at y = 0 to be o
and ¢y = nmwo3 /6, respectively. Then we examine how they
effectively vary as y changes.

Throughout this paper, the average configurations are con-
sidered in terms of the two-body pair correlation function.
Under the shear flow of Eq. (5), according to the flow sym-
metry, the two-body pair correlation function g(r;¢o) is
generally expressed as [50,51]

& o) = gV (r o) + 598 (rig0) + -+, (6)

where ¥ = x/r = siny cos 6 and $ = y/r = sin { sin 0, with
¥ and 60 representing the polar and azimuthal angles, re-
spectively. Here, g% (r; ¢) represents the isotropic part, and
£9¢\(r; ¢) is the leading-order deviation from g (r; ). It
is known that g\"’ (r; @) is responsible for the nonzero average
shear stress Xy, which is given as [50,51]

dU®™
2 f drfczﬁzr g(s

The deviatoric part g"'(r;¢o) is approximately given by
[52-54]

1 1
z:xy = En (r; ¢o). @)

gV (rigo) = —cgyw—gg O(r; o), 8)

where ¢, is a numerical constant of order unity. As shown
in the next section, this approximate form of g\ with an
appropriate value of ¢, reproduces the simulation results well.
Equation (8) can be understood as a consequence of balancing
advection and relaxation in the steady state [52] as follows:

a 1

_1 )
VY-8 = Ta[g - gV ©)

By taking the leading-order term of y, we obtain Eq. (8).
Substituting Eq. (8) into Eq. (6) yields

& d0) = g0 (r; ) % )

>~ 50
where A = ¢,y 1, (A K 1). Equatlon (10) indicates that the
average particle configuration under the shear flow is ap-
proximately given by distorting the reference configuration
89(r; ¢o), i.e., by elongating and compressing by (1 + A/2)
and (1 — A/2) along xy = % and Xy = —%, respectively.

- Mcyr

¢o] 10)

C. Reproduction of the sheared configuration
by distorting an arbitrary reference

Next, we note that Eq. (10) can be expressed differently.
Namely, within the present leading-order approximation in

A-system
b=0

FIG. 1. A schematic showing the reproduction of the sheared
structure by anisotropically distorting reference frames. (a) Isotropic
particle configuration at three different volume fractions. (b) An
almost identical sheared structure is obtained by appropriately dis-
tortmg the reference frame {D; ;, : r — r/[1 + A(Xy — b)]}. For b =
2 D, 1> represents an anisotropic compression, while for b = ;,
D, —1/> represents an anisotropic expansion. When b = 0, D, rep-
resents a pure shear deformation without any volume change.

M(K 1), we can formally rewrite Eq. (10) as

(0)

gs(r: o) = g (1 — 3b}»)¢0:|, an

|:1 + Ay — D)
where we set b € [—%, %]. Note that Eq. (11) includes Eq. (10)
when b = 0. This formal re-expression of g(r; ¢o) indicates
that an identical sheared particle configuration can be obtained
by applying a hypothetical distortion:
r
r—- — 12)
1+ A@EY—D)

to an isotropic reference configuration described by
gOrr; (1 — 3Ab)¢o] [different from g (r;¢p)]. A more
detailed explanation of this re-expression is presented in
Appendix A.

By denoting the operation of Eq. (12) as D, ;,, we may
express the present hypothetical operation as

gOr; (1 — 3ab)go]

Ol (1= 3bi)go [ (13)
1+A@RY—D)

These situations are schematically illustrated in Fig. 1. Note

that, as observers, we generally consider the operation D;_g to

correspond to the actual occurring distortion.

D. Reproduction of the sheared configuration
by distorting constituent particles

In Eq. (11), we consider the system to be anisotropically
distorted, while the constituent particles remain undistorted.
However, we may interpret Eq. (11) differently: particles are
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anisotropically distorted, while the system remains undis-
torted. That is, with o being the reference size, the particle
size is anisotropically modulated as

o — o[l +A@EP — b)), (14)

which is assumed to be set by the following interaction poten-
tial:

1+ 1@ —b)1)°
U®(r) ZG{M} ) (15)
r
The particle volume and the volume fraction are given as
% dody sinbo3[1 + 1G9 — b)1P = v @1 — 34b),
(16)
and
Nov©

C(1 = 3b1) = ¢o(1 — 3b2), (17)

respectively. Hereafter, a system where constituent particles
interact via U®)(r) is referred to as a B system. By denoting
the operation of Eq. (14) as @,\,b, we may express the present
hypothetical operation, Eq. (14), as

400 go) ?”[—r :

T+ A5 =) 1 - 3bA)¢o]. (18)

The situations for three different values of b are schematically
displayed in Fig. 2. In the next section, we demonstrate that
the two-body pair correlation function of the B system ob-
tained by MD simulations for various values of b and A nearly
exactly reproduces the stationary sheared structure.
Assuming that the virial theorem holds in the present B
system, the compressibility factor p/nT is expressed as

Ly in(l —3kb)/d§2dr
nT

x UM (1 =30 )dol.  (19)

A more detailed derivation is presented in Appendix B. In
Eq. (19), p formally represents the equilibrium pressure of the
A system at a volume fraction of (1 — 31b)¢y and a number
density of n. The pressure is smaller for larger b at a fixed
number density n. Furthermore, the pressure component along
arbitrary directions does not depend on the direction and, thus,
is isotropic. This resultant isotropy reflects the absence of
distortion of the system itself. Based on the view presented
in this subsection, Eq. (11) implies that the configurations
of differently modulated particles [by Eq. (14)] share almost
identical two-body correlation functions [55].

E. Tuning the overlap by tuning the potential

In the B system, the equation of motion of the dynamics of
the ith particle may be simply given by

d? 0

L. UPR), 20
"ar oR; Rij) 20)

B-system

8, g (1+32) Bo(1-52)

FIG. 2. A schematic showing the reproduction of the sheared
particle configuration by anisotropically distorting constituent par-
ticles. (a) Anisotropically distorted constituent particles {ﬁ)‘ piO —>
o[l + A(xy b)]} (b) Particle configurations obtained by DA b
When b = DA 1,2 anisotropically reduces the particle size, while
when b = z’ Di_1 /2 anisotropically enhances the particle size.
When b =0, ﬁm represents particle distortion without changing
the particle volume. Changing the particle size, which is controlled
by changing b, varies the fluctuation and pressure effects. These
competing fluctuation and pressure effects balance at a fixed number
density n, resulting in an identical two-body pair correlation function
even for different values of b.

where R; is the position of the ith particle and R;; = R; — R;.
Equation (20) is formally rewritten as

d2

_ @)
m o sR; = ZU (Rij) +F;, @1
b
where R;; = |R; — Rj| and
Fi=—— Z[U(B)(R ) —UD(R))]. 22

b

Equations (20) and (21) correspond to the views described
in Secs. IID and IIC, respectively. That is, regarding the
equation of motion, the difference in these views corresponds
to the difference in whether F; is regarded as the instrinsic
or extrinsic force. Note that neither Eq. (20) nor Eq. (21)
describes the actual particle dynamics under shear flow. Still,
these dynamics may reproduce the stationary structural con-
figurations of the sheared system, as shown in the next section.

In Secs. I B-IID, we discussed that the average shear-
flow effects on the particle configurations can be reproduced
by applying hypothetical distortions to the system or the
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particles even without shear flow. However, in reproducing
the steady structure, g,(r; ¢g) = gﬂo){r/[l + AR —b)); (1 —
3bA)¢p}, there is an arbitrariness in choosing b. In the next
section, we use MD simulations to demonstrate that only a
specific operation with b = % can appropriately reproduce the
actual relaxation dynamics, removing such arbitrariness.

III. NUMERICAL RESULTS

In this section, following the arguments presented in the
previous section, we perform MD simulations to demonstrate
that the structure and the dynamics of the sheared system can
be mapped onto a system in which the constituent particles
interact via the anisotropically modulated potential U® with
a specific value of b(= %).

A. Simulations of the sheared A system with isotropic potentials

In our simulations, we employ a binary mixture of large
(L) and small (S) particles interacting via the (soft core) IPL
potentials given by [48,56,57]

where u, v =1L, S, and r is the distance between two parti-
cles. Here, 0,, = (0, + 0,)/2, where o, is conveniently set
to the size of the p species particle in the reference state; that
is, like the setting of the particle size in the monodisperse case
(Sec. IT A), we also set the reference particle size when y = 0
to be o, (u =L, S). Under this setting, the reference particle
volume and the volume fraction are given as

v = two,, (24)

(A)
udr)

and
NLU(O) + Ng Uéo)
% )
respectively. The mass and size ratios are mp/mg = 2 and
opL/os = 1.2, respectively. The units for length and time are o
and (msog /€)!/?, respectively. The total number of particles is
N = Ny + Ns = 8000 and N /Ns = 1. The temperature T is
measured in units of € /kg. The fixed particle number density
and the linear dimension of the system are N/V = 0.8/05
and L = 21.54, respectively. In this simulation, under simple
shear flow, Eq. (5), the equations of motion are solved using
Lee-Edwards periodic boundary conditions with a Gaussian
thermostat [58].

In Fig. 3, we show the y — 7 curves for the present model,
which exhibit shear-thinning behavior. Crossovers from New-
tonian to non-Newtonian flow behavior at )'/r(eq) > 1, with
7 being the equilibrium relaxation time, are observed in
many soft matter systems: 7® > 1 indicates the dominance
of advective effects over equilibrium structural relaxation
mechanisms (the so-called constitutive instability) in flows.
Therefore, similar crossovers might be expected to occur
in glass-forming liquids. However, as shown in Fig. 3, by
focusing on the average degree of the shear distortion at
the crossover, we find that shear thinning starts when y is
several orders of magnitude smaller than 1/7.°Y, which in-
dicates quite a small average structural distortion (A < 1072).
This is also the case in most experiments [12—14] and sim-

¢o = (25)
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FIG. 3. The main panel shows the steady-state shear viscosity
7 as a function of the shear rate y for several temperatures. The
crossover shear rate from Newtonian to non-Newtonian behavior y,
is determined by the fit ¥ /(1 + y/..), which is indicated by the
dashed lines. For y /y. > 1, ) ~ y 7. The shear-thinning exponent
pis <1 (at T =0.267, p=0.8) and seems to show a slight T
dependence. The arrows represent 1/7?, indicating y.ta®¥ « 1.
In the inset, we plot 1/t{*%, y., and the theoretically predicted
crossover shear rate ¢o[dt°V/d¢o]~! [Eq. (43) derived below in
Sec. III C] against 1/7. We find that y. quantitatively corresponds
with ¢o[37P /0] "

ulations [6-8,10,11,31-34,36] of supercooled liquids, where
the onset of shear thinning occurs at approximately yr( D~
1072 ~ 1073, This large time-scale separation may exclude
the possibility of the usual constitutive instability [11,31—
33] and therefore is an important characteristic of rheologi-
cal features observed near the crossover from Newtonian to
non-Newtonian flow behaviors. In the standard simulation of
supercooled liquids, the Lindemann length is typically ~0.1
times the particle size; therefore, the amplitude of strain fluc-
tuations at the particle scale is much larger than the average
shear distortion y T,,. In such a situation, the shear-flow effects
should be much weaker than the thermal fluctuation effects
and are regarded as a small perturbation to the structures.
However, as shown in Sec. IIIC, they should have a strong
impact on the dynamics.

Like Eq. (6) for the monodisperse case, under the shear
flow of Eq. (5), the pair correlation functions g; ., (r; ¢o) are
expressed as [51]

ouv(T30) = &0, (r; o) + 298, (r o) + -+, (26)
where ggow(r'qﬁo) represents the isotropic part and

29\, (r: o) is the leading-order deviation from g(qol)w(r; o).

Like Eqgs. (8) and (10) presented in Sec. II B, the deviatoric
part g{!) (r) is approximately given as [52-54]

g, (r;0) =

and we obtain

—CoYtar gﬁ“,lv(r ®o), 27

.0
v (T3 h0) = g0 (r3ho) — Axyra—gs ) (o)

© 28
gs/tv[1+)\AAv¢0:| (28)
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FIG. 4. (a) gﬂ%L(r;d)O) and (b) ggiL(r) for various shear rates
at T = 0.285 (left) and 0.267 (right). To leading order in y, the
pair correlation function g, 11.(r;¢p) is expressed as g;1.(r; Po) =
gﬁ?ﬂL(r; do) + ﬁyggﬂL(r; o). In (a), gﬁ?ﬂL(r; @) collapses onto a sin-
gle curve. As shown in (b), for particle pairs in the first shell, ggiL(r)
is well approximated by g\, (r) = —Ar(a/ar)g(s(_)i]_(r; ¢o), where
A=cyt (K1), and we set ¢, =0.65 and 0.45 for T =0.285
and 0.267, respectively. Almost the same results are obtained for
gs.ss(r; o) and g, sL(xr; @) as those for g, 11(r; ¢po) using the same
value of c,.

Here, ¢, is a numerical constant of order unity, and A =
¢ T (A < 1). As shown in Fig. 4(b), for the present model
system, this approximate form of g{') |, with ¢, being a con-
stant of order unity [59], nearly reproduces the simulation
results.

Within the present leading-order approximation in A (< 1),
Eq. (28) can also be expressed as

(0)

s (T3 00) = 8 4, (I- 3b/\)¢o} (29)

[1+A()25)—b);

where b € —%, %]. Equation (29) includes Eq. (28) when b =
0. The meaning of this formal re-expression has already been

discussed for the monodisperse case in Sec. II.

B. Simulations of the unsheared B system
with anisotropic potentials

As discussed in Secs. II C and II D, there are two ways to
interpret Eq. (29). One is that the system is anisotropically dis-
torted, while the particles remain undistorted. This operation
is denoted as D, ; : r — r/[1 + A(X) — b)] The other is that
the particles are anisotropically distorted, while the system re-
mains undistorted, denoted as ﬁ,\,b 10— o[l +AEy — D))

The distorted and undistorted terms are simply interchanged
by taking relative views of D, ;, and @M,.

In this subsection, we show that the structure and the re-
laxation dynamics of the system obtained by the hypothetical
operation f)x, 1,2 can reproduce those of the actual sheared sys-
tem. For this purpose, let us consider the following interaction
potentials for binary mixtures:

oull + A9 — b))
r,j ’

U, = e{ (30)
with the effective particle size of the p species being
anisotropically modulated as

o, — o[l +AEY — D). 31

Here, A and b are the parameters controlling the degree of
distortion and the size of the particles, respectively, as in the
monodisperse case discussed in Sec. II D. The particle volume
and the volume fraction are given as

/d@dw sinfo,[1+ (%9 — b = v (1 —32b),  (32)

and

N 0) N. (0)
M TS 1 3pa) = go(1 —364),  (33)

respectively. The other settings are the same as those of the
A system presented in Sec. III A. We simulate the present
model, where constituent particles interact via U5 (r;;) with-
out shear flow, using velocity Verlet algorithms in the NVE
ensemble [58].

Before proceeding, we note the following. Since the off-
diagonal components of the stress tensor are not symmetric
due to the asymmetric form of U®), the net torque is not ex-
actly zero. However, the particle configurations are distorted
so that the resultant local torques are sufficiently suppressed.
Therefore, there are no strange rotational motions in the B
system. Furthermore, in both the sheared A and unsheared B
systems, if A is sufficiently small, the dynamics are almost
isotropic. For the sheared A system, the deviatoric particle
motions, in which the contribution from convective transport
by the average shear flow is subtracted, show minimal marked
anisotropy at the two-body correlator level [60]. However,
although some anisotropies emerge from longer-time behav-
iors and are captured in the dynamic heterogeneity or shear
bandings [11], their roles in the rheological properties remain
poorly understood.

1. Structures
Hereafter, we denote the two-body correlation function of
the B system explicitly as g,,,[r; (1 — 3bA)¢o]. Considering
the symmetry of USE)(r), 2,.,[r; (1 — 3bA)¢] is expressed as

Zuo[rs (1 — b))l = 200 [r: (1 — bA)gol

+ A9 (1= bA)gol + -+ . (34)

In Fig. 5, we plot grp[r; (1 —bA)¢g] for various values
of b and A. We find g5 [r; (1 —ba)gol = gV (r; do)
and  g0r (1 — bA)gol = —Ar(3/8r)g 5 (r; ¢o),

g(lfg)(r; ¢o) is the pair correlation function of the A system at

where
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FIG. 5. (a) g%[r; (1 —bA)go] and (b) & [r; (1 — br)do] for
several values of b at T =0.285 (left) and 0.267 (right). To
leading order in A, the pair correlation function is expressed as
2l (1= ba)gol = 27 [rs (1 — bh)gol + £98 [r; (1 — bA)go]. In
(a), ~(())[r (1 — bA)¢y] collapses onto a single curve and corresponds
to gLL%(r ¢o), which is the equilibrium pair correlation function
of the A system. As shown in (b), g(L]L)[r (1 —br)go] is well ap-
proximated by i} [r; (1 — bA)go] = —Ar(d/r)g P (r: ¢o). Almost
the same results are obtained for gss[r; (1 — bA )¢0] and g [r; (1 —
bA)ol.

equilibrium (y = 0). Note that almost the same results are
obtained for gss and gsr. as those obtained for gy .

As discussed for the monodisperse case in Sec. II, Fig. 5
shows that the particle configurations of the B system for
different b(e [—%, %]) have almost identical two-body corre-
lators that are approximately described as

Zuolrs (1 = bA)go] = g8 (r: o) —xyxr—g<°q>(r )
~ (eq)
= gl [IHM,%] (35)

For the sheared A system, if A = c,pt, < 1, g(s%v(r; o) =
ggfﬂ)(r; ¢0). Therefore, from Egs. (28) and (35), we deduce

Zuolrs (1 — bA)o] = g5, (15 ¢00), (36)

from which we may conclude that the unsheared B system can
approximately reproduce the average particle configurations
of the sheared A system.

6

L0 g
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= 10 0,267 E
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FIG. 6. (a) The structural relaxation time of the B system
T,(A;b, ¢o, T) is plotted against A for several values of b. Even
in systems with identical correlation functions as shown in Fig. 5,
a slight difference in the volume fraction results in a notable dif-
ference in 7, (A;b, o, T). When b= —3, T,(A; b, ¢, T') increases
with an increase in A due to the increase in the volume fraction
as ¢o(1 4+ 31/2). In contrast, for b = % and %, the opposite result
occurs. When b = 0, the relaxation time remains unchanged, sug-
gesting that a small anisotropy (A < 1072) without changing the
volume fraction does not affect structural relaxation. The relaxation
time of the sheared A system ,(y;¢o, T) is also plotted against
A(= ¢,y 1,). We find that 7, (y; ¢, T) and T, (A; b = % @0, T) nearly
coincide with each other. Furthermore, we find that the Doolittle
equation, Eq. (38), t2(¢. T) = 1 exp[T'$,/ (¢ — ¢,)] with ¢, =
¢o(1 — 31/2), quantitatively agrees with %, (y;¢o, T') and T, (A; b =
1. ¢0. T) at the same A(S 107%). Here, ¢, 70, and I' generally
depend on T. These agreements indicate that (i) shear thinning can be
attributed to the shear-flow-induced reduction of the volume fraction,
and (ii) the relaxation dynamics can be mapped onto the equilibrium
dynamics with the corresponding reduced volume fraction. (b) The
agreement among t2(¢,, T), To(y:¢0. T), and T,(A:b = 3, ¢, T)
for several temperatures in supercooled states.

2. Dynamics

In Fig. 6, the structural relaxation time of the B sys-
tem, which hereafter is denoted as 7, (A;b, ¢, T'), is plotted
against A for several values of b. In this paper, the struc-
tural relaxation time is defined as the relaxation time of the
shear-stress autocorrelation function. For more details, please
refer to Appendix C. At the same A, despite almost the same
particle configurations for different b (shown in Fig. 5), the
behaviors of the structural relaxation times are quite differ-
ent. When b < 0, T,(A; b, ¢9, T) increases with an increase
in A, reflecting the increase of the volume fraction (and the
resultant pressure). However, when b > 0, the opposite result
occurs. Remarkably, when b = 0, the relaxation time remains
unchanged, which suggests that a small anisotropy (A < 1)
without any volume changes does not affect the structural
relaxation. In Fig. 6, we also show the relaxation time of
the sheared A system 7,(y; ¢o, T) against the degree of the
average shear distortion A = ¢,y 7,. We find that 7, (y; ¢o, T)
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(2) (b)
E(0)

NE]

ENE]

FIG. 7. (a) A schematic of the shift of the potential energy
reference. For the sheared nonequilibrium system, the average inter-
particle potential energy E(0) that a particle experiences is minimal
(Eo) along the extension axis (6 = 7 /4). Here, E.q is the average
value at equilibrium. In the nonequilibrium sheared system, our
simulations indicate that E(0) — E is due to extra overlaps due to the
shear flow. (b) A schematic of the anisotropically modulated effective
particle size. The dashed line represents the size at equilibrium.

and 7,(A;b = % ¢o, T') nearly coincide with each other at
various temperatures.

The observed good agreement between T, (y; ¢o, T) and
T,(A;b = %, ¢o, T') suggests that such a shear-flow effect can
be identified with the effect of the anisotropic modulation of
the particle sizes (in terms of ZA)“,) forb = % Under @A,b» as
schematically shown in Fig. 2, when b = %, the particles are
anisotropically modulated as

0, — 0M|:1 + A(ﬁf} - %)} (37)

for which the size along £y = % remains unchanged.

We may further interpret Eq. (37) as follows. For the
sheared system with varying y(# 0) at a fixed 7T, the in-
terparticle potential energy becomes anisotropic: along the
extension axis (X9 = % in the present case) of the external
flow field, dilution occurs, while along the compression axis
Xy = —%), densification occurs. Along the direction of Xy =
0, the particle configurations are not changed from those at
equilibrium, whereby as observers, we conventionally set this
direction as the reference and consider the volume fraction to
be unchanged with varying y . However, our simulation results
suggest that this conventional setting is not true for particles.
Under the external flow field, Eq. (5), as schematically shown
in Fig. 7, the average interparticle potential becomes minimal
along the extension axis. Then setting this direction to be the
reference, in other directions, the potential energy is lifted
up due to the shear flow, making extra particle overlaps in
addition to overlaps due to thermal fluctuations. By subtract-
ing the extra overlap regions, Eq. (37) with b = % describes
the effective particle size of the actual sheared system, and
the effective volume fraction is given by ¢o(1 —31/2) at a
fixed T. Here, A = ¢,y 1, is determined by the distortion of
the two-body pair correlation function.

This shift of the potential energy reference under the shear
flow does not alter the observables, such as the average energy,
pressure, and shear stress. Although our simulations certainly
support the present speculation regarding the reduction of the

() (b)
10° f=+= teTd) S @)
TR (D) f S

¢,

0.54 0.56 0.58 )

¢, )

¢,

FIG. 8. (a) The structural relaxation time of the equilibrium A
system (¢, T') for several T, which can be fitted to the Doolittle
equation (in terms of ¢o) t2(¢o, T) = 7 explI'do/ (¢ — o)), rep-
resented as the dashed curves. (b) A schematic for the acceleration
of structural relaxation caused by the shear-induced reduction of
the volume fraction. As discussed in the main text, due to a small
anisotropy at the two-body correlator level, we expect that the dy-
namics of the sheared system can be mapped onto the equilibrium
dynamics by incorporating the shear-flow effect only by reducing the
volume fraction: ¢y — ¢, = (1 — 3¢,y 1, /2)Po. Close to the glass
transition temperature, the volume-fraction dependence of t, be-
comes much steeper; thus, even a very small decrease in the volume
fraction significantly accelerates the relaxation dynamics.

volume fraction induced by the shear flow, detailed investiga-
tions based on first principles are required to provide further
evidence.

3. Doolittle equation: Mapping onto the equilibrium system
with the reduced volume fraction

Note again that, for A < 1, anisotropy is hardly noticeable
in the dynamics at the two-body correlator level [60]. We ex-
pect that the shear-flow effect is incorporated only through the
reduction of the volume fraction and, thus, that the dynamics
of the sheared system can be mapped onto the dynamics of the
equilibrium system.

In Fig. 6, we also plot the Doolittle equation [61,62]:

T, (0. T) =1, (¢: T) = 75 exp (%) (38)

with the reduced volume fraction:

3 3
s = ¢0(1 - ?\) = ¢0<1 - Ecg)./%a>' (39)

Here, the parameters of I', ¢., and 1:(? generally depend on
the temperature and are separately determined at equilibrium
using MD simulations. As shown in Fig. 8(a), the Doolittle
equation approximates the volume-fraction dependence of the
structural relaxation time at equilibrium well. In Fig. 6, we
find that t2(¢s; T') with Eq. (39) quantitatively reproduces the
effect of T,(y;¢o, T) and T,(A;b = % ¢o, T') with the same
A, further supporting our perspective.

Because of a very steep volume-fraction dependence of
the relaxation time, as described in Eq. (38) for supercooled
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states, even an infinitesimal reduction of the volume fraction
causes significant acceleration of the dynamics.

C. Nonlinear constitutive equations

As discussed in Sec. II B, based on the results shown in
Fig. 6, we suppose that the relaxation time under shear flow
1, is mapped onto the equilibrium 7,, as

ta(Vi¢0, T) = TV(5 00, T)

3
(D [aso(l — Ecgm), T}, (40)

where ¢y = n[vio) + véo)] /2 from Eq. (25), and the shear-flow
effect is considered through the reduced volume fraction ¢;.
This equation is essentially nonlinear in %,. If we know the
functional form of 7. (for example, the Doolittle equation),
we can solve Eq. (40) in terms of %,. Equation (40) can be
regarded as the nonlinear constitutive equation and describes
the rheological curves of the present model well. Since the
volume-fraction dependence of the shear modulus G is much
weaker than that of t,, the viscosity may be taken to be

A(7sdo, T) = Gty = Glgo, T)T Vs, T)  (41)

for (¢po — ¢5)/¢po < 1. Note that the T dependence of G is
also much weaker than that of 7.9 .

For y%, « 1, by expanding Eq. (40) in y 7,, we obtain

(o, T)
ar(eq) ’

o

9o

where a = 3¢,/2 (=1 in the present system). Therefore, the
crossover shear rate from Newtonian to non-Newtonian be-
havior y, is given by

9 O(ZGQ) -1
Yo = [¢o ; . } . (43)

ta(yio, T) = (42)

1+ ay¢o

This crossover shear rate can be much smaller than 1/7.¢

[7. 7 « 1] near the glass transition point, indicating that
the usual constitutive instability does not trigger the onset of
the shear thinning. The reference volume fraction ¢, and the
number density n are linearly related to each other (¢y  n),

and therefore, Eq. (43) is rewritten as

-1
) arew
Y. = |:n . (44)

on

Equation (43) is expressed only in terms of experimental
observables and should thus be useful in the process design
of glassy materials.

Similar predictions for rheological behaviors were ob-
tained in Ref. [32] by more heuristic arguments; here, we
rationalize the possible mechanism of the shear-induced re-
duction of the volume fraction. The constitutive equation,
Eq. (40) can be quantitatively approximated by the Doolit-
tle equation, Eq. (38), with the reduced volume fraction ¢;
in Eq. (39) or equivalently with the enhanced free volume
X (¢ — ¢5). Although our perspective on the enhancement
of the free volume under shear flow is not the same as the

conventional perspective [18], we expect that this paper will
provide insights into the physical substance of the free vol-
ume.

IV. CONCLUDING REMARKS

In this paper, we have discussed how the particle size
and volume fraction of fragile liquids under shear flow are
determined. Based on this determination, we derive a non-
linear rheological constitutive equation, which quantitatively
describes the shear thinning behavior of fragile supercooled
liquids.

In a shear flow with a shear rate y, the particle structures
relax with a time scale of %, resulting in an average distor-
tion on the order of y%,. The extent to which neighboring
particles can overlap is involved in determining the volume
fraction; such particle overlap should be controlled by the
degree of shear distortion (cxy %) in addition to the strength
of thermal fluctuations (7). Under the simple shear flow of
Eq. (5), dilution and densification occur along the extension
and compression axes, respectively, with the same magnitude,
resulting in the absence of a system volume change. In this
situation, the overall number density n, which is uniquely
determined, is invariant. However, unlike the number density,
the volume fraction ¢ decreases as y increases. In a system
where constituent particles interact via simple short-range
repulsive potentials, the average interparticle interactions be-
come minimal along the extension axis (Xy = %). By setting
the reference direction measuring the potential energy to this
extension axis, the potential energy can be considered to be
lifted up in other directions. By identifying this lift effect
with the shear-flow effect inducing extra particle overlaps
(in addition to the overlaps due to thermal fluctuations), we
obtain Eq. (37). Note that, if the reference direction is set to
Xy = 0, which we as observers usually consider, the particle
volume does not vary with the degrees of the shear distortion
A. However, this may not be true for particles. Please also refer
to the discussion presented at the end of Sec. II B 3.

Because significant anisotropy is hardly observed in the
dynamics at the two-body correlator level [60], we may con-
sider the shear-flow effect to be incorporated primarily by a
slight reduction of the volume fraction. Therefore, assuming
that the sheared dynamics can be mapped onto the equilibrium
dynamics, we obtained the nonlinear constitutive equation,
i.e., Eq. (40). As clearly shown in Fig. 6, this constitutive
equation quantitatively describes the shear-induced accelera-
tion in the relaxation dynamics of fragile supercooled liquids.

Finally, we note the following:

(1) Our preliminary simulations for another standard fragile
model liquid, the Kob-Andersen model [63], also reproduce
almost the same results as those obtained in this paper. Al-
though the model employed in this paper assumes pairwise
IPL potentials, the interactions of other systems are generally
more complicated. However, it has been established that the
dynamics of a wide class of fragile glass formers can be
reproduced by the corresponding IPL systems [44,49], for
which the effective particle size and volume fraction are sim-
ply defined.

(i) In Refs. [29,30], shear thinning in glassy liquids
was discussed in the context of the shear-induced density
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inhomogeneity, inspired by the shear-induced phase separa-
tion established in polymeric systems [64—66]. The critical
shear rate for the onset of the inhomogeneous flow is
given as Y, = [8n(eq)/8p];l, where p is the pressure and
is identified with the shear rate describing the crossover
from Newtonian to non-Newtonian behavior. This predic-
tion seems to agree with the experimental results for the
supercooled melts of Zr-based bulk metallic glass form-
ers [14]. However, as was pointed out in Ref. [14], the
flow is still homogeneous when y ~ y.;, and inhomogeneous
flow occurs when y >> y., which contradicts the results
of Refs. [29,30]. Note that [37©P/dply = G[01Y /aplr =
GOn/Ip)ats? Jan] = GKrn[a1? /an] [32]. Here, Ky is
the isothermal compressibility and GK7y = 0.3, which was
estimated from experimental results [14,67]. Therefore, .
and y,, are comparable with each other since y. = 0.3y, and
the agreement between the predicted ., and the experimental
results may instead indicate the validity of the present mech-
anism of the shear-induced reduction of the volume fraction,
which is not related to the density inhomogeneity. We will dis-
cuss which mechanism is selected under actual experimental
situations in more detail elsewhere.

(iii) In this paper, the considered systems are in (su-
percooled) liquid states, where thermal fluctuations exert
important effects. However, thermal effects are irrelevant in
amorphous solid states. In amorphous states, close links be-
tween the shear distortion of microscopic configurations and
nonlinear rheological properties have been intensively studied
in Refs. [68,69]. At this stage, it is unclear how our approach
for liquid states can be related to amorphous rheology.

(iv) In a hard-core system, particle overlaps never occur.
However, in this case, what becomes anisotropic is the colli-
sion frequency: namely, the collision frequency is enhanced
along the compression axis, while it is reduced along the
extension axis. If we set the extension axis as the refer-
ence direction for measuring the collision frequencies, such
anisotropies in collisions may be analogous to anisotropic
particle overlaps in a soft-core system.

We will examine points (i)—(iv) in future work.
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APPENDIX A: DERIVATION OF Eq. (11)

We formally rewrite Eq. (10) as
g:(ri o) = 8" (r: o) — Axyr—gs (i o)
9 0)
=(1- )»brg— & (s o)
—A(xy — b)r

g§°>(r o), (A1)

where we set b € [—5, 5]. We can set b to an arbitrary value,
but here, we make its range correspond to that of Xy [see also

the sentences below Eq. (A2)]. We further rewrite Eq. (A1) by
using the following procedure. (i) The first term of Eq. (A1)
can be approximated as

9
1— b O (s o) = ¢@
( rar>gs (r; o) = g 1+/\b 390 ),

= ¢V (1 = 30b)dol.  (A2)
where, in the first line, according to Eq. (10),
¢O[r/(1 + Ab); 9]  corresponds  to g (r;dp) along

the direction of Xy =25b (—% < ik < %). Then noting
that the average structure viewed in the scaled frame
r — r/(1 + b)) is nearly identical to that at the volume
fraction (1 + Ab)3¢ = (1 — 3Ab)¢ in the original frame,
we obtain the second line of Eq. (A2). (ii) To leading order
in A, in the third line of Eq. (A1), g%(r; ¢) can be replaced
by g9[r; (1 — 3Ab)¢]. With these two conditions (i) and (ii),
an approximate expression of g,(r; ¢o) that is different from
Eq. (10) is

0
gs(r; o) = [1 — A9 — b)r;]gﬁp)[r; (1 — 3xb)¢o]

0)

= g (A3)

r

APPENDIX B: PRESSURE OF THE B SYSTEM

Here, we derive Eq. (19). From the virial theorem, the
pressure p of the B system is expressed as

p—nT = ——ZZ< aRUU“’”>

J#i

_LN B(R..
= 6VZ§<U R;))

= S wOR,), B1)
i

where nT represents the ideal gas term, R; is the position
of the ith particle, and R;; = R; — R;. In the present ap-
proximation, Eq. (9), for a particle located at the origin, the
number of particles in an infinitesimal volume element dr
centered at the position r is dr[n/(1 + A%9)*] x g,(r; ¢g) =
drn(l — 31x9)g,(r; ¢g). Therefore,

> (UPR;))
i
o5 _ e
~ /dre{w} (1 — 3A59)g,(r; o)

r

oo IS
Z/dre{—a[l A b)]} n(l — 329)
r

xg? (11— 3bx)¢o} (B2)

[1+x(fcy—b)
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where Eqgs. (11) and (15) have been used. Then by replacing
r/[1 + A(&9 — b)] by r’, we obtain

D WP R;)) = n(1 —31b) / asddr’
J#i
xUD (g [r'; (1 — 3b2)dol, (B3)

where dQY' = r?sinfdOdy is the areal element. From
Egs. (B1) and (B3),

L= —n(l—SAb)/der
nT
xUM(r"gP1r's (1 — 3bi)go]
_ ﬁﬂm ,\b)aP/ds

1
( )gg‘”{ g[(l—bx)af}. (B4)

In the last line, ' is replaced by os. Equation (B4) cor-
responds to the equilibrium pressure of the A system with
the reduced particle size (1 — Ab)o at a volume fraction of
(1 — 31b)¢ and a number density of n.

APPENDIX C: MICROSCOPIC EXPRESSION OF THE
STRESS TENSOR

In typical simulation studies, the o-relaxation time is iden-
tified as the relaxation time of the self-part of the intermediate
scattering function. Instead, in this paper, the «-relaxation
time is defined as the relaxation time of the shear-stress au-
tocorrelation function.

1. 7,: A system at equilibrium

For the A system at equilibrium, the 8 component of the
shear stress (o # B), 0up, is given as [50]

(CDH

The shear-stress autocorrelation function is H(t) =
(0up(t)0oup(0)) /LT, where L is the system size. The
a-relaxation time 7o is determined by fitting the long-term
behavior of H(¢) to the Kohlrausch-Williams-Watts (KWW)
form Gyexp[—(t/7,)*], where Gy is the plateau modulus,
and x is the exponent of nonexponential decay.

2. 7,: Sheared A system

In the steady state of the A system under the shear flow,
Eq. (5), there arises a nonzero average shear stress (oy,) =
(oyy). The deviatoric part of the shear stress is

<ny>(8ax6ﬂ)* + (Sayaﬂx)»

where §4p is the Kronecker delta. Analogous to the determi-
nation of the equilibrium t,, 7, is determined by fitting the
long-term behavior of the shear-stress autocorrelation func-
tion to the KWW form.

(So’aﬂ = Uozﬁ — (CZ)

3. 7,: B system at equilibrium

For the B system at equilibrium (without shear flow),
the o8 component of the shear stress (a0 # B), 0ug, is also
given as

_ Uu®
Oup = ZZ O”laR,SU . (C3)
i j#i
Similarly, fitting the long-term behavior of the shear-stress
autocorrelation function to the KWW form determines %,.
In this case, since the external flow is absent, (o48) = 0.
The relaxation time 7, is determined by the autocorrelation
function of o4p(?), and its value is almost the same for any
off-diagonal component. As noted in the main text, in the
B system, because the off-diagonal components of the stress
tensor are not symmetric, the net torque is not exactly O.
However, the particle configurations are distorted (not due
to the external field) so that the resultant local torques are
sufficiently suppressed.
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