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In the context of quantum integrated photonics, this work investigates the quantum properties of multimode
light generated by silicon and silicon nitride microresonators pumped in pulsed regime. The developed theoret-
ical model provides a comprehensive description of the generated quantum states. Remarkably, it shows that a
full measurement of states carrying optimal squeezing levels is not accessible to standard homodyne detection,
thus leaving hidden part of generated quantum features. By unveiling and discussing this behavior and possible
strategies to amend it, this work proves itself essential to future quantum applications exploiting microresonators
as sources of multimode states.
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I. INTRODUCTION

Silicon (Si) and silicon nitride (SiN) quantum photon-
ics combine high-density integration of high-performance
functions over small footprint chips [1]. In recent years, a
particular interest has been driven by the possibility of exploit-
ing their optical nonlinearities to generate on-chip multimode
entanglement among frequency-time modes. Four-wave mix-
ing (FWM) in silicon-based microresonators have been used
to prove chip-scale sources of paired photons [2–4] and
low-dimension quantum frequency combs [5]. More recently,
experiments have started including a continuous variable (CV)
regime with the demonstrations of two-color intensity [6]
and quadrature [7–9] entanglement. A Si-based platform has
also been validated to execute quantum algorithms that can
exploit up to eight squeezed vacuum sources integrated on
chip [10].

Realizations and most of theoretical models reported so far
refer to Si and SiN resonators pumped in a continuous-wave
regime [11,12]. At the same time, important applications in
quantum metrology [13], quantum communication [14], and
measurement-based quantum computing [15] can necessitate
the ability to work with particularly complex entanglement
structures. In this perspective, this theoretical paper addresses
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the study of multipartite states produced by microresonators
pumped by optical pulses. Compared to continuous wave
(CW), pulsed regime offers the possibility of generating
highly multimode entangled states with a much richer struc-
ture [13] as well as the possibility of tailoring entanglement
features [16,17]. The presented characterization of the non-
classical properties of microresonators is performed in terms
of morphing supermodes, mapping the full dynamics of mul-
tipartite states into independent single-mode squeezed states
whose spectral shape depends on a continuous parameter
[18]. Such an analysis reveals that in standard working con-
ditions, a full characterization of CV quantum properties of
microresonators is not accessible to traditional homodyne de-
tection, thus leaving optimal squeezing features hidden. This
aspect, never considered by former works on silicon-based
microresonators, is associated to quantum states whose noise
spectra are asymmetrical with respect to the carrier [19,20].
Neglecting this behavior would lead to retrieving only partial
information from the CV multimode source and represents a
major limitation for future applications involving multimode
integrated devices. In a world where integrated photonics on
semiconductors is at the forefront of light-based quantum
technologies, recognizing the presence of morphing behavior
and hidden squeezing anticipates relevant difficulties arising
from the use of microresonators as sources of multipartite
quantum light. The results of this study open the door to
discussions about strategies for exploiting multimode states
in an optimal manner and can inspire innovative engineering
techniques that facilitate the production of states that are
easier to detect and manipulate in experiments. Its impact
is, thus, essential for the conception and future experimental
realizations of quantum technologies applications exploiting
pulsed multimode states.
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FIG. 1. Schematic of a synchronously pumped microring. The
pump frequency comb has carrier ωp = ω̄p,0, pulse duration τp, and
repetition rate �p approximately equal to the double of the cavity
free spectral range so that the pump spectral components match
one cavity resonance of two, with mode-dependent detuning �p,m.
Coupling losses are given by γ f ,m, with f = {p, s}.

II. SYNCHRONOUSLY PUMPED MICRORINGS

As shown in Fig. 1, without losing generality, the sys-
tem here investigated is a microresonator coupled to a single
straight injection waveguide (single-bus device) and pumped
by an infinite train of optical pulses of duration τp and repe-
tition rate �p. In the frequency domain, this corresponds to a
comb of equally spaced spectral components,

ω̄p,m = ωp + m�p (1)

(m ∈ Z), spanning over a range σp ∝ 2π/τp around the
optical carrier at frequency ωp. To address common exper-
imental situations, a type-0 FWM process is considered. This
phase-matching choice guarantees high nonlinear conversion
efficiencies and is thus particularly compatible with the CV
regime [7–9]. In the frequency domain, FWM interaction
modes are determined by frequencies corresponding to the
cavity resonances [21]:

ωm = ω0 +
∑
k�1

�k

k!
mk . (2)

The reference label m = 0 indicates the resonance whose
frequency approximately matches the pump carrier, ω0 ≈ ωp

(see Fig. 1). The first-order parameter �1 = c/(ngReff ) gives
the average cavity free spectral range (FSR) in terms of the
speed of light in vacuum c, the group index ng, and the ring
effective radius Reff . To have distinct signal and pump modes
and guarantee a synchronous pumping regime, the pump rep-
etition rate is taken to be �p ≈ 2�1 (i.e., ω̄p,m ≈ ωp + 2m�1)
so that the pump injection components approximately match
one cavity resonance out of two. Synchronous pumping op-
eration has been validated, in bulk quantum optics, as a
particularly efficient one for the generation of high-quality
CV multipartite entanglement for quantum computing and
quantum metrology applications [22].

Due to dispersion, their detuning with respect to even
cavity resonances �p,m = ω2m − ω̄p,m changes with m. The
parameter �2 = −(n′

gc2)/(n3
gR2

eff ) accounts for second-order

dispersion effects via the frequency derivative n′
g together with

higher-order dispersion terms �k>2. As depicted in Fig. 1,
frequency-entangled signal modes are generated by FWM at
frequencies

ω̄s,m = ωp + (2m + 1)
�p

2
(3)

and can thus be unequivocally distinguished from the pump
(“s” denotes “signal”). They are in general detuned by �s,m =
ω2m+1 − ω̄s,m with respect to the odd cavity resonances.

III. SYSTEM HAMILTONIAN

The quantum evolution of the microring is obtained in
terms of the bosonic operators associated to the pump ( p̂m)
and signal (ŝm) intracavity modes verifying the standard boson
commutation rules and the only nonzero commutators are

[ p̂m, p̂†
n] = δm,n,

[ŝm, ŝ†
n] = δm,n. (4)

In order to correctly keep into account dispersion, field quan-
tification is performed by choosing the displacement field D̂
and the magnetic field B̂ as the fundamental entities [23–25]
(more details are given in Appendix A). The dynamics of the
intracavity modes is ruled by the system total Hamiltonian,

Htot = H0 + Hint + Hinj, (5)

where

Ĥ0 =
∑

m

h̄ωp,m p̂†
m p̂m +

∑
m

h̄ωs,mŝ†
mŝm (6)

is the Hamiltonian of the free fields and

Ĥinj = ih̄
∑

m

(Em p̂†
me−iω̄p,mt + E∗

m p̂meiω̄p,mt ) (7)

describes the injection of a frequency comb (synchronous
pumping) with spectral amplitudes Em at frequencies ω̄p,m. In
the context of a scalar theory (see Appendix A), the interaction
Hamiltonian, Ĥint , can be written in terms of the displacement
field inside the microresonator as:

Ĥint = η(3)

4

∫
D̂4 d3r, (8)

with η(3) the inverse permittivity tensor and by assuming a
medium with null second-order susceptibility. In the rotating-
wave approximation, only three kinds of processes (and their
reciprocal) respect the energy conservation condition and
must be kept in the explicit expression of the Hamiltonian of
(8). The first process describes the conversion of two pump
photons into two other pump photons such that ωp,m + ωp,n =
ωp,l + ωp,k; the second of two pump photons into two signal
photons such that ωp,m + ωp,n = ωs,l + ωs,k ; the third of one
pump photon and one signal photon to another couple of
pump and signal photons such that ωp,m + ωs,n = ωp,l + ωs,k .
The processes ωs,m + ωs,n = ωs,l + ωs,k will be neglected be-
cause, in the semiclassical approximation, they are mediated
by amplitudes that have null mean value (〈ŝm〉 = 0). Accord-
ingly, the interaction Hamiltonian can be written as:

Ĥint ≈ Ĥp,p + Ĥp,s, (9)
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where the term Ĥp,p describes the FWM interaction between
pump modes and the term Ĥp,s describes the pump-mediated
generation of the signal modes. The details of these two terms
are given in Appendix B [Eqs. (B1) and (B2)].

IV. MULTIMODE QUANTUM LANGEVIN EQUATIONS

Quantum properties of multimode light out of the mi-
croresonator are obtained by solving the system of coupled
quantum Langevin equations describing its dissipative dy-
namics [26,27]. These are obtained through standard methods
[28] from the system Hamiltonian (5) and after moving in the
rotating frame of the injection as detailed in Appendix C. They
can be cast as follows:

d

dt
ξ̂ = L ξ̂ + N (ξ̂) + F ξ̂in + E (10)

with the column vectors ξ̂ = ( p̂|ŝ)T , p̂ =
(. . . , p̂−1, p̂0, p̂1 . . .)T and ŝ = (. . . , ŝ−1, ŝ0, ŝ1 . . .)T

collecting the pump and signal intracavity field operators,
ξ̂in = ( p̂in|q̂in|ŝin|r̂in )T the additive noise terms and E the
external driving of the pump modes. In particular p̂in and
ŝin account for pump and signal coupling losses, while q̂in
and r̂in for pump and signal propagation losses. In Eq. (10),
the nonlinear evolution of intracavity modes is described by
N (ξ̂). Its explicit expression as a function of the elements of
ξ̂ is provided by Eqs. (C7) and (C8). The diagonal matrix L
accounts for the linear part of the evolution and is given by

L =
(
Lp 0

0 Ls

)
, (11)

where L f (with f ∈ {p, s}) are diagonal matrices with ele-
ments

L f , j = −γ f , j − κ f , j − i� f , j, (12)

which contain mode-dependent coupling losses γ f , j and de-
tunings � f , j . The terms κ f , j account instead for intracavity
losses. The noise matrix F is

F =
(
Fp Fq 0 0
0 0 Fs Fr

)
, (13)

where each block is diagonal with elements Fp, j = √
2γp, j ,

Fq, j = √
2κp, j , Fs, j = √

2γs, j , and Fr, j = √
2κs, j .

Linearized quantum Langevin equations

Langevin equations are linearized around a stable classical
stationary solution of the nonlinear system of algebraic equa-
tions that one obtains from Eq. (10). The linearization is made
by approximating the field operators ξ̂ by 〈ξ̂〉 + δξ̂, where
δξ̂ is a perturbation assumed small with respect to 〈ξ̂〉, and
neglecting in Eq. (10) terms of higher order than the first in
δξ̂. The equations for finding the classical stationary solution
(i.e., for the 〈ξ̂〉) read as:

L 〈ξ̂〉 + 〈N (ξ̂)〉 + E = 0, (14)

where the pump modes are macroscopically populated,
〈p̂m〉 	= 0, and the signal modes are empty, 〈ŝm〉 = 0. This
corresponds to a below threshold regime. The solutions 〈p̂m〉

depend on the injected pump power P, the detuning �p,0, and
the FSR mismatch �� = �1 − �p/2. The linear quantum
Langevin equations that are obtained from this procedure
corresponds to a double-bus model since they include both
coupling and internal losses (see Appendix D). However, they
can be conveniently expressed in terms of a single-bus model
after a suitable redefinition of the noise terms as detailed in
Appendix E.

In what follows, the linearized Langevin equations for
fluctuation operators δξ̂ will be expressed in terms of the
quadrature operators associated to intracavity modes: quadra-
tures are indeed observables that, in principle, can be
measured in experiments. By defining x̂m = (1/

√
2)(ŝ†

m +
ŝm) ŷm = (i/

√
2)(ŝ†

m − ŝm), one obtains the following set of
coupled quantum linear Langevin equations:

dR̂(t )

dt
= (−� + M)R̂(t ) +

√
2� R̂in(t ), (15)

where R̂(t ) = (x̂(t )|ŷ(t ))T is the column vector x̂(t ) =
(. . . , x̂−1, x̂0, x̂+1, . . .)T and ŷ(t ) = (. . . , ŷ−1, ŷ0, ŷ+1, . . .)T

while R̂in(t ) contains the quadratures of the input signal
modes, here set in the vacuum state. The diagonal matrix �

describes mode-dependent coupling losses of the single-bus
cavity including propagation losses as well (see Appendix E
and Ref. [29]). The interaction matrix M is expressed as

M =
(

Im[G + F ] Re[G − F ]

−Re[G + F ] −Im[G + F ]T

)
,

(16)

in terms of the complex matrices G and F (with G = G† and
F = F T [30]). Matrix G contains mode-dependent detunings
and all terms accounting for self- and cross-phase modula-
tion (referred here as nonlinear dispersion terms), while F
accounts for parametric amplification processes. For the mi-
croresonator model considered here, their elements explicitly
depend on the pump stable steady states as:

Fm,n = g
∑

l

〈p̂m−l+n+1〉〈p̂l〉, (17)

Gm,n = �s,mδ[m−n] + g
∑

l

2〈p̂m+l−n〉〈p̂l〉∗, (18)

where δ[m−n] is the Kronecker delta and g the nonlin-
ear strength. The output quadratures R̂out can be obtained
via input-output relations R̂in + R̂out = √

2� R̂ [28]. In the
Fourier space, input and output quadratures are connected via
the transfer function, S(ω), that solves Eq. (15) as

R̂out (ω) = S(ω) R̂in(ω), (19)

where ω ∈ R. The complex matrix-valued function S(ω) is
found to be

S(ω) =
√

2�(iωI + � − M)−1
√

2� − I. (20)

Since M is Hamiltonian and � is skew-Hamiltonian, it is
possible to prove [18] that S(ω) is ω-symplectic [31], so that
R̂out (ω) are the Fourier transform of bona fide boson quadra-
ture operators that satisfy the property R̂†(ω) = R̂(−ω) so as
to ensure the Hermiticity in time domain [32].
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V. MORPHING SUPERMODES ANALYSIS

As demonstrated in Ref. [18], in the general case of a
system presenting both linear and nonlinear dispersion (in
G) and parametric amplification (in F ), squeezing properties
need to be described in terms of morphing supermodes. These
are coherent superpositions of the original modes that evolve
with a continuous parameter (here ω) and allow mapping mul-
timode CV entangled states into a collection of independent
squeezed states. They are obtained by performing the analytic
Bloch-Messiah decomposition (ABMD) of the transfer func-
tion S(ω) = U (ω)D(ω)V †(ω). In this expression, U (ω) and
V (ω) are unitary and ω-symplectic matrix-valued functions
that characterize the supermodes structure. In particular, the
output quadratures of morphing supermodes are given by

R̂
′
out (ω) = U †(ω)R̂out (ω) (21)

and represent the optimally (anti-)squeezed op-
erators. In particular their noise level is given
by the elements of the diagonal matrix D(ω) =
diag{d1(ω), . . . , dN (ω)| d−1

1 (ω), . . . , d−1
N (ω)}, where

d−1
i (ω) is the squeezing of supermode “i” and di(ω) the

antisqueezing of supermode “N + i” [with di(ω) � 1 for
all ω]. In time domain, assuming input vacuum state, the
stationary Gaussian quantum state at the microresonator
output is entirely characterized by the covariance matrix

σout (t ) = 1
2 〈R̂out (0)R̂

T
out (t ) + (R̂out (t )R̂

T
out (0))

T 〉 [33]. In
Fourier domain it corresponds to the spectral covariance
matrix,

σout (ω) = 1

2
√

2π
U (ω)D2(ω)U †(ω), (22)

that, in general, is Hermitian since D(ω) is real. While this
analysis in terms of morphing supermodes allows to fully
characterize the quantum properties of synchronously pumped
microresonators, it generally applies to the dynamics induced
by any quadratic Hamiltonian [18]. The generated states be-
long to the broad class of Gaussian states having a Hermitian
covariance matrix as like (22). Discussed results can thus be
easily extended to many other situations.

VI. MULTIMODE SQUEEZING FROM
A MICRO-RESONATOR

As a representative example, in what follows, it will
be considered the case of a pump frequency comb of
spectral amplitudes {Em}m∈Z with Gaussian distribution
E0 exp[−m2/(2σp)], resonant with the central cavity mode
m = 0, i.e., �0 = 0 [Fig. 2 (top)]. Its repetition rate matches
the double of the cavity average FSR (�� = 0), the spec-
tral width is σp = 20 and E0 is set so that the system is
1 % below its oscillation threshold. Cavity losses are equal
γm = γ for all m and second-order anomalous dispersion
is set to �2 = −0.01γ . As illustrated in Fig. 2, the real
Gaussian injection profile (top) induces a complex intracav-
ity steady state (bottom) whose amplitude and phase spectra
enter the systems dynamics via Eqs. (17) and (18). Corre-
spondingly, Fig. 3 shows optimal squeezing [d−1

i (ω)] and
antisqueezing [di(ω)] levels as functions of ω, as obtained
by ABMD. The highest (anti-)squeezing value is obtained
at ω = 0 for supermode i = 1 (i = N + 1). Figure 4 (top)

−40 −20 0 20 40
m

0.0

0.1

0.2

A
bs

√
γ3/g Em

−40 −20 0 20 40
m

0.00

0.05

0.10

0.15

0.20

A
bs

√
g/γ 〈p̂m〉
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FIG. 2. (Top) Normalized amplitude and phase profiles of the
injection

√
γ 3/gEm and (bottom) of intracavity steady-state solutions√

γ /g 〈 p̂m〉.The stable steady state 〈 p̂m〉 is obtained by solving the
classical part of the nonlinear Langevin equations for a space of N =
101 pump modes. Parameters: Em = E0 exp −m2/(2σp) with σp = 20
and E0 is chosen so that the system is 1 % below its threshold;
�0/γ = 0, ��/γ = 0, �2/γ = −0.01 and losses equal to γ for
all m.

shows the frequency-varying coefficients of the first mor-
phing supermode given by the first column of U (ω), say,
U1(ω). Higher-order supermodes are reproduced in Appendix
F (see Fig. 7). In agreement with Eq. (21), Fig. 4 (bot-
tom) illustrates how, at a given ω̄, the supermode quadrature
is built as R̂′

out,1(ω̄) = (Re[UT
1 (ω̄)] − i Im[UT

1 (ω̄)])R̂out (ω).

FIG. 3. Frequency-dependent optimal degree of antisqueezing
di(ω) (shades of red) and squeezing d−1

i (ω) (shades of blue), re-
spectively. The zero level represents the standard quantum limit.
The function d−1

1 (ω) corresponds to the optimal level of squeezing
associated to the morphing supermode U 1(ω) in Fig. 4. Simulation
parameters as in Fig. 2.
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FIG. 4. Top: Real and imaginary part of the first output morphing
supermode for the case of a microresonator. Bottom: For a given fre-
quency ω̄, the column vectors of the real and imaginary part of U 1(ω)
give the coefficients of the supermode quadrature R′

out,1(ω̄). They also
define the profile a local oscillator should have to detect the optimal
level of squeezing d−1

1 (ω̄) (see Fig. 3). Simulation parameters as in
Fig. 2.

Changing the analysis frequency thus implies a different lin-
ear combination. As numerically shown, ABMD generally
returns supermodes whose structure smoothly depends on ω

and have both real and imaginary parts non-null. As a conse-
quence, the multimode state produced by the microresonator
is characterized by a σout (ω) that, contrarily to what was
assumed in previous studies, is not real. This formally reflects
the presence of an imbalance between the noise spectral com-
ponents at ω and −ω [19,20]. Such an effect is characteristic
of a dynamics in a χ (3) medium and of a mode-dependent dis-
persion. It is not present in dispersion-compensated nonlinear
cavities with χ (2) media where G = 0 and, correspondingly,
the supermodes are frequency independent and real in the
quadrature representation [17,27].

VII. HOMODYNE DETECTION AND MEASURABLE
SQUEEZING

In experiments, the spectral covariance matrix of Eq. (22)
can be reconstructed via frequency homodyning [34]: a refer-
ence beam, called “local oscillator” (LO):

ELO(t ) = i
∑

m

αm e−iωs,mt + H.c., (23)

beats with the microresonator output so that the photocurrent
operator can be written as

ı̂(t ) ∝
∑

m

{Re[αm] x̂out,m(t ) + Im[αm] ŷout,m(t )}

= QT · R̂out (t ). (24)

Here the normalized column vector Q = (Re[α] | Im[α])T

corresponds to the spectral profile of the LO in the quadra-

0 2 4 6 8 10
ω/γ

−40

−30

−20

−10

0

10

S
qu

ee
zi

ng
(d

B
)

d−2
1 (ω)

constant and complex Q

constant and real Q

FIG. 5. Comparison between the optimal squeezing of the first
supermode (solid blue) as shown in Fig. 3, the squeezing one would
measure, via homodyne detection, with an unphysical ω-independent
complex LO quadrature profile (dashed gray), the optimal squeezing
accessible to a standard homodyne detection (solid gray). Simulation
parameters as in Fig. 2.

ture representation and collects the complex LO amplitudes
α = (. . . , α−1, α0, α+1, . . .)T . Although LOs with arbitrary
spectral amplitudes α are accessible to experiments [22], the
amplitudes and phases of their spectral components always
combine so as to give real quadratures, i.e., a real Q: This
guarantees that, in time domain, the LO electric field (23) and
the photocurrent operator (24) are Hermitian. Equation (24)
has been obtained by assuming that the microresonator output
varies little during the detection time and that the actual detec-
tion time is longer than �−1. In experiments, this assumption
is easily verified for standard microring resonators for which
the output slowly varying envelope is in the tens of MHz, � in
the hundreds of THz and detection time typically of the order
of tens of ns [1]. When the Fourier transform of the photode-
tection signal is performed, such a projective measurement
allows retrieving the field quadratures and, in particular, the
measured noise spectrum:

�Q(ω) = QT σout (ω)Q. (25)

In this context, ω is indicated as the analysis frequency as it
directly identifies a given noise component of the photocurrent
signal. By inserting Eq. (22) in (25), it is evident that optimal
(anti-)squeezing d−1

i (ω) [di(ω)] can be measured only if Q
matches the ith column of U (ω) for all ω [i.e., U (ω) projects
optimally on the LO]. However, in general, this is not possible
for two reasons: (i) Q should depend on ω and (ii) Q is real
while U (ω) can be complex. In the case U (ω) is real and Q
constant, the homodyne detection can detect optimal squeez-
ing only at the frequency ω̄ for which the local oscillator
matches the supermode profile [QT U1(ω̄) = 1]. Reconstruct-
ing the entire squeezing profile is done by reshaping Q for
each ω̄. On the other hand, since in general U (ω) is com-
plex, LO cannot be mode matched to any supermode. Thus,
homodyne measure is suboptimal for all values of ω and part
of the quantum properties of the output state remains hidden.
As a way of example, Fig. 5 compares the optimal squeezing
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FIG. 6. Case of Gaussian intracavity steady-state solution 〈 p̂m〉 = A exp[−(m − m̄)2/2σ ]: Real (a) [respectively (d)] and imaginary
(b) [respectively (e)] part of the first morphing supermode and spectrum of the frequency-dependent singular values (c) [respectively (f)] d2

i (ω)
and d−2

i (ω) in the case of microring with dispersion (respectively ideal case without dispersion). Parameters: A = 0.16, σ = 10, �0/γ = −2,
�� = 0, and [(a)–(c)] m̄ = 0, �2/γ = −0.01; [(d)–(f)] m̄ = 0.5, �2 = 0, with losses equal to γ for all m.

spectrum d−2
1 (ω) (solid blue line) of the first morphing super-

mode U1(ω) to the one obtained by using an ω-independent
LO profile. If a LO with complex quadrature coefficients were
possible, then a perfect mode match of Q to U1 would be pos-
sible only at a given frequency ω̄ (≈2/γ in the example): This
would lead to a noise spectrum as given by the dashed gray
line in the figure, making it possible to detect optimal squeez-
ing at least at this frequency. However, as complex Q are not
physically possible, in experiments, the best one could do is
to optimize Q around ω̄ so that the detected squeezing is the
closest as possible to the optimal value given by d−2

1 (ω̄). The
optimal Q is obtained as the eigenvector corresponding to the
extremal eigenvalue of Re[σout (ω̄)]. In this case the detected
noise spectrum (solid gray line) never reaches the values of
optimal squeezing. In order to detect optimal squeezing at
all frequencies, the LO profile should be a complex-valued
smooth function of ω. This cannot be implemented in standard
detection schemes and rather requires an interferometer with
memory effect associating balanced detection with external
analysis cavities. The description of this scheme is beyond
the scope of this work and will be treated in a subsequent
publication.

Note that the CW pumping regime is a special case of the
pulsed regime we are considering in this work. Below thresh-
old, the system can be reduced to a collection of independent
detuned two-mode OPO where the morphing behavior is still
present but the squeezing is not “hidden.” On the other side,

above threshold, modulational instability gives rise to multi-
mode behavior such as the self pulsing regime. This case then
falls under the situation considered in this work and presents
“hidden squeezing.” Complex morphing supermodes are
obtained for a vast majority of configurations. From a physical
point of view, this behavior is due to a nontrivial G whose
effect is to scramble the quantum correlations generated
through F and induce an imbalance in the noise spectrum. En-
gineering strategies of the injection can be considered in order
to limit these effects. Figure 6 (top) shows the first morphing
supermode as obtained when the injection {Em}m∈Z is engi-
neered to obtain the intracavity steady state 〈p̂m〉 = A exp [ −
(m − m̄)2/2σ ], with A = 0.16, m̄ = 0 and keeping all the
other parameters as in the previous example. This supermode
shows a simpler frequency dependence but a nontrivial imag-
inary part as well as a somehow reduced level of squeezing
due to an increased distance from the threshold. Better results
are obtained when m̄ = 0.5 and in the ideal case in which
dispersion is negligible (�2 = 0). In this case, shown in Fig. 6
(bottom), the first few supermodes are weakly depending on ω

and are real. This makes their squeezing properties completely
accessible through a standard homodyne measurement.
Higher-order supermodes are reproduced in Appendix F
(see Figs. 8 and 9). Although chromatic dispersion can be
reduced thanks to tailored waveguide geometries [35,36], in
the real world, reaching optimal conditions can be hard. In
this sense, the current theoretical analysis opens the route to
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more sophisticated engineering approaches that could allow
future devices to get closer to such ideal configurations.

VIII. CONCLUSIONS

This work provides a complete characterization of the mul-
timode quantum properties of pulsed microring resonators.
The analysis is done in terms of squeezed morphing super-
modes [18] and shows that such supermodes are in general
complex, with the consequence of leaving optimal squeezing
hidden to standard homodyne detection. It is crucial to be
aware of this phenomenon, as it can have significant impli-
cations for experiments that require high levels of multimode
squeezing, particularly in the field of quantum information
science [15]. In order to cope with the unavoidable presence of
morphing and hidden squeezing in integrated platforms, two
strategies can be pursued: The first strategy involves carefully
designing experimental configurations, including the spectral
profile of the pump and possibly the resonator itself so as to
reduce dispersion effects, in order to obtain real supermodes
with a weak dependence on ω. The second strategy involves
the conception of new measurement strategies that can allow
retrieving multimode nonclassical properties in an optimal
way. The phenomenon unveiled in this work is not restricted to
the case of microring resonators, but is more general and con-
cerns all physical processes for which the linearized dynamics
of quantum fluctuation around stable equilibrium points can
be described by a quadratic Hamiltonian containig terms such
as in the matrices G and F discussed in this paper. This is
the case, for example, of optomechanical systems, FWM in
atomic ensembles, semiconductor microcavities and quantum
cascade lasers.
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APPENDIX A: FIELD QUANTIFICATION

In order to distinguish the intracavity modes that are
populated by the external pump and those that are not, we
decompose the displacement field D̂ (bold designates vector
quantities) as

D̂(r, t ) = [D̂p(r, t ) + D̂s(r, t )], (A1)

where

D̂p(r, t ) = i
∑

m

Dp,m[ p̂mdp,m(r) + p̂†
md∗

p,m(r)], (A2)

D̂s(r, t ) = i
∑

m

Ds,m[ŝmds,m(r) + ŝ†
md∗

s,m(r)]. (A3)

The spatial modes d f ,m(r) (with f ∈ {p, s}) corresponding
to the cavity resonances are found by solving the following
equations:

∇ ∧
[

1

n2(r, ωm)
∇ ∧ bf,m(r)

]
= ω2

m

c2
bf,m(r), (A4)

d f ,m(r) = i c

ω f ,m
∇ ∧ b f ,m(r). (A5)

They are normalized such as∫
d3r

d∗
f ,m(r) · d f ,m(r)

ε0n2(r, ω f ,m )

vφ (ω f ,m)

vg(ω f ,m)
= 1, (A6)

where vφ (ω f ,m) and vg(ω f ,m) are the phase and group veloci-
ties, respectively. The operators p̂m(t ) and ŝm(t ) are the slowly
varying annihilation field amplitudes for pump and signal
fields. They destroy one elemental excitation in the pump
(respectively signal) mode dp,m(r) (respectively, ds,m(r)) and
verify the standard boson commutation rules (4).

The quantities D f ,m (with f ∈ {p, s}) are given by

D f ,m =
√

ε0h̄ω f ,m

2
(A7)

and can be interpreted as the single polariton field amplitudes
in the mode d f ,m(r).

In the semivectorial approximation [21] the cavity sus-
tains quasi-TE and quasi-TM modes such that bm(r) =
T (r, z)Ym(θ )u in cylindrical coordinates (r, θ, z), with u ∈
{uTE, uTM} the mode polarization, T (r, z) and Ym(θ ) =
exp(imθ ) (with m ∈ Z) the transverse and the azimuthal field
distributions, respectively. We suppose that T (r, z) is the fun-
damental transverse mode since mode-leaking associated to
bending losses is more important for higher-order modes
[21,37]. In this approximation the electric field of the TE-
component is almost completely along the direction ur (then
uTE ⊥ ur ) and the magnetic field of the TM component is
almost completely polarized along the direction uTM ≈ ur .
This fact in concurrence with a Type 0 FWM configuration
with a quasi-TE pump allows us to consider the dynamics
of the TE modes only since they are decoupled from TM
modes and to reduce the full problem to a scalar one. Then
the spatial modes of the displacement field have the form
d f ,m(r) = R(r, z)Yf ,m(θ )u and u ≈ ur .

Since we are in the context of a scalar theory, the nonlinear
polarization is also along the radial vector ur and its compo-
nent takes the form

P̂nl(r, t ) = −ε0η
(3)D3(r, t ), (A8)

where η(3) is the inverse permittivity tensor and assuming a
medium with null second-order susceptibility.

APPENDIX B: THE HAMILTONIAN

The two terms, Ĥp,p and Ĥp,s, in the interaction Hamilto-
nian Ĥint Eq. (9) in the main text are

Ĥp,p = g0

6

∑
k,l,m,n

Am,n
k,l (δ[k+l−m−n] p̂k p̂l p̂†

m p̂†
n + δ[k−l+m−n]

× p̂k p̂†
l p̂m p̂†

n + δ[k−l−m+n] p̂k p̂†
l p̂†

m p̂n) + H.c., (B1)

023178-7



ÉLIE GOUZIEN et al. PHYSICAL REVIEW RESEARCH 5, 023178 (2023)

Ĥp,s = g0

∑
k,l,m,n

Bm,n
k,l (δ[k+l−m−n−1] p̂k p̂l ŝ

†
mŝ†

n + δ[k−l+m−n]

× p̂k p̂†
l ŝmŝ†

n + δ[k−l−m+n] p̂k p̂†
l ŝ†

mŝn) + H.c., (B2)

where “H.c.” denotes “Hermitian conjugate.” In these expres-
sions, δ[·] is the usual Kronecker symbol (equal to 1 when
[·] = 0 and to 0 otherwise), g0 is the nonlinear coupling con-
stant,

g0 = 3h̄2ε2
0η

(3)�

8
(B3)

and

� =
∫ +∞

0

∫ +∞

−∞
dr dz r|R(r, z)|4, (B4)

Am,n
k,l = √

ωp,kωp,lωp,mωp,n ≈ ω2
0, (B5)

Bm,n
k,l = √

ωp,kωp,lωs,mωs,n ≈ ω2
0. (B6)

APPENDIX C: QUANTUM LANGEVIN
EQUATIONS

After removing the explicit time dependence by moving to
the reference frame of the injection and defining new fields
such that

p̂m → p̂me−iω̄p,mt , (C1)

ŝm → ŝme−iω̄s,mt , (C2)

the Heisenberg equations for pump and signal fields reads as:

d p̂ j

dt
=− i�p, j p̂ j + E j−i

g

3

∑
m,n

[ p̂†
m+n− j p̂m p̂n+p̂†

m+n− j+1ŝmŝn

+ p̂ j−m+n( p̂m p̂†
n + p̂†

n p̂m + ŝmŝ†
n + ŝ†

nŝm)], (C3)

dŝ j

dt
= − i�s, j ŝ j − ig

∑
m,n

[ p̂ j−m+n+1 p̂mŝ†
n

+ ( p̂ j+m−n p̂†
m + p̂†

m+n− j p̂m)ŝn], (C4)

with g = (2g0ω
2
0 )/(h̄), �p, j = ωp, j − ω̄p, j , and �s, j = ωs, j −

ω̄s, j . They are frequency-dependent detunings that, after using
Eq. (2) in the main text, can be expressed as

�p, j ≈ �0 + �� (2 j) + �2

2!
(2 j)2, (C5)

�s, j ≈ �0 + �� (2 j + 1) + �2

2!
(2 j + 1)2, (C6)

where �0 = ω0 − ω̄p is the detuning between the central
cavity resonance (of order j = 0) and the external injection
centered at frequency ωp, �� = �1 − �p/2 is the mismatch
between the average FSR and the half of the spacing of the
external frequency comb. Langevin equations also include the
effect of propagation losses inside the microring, that couples
the pump and signal modes with the input vacuum modes q̂in,m

and r̂in,m via the coefficients κp,m and κs,m, respectively. In
a similar way, losses due to the microring coupling with the
straight guide introduce p̂in, j and ŝin,m via the coefficients γp,m

and γs,m. The explicit expression of the quantum Langevin

equations can then be obtained by employing standard open
quantum systems methods [28]. They read as

d p̂ j

dt
= − (γp, j + κp, j + i�p, j ) p̂ j + E j + √

2γp, j p̂in, j

+ √
2κp, j q̂in, j−i

g

3

∑
m,n

[ p̂†
m+n− j p̂m p̂n+p̂†

m+n− j+1ŝmŝn

+ p̂ j−m+n( p̂m p̂†
n + p̂†

n p̂m + ŝmŝ†
n + ŝ†

nŝm)], (C7)

dŝ j

dt
= − (γs, j + κs, j + i�s, j )ŝ j + √

2γs, j ŝin, j + √
2κs, j r̂in, j

− ig
∑
m,n

[ p̂ j−m+n+1 p̂mŝ†
n + ( p̂ j+m−n p̂†

m

+ p̂†
m+n− j p̂m)ŝn]. (C8)

APPENDIX D: LINEARIZED QUANTUM
LANGEVIN EQUATIONS

Quantum Langevin equations (C7) and (C8) are now
linearized around the system stable steady-state solutions,
〈p̂m〉 and 〈ŝm〉. This work focuses on the below threshold
regime where the steady-state solutions for the signal ex-
hibit null mean values, therefore we set 〈ŝm〉 = 0,∀m. On
the other hand, the 〈p̂m〉 are found as solutions of the sys-
tem of nonlinear (cubic) algebraic equations obtained from
the classical part of Eq. (C7). This operation leads to a
set of linear quantum Langevin equations for the signal
modes expressed in terms of the quadrature column vector
R̂(t ) = (x̂(t )|ŷ(t ))T :

dR̂(t )

dt
= (−�′ − K + M)R̂(t ) +

√
2�′ R̂(γ )

in (t )

+
√

2K R̂(κ )
in (t ), (D1)

where the matrices �′ = diag{γ |γ } and K = diag{κ|κ}
are diagonal matrices containing the mode-dependent
cavity losses due to the microring coupling γ =
diag{. . . , γs,−1, γs,0, γs,1, . . .} and propagation losses κ =
diag{. . . , κs,−1, κs,0, κs,1, . . .}. The input mode quadratures
are collected in the column vectors R̂(γ )

in (t ) and R̂(κ )
in (t )

which are the quadratures of (. . . , ŝin,−1, ŝin,0, ŝin,+1 . . .)T and
(. . . , r̂in,−1, r̂in,0, r̂in,+1 . . .)T , respectively, and we suppose
they are both in vacuum state. The intermodal coupling matrix
M can be expressed as

M =
⎛
⎝ Im[G + F ] Re[G − F ]

−Re[G + F ] −Im[G + F ]T

⎞
⎠, (D2)

where the matrices G and F are such that

Fj,n = g
∑

m

〈p̂ j−m+n+1〉〈p̂m〉, (D3)

Gj,n = �s, jδ[ j−n] + g
∑

m

2〈p̂ j+m−n〉〈p̂m〉∗. (D4)

Hence G = G† is an Hermitian complex matrix and F = F T is
symmetric. These properties make M an Hamiltonian matrix,
that is (�M)T = �M, with � the symplectic form.
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APPENDIX E: FROM DOUBLE-BUS TO SINGLE-BUS
CAVITY LANGEVING EQUATIONS

In order to apply the theory we developed in Ref. [18], we
map Eq. (D1) to the linear quantum Langevin equation of a
single-bus cavity. This is obtained by defining [29]

R̂in(t ) =
√

2�′R̂(γ )
in (t ) + √

2KR̂(κ )
in (t )√

2(�′ + K)
. (E1)

Hence we get the quantum Langevin equation (2) consid-
ered in the main text

dR̂(t )

dt
= (−� + M)R̂(t ) +

√
2� R̂in(t ), (E2)

with � = �′ + K. Then, by using the input-output relation
R̂(γ )

out = √
�′R̂ − R̂(γ )

in , the field quadratures at the output
coupler R̂(γ )

in (t ) are given by

R̂(γ )
out =

√
�′

�
R̂out +

√
�′K
�2

R̂(κ )
in −

(
1 − �′

�

)
R̂(γ )

in , (E3)

were the definition of R̂out is given by (E1) after replacing
“in” by “out” everywhere. This column vector contains the
quadratures of field operators at the output of a virtual system
having only one source of losses (single-bus model).

APPENDIX F: HIGHER-ORDER
MORPHING SUPERMODES

In the main text we illustrated only the first morphing
supermodes. In this section we show the structure of the sec-
ond, third, and fourth morphing supermodes for the different
configurations discussed in the main text. Note that real and
part imaginary part of Um(ω) are respectively symmetric and
antisymmetric with respect to the exchange of ω with −ω as
expected due to the symmetry property R̂†

out (ω) = R̂out (−ω).

FIG. 7. Real and imaginary part of the second, third, and fourth
morphing supermodes corresponding to the configuration of Fig. 4
in the main text.
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FIG. 8. Real and imaginary part of the second, third, and fourth
morphing supermodes corresponding to the configuration of Fig. 5
(left) in the main text, with dispersion.

FIG. 9. Real and imaginary part of the second, third and fourth
morphing supermodes corresponding to the configuration of Fig. 5
(right) in the main text, without dispersion.
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