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Agent-based models of opinion dynamics allow one to examine the spread of opinions between entities
and to study phenomena such as consensus, polarization, and fragmentation. By studying models of opinion
dynamics on social networks, one can explore the effects of network structure on these phenomena. In social
networks, some individuals share their ideas and opinions more frequently than others. These disparities can arise
from heterogeneous sociabilities, heterogeneous activity levels, different prevalences to share opinions when
engaging in a social-media platform, or something else. To examine the impact of such heterogeneities on opinion
dynamics, we generalize the Deffuant-Weisbuch (DW) bounded-confidence model (BCM) of opinion dynamics
by incorporating node weights. The node weights allow us to model agents with different probabilities of
interacting. Using numerical simulations, we systematically investigate (using a variety of network structures and
node-weight distributions) the effects of node weights, which we assign uniformly at random to the nodes. We
demonstrate that introducing heterogeneous node weights results in longer convergence times and more opinion
fragmentation than in a baseline DW model. The node weights in our BCM allow one to consider a variety of
sociological scenarios in which agents have heterogeneous probabilities of interacting with other agents.
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I. INTRODUCTION

Humans are connected in numerous ways, and our many
types of interactions with each other influence what we be-
lieve and how we act. To model how opinions spread between
people or other agents, researchers across many disciplines
have developed a variety of models of opinion dynamics
[1–7]. However, in part because of the difficulty of gathering
empirical data on opinions, much of the research on opinion
dynamics has focused on theory and model development,
with little empirical validation [1,6–8]. Some researchers
have examined how human opinions change in controlled
experimental settings with questionnaires [9–11], and others
have examined empirical opinion dynamics using data from
social-media platforms [12–14]. One of the many difficulties
in empirically validating models of opinion dynamics is the
potential sensitivity of model outcomes to measurement errors
of real-life opinion values [15]. See Mäs [16] for a discussion
of some of the challenges of validating models in the social
sciences. Even with the difficulty of validating models of
opinion dynamics, it is valuable to formulate and study such
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models. Developing mechanistic models forces researchers to
clearly define assumptions, variables, and the relationships
between variables; such models provide frameworks to ex-
plore and generate testable hypotheses about complex social
phenomena [8,17].

In an agent-based model (ABM) of opinion dynamics, each
agent is endowed with an opinion and an underlying network
structure governs which agents can interact with each other.
We assume that all interactions are dyadic (i.e., between ex-
actly two agents), and we suppose that agent opinions take
continuous values in a closed interval on the real line [18].
This interval represents a continuous spectrum of views about
something, such as an ideology or the strength of support
for a political candidate. At each time step of an ABM of
opinion dynamics, one selects which agents interact and then
an update rule determines if and how their opinions change.
Bounded-confidence models (BCMs) are a popular type of
ABM with continuous-valued opinions [4]. In a BCM, inter-
acting agents influence each other only when their opinions
are sufficiently similar. This mechanism is reminiscent of the
psychological idea of selective exposure, which asserts that
people tend to seek information or conversations that support
their existing views and avoid those that challenge their views
[19]. Under this assumption, an agent’s views are influenced
directly only by agents with sufficiently similar views. For
example, social-media platforms can have polarizing posts,
but individuals can choose whether or not to engage with
such content. They are not persuaded by everything in their
social-media feeds.
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The two most popular BCMs are the Hegselmann-Krause
(HK) model [20] and the Deffuant-Weisbuch (DW) model
[21]. At each discrete time, the HK model has synchronous
updates of agent opinions. By contrast, the DW model has
asynchronous opinion updates, with a single pair of agents
(i.e., a dyad) interacting and potentially updating their opin-
ions at each time. An asynchronous mechanism is consistent
with empirical studies, which suggest that individuals in so-
cial networks have different activity patterns and frequencies
[22]. In the present paper, we generalize the DW model to
incorporate heterogeneous node-activity levels. Although the
DW model has been generalized in many ways [5], few studies
have modified the procedure to select which agents interact in
a time step. The ones that have modified this procedure (see,
e.g., Refs. [22–25]) have focused on specific scenarios, rather
than on investigating the effects of introducing heterogeneities
into agent-selection probabilities.

Before we describe previous extensions of the DW model
that incorporate heterogeneities in agent selection, we first
discuss other generalizations of the model. The DW model
was first studied on complete graphs and a square-lattice
graph, with the nodes of a graph representing agents [21].
To explore the effects of network structure on DW dynamics,
many researchers subsequently examined DW models on a va-
riety of time-independent graphs [26]. Researchers have also
examined DW models on hypergraphs [27] and on networks
that coevolve with agent opinions [28]. Additionally, many
studies have extended the DW model to consider different ini-
tial conditions and/or model parameters. Some studies have
considered initial agent opinions that arise from nonuniform
distributions [27,29–31], yielding initial conditions that are
different than those in the standard DW model. Other inves-
tigations have incorporated heterogeneous confidence bounds
or heterogeneous opinion compromises [31–38]. Such gener-
alizations affect the opinion updates of interacting agents.

In the standard DW model, one uniformly randomly selects
pairs of agents to interact, but social interactions in real life
are not uniformly random. Some studies of DW models have
modified the selection procedure that determines which agents
interact with each other [22–25]. When selecting agents in
a way that is not uniformly at random, one can think of the
agents as having different activity levels that encode their
interaction frequencies. (In a given time interval, we expect
these agents to have different numbers of interactions.) The
idea of heterogeneous node-activity levels plays an impor-
tant role in activity-driven models of temporal networks [39].
Activity-driven frameworks have also been used to model
which agents can interact with each other in studies of opinion
dynamics. Li et al. [40] developed an activity-driven model
of opinion dynamics on networks with nodes with assigned
activity rates (i.e., assigned activation probabilities). At each
time step of their model, one removes all existing edges and
then the active agents randomly form connections to other
agents. All agents then evaluate the mean opinions of their
neighbors to determine if and how to update their own opin-
ions [40]. Researchers have also incorporated heterogeneous
agent selection in voter models of opinion dynamics. Masuda
et al. [41] studied a voter model with heterogeneous “flip”
rates, which one can interpret as heterogeneous node weights
that encode activity levels. Baronchelli et al. [42] studied a

voter model with heterogeneous edge weights, which one can
interpret as encoding heterogeneous edge activities.

Some researchers have generalized the DW model to
incorporate heterogeneous agent selection. Alizadeh and
Cioffi-Revilla [22] studied a modified DW model that incor-
porates a repulsion mechanism (which was proposed initially
by Huet et al. [43]) in which interacting agents with opin-
ions that differ by more than a cognitive-dissonance threshold
move farther away from each other in the space of opinions.
They used two-dimensional (2D) vector-valued opinions and
placed their nodes on complete graphs. To model agents with
different activity levels, Alizadeh and Cioffi-Revilla [22] im-
plemented a Poisson node-selection probability, which one
can interpret as independent internal “clocks” that determine
agent activation. In comparison to selecting agent pairs uni-
formly at random (as in the standard DW model), the Poisson
node-selection probability can either lessen or promote the
spread of extremist opinions, depending on which opinions
are more prevalent in more-active agents.

Zhang et al. [23] examined a modified DW model with
asymmetric updates on activity-driven networks. In their
model, each node has a fixed activity potential, which one
assigns uniformly at random from a distribution of activity
potentials. The activity potential of an agent gives its prob-
ability of activating. At each time step, each active agent i
randomly either (1) creates a message (e.g., a social-media
post) or (2) boosts a message that was created by a neighbor-
ing agent j. If agent i boosts a message from agent j, then
i updates its opinion using the standard DW update mech-
anism. Zhang et al. [23] simulated their model on a social
network from Tencent Weibo (����) and found that the
distribution of activity potentials influences the location of the
transition between opinion consensus and fragmentation. The
node weights in our BCM are similar in spirit to the activity
potentials of Zhang et al. [23]; they can encode the social ac-
tivity levels of individuals, such as their frequencies of posting
or commenting on social media. However, the way that we
incorporate node weights in our BCM differs fundamentally
from Ref. [23]. We consider a time-independent network G,
and we select a single pair of neighboring agents to interact
at each time step. We first randomly select one agent with a
probability that is proportional to its node weight, and then
we randomly select one of its neighbors with a probability
that depends on that neighbor’s node weight. The two se-
lected agents then update their opinions using the DW update
mechanism.

Heterogeneities in which interactions occur in a social
network arise not only because some individuals are more
likely to have interactions, but also because some pairs of
individuals are more likely to interact than other pairs [42].
The curation of content in social-media feeds is affected by
homophily, which is the idea that individuals have a tendency
to connect with others that are similar to themselves (e.g.,
perhaps they have similar ideas or beliefs) [44]. Social-media
feeds tend to show content to users that aligns with their
profiles and past activities [45]. To examine the effect of such
algorithmic bias on opinion dynamics, Sîrbu et al. [24] studied
a modified DW model that includes a homophily-promoting
activation mechanism. At each time step, one agent is selected
uniformly at random, and then one of its neighbors is selected
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with a probability that depends on the magnitude of the opin-
ion difference between that neighbor and the first agent. The
simulations by Sîrbu et al. of their model on complete graphs
suggest that more algorithmic bias yields slower convergence
times and more opinion fragmentation [24]. Pansanella et al.
[25] examined the same algorithmic-bias model on a variety
of networks [specifically, Erdős-Rényi, Barabási-Albert, and
Lancichinetti-Fortunato-Radicchi (LFR) graphs], and they
found similar trends as Sîrbu et al. did on complete graphs.

From the investigations in Refs. [22–25], we know that
incorporating heterogeneous agent-selection probabilities into
a DW model can influence opinion dynamics. Each of these
papers examined a specific implementation of heterogeneous
agent selection. We are not aware of any systematic inves-
tigations of the effects of heterogeneous agent selection on
opinion dynamics in asynchronous BCMs. In the present
paper, we study a BCM with heterogeneous agent-selection
probabilities, which we implement using node weights. In
general terms, we are studying a dynamical process on node-
weighted networks. We use node weights to model agents
with different probabilities of interacting. These probabilities
can encode heterogeneities in individual behavior, such as in
sociability or activity levels. We conduct a methodical inves-
tigation of the effects of incorporating heterogeneous node
weights, which we draw from various distributions, into our
generalization of the DW model. We examine these effects on
a variety of networks. In our study, we consider fixed node
weights that we assign in a way that disregards network struc-
ture and agent opinions. However, one can readily adapt the
node weights in our BCM to consider a variety of sociolog-
ical scenarios in which agents have heterogeneous selection
probabilities. We find that introducing heterogeneous node
weights into our node-weighted BCM results in longer con-
vergence times and more opinion fragmentation than selecting
nodes uniformly at random. Moreover, when studying models
with heterogeneous node selection, our results illustrate that
it is important to consider the baseline influence of assign-
ing node-selection probabilities uniformly at random before
drawing conclusions about more specific mechanisms such as
algorithmic bias [24]. More generally, our model illustrates
the relevance of incorporating node weights into network
analysis and dynamics.

Our paper proceeds as follows. In Sec. II, we describe
the standard DW model and present our generalized DW
model with node weights to incorporate heterogeneous agent-
selection probabilities. In Sec. III, we discuss the setup of
our simulations, the networks and node-weight distributions
that we examine, and the quantities that we compute to char-
acterize the behavior of our model. In Sec. IV, we discuss
the results of our numerical simulations of our BCM. In
Sec. V, we summarize our results and discuss their implica-
tions, present some ideas for future work, and highlight the
importance of studying networks with node weights. Our code
is available at [46].

II. OUR MODEL

In this section, we first discuss the Deffuant-Weisbuch
(DW) [21] bounded-confidence model (BCM) of opinion dy-

namics, and we then introduce our BCM with heterogeneous
node-selection probabilities.

A. The standard Deffuant-Weisbuch (DW) BCM

The DW model was introduced over two decades ago
[21], and this model and its extensions have been studied
extensively since then [4,5]. The DW model was examined
originally on complete graphs and encoded agent opinions as
scalar values in a closed interval on the real line. Deffuant
et al. [21] let each agent have an opinion in [0,1], and we
follow this convention. The standard DW model has two pa-
rameters. The “confidence bound” c ∈ [0, 1] is a thresholding
parameter; when two agents interact, they compromise their
opinions by some amount if and only if their opinions differ
by less than c. The “compromise parameter” m ∈ (0, 0.5]
(which is also sometimes called a convergence parameter [21]
or a cautiousness parameter [26]) parametrizes the amount
that an agent changes its opinion as a result of an opinion
compromise.

In the standard DW model, agents update their opinions
asynchronously. One endows each agent with an initial opin-
ion, which one selects uniformly at random from the interval
[0,1]. At each discrete time, one uniformly randomly selects
a pair of agents to interact. At time t , suppose that one picks
agents i and j, whose associated opinions are xi and x j , re-
spectively. Agents i and j update their opinions through the
following equations:

xi(t + 1) =
{

xi(t ) + m� ji , if |�i j (t )| < c
xi(t ) , otherwise ,

x j (t + 1) =
{

x j (t ) + m�i j , if |�i j (t )| < c
x j (t ) , otherwise ,

(1)

where �i j (t ) = xi(t ) − x j (t ). When |�i j (t )| < c, we say that
agents i and j are “receptive” to each other at time t . When
|�i j (t )| � c, we say that agents i and j are “unreceptive” to
each other.

When one extends the DW model to consider an underlying
network of agents [47], only adjacent agents are allowed to
interact. Consider an undirected network G = (V, E ), where
V is a set of nodes and E is a set of edges between them.
Let N = |V | denote the size (i.e., the number of nodes) of a
network. Each node of a network represents an agent, and each
edge between two agents encodes a social or communication
tie between them. At each discrete time, one selects an edge
uniformly at random and the two agents that are attached to
that edge interact with each other; they update their opinions
using Eq. (1).

In the DW model, an alternative to an edge-based ap-
proach of randomly selecting an interacting edge is to take
a node-based approach to determine the agents that interact.
(See Ref. [48] for a discussion of node-based updates versus
edge-based updates in the context of voter models.) In a node-
based approach, one first randomly selects one node and then
randomly selects one of its neighbors. To capture the fact that
some agents have more frequent interactions (such as from
greater sociability or a stronger desire to share their opinions)
than others, we implement a node-based agent-selection pro-
cedure in our study.
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The choice between edge-based and node-based agent se-
lection can have substantial effects on the dynamics of voter
models of opinion dynamics [48], and we expect that this
is also true for other types of opinion-dynamics models. We
are not aware of existing research that compares edge-based
and node-based agent selection in asynchronous BCMs (and,
in particular, in DW models), and it seems both interesting
and relevant to explore this issue. Most past research on the
DW model has considered edge-based selection [5]. However,
Refs. [22,24,25] used a node-based selection procedure to
model heterogeneous activities of agents.

B. A BCM with heterogeneous node-selection probabilities

We now introduce our BCM with heterogeneous node-
selection probabilities. Consider an undirected network G =
(V, E ). As in the standard DW model, suppose that each agent
i has a time-dependent opinion xi(t ). In our BCM, each agent
also has a fixed node weight wi that encodes sociability, how
frequently it engages in conversations, or simply the desire to
share its opinions. One can think of a node’s weight as a quan-
tification of how frequently it communicates with its friends or
posts on social media. By incorporating network structure, the
standard DW model can include agents with different numbers
of friends (or other social connections). However, selecting
interacting node pairs uniformly at random is unable to cap-
ture the heterogeneous interaction frequencies of individuals.
By introducing node weights, we encode such heterogene-
ity and then examine how it affects opinion dynamics in a
BCM. Although we employ fixed node weights, one can adapt
our model to include time-dependent node weights, such as
through purposeful strategies (e.g., posting more frequently
on social media as one’s opinions become more extreme).

In our node-weighted BCM, at each discrete time, we first
select an agent i with a probability that is proportional to its
weight. Agent i then interacts with a neighbor j, which we se-
lect with a probability that is equal to its weight divided by the
sum of the weights of i’s neighbors. That is, the probabilities

of first selecting agent i and then selecting agent j are

P1(i) = wi

N∑
k=1

wk

, P2( j|i) = w j∑
k∈N (i)

wk
, (2)

where N (i) denotes the neighborhood (i.e., the set of neigh-
bors) of i and j ∈ N (i). Once we select the pair of interacting
agents, we update their opinions following the DW opinion
update rule in Eq. (1).

Our BCM incorporates heterogeneous node-selection
probabilities with node weights that model phenomena such
as the heterogeneous sociability of individuals. One can also
study heterogeneous selection probabilities of pairwise (i.e.,
dyadic) interactions, instead of focusing on the probabili-
ties of selecting individuals. For instance, an individual may
discuss their ideological views with a close friend more fre-
quently than with a work colleague. One can use edge weights
to determine the probabilities of selecting the dyadic interac-
tions in a BCM. One can also relate edge selection to node
selection. For example, one can select the edge between nodes
i and j either by selecting node i and then node j or by
selecting node j and then node i.

III. SIMULATION DETAILS AND CHARACTERIZATION
OF OPINIONS

In this section, we discuss the network structures and
node-weight distributions that we consider, the setup of our
numerical simulations, and the quantities that we compute to
characterize steady-state opinions in our simulations.

A. Network structures

We now describe the details of the networks on which
we simulate our node-weighted BCM. We summarize these
networks in Table I.

We simulate our BCM on complete graphs as a base-
line scenario that lets us examine how incorporating

TABLE I. The networks on which we simulate our node-weighted BCM.

Network Description Parameters

N ∈ {10, 20, 30, 45, 65, 100,
C(N ) Complete graph with N nodes

150, 200, 300, . . . , 1000}
Erdős-Rényi (ER) random-graph model with N nodes and

G(N, p) p ∈ {0.1, 0.3, 0.5, 0.7}homogeneous, independent edge probability p. We let N = 500.

Two-community SBMa
Stochastic block model with 2 × 2 blocks. Edges between nodes in the
same set (A or B) exist with a larger probability than edges between nodes
in different sets; the block probabilities satisfy PBB > PAA > PAB.

PAA = 49.9/374
PBB = 49.9/124
PAB = 1/500

Core-periphery SBMa
Stochastic block model with 2 × 2 blocks. Set A is a set of core nodes and
set B is a set of peripheral nodes. The block probabilities satisfy
PAA > PAB > PBB.

PAA = 147.9/374
PBB = 1/174
PAB = 1/25

Caltech network
The largest connected component of the Facebook friendship network at
Caltech on one day in fall 2005. This network, which is part of the
FACEBOOK100 data set [49,50], has 762 nodes and 16 651 edges.

aOur SBM networks have N = 500 nodes. We partition an SBM network into two sets of nodes; set A has 75% of the nodes, and set B has
25% of the nodes.
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heterogeneous node-selection probabilities affects opinion
dynamics. Although DW models were introduced more
than 20 years ago, complete graphs are still the most
common type of network that researchers employ in
studies of them [4]. To examine finite-size effects, we
consider complete graphs of sizes N ∈ {10, 20, 30, 45, 65,

100, 150, 200, 300, . . . , 1000}. For all other synthetic net-
works, we consider networks with N = 500 nodes.

To consider networks with different edge densities, we
generate synthetic networks using the G(N, p) Erdős-Rényi
(ER) random-graph model, where p is the homogeneous, in-
dependent probability of an edge between each pair of nodes
[51]. When p = 1, this yields a complete graph. We examine
G(500, p) graphs with p ∈ {0.1, 0.3, 0.5, 0.7}.

To determine how a network with an underlying block
structure affects the dynamics of our node-weighted BCM, we
consider stochastic-block-model (SBM) networks [51] with
2 × 2 blocks, where each block consists of an ER graph.
Inspired by the choices of Kureh and Porter [48], we consider
two types of SBM networks. The first SBM has a two-
community structure, in which there is a larger probability of
edges within a community than between communities. The
second SBM has a core-periphery structure, with a set of core
nodes with a large probability of edges within the set, a set
of peripheral nodes with a small probability of edges within
the set, and an intermediate probability of edges between core
nodes and peripheral nodes. To construct our 2 × 2 SBMs,
we partition a network into two sets of nodes. Set A has 375
nodes (i.e., 75% of the network) and set B has 125 nodes (i.e.,
25% of the network). We define a symmetric edge-probability
matrix

P =
[

PAA PAB

PAB PBB

]
, (3)

where PAA and PBB are the probabilities that an edge exists
between two nodes in set A and set B, respectively, and PAB

is the probability that an edge exists between a node in set A
and a node in set B.

In a two-community SBM, the probabilities PAA and PBB

are larger than PAB, so edges between nodes in the same
community exist with a larger probability than edges between
nodes in different communities. For our two-community
SBM, we choose PAA and PBB so that the expected mean
degree matches that of the G(500, 0.1) ER model if we
consider only edges within set A or only edges within set
B. A network from the G(N, p) model has an expected
mean degree of p(N − 1) [51], so we want the two com-
munities of these SBM networks to have an expected mean
degree of 49.9 = 0.1 × 499. We thus use the edge proba-
bilities PAA = 49.9/374 and PBB = 49.9/124. To ensure that
there are few edges between the sets A and B, we choose
PAB = 1/500.

We want our core-periphery SBM with core set A and
periphery set B to satisfy PAA > PAB > PBB. We chose PAA so
that the expected mean degree matches that of the G(500, 0.3)
model (i.e., it is 147.9) if we consider only edges within set
A. We thus choose the edge probability PAA = 147.9/374. To
satisfy PAA > PAB > PBB, we choose PAB = 1/25 and PBB =
1/174.

Finally, we investigate our node-weighted BCM on a real
social network from Facebook friendship data. We use the
Caltech network from the FACEBOOK100 data set [49,50]. Its
nodes encode individuals at Caltech, and its edges encode
Facebook “friendships” between them on one day in fall 2005.
We only consider the network’s largest connected component,
which has 762 nodes and 16 651 edges.

B. Node-weight distributions

In Table II, we give the parameters and probability density
functions of the node-weight distributions that we examine
in our BCM. In this subsection, we discuss our choices of
distributions.

To study the effects of incorporating node weights in our
BCM, we compare our model to a baseline DW model. To
ensure a fair comparison, we implement a baseline DW model
that selects interacting agents uniformly at random using a
node-based selection process. As we discussed in Sec. I, it is
much more common to employ an edge-based selection pro-
cess. We refer to the case in which all node weights are equal
to 1 (that is, wi = 1 for all nodes i) as the “constant weight
distribution”. The constant weight distribution (and any other
situation in which all node weights equal the same positive
number) results in a uniformly random selection of nodes for
interaction. This is what we call the “baseline DW model”;
we compare our DW model with heterogeneous node weights
to this baseline model. We reserve the term “standard DW
model” for the DW model with uniformly random edge-based
selection of agents. When all of the nodes of a network have
the same degree, our baseline DW model is equivalent to the
standard DW model.

The node weights in our BCM encode heterogeneities in
interaction frequencies, such as when posting content online.
The majority of online content arises from a minority of user
accounts [52]. A “90-9-1 rule” has been proposed for such
participation inequality. In this rule of thumb, about 1% of
the individuals in online discussions (e.g., on social-media
platforms) account for most contributions, about 9% of the
individuals contribute on occasion, and the remaining 90%
of the individuals are present online (e.g., they consume con-
tent) but do not contribute to it [53]. Participation inequality
has been documented in a variety of situations, including in
the numbers of posts on digital-health social networks [54],
posts on internet support groups [55], and contributions to
open-source software-development platforms [56]. Inequality
in user activity has also been examined on Twitter [57]. For
example, Xiong and Liu [58] used a power-law distribution
to model the number of tweets about different topics. A few
years ago, a survey by the Pew Research Center found that
about 10% of the accounts of adult Twitter users in the United
States generate about 80% of the tweets of such accounts [59].

One can interpret the node weights in our BCM as encod-
ing the participation frequencies of individuals who contribute
content to a social-media platform. We model online partici-
pation inequality by using a Pareto distribution for the node
weights. This choice of distribution is convenient because of
its simple power-law form. It has also been used to model
inequality in a variety of other contexts, including distribu-
tions of wealth, word frequencies, website visits, and numbers
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TABLE II. The names and specifications of our node-weight distributions. We show both the general mathematical expressions for the
means and the specific values of the means for our parameter values. For the Pareto distributions, we truncate the distribution means to four
digits after the decimal point. For all other distributions, the means are exact.

Probability densityDistribution Parameter values Domain Meanfunction

Constant δ(x − 1) N/A {1} 1 1

Pareto-80-10 α = log4.5(10) 2.8836

Pareto-80-20
α

xα+1
α = log4(5) [1,∞)

α

α − 1
7.2126

Pareto-90-10 α = log9(10) 21.8543

Exp-80-10 β = 1.8836 2.8836

Exp-80-20
1

β
exp

(
−(x − 1)

β

)
β = 6.2125 [1,∞) β + 1 7.2125

Exp-90-10 β = 20.8543 21.8543

Unif-80-10 b = 4.7672 2.8836

Unif-80-20
1

b − 1
b = 13.4250 [1, b]

1

2
(1 + b) 7.2125

Unif-90-10 b = 42.7086 21.8543

of paper citations [60]. When representing social-media in-
teractions, we care only about accounts that make posts or
comments; we ignore inactive accounts. Therefore, we impose
a minimum node weight in our model. We use the Pareto
type-I distribution, which is defined on [1,∞), so each node
has a minimum weight of 1. This positive minimum weight
yields reasonable computation times in our simulations of
our BCM. Nodes with weights near 0 would have very small
probabilities of interacting, and allowing such weights would
prolong simulations.

Let Pareto-X -Y denote the continuous Pareto distribution
in which (in theory) X% of the total node weight is distributed
among Y % of the nodes. In practice, once we determine the
N node weights for a simulation with a Pareteo node-weight
distribution, it is not true that precisely X% of the total weight
is held by Y % of the N nodes. Inspired by the results of the
aforementioned Pew Research Center survey of Twitter users
[59], we first consider a Pareto-80-10 distribution, in which
we expect 80% of the total weight to be distributed among
10% of nodes. The Pareto principle (which is also known as
the “80-20 rule”) is a popular rule of thumb that suggests that
20% of individuals have 80% of the available wealth [60].
Accordingly, we also consider a Pareto-80-20 distribution.
Finally, as an example of a node-weight distribution with
a more extreme inequality, we also consider a Pareto-90-10
distribution.

We also examine uniform and exponential distributions of
node weights. To match the domain of our Pareto distribu-
tions, we shift the uniform and exponential distributions so
that their minimum node weight is also 1. We also choose
their parameters to approximate the means of our Pareto
distributions. We use Exp-X -Y and Unif-X -Y as shorthand
notation to denote exponential and uniform distributions, re-
spectively, with means that match that of the Pareto-X -Y
distribution to four decimal places (see Table II). When we
examine the results of our numerical simulations, we want to
compare distributions with similar means. We use the phrase
“80-20 distributions” to refer to the Pareto-80-20, Exp-80-20,

and Unif-80-20 distributions. We analogously use the phrases
“80-10 distributions” and “90-10 distributions”. In total, we
examine three different families of distributions (Pareto, ex-
ponential, and uniform) with tails of different heaviness. In
Table II, we show the details of the probability density func-
tions and the parameters of our node-weight distributions.

C. Simulation specifications

In our node-weighted BCM, agents have opinions in the
one-dimensional (1D) opinion space [0,1]. Accordingly, we
suppose that the confidence bound c ∈ (0, 1) [61]. We sup-
pose that the compromise parameter m ∈ (0, 0.5], which is
the typically studied range for the DW model [4,26]. When
m = 0.5, two interacting agents that influence each other fully
compromise and average their opinions. When m < 0.5, the
two agents move towards each other’s opinions, but they do
not change their opinions to the mean opinion (i.e., they do
not fully compromise).

In our node-weighted BCM, the generation of the graphs in
a random-graph ensemble, the sets of node weights, the sets of
initial opinions, and the selection of pairs of agents to interact
at each time step are all stochastic. We use Monte Carlo
simulations to reduce these sources of noise in our simulation
results. For each of our random-graph models (i.e., the ER
and SBM graphs), we generate five graphs. For each graph
and each node-weight distribution, we randomly generate ten
sets of node weights. For each set of node weights, we gener-
ate ten sets of initial opinions that are distributed uniformly
at random. In total, we consider 100 distinct sets of initial
opinions and node weights for the Monte Carlo simulations
of each individual graph. When we compare simulations from
different distributions of node weights for the same individual
graph, we reuse the same 100 sets of initial opinions.

In theory, the standard DW model and our node-weighted
DW model can take infinitely long to approach a steady state.
We define an “opinion cluster” Sr to be a maximal connected
set of agents in which the pairwise differences in opinions
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are all strictly less than the confidence bound c; adding any
other agent to Sr will yield at least one pair of adjacent agents
with an opinion difference of at least c. Equivalently, for
each graph G, we define the “effective-receptivity network”
Geff (t ) = (V, Eeff (t )) as the time-dependent subgraph of G
with edges only between nodes that are receptive to each
other. This set of edges is

Eeff (t ) = {(i, j) ∈ E : |xi(t ) − x j (t )| < c} . (4)

The opinion clusters are the connected components of the
effective-receptivity network Geff (t ). If every pair of opinion
clusters, Sa and Sb, is separated by a distance of at least c
(i.e., |xi − x j | � c for all i ∈ Sa and all j ∈ Sb) at some time
T̃ , then (because c is fixed) no agent in Sa can influence
the opinion of an agent in Sb (and vice versa) for all t � T̃ .
Meanwhile, agents in each opinion cluster continue to com-
promise their opinions with each other. Therefore, in finite
time, we observe the formation of steady-state clusters of
distinct opinions. Inspired by Meng et al. [26], we specify
that one of our simulations has “converged” if all opinion
clusters are separated from each other by a distance of at
least c and each opinion cluster has an opinion spread that
is less than a tolerance of 0.02. That is, for each cluster Sr , we
have maxi, j∈Sr |xi − x j | < 0.02. We use T to denote the con-
vergence time (which we report as a number of time steps) of
a simulation. For each simulation, the connected components
of Geff (T ) are the steady-state opinion clusters.

It is computationally expensive to numerically simulate a
DW model. Additionally, as we will show in Sec. IV, our
node-weighted DW model with heterogeneous node weights
often converges to a steady state even more slowly than the
baseline DW model. To reduce the computational burden of
checking for convergence, we compute the convergence time
to three significant digits. We thereby avoid checking for con-
vergence at each time step. To guarantee that each simulation
stops in a reasonable amount of time, we set a bailout time
of 109 time steps. In our simulations, the convergence time is
always shorter than the bailout time. We thus report the results
of our simulations as steady-state results.

D. Quantifying opinion consensus and fragmentation

In our numerical simulations, we investigate which situa-
tions yield consensus (specifically, they result in one “major”
opinion cluster, which we will characterize shortly) at steady
state and which situations yield opinion fragmentation (when
there are at least two distinct major clusters) at steady state
[62]. We are also interested in how long it takes to reach
steady-state behavior and in quantifying opinion fragmenta-
tion when it occurs. To investigate these model behaviors, we
compute the convergence time and the number of steady-state
opinion clusters. It is common to study these quantities in
investigations of BCMs [4,6,26].

In some situations, an opinion cluster has very few agents.
Consider a 500-node network in which 499 agents eventually
have the same opinion, but the remaining agent (say, Agent
86, despite repeated attempts by Agent 99 and other agents
to convince him) retains a distinct opinion at steady state. In
applications, it is not appropriate to think of this situation as
opinion fragmentation. To handle such situations, we use a

FIG. 1. Sample trajectories of agent opinions versus time t in a
single simulation of our node-weighted BCM on a 500-node com-
plete graph. The BCM parameters are c = 0.1 and m = 0.1, and we
draw the node weights from the constant weight distribution. This
node-weight distribution gives our baseline DW model. We color the
trajectory of each node by its final opinion cluster. Observe that the
final opinion clusters have different sizes. There is one minor cluster
(in black); it consists of a single node whose final opinion is about
0.4. The major opinion cluster that converges to the largest opinion
value has about twice as many nodes as the other major clusters.

notion of “major clusters” and “minor clusters” [34,63]. We
characterize major and minor clusters in an ad hoc way. We
define a “minor” opinion cluster in a network as an opinion
cluster with at most 2% of the agents. Any opinion cluster that
is not a minor cluster is a “major” cluster. In our simulations,
we calculate the numbers of major and minor opinion clusters
at steady state. We account only for the number of major
clusters when determining if a simulation reaches a consensus
state (i.e., exactly one major cluster) or a fragmented state
(i.e., more than one major cluster). We still track the number
of minor clusters and use the minor clusters when quantifying
opinion fragmentation.

Quantifying opinion fragmentation is much less straight-
forward than determining whether or not there is fragmen-
tation. Researchers have proposed a variety of notions of
fragmentation and polarization [64], and they have also pro-
posed several ways to quantify such notions [64–66]. In
principle, a larger number of opinion clusters is one indica-
tion of more opinion fragmentation. However, as we show in
Fig. 1, there can be considerable variation in the sizes (i.e.,
the number of nodes) of the opinion clusters. For example,
suppose that there are two opinion clusters. If the two opinion
clusters have the same size, then one can view the opinions
in the system as more polarized than if one opinion cluster
has a large majority of the nodes and the other opinion clus-
ter has a small minority. Additionally, although we use only
major clusters to determine if a system reaches a consensus
or a fragmented state, we seek to distinguish quantitatively
between scenarios with opinion clusters (including both major
and minor clusters) of similar sizes and scenarios with opinion
clusters with a large range of sizes. Following Han et al. [67],
we do this by calculating Shannon entropy.

Suppose that there are K opinion clusters, which we denote
by Sr for r ∈ {1, . . . , K}. We refer to the set {Sr}K

r=1 as an
“opinion-cluster profile”; such a profile is a partition of a
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network. The fraction of agents in opinion cluster Sr is |Sr |/N .
The Shannon entropy H of the opinion-cluster profile is

H = −
K∑

r=1

|Sr |
N

ln

( |Sr |
N

)
. (5)

The Shannon entropy H gives a scalar value to quantify the
distribution of opinion-cluster sizes. For a given opinion-
cluster profile, H indicates the increase in information of
knowing the opinion-cluster membership of a single agent
instead of not knowing the cluster membership of any agent.
For a fixed K , the entropy H is larger if the cluster sizes are
closer in magnitude than if there is more heterogeneity in the
cluster sizes. For opinion-cluster profiles with similar cluster
sizes, H is larger if there are more clusters. We use H to
quantify opinion fragmentation, with larger H corresponding
to more opinion fragmentation. We calculate the steady-state
entropy H (T ) using all steady-state opinion clusters (i.e., both
major and minor clusters).

Another way to quantify opinion fragmentation is to look at
a local level and consider the individual agents of a network.
As Musco et al. [65] pointed out, if an individual agent has
many neighbors with similar opinions to it, then it may be
“unaware” of other opinions in a network. For example, most
of the neighbors of an agent may hold an opinion that is
uncommon in the network. This phenomenon is sometimes
called a “majority illusion” [68]. If a set of adjacent agents
tend to have neighbors with similar opinions as theirs, they
may be in an “echo chamber” [69], as it seems that they are
largely exposed only to conforming opinions. To quantify the

local observations of the agents of a network, Musco et al. [65]
examined a notion of local agreement by calculating the
fraction of an agent’s neighbors with opinions on the same
side of the network’s mean opinion as that agent. In our
simulations, we often observe opinion fragmentation with
three or more opinion clusters. Therefore, we need to look
beyond the mean opinion of an entire network. To do this,
we introduce the “local receptiveness” of an agent. At time
t , a node i with neighborhood N (i) has a local receptive-
ness of

Li(t ) = |{ j ∈ N (i) : |xi(t ) − x j (t )| < c}|
|N (i)| . (6)

That is, Li(t ) is the fraction of the neighbors of agent i at time
t to which it is receptive (i.e., with which it will compromise
its opinion if they interact). In the present paper, we consider
only connected networks, so each agent i has |N (i)| � 1
neighbors. If one wants to consider isolated nodes, one can
assign them a local receptiveness of 0 or 1. In our numerical
simulations, we calculate the local receptiveness of each agent
of a network at the convergence time T . We then calculate the
mean 〈Li(T )〉 of all agents in the network. This is the steady-
state mean local receptiveness, as it is based on edges in
the steady-state effective-receptivity network Geff (T ). When
consensus is not reached, a smaller mean local receptiveness
is an indication of more opinion fragmentation. As we will
discuss in Sec. IV, computing Shannon entropy and mean
local receptiveness can give insight into the extent of opinion
fragmentation when one considers them in concert with the
number of opinion clusters.

TABLE III. Summary of the trends in our simulations of our node-weighted BCM. Unless we note otherwise, we observe these trends for
each of the examined networks (complete graphs, ER and SBM random graphs, and the Caltech Facebook network).

Quantity Trends

Convergence time (1) For fixed values of c and m, the heterogeneous node-weight distributions have longer
convergence times than the constant weight distribution.

(1) For fixed values of c ∈ [0.1, 0.4] and m, the heterogeneous node-weight distributions usually
have more opinion fragmentation than the constant weight distribution.

(2) For fixed values of c and m and a fixed distribution mean, there usually is more opinion
Opinion fragmentationa

fragmentation when a distribution tail is heavier.

(3) For fixed values of c and m and a fixed family of distributions, there usually is more opinion
fragmentation when a distribution has a larger mean.

(1) A larger minimum value of c is required to always reach consensus for a heterogeneous
node-weight distribution than for the constant weight distribution.

(2) For fixed values of c and m and a fixed distribution mean, there usually are more major clusters
Number of major clusters

when a distribution tail is heavier.

(3) For fixed values of c and m and a fixed family of distributions, there usually are more major
clusters when a distribution has a larger mean.

Number of minor clusters
(1) For the constant weight distribution and for fixed c, there usually are more minor clusters when
the compromise parameter m ∈ {0.3, 0.5} than when m = 0.1. The heterogeneous node-weight
distributions do not follow this trend.b

aWe quantify opinion fragmentation using Shannon entropy and mean local receptiveness. We observe clearer trends for Shannon entropy than
for mean local receptiveness.
bFor the Caltech network, we usually observe more minor clusters when m ∈ {0.3, 0.5} than when m = 0.1 for each of our heterogeneous
weight distributions.
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IV. NUMERICAL SIMULATIONS AND RESULTS

In this section, we present results of our numerical
simulations of our node-weighted BCM. In our numerical
experiments, we consider compromise-parameter values m ∈
{0.1, 0.3, 0.5}. For the confidence bound, we first consider c ∈
{0.1, 0.3, 0.5, 0.7, 0.9}, and we then examine additional val-
ues of c near regions with interesting results. As we discussed
in Sec. III C, for each individual graph, we use 100 distinct
sets of initial opinions and node weights in Monte Carlo
simulations of our BCM. For each of the random-graph mod-
els (i.e., ER and SBM graphs), we generate five graphs. For a
500-node complete graph, we use the ten weight distributions
in Table II. Because of computation time, we consider the
90-10 distributions only for the 500-node complete graph. For
the other networks in Table I, we consider seven distributions:
the constant weight distribution, the three 80-10 distributions,
and the three 80-20 distributions.

In Table III, we summarize the trends that we observe in the
examined networks. In the following subsections, we discuss
details of our results for each type of network. The numbers
of major and minor clusters, Shannon entropies, and values
of mean local receptiveness are all steady-state values. We
include our code and figures in our repository at [46]. In the
present paper, we visualize our results using heat maps; in our
code repository, we also show visualizations with line plots.

A. Simulations on a complete graph

The simplest underlying network structure on which we
simulate our node-weighted BCM is a complete graph. A
complete graph gives a baseline setting to examine how
heterogeneous node-selection probabilities affect opinion dy-
namics. In our numerical simulations on a 500-node complete
graph, we consider all three means (which we denote by 80-
10, 80-20, and 90-10) for each of the uniform, exponential,
and Pareto node-weight distribution families.

The standard DW model on a complete graph with agents
with opinions in the interval [0,1] eventually reaches consen-
sus if the confidence bound c � 0.5. As one decreases c from
0.5, there are progressively more steady-state opinion clusters
(both major and minor clusters) [34,70]. Lorenz [34] showed
using numerical simulations that the number of major clusters
is approximately � 1

2c � for the standard DW model. Therefore,
there is a transition between consensus and opinion fragmen-
tation for c ∈ [0.25, 0.3]. In our simulations, we observe that
this transition occurs for c ∈ [0.25, 0.4] in our node-weighted
BCM. To examine this transition, we thus zoom in on these
values of c. For the uniform and exponential distributions,
we focus on c ∈ [0.25, 0.3]. For the Pareto distributions, the
transition occurs for larger values of c than for the other
distributions; we consider additional values of c ∈ [0.3, 0.4].
For the constant weight distribution, which gives our baseline
DW model, we examine all values of c that we consider for
any other distribution.

In Fig. 2, we show the convergence times of our BCM
simulations for various node-weight distributions. For fixed
values of c and m, all of the heterogeneous weight distribu-
tions yield longer convergence times than the constant weight
distribution. Additionally, for fixed c and m and a fixed family
of distributions (uniform, exponential, or Pareto), the conver-

FIG. 2. Convergence times (in terms of the number of time steps)
in simulations of our node-weighted BCM on a 500-node complete
graph. If we consider only the time steps in which interacting nodes
actually change their opinions, the convergence times are smaller;
however, the trends are the same. For this heat map and all subse-
quent heat maps, the depicted values are means of simulations of our
BCM for each node-weight distribution and each value of the BCM
parameter pair (c, m).

gence time increases as we increase the mean of a distribution.
Furthermore, for fixed c and for each heterogeneous weight
distribution, the convergence time usually increases as we
decrease the compromise parameter m. When calculating con-
vergence time, we include time steps in which two nodes
interact but do not change their opinions. To see if the hetero-
geneous weight distributions have inflated convergence times
as a result of having more of these futile interactions, we
also calculate the number of time steps to converge when we
exclude such time steps. That is, we count the total number of
opinion changes that it takes to converge. On a logarithmic
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FIG. 3. Steady-state numbers of major opinion clusters in sim-
ulations of our node-weighted BCM on a 500-node complete graph
with various node-weight distributions. We consider an opinion clus-
ter to be a major cluster if it includes more than 2% of the nodes of a
network. (In this case, a major cluster has at least 11 nodes.)

scale, there is little difference between the total number of
opinion changes and the total number of time steps that it
takes to converge. We include a plot of the numbers of opinion
changes in our code repository [46].

In Fig. 3, we show the numbers of steady-state major opin-
ion clusters in our BCM simulations for various node-weight
distributions. For all weight distributions, consensus occurs in
all of our simulations when the confidence bound c � 0.5. For
fixed values of c ∈ [0.1, 0.4] and m, the heterogeneous weight
distributions usually yield more steady-state major clusters
than the constant weight distribution. When we introduce
heterogeneous node weights into our BCM, we need a larger
confidence bound c than for the constant weight distribution to
always reach consensus in our simulations. It appears that our

FIG. 4. Shannon entropies of the steady-state opinion-cluster
profiles in simulations of our node-weighted BCM on a 500-node
complete graph with various node-weight distributions.

BCM with heterogeneous node weights tends to have more
opinion fragmentation than the baseline DW model. For fixed
c and m, we observe for each distribution family that the mean
number of steady-state major clusters increases as we increase
the distribution mean. To see this, proceed from left to right in
Fig. 3 from the 80-10 distributions to the 80-20 distributions
and then to the 90-10 distributions. Additionally, for fixed
values of c and m and a fixed distribution mean, there are
usually more steady-state major clusters as we proceed from
a uniform distribution to an exponential distribution and then
to a Pareto distribution.

To investigate how the node-weight distribution and the
BCM parameters (i.e., c and m) affect the amount of opinion
fragmentation, we calculate the Shannon entropy and mean
local receptiveness (see Sec. III D) at steady state. In Fig. 4,
we show the steady-state entropies of our BCM simulations
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for various node-weight distributions. For all node-weight
distributions, when there is opinion fragmentation instead of
consensus, the steady-state entropy increases as we decrease
the confidence bound c for fixed m. In line with our ob-
servations in Fig. 3, when c ∈ [0.1, 0.4], simulations with
heterogeneous weight distributions usually yield larger en-
tropies than simulations with the constant weight distribution.
For fixed values of c and m and a fixed distribution mean, we
also tend to observe a slightly larger entropy as we proceed
from a uniform distribution to an exponential distribution and
then to a Pareto distribution. For the Pareto distribution family
and fixed values of c and m, the entropy increases as we
increase the distribution mean. (Proceed from left to right
in Fig. 4.) The exponential and uniform distribution families
also have this trend, although it is less pronounced (i.e., the
entropies tend to increase only slightly) than for the Pareto
distributions. When we quantify fragmentation using Shannon
entropy, we conclude that increasing the mean node weight
has less effect on the amount of opinion fragmentation for
the uniform and exponential distributions than it does for the
Pareto distributions. Because Shannon entropy depends on the
sizes of the opinion clusters, it provides more information
about opinion fragmentation than tracking only the number of
major opinion clusters. Our plot of the steady-state mean local
receptiveness illustrates the same trends as the entropy. (See
our code repository [46] for the relevant figure.) This suggests
that both Shannon entropy and mean local receptiveness are
useful for quantifying opinion fragmentation.

We now discuss the numbers of steady-state minor opinion
clusters in our BCM simulations. (See our code repository
[46] for a plot.) For each node-weight distribution and each
value of c and m, when we take the mean of our 100 simula-
tions, we obtain at most three steady-state minor clusters. We
observe the most minor clusters when c ∈ {0.1, 0.2}, which
are the smallest confidence bounds that we examine. For the
constant weight distribution, we typically observe more minor
clusters when m ∈ {0.3, 0.5} than when m = 0.1. However,
we do not observe this trend for the heterogeneous weight
distributions. For example, for the Pareto-80-20 distribution,
when c ∈ [0.34, 0.4], decreasing m results in more minor
opinion clusters. For the three Pareto distributions, as we
decrease m, we also observe that minor clusters tend to ap-
pear at smaller confidence bounds. Smaller values of m entail
smaller opinion compromises for interacting agents; this may
give more time for agents to interact before they settle into
their steady-state opinion clusters. For the constant weight
distribution, this may reduce the number of minor clusters by
giving more opportunities for agents to assimilate into a major
cluster. However, for our heterogeneous weight distributions,
nodes with larger weights have larger probabilities of interact-
ing with other nodes and we no longer observe fewer minor
clusters as we decrease m.

We now propose a possible mechanism by which our node-
weighted BCM may promote the trends in Table III. In Fig. 5,
we show the trajectories of opinions versus time for a single
simulation with node weights that we draw from a Pareto-
80-10 distribution. To qualitatively describe our observations,
we examine the large-weight and small-weight nodes (i.e., the
nodes that are near and at the extremes of a set of node weights
in a given simulation). Because our node-selection probabili-

FIG. 5. Sample trajectories of agent opinions versus time t in a
single simulation of our node-weighted BCM on a 500-node com-
plete graph with BCM parameters c = 0.2 and m = 0.1 and node
weights that we draw from a Pareto-80-10 distribution. We color the
trajectory of each agent by its node weight, which we normalize so
that the sum of all node weights is 1. The nodes in the two minor
opinion clusters are all small-weight nodes; their weights are close
to 0 (and are hence in purple).

ties are proportional to node weights, we normalize the node
weights in a simulation to sum to 1. In Fig. 5, the large-
weight nodes appear to quickly stabilize into their associated
steady-state major opinion clusters, and some small-weight
nodes are left behind to form the two minor clusters. More
generally, in our simulations of our BCM on a complete graph,
we observe that heterogeneity in the node weights results
in large-weight nodes interacting more frequently than other
nodes and quickly settling into steady-state major opinion
clusters. Small-weight nodes that are not selected for opinion
updates early in a simulation are left behind to form the
smallest clusters in a steady-state opinion-cluster profile; this
increases the amount of opinion fragmentation. When we in-
crease the mean node weight, increase the relative proportion
of large-weight nodes (by increasing the heaviness of the tail
of a distribution), or decrease the value of the compromise
parameter m, small-weight nodes tend to take longer to settle
into opinion clusters. Node-weight heterogeneity may thereby
promote both opinion fragmentation and the formation of
minor opinion clusters.

B. Erdős-Rényi (ER) graphs

We now discuss our simulations of our BCM on G(N, p)
ER random graphs, where p is the homogeneous, indepen-
dent probability of an edge between each pair of nodes
[51]. For p = 1, these ER graphs are complete graphs.
In this subsection, we consider the edge probabilities p ∈
{0.1, 0.3, 0.5, 0.7} and generate five graphs for each value of
p. Each graph has N = 500 nodes.

For each value of p, we observe the trends in Table III.
We include plots of our simulation results for convergence
times, steady-state numbers of major and minor opinion clus-
ters, and steady-state values of mean local receptiveness in
our code repository [46]. In Fig. 6, we show the steady-state
Shannon entropies of our simulations for various node-weight
distributions and values of p. The entropies are comparable
to those that we obtained in our simulations on a 500-node
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FIG. 6. Shannon entropies of the steady-state opinion-cluster profiles in simulations of our node-weighted BCM on G(500, p) ER random
graphs for various node-weight distributions and several values of p.

complete graph (see Sec. IV A). When c ∈ [0.1, 0.4], for each
of our three node-weight distribution families and for fixed
values of p, c, and m, the 80-20 distribution tends to yield a
larger Shannon entropy than the 80-10 distribution (which has
a smaller mean).

For large p, we expect the results of our simulations on
G(500, p) graphs to be similar to those for a 500-node com-
plete graph. For p ∈ {0.3, 0.5, 0.7} and N = 500, the number
of major opinion clusters and the mean local receptiveness are
comparable to the corresponding results for a 500-node com-
plete graph. When p = 0.1 and there is opinion fragmentation,
for a fixed node-weight distribution and fixed values of c and
m, we usually observe fewer major opinion clusters than for
larger values of p. For p = 0.1, a fixed node-weight distribu-
tion, and fixed c ∈ [0.1, 0.4] and m, we also observe that the
mean local receptiveness tends to be larger than it is for larger
p. One possible contributing factor for this observation may be
that smaller values of p yield G(N, p) graphs with more small-

degree nodes; these small-degree nodes have fewer available
values of local receptiveness than larger-degree nodes. For
example, a node with degree 2 can have a local receptiveness
of 0, 0.5, or 1. Unless a small-degree node is an isolated node
of the steady-state effective-receptivity network Geff (T ), its
presence may help inflate the value of the steady-state mean
local receptiveness.

For a fixed node-weight distribution and fixed values of c
and m, decreasing p tends to increase the steady-state number
of minor opinion clusters. For p ∈ {0.5, 0.7}, the steady-state
numbers of minor clusters are comparable to the numbers
that we obtained for a 500-node complete graph. When p ∈
{0.5, 0.7}, for each node-weight distribution and each value
of c and m, when we take the mean of our 500 simulations,
we obtain at most three steady-state minor clusters. For these
simulations, we observe the most minor clusters when c ∈
{0.1, 0.2}. For p = 0.1, the mean number of steady-state mi-
nor clusters is at most nine; this occurs when c ∈ {0.35, 0.4}.
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It seems sensible that smaller values of p yield more minor
opinion clusters. For small p, there are more small-degree
nodes than for larger values of p. It is easier for small-degree
nodes than for large-degree nodes to be in a minor opinion
cluster, as small-degree nodes need to become unreceptive to
few neighbors to end up in a minor cluster at steady state. That
is, if i is a small-degree node, few neighbors j need to satisfy
the inequality |xi − x j | < c.

C. Stochastic-block-model (SBM) graphs

We now discuss our simulations of our BCM on 500-node
SBM random graphs that we generate using the parameters
in Table I. For both the two-community and core-periphery
SBM graphs, we observe the trends in Table III. We include
plots of our simulation results for convergence times, steady-
state numbers of major and minor opinion clusters, steady-
state Shannon entropies, and steady-state values of mean local
receptiveness in our code repository [46].

For the two-community SBM graphs, the steady-state
Shannon entropies and numbers of major opinion clusters
are comparable to those in our simulations on a 500-node
complete graph. When there is opinion fragmentation, for a
fixed node-weight distribution and fixed values of c and m,
the steady-state values of mean local receptiveness are similar
to the values for G(500, 0.1) graphs and tend to be larger than
the values for a complete graph. The steady-state numbers of
minor opinion clusters are similar to those for the G(500, 0.1)
random graphs.

For the two-community SBM graphs, for each node-weight
distribution and each value of c and m, when we take the
mean of our 500 simulations, we obtain at most ten steady-
state minor clusters. We observe the most steady-state minor
clusters when c ∈ {0.35, 0.4}. Recall that we select the edge
probabilities of the two-community SBM so that each of the
two communities has an expected mean degree that matches
that of G(500, 0.1) graphs. Therefore, it is reasonable that
we obtain similar results for the two-community SBM and
the G(500, 0.1) random graphs. In our numerical simulations,
we assign the node weights without considering the positions
(which, in this case, are the community assignments) of the
nodes of a network. When we assign weights to nodes uni-
formly at random, it seems that graph sparsity may be more
important than community structure for determining if our
BCM reaches a consensus or a fragmented state.

For a fixed node-weight distribution and fixed values of c
and m, the core-periphery SBM graphs tend to have fewer
steady-state major opinion clusters than a complete graph.
Additionally, both the steady-state Shannon entropy and the
steady-state mean local receptiveness tend to be larger for
the core-periphery SBM graphs than for a complete graph.
Larger entropy and smaller mean local receptiveness are both
indications of more opinion fragmentation. If we consider
only the number of major opinion clusters, it seems that the
core-periphery SBM graphs yield less opinion fragmentation
than a complete graph. However, when we examine the entire
opinion-cluster profile of a network and account for the cluster
sizes and the minor clusters, the Shannon entropy reveals that
there is more opinion fragmentation for our core-periphery
SBM graphs than for a complete graph. The steady-state mean

local receptiveness indicates that the nodes of a core-periphery
SBM graph tend to be receptive to a larger fraction of their
neighbors than the nodes of a complete graph.

We believe that Shannon entropy gives a more useful
quantification of opinion fragmentation than mean local re-
ceptiveness. For networks with a large range of degrees,
small-degree nodes can inflate the mean local receptiveness.
(Analogously, a network’s mean local clustering coefficient
places more importance than its global clustering coefficient
on small-degree nodes [51].) In the context of our node-
weighted BCM, consider a node with degree 2 and a node
with degree 100, and suppose that both of them have a local
receptiveness of 0.5. The larger-degree node’s local recep-
tiveness of 0.5 gives a better indication that there may be
opinion fragmentation than the smaller-degree node’s local
receptiveness of 0.5. However, we treat both nodes equally
when we calculate the mean local receptiveness. We believe
that local receptiveness is a useful quantity to calculate for
individual nodes to determine how they perceive the opinions
of their neighbors. However, mean local receptiveness appears
to be less useful than Shannon entropy for quantifying opinion
fragmentation in a network.

For a fixed node-weight distribution and fixed values of
c and m, the steady-state numbers of major opinion clus-
ters that we obtain for the core-periphery SBM graphs are
comparable to the numbers for a complete graph. The steady-
state numbers of minor opinion clusters tend to be larger for
core-periphery SBM graphs than for two-community SBM
graphs (which have more minor clusters than a complete
graph). For each node-weight distribution and each value of
c and m, when we take the mean of our 500 simulations,
we obtain at most 12 steady-state minor clusters; this oc-
curs when c = 0.1. One possibility is that the core-periphery
structure makes it easier to disconnect peripheral nodes of
an effective-receptivity network, causing these nodes to form
minor clusters. For core-periphery SBM graphs, it seems in-
teresting to investigate the effect of assigning node weights in
a way that depends on network structure. For example, if we
assign all of the large weights to core nodes, will these nodes
pull many peripheral nodes into their opinion clusters? If we
place a large-weight node in the periphery, will it be able to
pull core nodes into its opinion cluster?

D. Caltech network

We now discuss our simulations of our BCM on the Cal-
tech Facebook network, which is an empirical data set in
which the nodes represent individuals with Caltech affiliations
and the edges represent “friendships” on Facebook on one
day in fall 2005 [49,50]. We consider the network’s largest
connected component, which has 762 nodes and 16 651 edges.
The Caltech network has all but one of the trends that we
reported in Table III; the only exception is the trend in the
number of minor opinion clusters. When there is opinion frag-
mentation, the Caltech network has more steady-state minor
clusters and larger steady-state Shannon entropies than in our
synthetic networks.

In Fig. 7, we show the steady-state numbers of minor
opinion clusters in simulations of our BCM on the Caltech
network. We obtain the most minor clusters when c = 0.1,
which is the smallest value of c that we examine. Given a
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FIG. 7. Steady-state numbers of minor opinion clusters in simulations of our node-weighted BCM on the Caltech Facebook network with
various distributions of node weights. We consider an opinion cluster to be a minor cluster if it includes at most 2% of the nodes of a network.
(In this case, a minor cluster has at most 15 nodes.)

node-weight distribution and values of c and m, when we take
the mean of our 100 simulations on the Caltech network, we
often observe a large number of minor clusters (including as
many as 78 of them, which is much larger than the single-digit
numbers that we usually obtain for our synthetic networks).
Additionally, unlike in our synthetic networks, for all node-
weight distributions (not just the constant weight distribution),
the Caltech network tends to have more minor clusters when
m ∈ {0.3, 0.5} than when m = 0.1. We include our plot of the
steady-state numbers of major opinion clusters in our code
repository [46]. For a fixed node-weight distribution and fixed
values of c and m, the Caltech network tends to have fewer
major opinion clusters than our synthetic networks.

In Fig. 8, we show the steady-state Shannon entropies for
the Caltech network. For a fixed node-weight distribution and
fixed values of c and m, when there is opinion fragmentation,
we observe a larger entropy for the Caltech network than
for our synthetic networks. This aligns with our observa-
tion that the Caltech network has many more minor opinion
clusters than our synthetic networks. We show a plot of the
steady-state values of mean local receptiveness for the Caltech

network in our code repository [46]. The values of the mean
local receptiveness tend to be larger for the Caltech network
than for a 500-node complete graph. We suspect that this
arises from the presence of many small-degree nodes in the
Caltech network. In Sec. IV C, we discussed the impact of
small-degree nodes on the mean local receptiveness.

The histogram of the node degrees of the Caltech network
(see Fig. 9) differs dramatically from those of our synthetic
networks. Unlike in our synthetic networks, the most common
degrees in the Caltech network are among the smallest de-
grees. In Fig. 9, the tallest bar in the histogram indicates nodes
with degrees 1–9. These abundant small-degree nodes are
likely to disconnect from large connected components of the
effective-receptivity network and form minor opinion clusters.
Because we select the initial opinions uniformly at random
from [0,1], when c = 0.1, it is possible that small-degree
nodes are initially isolated nodes of the effective-receptivity
network because of their initial opinions. The abundance of
small-degree nodes in the Caltech network helps explain its
larger steady-state numbers of minor opinion clusters and the
correspondingly larger entropies than in our synthetic net-

FIG. 8. Shannon entropies of the steady-state opinion-cluster profiles in simulations of our node-weighted BCM on the Caltech Facebook
network with various node-weight distributions.
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FIG. 9. Histogram of the node degrees of the Caltech Facebook
network. The bins have width 10 and originate at the left end point
(so the bins indicate degrees of 0–9, 10–19, and so on).

works. Despite the fact that the Caltech network is structurally
very different from our synthetic networks, it follows all of
the trends in Table III aside from the one for the number of
minor opinion clusters. Therefore, it seems that the trends
that we observe in our node-weighted BCM when we assign
node weights uniformly at random (and hence in a way that
is independent of network structure) are fairly robust to the
underlying network structure.

E. Finite-size effects

We now investigate finite-size effects by simulating our
BCM on complete graphs of different sizes. Previously, to
ensure reasonable computation times, we examined syn-
thetic networks with 500 nodes. However, it is useful
to get a sense of whether or not the trends in Ta-

ble III hold for networks of different sizes. We thus
simulate our BCM on complete graphs of sizes N ∈
{10, 20, 30, 45, 65, 100, 150, 200, 300, . . . , 1000}. We exam-
ine m ∈ {0.3, 0.5} and c ∈ {0.1, 0.3, 0.5}. These values of c
give regimes of opinion fragmentation, a transition between
fragmentation and consensus for the constant weight distribu-
tion, and opinion consensus. We consider the constant weight
distribution and the 80-10 distributions (i.e., the uniform, ex-
ponential, and Pareto distributions with a mean node weight
of 2.8836). We do not examine any larger-mean distributions
because they require longer computation times.

We show our results for convergence times and steady-state
Shannon entropies. To visualize our results, we plot graph
sizes on a logarithmic scale. We include plots of our simu-
lation results at steady state for the numbers of major opinion
clusters, the numbers of minor opinion clusters, and the values
of mean local receptiveness in our code repository [46].

In Fig. 10, we show the convergence times of our simula-
tions of our BCM on complete graphs of various sizes. For
all distributions, the convergence times become longer as we
increase the graph size. For each graph size, the convergence
times for the heterogeneous weight distributions are similar to
each other and are longer than those for the constant weight
distribution.

In Fig. 11, we show the steady-state Shannon entropies
for our simulations of our BCM on complete graphs of var-
ious sizes. For a fixed value of c, we observe similar results
when m = 0.3 and m = 0.5. When c = 0.5, for each node-
weight distribution, our simulations always reach a consensus
(i.e., there is exactly one steady-state major opinion cluster)
for N � 200. Correspondingly, the steady-state entropies are
close to 0. (They are not exactly 0 because the calculation of
Shannon entropies includes information from minor clusters.)
As we increase the network size, the error bars (which indicate
one standard deviation from the mean) become progressively

FIG. 10. Convergence times (in terms of the number of time steps) in simulations of our node-weighted BCM on complete graphs of
various sizes. We show results for various choices of c and m; the marker shape and color indicate the node-weight distribution. For this
figure and subsequent figures of this type, the points are means of 100 simulations and the error bars indicate one standard deviation from the
mean. The horizontal axis gives the graph size on a logarithmic scale. The vertical axes of the plots have different scales.
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FIG. 11. Shannon entropies of the steady-state opinion-cluster profiles in simulations of our node-weighted BCM on complete graphs of
various sizes. We show results for various choices of c and m; the marker shape and color indicate the node-weight distribution.

smaller. When c ∈ {0.1, 0.3}, for sufficiently large graph sizes
(specifically, when N � 100), we observe that the entropy
increases as we increase the heaviness of the tail of a distribu-
tion. For c = 0.3, the mean steady-state entropies appear to no
longer change meaningfully with respect to N when N � 400.
For c = 0.1, this is the case when N � 100.

When there is opinion fragmentation, the heterogeneous
node-weight distributions tend to yield larger steady-state
Shannon entropies (and hence more opinion fragmentation,
if one is measuring it using entropy) than the constant weight
distribution for each graph size. Additionally, for the 80-10
distributions and sufficiently large graph sizes, we obtain
larger entropies as we increase the heaviness of the distri-
bution tail. We have not explored the effect of graph size
on the observed trends (see Table III) when we increase the
distribution mean for a fixed family of distributions. In our
code repository [46], we include a plot that compares the
steady-state mean local receptiveness for complete graphs of
various sizes. In that plot, we also observe that there tends
to be more opinion fragmentation (in the sense of a smaller
mean local receptiveness) for heterogeneous node-weight dis-
tributions with increasingly heavy tails.

We also examine the steady-state numbers of minor and
major opinion clusters in simulations of our BCM on complete
graphs of various sizes. We include plots of them in our code
repository [46]. For a fixed value of c, we observe similar
results when m = 0.3 and m = 0.5. When N � 49, there are
no minor opinion clusters, by definition, because minor clus-
ters can include at most 2% of the nodes of a network (and
even a single node constitutes more than 2% of all nodes
for such small networks). When N � 65 and c ∈ {0.1, 0.3},
for each distribution, the number of minor clusters tends to
increase as we increase N . We do not observe a clear trend
in which node-weight distributions yield more minor clusters.
For all N and c = 0.5, the mean number of minor clusters is
close to 0. We now consider major opinion clusters. When
c = 0.5 and N � 200, all simulations yield one major opinion
cluster (i.e., they all reach consensus). When c = 0.3, for all

graph sizes, there are more major opinion clusters as we in-
crease the heaviness of the tail of a distribution. Additionally,
when c = 0.3, for the Pareto-80-10 distribution, the number
of major clusters tends to increase as we increase the graph
size. For the other node-weight distributions, the number of
major clusters tends to decrease as we increase the graph
size. When c = 0.1 and N � 200, there again tends to be
more major clusters as we increase the heaviness of the tail
of a distribution, although the trend is not as clear as it was
for c = 0.3.

Based on our exploration of finite-size effects, we are
confident that complete graphs with N � 500 nodes have the
trends in Table III. For graphs with N � 500 nodes, the mean
steady-state Shannon entropies for each node-weight distri-
bution appear to no longer change meaningfully with respect
to N . For each graph size, the heterogeneous 80-10 distribu-
tions have longer convergence times than the constant weight
distribution. For a fixed graph size and fixed values of c and
m, we observe more opinion fragmentation as we increase the
heaviness of the tail of a distribution. Because of computation
time, we have not examined finite-size effects for distributions
other than the 80-10 distributions. However, because the mean
Shannon entropies no longer change meaningfully with re-
spect to N for graphs with N � 500 nodes, we hypothesize
that the trends in opinion fragmentation and convergence time
in Table III continue to hold for our synthetic networks when
there are more than 500 nodes.

V. CONCLUSIONS AND DISCUSSION

We studied a bounded-confidence model (BCM) with het-
erogeneous node-selection probabilities, which we modeled
using node weights. One can interpret these node weights as
encoding phenomena such as heterogeneous agent sociabil-
ities or activity levels. We studied our node-weighted BCM
with fixed node weights that we assign in a way that disre-
gards network structure and node opinions. We demonstrated
that our node-weighted BCM has longer convergence times
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and more opinion fragmentation than a baseline Deffuant-
Weisbuch (DW) BCM in which we uniformly randomly select
nodes for interaction. It is straightforward to adapt our BCM
to assign node weights in a way that depends on network
structure and/or node opinions. See Sec. V B and Sec. V C
for discussions.

A. Summary of our main results

We simulated our node-weighted BCM with a variety of
node-weight distributions (see Table II) on several random
and deterministic networks (see Table I). For each of these
distributions and networks, we systematically investigated the
convergence time and opinion fragmentation for different val-
ues of the confidence bound c and the compromise parameter
m. To determine if the nodes of a network reach consensus or
if there is opinion fragmentation, we calculated steady-state
number of major clusters in our simulations. To quantify the
amount of opinion fragmentation, we calculated steady-state
Shannon entropy and mean local receptiveness. For a given
network, we found that entropy and mean local receptive-
ness tend to follow the same trends in which node-weight
distributions have more opinion fragmentation (see Table III).
Additionally, based on our results, we believe that Shannon
entropy is more useful than mean local receptiveness for
quantifying opinion fragmentation in a network. However,
calculating local receptiveness is insightful for explorations
of the opinion dynamics of individual nodes.

In our simulations of our node-weighted BCM, we ob-
served a variety of trends (see Table III). In particular, we
found that heterogeneous node-weight distributions tend to
yield longer convergence times and more opinion fragmen-
tation than the baseline DW model (which we obtain by using
a constant weight distribution) in our simulations of our BCM.
Opinion fragmentation also tends to increase if either (1) for
a fixed distribution mean, we increase the heaviness of the
tail of a distribution or (2) for a fixed distribution family, we
increase the distribution mean. Given a set of heterogeneous
node weights, we hypothesize that large-weight nodes are
selected early in a simulation with large probabilities and
quickly settle into their associated steady-state major opinion
clusters. Small-weight nodes that are not selected early in
a simulation are left behind to form small opinion clusters,
resulting in more opinion fragmentation than in the baseline
DW model.

B. Relating node weights to network structure

We examined deterministic and random graphs with var-
ious structures, and we observed the trends in Table III. For
each of our BCM simulations, we selected node weights from
a specified distribution and then assigned these weights to
nodes uniformly at random. Therefore, our investigation con-
veys what trends to expect with fixed, heterogeneous node
weights that are assigned to nodes without regard for network
structure. However, our model provides a flexible framework
to study the effects of node weights when they are correlated
with network structure. For example, one can assign weights
to nodes in a way that depends on some centrality measure
(such as degree). In our BCM, we expect large-degree and
large-weight nodes to have more interactions than small-
degree or small-weight nodes. Nodes with larger degrees have
more neighbors that can select them for an interaction, and

nodes with larger weights have larger probabilities of being
selected for an interaction. One possible area of future work is
to investigate the combined effects of node weights and node
degrees on the frequencies of interactions and the distribution
of steady-state opinions in our BCM. Mean-field approaches,
such as the one in [71], may offer insights into these effects.

For a given set of node weights, larger-weight nodes have
larger probabilities of interacting with other nodes, so their
positions in a network likely influence the dynamics of BCMs
and other models of opinion dynamics. One can also inves-
tigate the effect of homophily when choosing how to assign
node weights. For example, in social-media platforms, very
active accounts may engage with each other more frequently
by sharing or commenting on each others’ posts. We can
incorporate such features into our BCM through a posi-
tive node-weight assortativity, such that large-weight nodes
are more likely to be adjacent to each other than to other
nodes.

As in the standard DW model, we assign the initial agent
opinions uniformly at random in our BCM. However, in a real
social network with community structure, this choice may not
be realistic. One can consider a social network with communi-
ties with different mean opinion values and examine the effect
of placing large-weight nodes in different communities. For
example, how does placing all large-weight nodes in the same
community affect opinion dynamics and steady-state opinion-
cluster profiles? How does the presence of a small community
of “outspoken” (i.e., large-weight) nodes influence the final
opinions of nodes in other communities of a network? Will the
small community quickly induce an echo chamber [69], will
it pull other nodes into its opinion cluster, or will something
else occur?

C. Relating node weights to node opinions

In the present paper, we considered fixed node weights
that are independent of node opinions. One can readily adapt
our BCM to incorporate time-dependent node weights, such
as ones that depend on node opinions. One can allow the
probability of selecting a node for interaction to depend on
how extreme its opinion is [22] or on the similarity of its
opinion to that of another node [24].

Sîrbu et al. [24] studied a modified DW model with hetero-
geneous node-selection probabilities that model algorithmic
bias on social media. In their model, one first selects an agent
uniformly at random. One then calculates the magnitude of
the opinion difference between that agent and each of its
neighbors and then selects a neighbor with a probability that
is proportional to this difference. In the context of our BCM,
one can represent their agent-selection mechanism using time-
dependent node weights. To do this, at each time t , one assigns
the same weight to all nodes when selecting a first node i.
When selecting a node to interact with i, one then assigns
weights to the neighbors j of node i that depend on the opinion
difference |xi(t ) − x j (t )|. One assigns a weight of 0 to nodes
that are not adjacent to i. The simulations by Sîrbu et al. on
complete graphs suggest that more algorithmic bias results
in longer convergence times and more opinion clusters [24].
Pansanella et al. [25] observed similar trends in a study of
the algorithmic-bias model of Sîrbu et al. for various random-
graph models.
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In our simulations of our BCM with heterogeneous node-
selection probabilities, we observed similar trends of longer
convergence times and more opinion clusters (and opinion
fragmentation) than in our baseline DW model. When study-
ing a BCM with heterogeneous node-selection probabilities,
we see from our results that it is important to consider the
baseline influence of assigning node weights uniformly at
random before attributing trends such as longer convergence
times and more opinion fragmentation to specific mechanisms
such as algorithmic bias. Different mechanisms can yield very
similar empirical observations.

D. Edge-based heterogeneous activities

In the standard DW model, at each time, one selects an
edge of a network uniformly at random and the two agents
that are attached to that edge interact with each other [47].
Most past work on the DW model and its extensions has
focused on this edge-based selection mechanism [5]. In our
BCM, to incorporate node weights (e.g., to encode heteroge-
neous sociabilities or activity levels of individuals), we instead
used a node-based selection mechanism. For voter models
of opinion dynamics, it is known that the choice between
edge-based and node-based agent selection can substantially
affect a model’s qualitative behavior [48]. We are not aware
of existing research that compares edge-based and node-based
agent selection in asynchronous BCMs (and, in particular, in
DW models), and it seems interesting to investigate this issue.

Our BCM has node weights to encode heterogeneous activ-
ity levels of individuals. One can also examine heterogeneous
dyad-activity levels to account for the fact that individuals do
not interact with each of their social contacts with the same
probability. To encode such heterogeneity, one can construct a
variant of our BCM that incorporates edge weights. At each
time step, one can select a pair of agents to interact with
a probability that is proportional to the weight of the edge
between them. Additionally, one can relate edge-selection
mechanisms to node-selection mechanisms. We have not ex-
amined edge-based heterogeneous activity levels in a BCM,
and we expect that it will be interesting to investigate them.

E. Importance of node weights

A key feature of our BCM is our incorporation of node
weights into opinion dynamics. Node weights have been
used in activity-driven models of temporal networks [39],
and activity-driven frameworks have been used to model
which agents can interact with each other in models of
opinion dynamics [23,40]. In our BCM, the node weights
determine the probabilities of selecting agents for interaction
in a time-independent network. Alizadeh and Cioffi-Revilla
[22], Sîrbu et al. [24], and Pansanella et al. [25] examined
specific scenarios with heterogeneous node-selection proba-
bilities in modified DW models. Our node-weighted BCM
gives a general framework to incorporate node weights into
asynchronous BCMs. Using our framework, one can consider
node weights that are fixed and assigned uniformly at random

(i.e., as we investigated in this paper), are fixed and assigned
according to some other probability distribution (see the dis-
cussion in Sec. V B), or are assigned in a time-dependent way
(see the discussion in Sec. V C).

In network science, node weights have been studied far less
than edge weights, and even the term “weighted network”
usually refers specifically to edge-weighted networks by de-
fault. For example, it is very common to study centralities
in edge-weighted networks [72], but studies of centralities in
node-weighted networks (e.g., see Refs. [73,74]) are much
less common. Heitzig et al. [73] generalized common network
statistics to node-weighted networks and used node weights
to represent the “sizes” of the nodes of a network. They used
their framework to study brain networks with node weights
that encode the areas of regions of interest, international trade
networks with node weights that encode the gross domestic
products (GDPs) of countries, and climate networks with node
weights that encode areas in a regular grid on the Earth’s
surface. Singh et al. [74] developed centrality measures that
account for both edge weights and node weights, and they
used them to study service-coverage problems and the spread
of contagions. These studies demonstrate the usefulness of
node weights for incorporating salient information in network
analysis in a variety of applications.

In our node-weighted BCM, we are interested in deter-
mining which nodes of a network are (in some sense) more
influential than others and thereby have a larger impact on
steady-state opinion-cluster profiles. Recently, Brooks and
Porter [75] quantified the influence of media nodes in a BCM
by examining how their ideologies influence other nodes of
a network. An interesting area of future work is to develop
ways to quantify the influence of specific nodes in models
of opinion dynamics with node weights. For example, can
one determine which nodes to seed with extreme opinions
to best spread such opinions? Are there nodes that make it
particularly easy for communities to reach consensus and re-
main connected in a steady-state effective-receptivity network
Geff (T )? One can tailor the node weights in our BCM to ex-
amine a variety of sociological scenarios in which nodes have
heterogeneous activity levels or interaction frequencies. More
generally, our model illustrates the importance of incorporat-
ing node weights into network analysis, and we encourage
researchers to spend more time studying the effects of node
weights on network structure and dynamics.
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