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Generalized Rashba electron-phonon coupling and superconductivity in strontium titanate
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SrTiO3 is known for its proximity to a ferroelectric phase and for showing an “optimal” doping for
superconductivity with a characteristic domelike behavior resembling systems close to a quantum critical
point. Several mechanisms have been proposed to link these phenomena, but the abundance of undetermined
parameters prevents a definite assessment. Here, we use ab initio computations supplemented with a micro-
scopic model to study the linear coupling between conduction electrons and the ferroelectric soft transverse
modes allowed in the presence of spin-orbit coupling. We find a robust Rashba-like coupling, which can
become surprisingly strong for particular forms of the polar eigenvector. We characterize this sensitivity
for general eigenvectors and, for the particular form deduced by hyper-Raman scattering experiments, we
find a Bardeen-Cooper-Schrieffer pairing coupling constant of the right order of magnitude to support su-
perconductivity. The ab initio computations enable us to go beyond the linear-in-momentum conventional
Rashba-like interaction and naturally explain the dome behavior including a characteristic asymmetry. The
dome is attributed to a momentum-dependent quenching of the angular momentum due to a competition
between spin-orbit and hopping energies. The optimum density for having maximum Tc results in rather good
agreement with experiments without free parameters. These results make the generalized Rashba dynamic
coupling to the ferroelectric soft mode a compelling pairing mechanism to understand bulk superconductivity in
doped SrTiO3.
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I. INTRODUCTION

A research surge in recent years has uncovered novel be-
havior involving the interplay between ferroelectricity (FE)
and superconductivity (SC) in SrTiO3 (STO) [1,2]. Notewor-
thy examples include strain-enhanced superconductivity [3,4]
in samples with polar nanodomains [5,6] and self-organized
dislocations with enhanced ferroelectric fluctuations [7]. Al-
ternative methods for tuning ferroelectricity such as Ca or
18O isotope substitution also present enhanced superconduct-
ing critical temperatures Tc [8–12]. In doped samples with
a global polar transition (and thus global broken inversion
symmetry) signatures of mixed-parity superconductivity have
been reported [13]. Theoretically, these doped polar sam-
ples have also been recently proposed as a platform for the
emergence of exotic phases such as Majorana-Weyl supercon-
ductivity [14] and odd-frequency pair correlations [15].
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Despite having experimentally established a qualitative
connection between the superconducting and ferroelectric
phases in STO, and while there is some indication that the
dominant mode responsible for pairing might be the ferroelec-
tric soft transverse optical (TO) mode [16], there is still no
consensus about the pairing mechanism in this system [17].
One the of the prominent theoretical challenges is its very low
density of states and Fermi energy due to low carrier densities,
which places superconductivity in STO outside of the standard
Bardeen-Cooper-Schrieffer (BCS) paradigm.

Proposed pairing theories include the dynamical screening
of the Coulomb interaction due to longitudinal modes [18–21]
recently challenged in Ref. [22], bipolaron formation [23], and
diverse approaches to linear coupling [1,24–32] or quadratic
coupling to the FE mode [33–37]. The last two proposals have
the advantage that, coupling electrons directly to the FE soft
mode, provide a natural explanation to the sensitivity to the
FE instability.

In the more general context of polar or nearly polar met-
als, the coupling between electrons and the soft FE modes
has received attention only very recently [26,27,30,32,37–40].
The reason probably being that, as already mentioned, the FE
soft modes in these systems have a predominantly transverse
polarization. Within the conventional electron-phonon inter-
action scheme, this implies a decoupling of the soft modes
from the electronic density to linear order [41]. One promising
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alternative route involves going to next order by coupling the
electrons to pairs of TO modes, i.e., the quadratic coupling
mentioned above [33–36,42]. Another possibility, and subject
of the present article, is the linear vector coupling to the elec-
trons, allowed in the presence of spin-orbit coupling (SOC)
[15,26,27,39,43–46].

In a recent work [30] we derived a vector coupling based on
a Rashba-like interaction within a minimal microscopic model
and ab initio frozen phonon computations. The interaction
originates from a combination of interorbital coupling to the
inversion breaking polarization of the mode and SOC [47].
In the minimal model we assumed a conventional Rashba
coupling linear in the electronic momentum k. In the present
work we show that this approximation is valid only at very
low densities. Because of this, the problem of the dome in
STO could not be addressed in Ref. [30].

Here, we present a complete study of the spin-orbit assisted
coupling between the low-energy electronic bands and the
FE soft TO modes in tetragonal doped STO. We find that
the magnitude of the Rashba coupling is strongly sensitive
to the particular form of the eigenvector of the soft mode.
Indeed, we discover a gigantic coupling to the polar mode
deforming the oxygen cage, so that even a small admixture of
this distortion in the eigenvector of the soft mode makes the
coupling to electrons quite large. Furthermore, we find that a
naive, linear-in-k Rashba coupling deviates strongly from the
ab initio computations when the electronic wave-vector
exceeds a small fraction of the inverse lattice constant. Incor-
porating these results into a generalized Rashba coupling and
using the soft-mode eigenvector deduced from hyper-Raman
scattering, we find a domelike behavior of the supercon-
ducting Tc with a maximum value of the correct order of
magnitude. The origin of the dome can be explained with
a minimal model of generalized Rashba coupling. Also the
position of the dome maximum and its characteristic asym-
metry as a function of doping are in good agreement with
experiment without free parameters. Our work shows that
a generalized Rashba pairing mechanism explains bulk SC
in doped STO. We refer here to the standard definition of
bulk superconductivity as the one which shows the Meissner
effect.

This mechanism may also be relevant in two-dimensional
electron gases at oxide interfaces [48–50]. It has recently been
proposed that the extreme sensitivity of superconductivity
to the crystallographic orientation of KTaO3 (KTO) can be
explained by invoking the linear coupling to TO modes [51].
KTO is also an incipient ferroelectric, and hence the coupling
to the soft FE mode may be important for pairing as well.

The paper is organized as follows. In Sec. II we intro-
duce the multiband electronic structure of STO, which is
successfully described by a tight-binding model fit to ab
initio band-structure computations within density functional
theory (DFT). Because we are interested in coupling the
electrons to zone-center polar phonon modes, in Sec. III we
present a complete basis S̄i to parametrize any polar mode
belonging to tetragonal Eu and A2u irreducible representations
(irreps). In Sec. IV we show how a linear-in-k Rashba-
like coupling between the electrons and zone-center polar
modes emerges from a microscopic model in the presence
of SOC, and estimate the coupling constants with the aid of

FIG. 1. Low-energy band structure of STO in the (a) cubic state
and (b) tetragonal state. Dashed lines are computed from DFT and
full lines the tight-binding model in Eq. (1). The momenta in panels
(a) and (b) are along the cubic and pseudocubic directions respec-
tively, and a is the cubic lattice constant.

ab initio frozen-phonon computations in STO. The corre-
sponding electron-polar-phonon coupling Hamiltonian is then
derived in Sec. V; we find all three electronic bands have a
substantial dynamic Rashba coupling to the soft TO mode in
STO. In Sec. VI we use the ab initio results and a minimal
model to explore the superconducting properties derived from
the generalized Rashba mechanism. We finally present our
conclusions in Sec. VII.

II. ELECTRONIC STRUCTURE

A. Electronic DFT bands

We first discuss the electronic band structure of STO as
computed by DFT. We adopted the projector augmented-
wave (PAW) method as implemented in VASP [52,53] and the
Perdew-Burke-Ernzerhof generalized gradient approximation
revised for solids (PBEsol) [54]. An antiferrodistortive (AFD)
structural transition is known to occur below 105 K, therefore
we considered both the high-temperature cubic (space group
Pm3̄m) and the low-temperature tetragonal (space group
I4/mcm) unit cell. We first relaxed both structures until forces
were smaller than 1 meV/Å, using a plane-wave cutoff of
520 eV and a Monkhorst-Pack grid of 8 × 8 × 8 and 6 ×
6 × 6 k-points for cubic and tetragonal phases, respectively.
Optimized lattice constants are a = 3.907 Å for cubic STO
and at = 5.508 Å, ct = 7.845 Å for tetragonal STO. Elec-
tronic structure calculations have then been performed with
the inclusion of SOC, as implemented in VASP [55].

The low-energy electronic band structure is shown in Fig. 1
(dashed lines) and consists of three doubly degenerate bands
around the zone center. AFD distortions result in a split of the
lower two bands at the zone center, as displayed in Fig. 1(b).

Superconductivity develops upon electron doping the
tetragonal STO at a few hundred mK. The resulting super-
conducting state spans the filling of the three bands shown in
Fig. 1(b) before vanishing [2], starting from a zero-resistance
state in the very dilute single-band regime with a Fermi energy
of a few meV, and evolving into bulk multiband SC with a
Fermi energy of a few tens of meV.
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B. Minimal electronic model

A minimal tight-binding model with the 3d t2g orbitals of
the Ti atom yz, zx, and xy, denoted, respectively, μ = x, y,
and z in this work, successfully describes the low-energy
electronic band dispersion (full lines in Fig. 1) in both cubic
and tetragonal phases [17,30,56–58]. The electronic model
Hamiltonian reads

H = H0 + HSOC + HAFD. (1)

Here, we have included a hopping term up to next nearest
neighbors,

H0 =
∑
ksμν

tμν (k)c†
μs(k)cνs(k), (2)

between orbitals μ and ν with spin s = ±1/2 (shorthanded as
s = ± in operator labels as in c†

μ+). The atomic SOC of the t2g

manifold reads

HSOC = −2ξ l · s, (3)

where we introduced an effective orbital moment operator
with l = 1 [59–61]. The physical orbital angular momentum
l (t2g) is directed in the opposite direction with respect to l .

Finally, the tetragonal crystal field term is

HAFD = �
∑
μs

δμ,zc
†
μscμs, (4)

which effectively accounts for the AFD distortion by shifting
the energy of the μ = z orbital [30].

The t2g hopping term reproduces the low-energy quadratic
dispersion given by DFT along the high-symmetry cubic di-
rections [Fig. 1(a)],

tμμ(k) = −2t1(cos kα + cos kβ ) − 2t2 cos kμ

− 4t3 cos kα cos kβ + (4t1 + 2t2 + 4t3), (5)

tμν (k) = −4t4 sin kμ sin kν, (6)

with hopping parameters t1 = 451 meV, t2 = 40 meV, t3 =
111 meV, and t4 = 27 meV. In Eq. (5) α �= β and α, β �= μ,
while in Eq. (6), μ �= ν.

The eigenstates of Eq. (3) can be classified with an effec-
tive total angular momentum j = l + s with the associated
quantum number j. The SOC term breaks the sixfold degen-
eracy of the t2g manifold at the zone center, opening a 3ξ =
28 meV gap between the lower multiplet j = 3/2 and the
higher doublet j = 1/2 in the high-T cubic state [Fig. 1(a)].
In terms of the t2g orbital operators c†

μs these new eigenstates

and associated operators, c†
j, jz

, take the following form at the
zone center [60]:

c†
3
2 ,± 3

2

= ∓ 1√
2

(c†
x,± ± ic†

y,±), (7)

c†
3
2 ,± 1

2

= 1√
6

(∓c†
x,∓ − ic†

y,∓ + 2c†
z,±), (8)

c†
1
2 ,± 1

2

= 1√
3

(−c†
x,∓ ∓ ic†

y,∓ ∓ c†
z,±). (9)

The tetragonal crystal field term HAFD in Eq. (1), does not
affect jz = ±3/2 states which remain therefore eigenstates of
the full Hamiltonian at the zone center. Instead, it mixes states

with jz = ±1/2 (i.e., states with nonzero μ = z orbital char-
acter) and thus splits the degeneracy of the lowest multiplet
j = 3/2 at the zone center. A fitting to the DFT band structure
in the low-T tetragonal phase [Fig. 1(b)] gives � = 17.7 meV
and sets the following order of the three doubly degenerate
bands at �:

c†
1,± = c†

3
2 ,∓ 3

2

, (10)

E1 = 0,

c†
2,± = cos θc†

3
2 ,± 1

2

∓ sin θc†
1
2 ,± 1

2

, (11)

E2 = 1
2 (3ξ + � −

√
9ξ 2 − 2ξ� + �2),

c†
3,± = ± sin θc†

3
2 ,± 1

2

+ cos θc†
1
2 ,± 1

2

,

E3 = 1
2 (3ξ + � +

√
9ξ 2 − 2ξ� + �2), (12)

from lowest to highest energy E1 < E2 < E3, and with
tan 2θ = −2

√
2�

−�+9ξ
. Note that the pseudospin index ± of the

bands in Eqs. (10)–(12) is chosen to coincide with the pro-
jection of the electronic spin along the real orbital moment
instead of the effective orbital moment within the T-P equiva-
lence [61] [l (t2g) = −l , see also Appendix A].

Carrying the analysis for general momentum we can write
the electronic Hamiltonian Eq. (1) in the absence of a polar
distortion as

H =
∑

nk

ψ†
n (k)En(k)σ0ψn(k), (13)

where we defined the spinor ψ†
n = (c†

n+, c†
n−) for band

n, and introduced the 2 × 2 identity matrix σ0 for pseu-
dospin degeneracy. Figure 1(b) shows that this model with
the parameters quoted above gives an excellent fit of the
bands obtained by DFT in the presence of both AFD
and SOC.

III. POLAR SOFT MODE IN STO

Although we are focusing on the temperature region where
an AFD is present, it is customary to discuss the atomic
displacements of the near zone-center polar soft mode in
terms of a complete set of basis modes defining symme-
try coordinates for the T1u irrep of Oh in the high-T cubic
phase. Indeed, Axe [62] introduced one such possible set
of coordinates to describe the eigenvectors of polar normal
modes in cubic perovskite structures, which has been used to
restrict the possible atomic distortions of the various polar
modes that were compatible with reflectivity [62], neutron
scattering [63], and hyper-Raman experiments [64]. Since
this coordinate set has been widely used and referred to in
the literature of polar modes in STO, we shall use it in our
work as well. Within this framework, a general polar distor-
tion can be decomposed into symmetry coordinates in the
following way:

Ū = (rSr, rTi, rOx , rOy , rOz ) =
∑

i

n̂iuiS̄i. (14)

Here, n̂i is a unit vector setting the direction of atomic dis-
placements for basis mode i. We shall see that, in general,
displacements with the same polar axis, n̂p, do not need to
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FIG. 2. Atomic distortions of the Eu irrep for Ima2 (C2v) with polar axis n̂p ‖ [11̄0] for basis modes (a) S̄1, (b) S̄2, (c) S̄3, (d) S̄4, and (e)
S̄5 given by Eqs. (15)–(19) and Table I. In all cases distortions are on the plane of the drawing and the arrowheads identify the atoms moving.
The left inset shows the pseudocubic and tetragonal in-plane axes. The Wickoff positions of Ti, Ox and Oy atoms are given in Appendix B. The
atomic displacements for the basis of A2u mode with polar axis n̂p ‖ [001] are equivalent to panels (a)–(c) with all displacements pointing out
of the plane, i.e., rotated by π/2 around the bt tetragonal axis.

be collinear; this requires a different n̂i for each basis mode.
S̄i defines the basis of eigenmodes expressed in terms of
collinear atomic displacements (sSr, sTi, sOx , sOy , sOz ),

S̄1 = 1

1 + κ1
(0,−κ1, 1, 1, 1), (15)

S̄2 = 1

1 + κ2
(−κ2, 1, 1, 1, 1), (16)

S̄3 = 2

3

(
0, 0,−1

2
,−1

2
, 1

)
, (17)

and shown in Figs. 2(a)–2(c). The coefficients κ1 = 3mO

mTi and

κ2 = 3mO+mTi

mSr ensure the center of mass is not displaced for
any of the S̄i modes. That is,

∑
j m jr j = 0 when summing

over all the j atoms with atomic mass m j and displacement
r j = uis j in the unit cell for each of the S̄i modes. The co-
efficient ui sets the amplitude of basis mode i in the general
displacement Ū . The S̄i modes in Eqs. (15)–(17) have been
normalized so that their amplitude ui is equal to the relative
displacement of the two bodies in the mode. For instance,
u1 is the relative atomic displacement between Ti and the O
cage in the S̄1 mode, rO − rTi = u1(sO

1 − sTi
1 ) = u1. Similarly,

u2 is the relative displacement between Sr and the Ti-O cage
in mode S̄2. This normalization reduces the two-body problem
into a one-body problem with a reduced mass when deriving
the electron-phonon Hamiltonian, as will be shown in Sec. V.
Note the bar symbol indicates a vector spanned by the atoms
of the unit cell (as in S̄i), whereas the vector referring to the

TABLE I. Symmetry coordinates of polar Eu and A2u modes for a
general distortion Ū = ∑

i uin̂i S̄i in the tetragonal phase of STO. The
atomic displacement coordinates S̄i are given by Eqs. (15)–(19). The
polar axis of the modes shown here is along the in-plane direction,
n̂Eu

p ‖ [11̄0], [110], for Eu modes and out-of-plane n̂A2u
p ‖ [001] for

A2u modes. The symmetry modes analysis has been performed using
the ISODISTORT tool [74,75].

Irrep (space group, point group) n̂p n̂i S̄i

Eu (Ima2, C2v) [11̄0] [11̄0] S̄1, S̄2, S̄3

[11̄0] [110] S̄4, S̄5

[110] [110] S̄1, S̄2, S̄3

[110] [11̄0] S̄4, S̄5

A2u (I4cm, C4v) [001] [001] S̄1, S̄2, S̄3

Cartesian coordinates of the atomic displacements is specified
by bold notation (as in n̂i).

As it is well known, the long-range Coulomb interaction
partially lifts the threefold degeneracy of polar modes into
a high-energy longitudinal mode and low-energy doubly de-
generate transverse modes [65]. Thus, the soft mode of STO
is transverse and, in general, it is a linear combination of
all three S̄i modes. According to several studies [62–65], its
atomic displacements are close to the S̄1 mode [Eq. (15)], also
known as the Slater mode [66], where the Ti atom vibrates
opposite to the O octahedron [see Fig. 2(a)]. Because of the
strong sensitivity of the electron-phonon coupling to the soft-
mode eigenvector, we anticipate that even a small deviation
from a pure Slater mode can have important consequences for
superconductivity.

Rigorously speaking, the above analysis in terms of three
basis modes is only valid in the cubic phase. The presence
of the AFD distortion requires an enlargement of the basis.
Indeed, below 105 K, as the symmetry of STO is lowered to
a tetragonal structure belonging to the I4/mcm space group
(D4h point group), the T1u polar mode of the cubic state splits
into: (a) a A2u irrep with a polar axis along [001] (C4v) and
(b) a Eu irrep with a polar axis perpendicular to [001]. This
split of the soft mode has been tracked in T by hyper-Raman
spectroscopy [67]: h̄ωEu ∼ 1 meV and h̄ωA2u ∼ 2 meV at 7K.

The analysis of polar modes for case (a) is simpler, as the
basis of symmetry modes Eqs. (15)–(17) for the T1u mode of
Oh in the high-T cubic phase is also a complete basis for the
A2u mode in the low-T tetragonal phase. Therefore, in this
case an enlargement of the basis is not needed. Of course,
the atomic displacements are restricted along the tetragonal
z axis for this irrep, n̂A2u

i ‖ [001], leading to a polar tetragonal
structure with I4cm lower symmetry. Although here we will
focus on the paraelectric phase, we note that the out-of-plane
polar mode has also been observed by electron microscopy
and optical second harmonic generation in strained STO films
in the symmetry broken polar phase [5,68–70] highlighting
the relevance of this symmetry.

For case (b), in general, we notice that a distortion be-
longing to the Eu irrep can lead to various lower-symmetry
structures (Ima2, Fmm2, or Cm), all of which have a polar
axis perpendicular to the tetragonal axis [001]. Here we will
focus on Ima2 (C2v), a space group with a polar axis parallel
to the tetragonal in-plane axis, i.e., along the pseudocubic
direction [11̄0] (see Fig. 2). This choice is justified by the
fact that this mode has been experimentally reported in the
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ferroelectric phase of isotope O18 and Ca substitution systems
[71,72] and the optically excited metastable polar phase of
STO [73]. Because the in-plane O atoms are not equivalent
in Ima2, and Ti and in-plane O atoms are allowed to move
orthogonally to the polar axis, the dimension of the basis
symmetry modes has to be expanded to five. That is, be-
sides the three S̄i modes presented in Eqs. (15)–(17), with
displacements along the polar axis (i.e., n̂i = n̂p ‖ [11̄0] for
i = 1, 2, 3) one needs to add to the subspace another two S̄i

modes with an amplitude along the perpendicular direction
(i.e., n̂i ‖ [110] ⊥ n̂p for i = 4, 5) to obtain a complete basis,

S̄4 = 1
2 (0, 1, 0, 0, 0), (18)

S̄5 = 1
2 (0, 0, 1,−1, 0). (19)

These two modes are shown in Figs. 2(d) and 2(e),
respectively.

In general, normal modes will not be made of collinear
displacements. Still, they can be decomposed into the present
basis, with each element representing collinear displacements.
Indeed, different elements of the expansion can have displace-
ments in different directions although they contribute to the
same polarization vector.

Table I summarizes the polar distortion directions n̂i of the
different S̄i for both the Eu (Ima2) and A2u (I4cm) modes we
will consider throughout this work.

In general, for a mode i with displacement amplitude ui

and associated with the polarization vector n̂p, irrespective of
the direction of atomic displacements, we define its associated
polarization vector as

ui = uin̂p. (20)

Notice that formally ui should be multiplied by an effec-
tive charge to be a real polarization. However, such charge
does not play any role in the present context and will
be omitted.

Near the zone center but for finite q it is important to
consider the long-range Coulomb interaction which will split
transverse and longitudinal modes. In this case we will restrict
to the symmetrized modes i = 1, 2, 3 and we will assume that
for q along an arbitrary direction we can decompose mode i
into the set of the same i modes along directions defined by
q as done in Ref. [30] for the Slater mode. For simplicity,
deviations of the polarization vector from pure longitudinal
or transverse directions due to nonspherical symmetry will be
neglected. In this way we can generalize Eq. (20) to

ui(q) = ui(q)n̂p(q), (21)

which will be used next to discuss the general interaction with
polar modes.

IV. LINEAR RASHBA-LIKE COUPLING

A. Ab initio computation of couplings

Having established the electronic structure of STO in
Sec. II and the relevant polar phonon modes around the zone
center in Sec. III, in this section we proceed to study and
estimate their coupling to linear order. In particular, we will
show how a symmetry allowed linear coupling to transverse
TO modes emerges naturally from induced hopping channels,

and estimate the corresponding coupling constant for all elec-
tronic bands with the aid of ab initio frozen-phonon results in
tetragonal STO.

The linear coupling Hamiltonian between a polar distortion
and electronic bands [Eqs. (10)–(13)] can be expressed as

Hu =
∑

nn′kq,S̄i

ψ†
n

(
k + q

2

)
�S̄i

nn′ (k, q)ψn′

(
k − q

2

)
, (22)

with the coupling 2 × 2 matrix �S̄i
nn′ (k, q) in pseudospin space

for a polar mode S̄i. The intraband (n′ = n) coupling matrix
has the following form to linear order in k and ui,α (q) in a D4h

point group:

�S̄i
nn(k, q) = kaεαβγ ui,α (q)k̂βσγ

(
δαzτ

S̄i
n,C + δβzτ

S̄i
n,B + δγ zτ

S̄i
n,A

)
= ka

[
τ

S̄i
n,A(k̂y,−k̂x, 0)σz + τ

S̄i
n,Bk̂z(−σy, σx, 0)

+ τ
S̄i
n,C (0, 0, k̂xσy − k̂yσx )

] · ui(q), (23)

where a is the lattice constant, εαβγ the Levi-Civita symbol,
δαβ the Kronecker’s delta-function, k̂i = k̂ · ı̂ the Cartesian
projection of the unitary momentum vector, and σ j the Pauli
matrices for the pseudospin of the electronic bands. We also
defined the couplings τ

S̄i
n,l with symmetry allowed irrep labels

l = A, B,C.
Equation (23) describes a Rashba-like linear-in-k coupling

between a polar distortion ui(q) = ui(q)n̂p(q) of mode S̄i and
the electronic band n with pseudospin σ. The first form in
Eq. (23) makes evident that z is a privileged axis in this struc-
ture and clarifies the meaning of the τ

S̄i
n,l coefficients which

are associated with one member of the triad (ui, k, σ ) having
a projection on the z-direction.

In the following we drop the index S̄i from the couplings
τn,l for simplicity, but emphasize that these couplings vary a
lot from mode to mode. The Rashba matrix Eq. (23) has the
most general form allowed by the symmetry of our tetragonal
system to linear order in k. It consists of couplings τn,A and
τn,B (τn,C) which couple to the corresponding Eu (A2u) modes
with polar axis n̂p in the xy plane (along the z axis). These
parameters are not related by symmetry, and we will estimate
them using ab initio computations in the following. Note that
in higher cubic symmetry Eq. (23) simplifies to ka[τ S̄i

n k̂ × σ] ·
u(q) [27,28,44].

The interband coupling matrices (n′ �= n) in Eq. (22) have
a similar k-linear Rashba form. However, because we are
considering a long-wavelength q → 0 phonon, the interband
terms result in k-cubic Rashba intraband terms upon perturba-
tion. We therefore focus solely on intraband terms with n′ = n
[Eq. (23)] in this work, which involve k-linear Rashba terms
which can be directly extracted from ab initio frozen-phonon
computations.

Finite Rashba couplings τn,l in Eq. (23) cause the
characteristic linear-in-k band splitting En+(k) − En−(k) ≡
δEn(k). From the Rashba coupling matrix Eq. (23) the
splitting for band n is generally given by the following
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expression

δEn(k, ui(q)) = 2kaui(q)
√

τ 2
n,A(k̂yn̂px − k̂xn̂py)2 + τ 2

n,Bk̂2
z

(
n̂2

px + n̂2
py

) + τ 2
n,C

(
k̂2

x + k̂2
y

)
n̂2

pz − 2τn,Bτn,C (k̂xn̂px + k̂yn̂py)k̂zn̂pz, (24)

which peaks (vanishes) along momenta k perpendicular (par-
allel) to the polar axis n̂p of the mode. As we show in the
following, one can use this band split to extract the Rashba
couplings of each band τn,l to each mode S̄i. For this purpose,
we need to particularize Eq. (24) for the direction given by
the polar axis of the polar modes. We obtain the following
pseudospin split for a mode S̄i:

δEn(k, ui[11̄0])

2ui
= ka

√
τ 2

n,A

2
(k̂y + k̂x )2 + τ 2

n,Bk̂2
z , (25)

δEn(k, ui[001])

2ui
= kaτn,C

√
k̂2

x + k̂2
y , (26)

with an amplitude ui and a polar axis n̂p ‖ [11̄0] and n̂p ‖
[001], respectively.

To obtain the couplings τn,l , we computed by first princi-
ples the reconstructed electronic band structure of tetragonal
STO in the presence of a frozen phonon ui(q = 0) for all S̄i

modes listed in Table I for both Eu and A2u irreps.
Frozen-phonon distorted structures have been constructed

by displacing atoms along each symmetrized mode while
keeping fixed the optimized lattice parameters. To identify
the linear regime in ui, band-structure calculations have been
performed for several values of the displacement amplitude
up to 0.1 Å (see also Appendix D). By fitting the linear-k
regime of the DFT band-splitting in Fig. 3 along various
momentum directions, we can obtain for each band n the Eu

Rashba couplings τn,A and τn,B, and the A2u coupling τn,C .
The sign of these couplings is extracted from the averaged
spin-polarization values of each band obtained from the same
ab initio computation. Keeping track of these signs is very
important when computing the coupling to a mode that is
combination of the S̄i modes, as will become clear below.

As an example, we show the results of the frozen Slater
mode S̄1 [Eq. (15) and Fig. 2(a)]. The resulting band split of
each n band δEn(k) found by ab initio is shown by the dashed
lines in Figs. 3(a) and 3(b), for u1 with a polar axis along
the in-plane n̂p ‖ [11̄0] (Eu mode) and out-of-plane n̂p ‖ [001]
(A2u mode) pseudocubic directions, respectively. As seen in
Fig. 3, for small enough momenta all bands show a linear-k
split (full lines), but the momentum amplitude beyond which
deviations of k-linearity become significant depends on the
band, the polar axis and the direction of momentum. In fact,
while for the Eu mode the split is robustly linear around the
zone center with small deviations beyond ka ∼ 0.2, for the
A2u mode strong nonlinear features appear already at small
ka ∼ 0.05 for the two lowest bands. This highlights the lim-
itation of a conventional Rashba linear-k model Eq. (23) to
describe the coupling between the bands and some of the polar
modes in this system. We will come back to this important
point in Sec. VI.

The Rashba couplings to the rest of the S̄i modes belonging
to Eu and A2u irreps (see Table I) have been also estimated
by the same fitting procedure to frozen phonon ab initio

computations; they are shown together with those of the Slater
mode in Fig. 4(a) (also listed in Appendix C). As seen, for
all S̄i modes the Eu coupling τn,A is larger in the lowest two
bands (n = 1, 2) than the highest band (n = 3). This hier-
archy is reversed for the couplings τn,B and τn,C where the
highest two bands (n = 2, 3) show larger couplings than
the lowest band (n = 1). Remarkably, the Rashba coupling to
the S̄3 mode, with apical oxygen atoms Oz moving opposite to
in-plane O atoms Ox,y distorting the octahedra [see Eq. (17)
and Fig. 2(c)] can be an order of magnitude larger than the
other couplings. As we will show in the following section,
this gigantic Rashba coupling has important consequences for
the electron coupling to the soft mode. Indeed, an enlarged
electron-phonon coupling follows from a modest contribution
of S̄3 to any polar mode.

B. Real-space origin of the coupling

We will now show how the symmetry allowed coupling
Eq. (23) emerges when considering microscopic processes in
real space. In the presence of a polar distortion Ū = ∑

i uin̂iS̄i

of the lattice, new terms are allowed in the Hamiltonian Eq. (1)
for t2g electrons around the zone center. These new terms
include effects such as the polarization of the orbitals and
induced hopping channels which are symmetry forbidden in
the absence of the distortion [30,39,47,58,76,77]. We thus

FIG. 3. Electronic band split δEn(k, u1(q = 0)n̂p) in the presence
of a frozen Slater polar mode [Eq. (15)] normalized by twice the
amplitude 2u1 along the specified k directions for the three bands
of tetragonal STO [Fig. 1(b)]. The polar axis of the mode is along
(a) n̂Eu

p ‖ [11̄0] and (b) n̂A2u
p ‖ [001] in pseudocubic coordinates.

Dashed lines are ab initio results from frozen-phonon distortions.
Full lines are the k-linear Rashba split model Eq. (25) in panel (a) and
Eq. (26) in panel (b), up to ka = 0.15. All shown k directions are
perpendicular to the polar axis n̂p.
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FIG. 4. (a) k-linear Rashba couplings τn,A, τn,B and τn,C in
Eq. (23) in meV/Å for band n and mode S̄i [Eqs. (15)–(19)] in tetrag-
onal STO. They were obtained from fits of the spin-split Eqs. (25)
and (26) to frozen phonon ab initio results. The numerical values are
listed in Appendix C. (b) Absolute value of the estimated electron-
FE-mode Rashba couplings [Eq. (34)] for band n for three possible
eigenvectors of the FE mode: A pure S̄1 mode, eigenvector from
neutron data [Eq. (36)] and from Raman data [Eq. (37)]. We have
used experimental optical gaps h̄ωEu

TO = 1 meV and h̄ω
A2u
TO = 2 meV,

and electronic momentum kF a = 0.3.

consider the following Hamiltonian with the spinor of the t2g

orbitals ψ†
μ = (c†

μ+, c†
μ−),

Hu =
∑

kqμν j

ψ†
μ

(
k + q

2

)
tμν j (k, q)σ jψν

(
k − q

2

)
+ H.c.,

(27)
which describes the induced hopping between a d-orbital μ

and a nearest-neighbor d-orbital ν. The Pauli matrices σ j

represent spin-independent ( j = 0) as well as spin-dependent
( j = x, y, z) hopping processes. Figure 5 shows some exam-
ples for j = 0, x and y. Around the zone center (k → 0,
q → 0), the new allowed terms have the following form:

tμν j (k, q) ≈
∑
ilm

∂tμν j

∂ui,l (q)
ui,l (q)kma, (28)

to linear order in the polar distortion ui(q) = ui(q)n̂p(q) for
a mode S̄i with amplitude ui,l (q) in Cartesian coordinate l ,
and polar axis n̂p. In the case of tetragonal STO, as discussed
in the previous section, the polar axis we are considering
are the in-plane n̂Eu

p ‖ [11̄0] for Eu modes and out-of-plane
n̂A2u

p ‖ [001] for A2u modes in pseudocubic coordinates. In
general, the precise form of the terms allowed in Eq. (28) is
set by symmetry; and thus it depends on the pair of orbitals

FIG. 5. Induced interorbital hopping elements in Eq. (29) be-
tween d-orbital ν = y with spin ↓ (orange arrow) at the origin and
d-orbital μ = x with spin s (orange arrow) at neighboring Ti atoms,
mediated by the p orbitals with spin s′ (gray arrow) in the bridging
oxygens. (a) Spin-conserving process ∂ytxy0u1 with s = ↓ mediated
by |pz ↓〉. Spin-flip processes s = ↑ when allowing for SOC of the
oxygen ξO for (b) ∂xtxyxu1 mediated by |pz ↓〉 and |py ↑〉 with matrix-
element iξO, and (c) ∂ztxyxu1 mediated by |px ↓〉 and |pz ↑〉 with
matrix-element ξO. All three hopping elements change sign along
the horizontal bond (black curved arrows) with a finite polar Slater
displacement u1 along the vertical axis, specified in each panel. The
spins on the negative horizontal axis, not shown for clarity, are mirror
symmetric with respect to those shown on the positive side.

μ and ν involved, as well as the direction of the polar axis n̂p

associated with the distortion Ū .
As a concrete example, we explicitly consider in the fol-

lowing the case of μ = x and ν = y orbitals. The lowest
electronic band in the tetragonal state (n = 1) is formed by
only these two orbitals at the zone center [see Eq. (10)], and
thus induced hopping amplitudes involving these two orbitals
are the relevant terms for the coupling of the lowest band
to polar modes. For a general polarization vector defined
by Eq. (21), for mode S̄i, the following interorbital hopping
elements are allowed in Eq. (27):∑

j

txy j (k, q)σ j ≈ 2i∂xtxy0ui(q)ka[−k̂yn̂px + k̂xn̂py]σ0

+ 2∂xtxyxui(q)ka[−n̂pxσx + n̂pyσy]k̂z

+ 2∂ztxyxui(q)ka[−k̂xσx + k̂yσy]n̂pz, (29)

where we have used the shorthand notation ∂tμν j

∂ui,l (q) ≡ ∂l tμν j .
The first term in Eq. (29) corresponds to a spin-conserving
(σ0) hopping channel with amplitude ∂xtxy0 which changes
sign with hopping direction, shown in Fig. 5(a). It couples
only to the in-plane components of the polar distortion axis
n̂px and n̂py. The second and third terms describe spin-flip
(σx,y) hopping processes instead, and couple to the in-plane
component of the polar axis, through the hopping amplitude
∂xtxyx [Fig. 5(b)], as well as to the out-of-plane component
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n̂pz through the hopping amplitude ∂ztxyx [Fig. 5(c)]. Micro-
scopically one obtains spin-flip hopping terms by extending
SOC to the bridging p orbitals of the oxygen atom [as shown
in Figs. 5(b) and 5(c)], or by considering virtual processes
between the t2g and eg manifolds [77]. Each S̄i mode will
generally induce different hopping amplitudes, which then
result in different couplings to the electrons. Other tμν j (k, q)
induced hopping elements between different pairs of t2g or-
bitals in Eq. (27) can be similarly obtained.

We can now connect the symmetry allowed couplings
in Eq. (23), to these microscopic processes by projecting
Eq. (27) to the band basis [Eqs. (10)–(12)] of the noninter-
acting electrons. In general each coupling element τn,l is a
linear combination of the different induced hopping deriva-
tives ∂l tμν j allowed in Eq. (28). For instance, the induced
hopping derivatives between the x and y orbitals considered in
Eq. (29), are connected to the Rashba couplings for the lowest
band n = 1 [Eq. (10)] in the following way:

τ1,A = −2∂xtxy0; τ1,B = 2∂xtxyx; τ1,C = −2∂ztxyx. (30)

Similar expressions for the other two electronic bands n =
2, 3 can also be derived following the same procedure. These
expressions are more involved than the particularly simple
expressions in Eq. (30) for n = 1.

To close this section we comment on the importance of the
different terms in Eq. (30), relevant for the coupling to the
lowest band n = 1. We see from Fig. 4(a) that for n = 1 and
for all modes S̄i except Slater (S̄1), τ1,A � τ1,B, τ1,C , implying
that one can safely neglect the spin-flip induced hopping terms
∂xtxyx and ∂ztxy in Eq. (29). For a pure Slater mode S̄1 mode,
however, τ1,A is of the same order of magnitude as τ1,B and
τ1,C , hence the spin-flip processes (and the symmetry equiva-
lent virtual processes to the eg manifold) are in principle not
negligible. However, since the S̄3 spin-conserving coupling
τ

(S̄3 )
1,A is very large, a small admixture of this mode allows to

neglect spin-flip processes when considering the linear cou-
pling between the lowest band and the polar mode.

V. ELECTRON-POLAR-PHONON HAMILTONIAN

To obtain an electron-phonon Hamiltonian, we quantize
the general atomic displacements of Eq. (14) by decomposing
them into a set of normal modes α:

r j (q) =
∑

α

e j
α (q)√

m j

√
h̄

2Nωqα

Âqα. (31)

Here N is the number of unit cells, Âqα = âqα + â†
−qα is the

phonon operator of mode α with frequency ωqα and normal-
ized eigenvector e j

α (q). To proceed, we need an analogous
expression for the polarization amplitude ui appearing in
Eqs. (21)–(23). We write the ansatz,

ui =
∑

α

ϕαi√
mu

√
h̄

2Nωqα

Âqα,

with mu the atomic mass constant. Inserting it in Eq. (14)
one obtains that the coefficients ϕαi are determined by the
decomposition of the normalized displacement vector in the

complete basis of the S̄i modes [Eqs. (15)–(19)]:

√
mu

(
eSr
α√
mSr

,
eTi
α√
mTi

,
eOx
α√
mO

,
eOy
α√
mO

,
eOz
α√
mO

)
=

∑
i

ϕαin̂iS̄i,

(32)

with ϕαi set to normalize the polarization eigenvector of the α

mode, i.e.,
∑

j |e j
α|2 = 1. As mentioned before, for a given

mode α, displacements do not need to be collinear even
though they concur to the same polar axis n̂α

p .
With the above quantization, we obtain the following

electron-polar-phonon Hamiltonian for a mode α,

Hu = 1√
N

∑
nkqα

ψ†
n

(
k + q

2

)
gα

n (k, q)ψn

(
k − q

2

)
Âqα,

with coupling function

gα
n (k, q) = [

gqα
n,A(k̂y,−k̂x, 0)σz + gqα

n,Bk̂z(−σy, σx, 0)

+ gqα
n,C (0, 0, k̂xσy − k̂yσx )

] · n̂α
p (q). (33)

For each α mode we have defined the electron-phonon matrix
element:

gqα

n,l = ka

√
h̄

2muωqα

∑
i

ϕαiτ
(S̄i )
n,l ≡ ka

√
h̄

2muωqα

τ
(α)
n,l , (34)

where l = A, B,C. Equation (34) shows that the k-linear
Rashba coupling τ

(α)
n,l of mode α is a weighted sum of the

Rashba couplings τ
(S̄i )
n,l [shown in Fig. 4(a)] with the coeffi-

cients ϕαi weighing the contribution of the S̄i modes to the
normal mode α.

Because of the strongly anharmonic nature of the prob-
lem [78–81], the eigenvector e j

α (q) [Eq. (32)] of the soft
mode is particularly difficult to determine accurately, both
theoretically and experimentally. Equations (31)–(34) allow
to compute the coupling to polar modes with arbitrary eigen-
vectors so they can be used to determine, for example, the
coupling to the soft polar mode from better refined eigenvec-
tors in future studies. In other words, we have separated the
problem of determining the coupling to the soft mode from
the problem of determining its eigenvector.

We illustrate the evaluation of the electron-phonon matrix
elements in Eq. (34) by assuming first the α mode to be a pure
Slater mode S̄1 [Eq. (15)]. Then the only nonzero coefficient
of the expansion in Eq. (32) is ϕα1 =

√
mu
μS̄1

= 0.204, where

we have introduced the reduced mass of the Slater mode
μ−1

S̄1
= (mTi)−1 + (3mO)−1. In this case the coupling Eq. (34)

is then reduced to the following simple expression [30]:

gqα

n,l = ka

√
h̄

2μS̄1
ωqα

τ
(S̄1 )
n,l . (35)

Substituting the estimated Rashba couplings τ
(S̄1 )
n,l for the

Slater mode S̄1 (listed in Appendix C) and the experimental
zone center frequency of the soft FE mode ωqα = ω

Eu
TO and

ω
A2u
TO we obtain the electron-TO couplings for STO listed

in Table II (under S̄1 columns). The value for l = A in the
first column coincides with the value reported in Ref. [30],
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TABLE II. Electron-TO coupling of the soft FE mode α = TO
to electronic band n of STO as obtained from Eqs. (33) and (34),
assuming a Slater mode Eq. (35) (S̄1), a mode from neutron scattering
[63] Eq. (36) (N ), and from Raman spectroscopy [64] Eq. (37) (R).
We have used the experimental phonon frequencies [67] at low-
T h̄ωEu

TO = 1 meV and h̄ω
A2u
TO = 2 meV, and electronic momentum

kF a = 0.3.

gTO
n,A [meV] gTO

n,B [meV] gTO
n,C [meV]

n S̄1 N R S̄1 N R S̄1 N R

1 19 21 51 11 10 8 5 5 5
2 −21 −22 −47 −13 −16 7 7 9 1
3 12 12 23 15 18 −5 −10 −12 −4

gTO
1,A = 65 meV × kF a. The present results generalize our pre-

vious computation for arbitrary polar modes and for all
symmetry allowed couplings.

The coupling constants for other S̄i modes can be estimated
in an analogous way, by including the appropriate reduced
mass for each mode, and the optical gap ωqα of the mode
we are interested in. For instance, for a pure S̄2 mode the
only nonzero contribution in Eq. (34) is ϕα2 =

√
mu
μS̄2

= 0.148

where μ−1
S̄2

= (mSr )−1 + (mTi + 3mO)−1 is the reduced mass

of the S̄2 mode.
Let us now turn instead to a more realistic eigenvec-

tor in Eq. (32), which generally will have a contribution
from different S̄i modes. We can use the normalized atomic
displacements estimated for the soft ferroelectric mode by
neutron scattering [63] and hyper-Raman [64] experiments
in the high-T cubic structure. According to these works the
ϕαi coefficients for the expansion in Eq. (32) for the soft
ferroelectric mode α = TO are, respectively,

(ϕα1, ϕα2, ϕα3)neutron = (0.189, 0.059, 0.0014), (36)

(ϕα1, ϕα2, ϕα3)Raman = (0.198,−0.0154,−0.08). (37)

As already mentioned, both have a predominant S̄1 mode
contribution, but while the first case, Eq. (36), implies a small
motion of the Sr atoms and a mostly octahedral motion of
the oxygens (|ϕ1| > |ϕ2| � |ϕ3|), the second case, Eq. (37),
suggests a mode in which the Sr atoms are essentially at rest
with a significant distortion of the oxygen octahedra (|ϕ1| >

|ϕ3| � |ϕ2|) [see Figs. 2(b) and 2(c)].
To estimate the Rashba coupling constants arising from

these two cases we assume the soft mode in the low-T tetrag-
onal phase is weakly changed and well described by the
decomposition with coefficients ϕαi given by Eqs. (36) and
(37). Substituting these into the weighted sum of Rashba-
couplings in Eq. (34), we obtain a new set of electron-TO
couplings gTO

n,l for the neutron (N ) and Raman (R) eigenvec-
tors. Figure 4(b) and Table II collect all the estimated el-TO
Rashba-like couplings in this work. As seen, while the values
from the eigenvector from neutron data [Eq. (36)] and the
pure S̄1 Slater mode are very similar, the resulting couplings
are quite different for the eigenvector consistent with Raman
data [Eq. (37)]. Indeed, the substantial variation of the el-
TO coupling constants in the latter case originates from the

intermediate contribution of the oxygen cage distortion of the
S̄3 mode (through the ϕα3 coefficient) which couples to the
gigantic Rashba coefficients τ

(S̄3 )
n,l [see Fig. 4(a)]. In particular,

as shown in Fig. 4(b), the absolute value of the Eu coupling
gn,A of the Raman determined eigenvector (R) has more than
doubled for all three bands and clearly dominates over the
other two couplings (|gn,A| � |gn,B|, |gn,C |), which have been
significantly reduced in most cases. We remind the reader
that the coupling gn,A corresponds to the case in which the
pseudospin is aligned in the z direction [cf. Eq. (33)].

As a consistency check, we have recomputed the coupling
to the Raman mode directly from the band splittings, imposing
its eigenvector in a frozen phonon computation in DFT and
obtained the same results as with the weighted sum of Rashba-
couplings [Eq. (34)].

Crucial for our results is the weight of the S̄3 component.
One sees that the oxygen cage appears very rigid in neutrons
while it deforms substantially in Raman. Theoretically, the
determination of the soft-mode eigenvector requires the so-
lution of a highly nonharmonic dynamical phonon problem
which goes beyond our present scope. As a proxy for this
eigenvector, we can examine the fully relaxed broken sym-
metry ground state, which is polar, since Born-Oppenheimer
(adiabatic) DFT does not contain the quantum fluctuations
which make the system disorder [1]. Such DFT eigenvector
has a S̄3 component similar to that determined by Raman,

(ϕα1, ϕα2, ϕα3)DFT = (0.199, 0.014,−0.06). (38)

This suggests that the Raman determination is more reliable
than the one from neutrons, and hence we will consider its
eigenvector in the following computations.

VI. THE SUPERCONDUCTING DOME

In this section, starting from our findings on the Rashba
electron-phonon interaction in STO presented in Sec. V, we
extend them to high momentum and explore the consequences
for superconductivity.

One important result from the previous section is that
the electron-phonon matrix-elements are very sensitive to the
form of the eigenvector of the polar mode. To address this
sensitivity we estimate the BCS pairing coupling constant
for both the Slater and the Raman determined eigenvectors.
For the sake of comparison we restrict now to Eu Rashba
couplings of the lowest band (n = 1), and the l = A irrep
component. This is well justified for the Raman eigenvector
since |gn,A| � |gn,B|, |gn,C | and partially justified also for the
Slater mode since |gTO

1,A| > |gTO
1,B|, |gTO

1,C |. Since the magnitude
of this matrix element is substantially larger for the Raman de-
termined eigenvector than for the pure S̄1 mode [see Fig. 4(b)]
and the superconducting coupling constant is proportional to
the square of the Rashba electron-phonon matrix element [30],∣∣gTO(R)

1,A

∣∣ = 2.6
∣∣gTO(S̄1 )

1,A

∣∣ −→ λ
(R)
BCS,A ≈ 7λ

(S̄1 )
BCS,A, (39)

this translates into a factor of 7 larger SC coupling when
taking the square. Hence, we see that the details of the eigen-
vector can strongly influence the resulting bare couplings and
in turn its pairing coupling strength. For a pure Slater mode,
the other l = B,C couplings should also be taken into account
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and the resulting gap structure and final pairing coupling
constant will depend on their ratio [28].

Given the DFT determined fully relaxed polar state
[Eq. (38)], in the following we will assume the soft-mode is
best described by the hyper-Raman determined eigenvector
Eq. (37). Luckily, this simplifies computations since |gn,B|
and |gn,C | can be neglected, and estimates based on the sole
contribution of the l = A irrep component are well justified.

We also note that we will focus solely on the s-wave su-
perconducting channel. It has been found by different groups
[26–28,44] that the odd-in-k Rashba mechanism has attractive
higher angular momentum Cooper channels (p-wave, d-wave,
etc.), but sub-leading to the s-wave channel in cubic and
tetragonal systems. We therefore restrict our high momentum
study to s-wave pairing solutions.

A. Generalized Rashba in DFT and dome behavior

So far we have explored the conventional Rashba-like
k-linear model in Eq. (23), which describes the coupling be-
tween the soft FE phonon and the electrons fairly well at low
momenta, as we have shown by frozen phonon computations
(Fig. 3). However, as already mentioned in Sec. IV A, the band
split obtained by the ab initio computations exhibits deviations
from linear-in-k beyond a characteristic momenta ka which
generally depends on the electronic band n, the momentum
direction k̂ and the polar mode S̄i.

Figure 6(a) shows the ab initio results (solid lines) of the
pseudospin-split of each n band going beyond the small ka
values presented in Fig. 3. We chose a frozen-phonon Eu

Raman mode [Eq. (37)] with polar axis n̂p ‖ [11̄0], and show
the band split along the perpendicular momentum direction
k̂ ‖ [110]. As seen, for all bands the band-split δEn is initially
conventional Rashba-like (growing linearly with momenta),
but deviates from linearity and peaks at intermediate val-
ues of momenta after which steadily decreases in a form
close to 1/k.

To linear-in-k order the splittings are given by the Rashba
couplings through Eqs. (25) and (34). We can generalize
Eq. (34) to an arbitrary odd function of k by introducing for
each electronic band n,

gqα

n,l = kaFn,l (ka)

√
h̄

2muωqα

τ
(α)
n,l , (40)

where we defined Fn,l (ka) such that it is even in k and
Fn,l (ka) → 1 for k → 0. By definition, the electron-phonon
matrix element is proportional to the band split so Fn,l (ka)
was extracted directly from the ab initio results. The corre-
sponding gTO

n,A is given by the right y axis in Fig. 6(a). We
anticipate that this dome in k results in a dome in electronic
density for both λBCS and Tc so it is important to discuss its
origin, which we do next.

B. Minimal model and dome behavior

The domelike behavior of the band split can be traced
back to a k-dependent quenching of angular momentum.
The essential physics is captured by the minimal model in
Eq. (1) supplemented by a one-parameter simplification of
the polar interaction in Eq. (27). Namely we keep only the

FIG. 6. Electronic band split for the three bands of STO in the
presence of a frozen polar mode with eigenvector deduced from
Raman [Eq. (37)] and with polar axis n̂Eu

p ‖ [11̄0] and momentum
k ‖ [110]. The right y axis shows the corresponding generalized
Rashba electron-phonon matrix element [Eq. (40)]. Solid lines in
panel (a) are ab initio results and dashed lines the conventional
Rashba model [Eqs. (25) and (34)]. Panel (b) is the result for
minimal t2g model in Eqs. (13), (27), and (41) with the coupling
matrix element corresponding to the Raman determined eigenvector,
2∂xtxy0 = τR

1,A = 115 meV/Å [extracted from DFT results in panel
(a)].

spin-conserving j = 0 term and restrict to mixing of x and y
orbitals,

txy0(k, q) = 2i∂xtxy0u(q)[− sin(kya)n̂px + sin(kxa)n̂py]. (41)

Computing the band splitting along k̂ ‖ [110] for n̂p ‖ [11̄0]
one obtains Fig. 6(b). As seen, this simple approximation cap-
tures very well the coupling of the first two bands including
the dome behavior. It underestimates the coupling of the third
band which therefore calls for additional parameters beyond
the scope of this subsection.

Focusing on the lowest band, the wave function near �

[Eq. (7)], suggests to simplify even more the tight-binding t2g

model Eq. (1) by restricting it to two orbitals μ = x, y, which
is formally equivalent to taking the AFD parameter to infinity,
� → ∞ in Eq. (4). The band split δE of this toy model for a
finite u(q) and the same k̂ and n̂p orientations as above can be
analytically obtained from the eigenvalues of a 2 × 2 matrix
with matrix elements,

h11 = h22 = 2(t1 + t2 + 2t3)

[
1 − cos

(
ka√

2

)]
,

h12 = h∗
21 = iξ − 4t4 sin2

(
ka√

2

)
+ 2i∂xtxy0u

√
2 sin

(
ka√

2

)
,
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FIG. 7. (a) Band split for two-orbital toy-model Eq. (42), and
the perturbative limits Eqs. (43) and (43b). (b) k-dependence of
eigenstates, in the perturbative limits shown in panel (a). The color
legend represents the argument of the wave function.

and reads

δE (k[110], u[11̄0])

2u
=

τ1,A

√
2 sin

(
ka√

2

)
√

1 +
[

4t4 sin2
(

ka√
2

)
ξ

]2
, (42)

where we have used the relation 2∂xtxy0 = τ1,A [Eq. (30)].
Expanding to linear order in k one recovers the conventional
Rashba form of Ref. [30] which here is generalized to arbi-
trary momentum.

Equation (42) is plotted in Fig. 7(a) for the electronic
parameters in STO t4 and ξ listed in Sec. II B, and τR

1,A =
115 meV/Å corresponding to the Raman deduced soft-mode
eigenvector. As seen, the two-orbital toy model excellently
captures the band split of the lowest band, n = 1, computed by
DFT [cf. Figs. 6(a) and 7(a)]. Furthermore, the analytical re-
sult for n = 2 is identical to the n = 1 case while in DFT both
are very similar. Thus, surprisingly, the two-orbital toy model
provides a good approximation to the second band despite its
nonnegligible weight of the z orbital near � [Eq. (8)]. This
is attributed to the rapid decrease of the z-orbital character
as momentum increases along [110]. Indeed, including the z
orbital results in little change on the splittings for n = 1, 2
[Fig. 6(b)].

The k-dependence in Eq. (42) is determined by the compe-
tition between the SOC energy ξ in HSOC (which dominates
at k = 0), and the hopping term 4t4 sin2( ka√

2
) [Eq. (6)] which

induces a mass mismatch of the bands in H0, and increases
with k. The former term promotes a state with lz = ±1 angular
momentum c†

x,± ± ic†
y,± [Eq. (7)] leading to jz = ±3/2 states,

whereas the latter term constrains the system toward c†
x,± ±

c†
y,± states which have 〈l〉 = 0. This k-dependent quenching

of angular momentum is illustrated in Fig. 7(b) where the
complex, lz = ±1 (real, 〈l〉 = 0) orbitals for small (large) k
are shown.

Doing perturbation in Eq.(42) in the two opposite limits,
where the SOC term dominates over the hopping term and
viceversa, one obtains the following expressions for the band
split in the continuum limit (ka � 1),

δE

2u
≈

⎧⎪⎨
⎪⎩

τ1,Aka
[
1 + O

( t2
4 (ka)4

ξ 2

)]
, t4(ka)2 � ξ,

τ1,Aξ

2t4ka

[
1 + O

(
ξ 2

t2
4 (ka)4

)]
, ξ � t4(ka)2

(43a)

(43b)

We recover the Rashba linear-in-k term Eq. (25) when
the SOC energy term dominates over the hopping term
[Eq. (43a)], and the 1/k dependence in the opposite limit,
when the kinetic term takes over [Eq. (43b)]. These two
perturbative expressions are shown in Fig. 7(a) together with
the full expression Eq. (42), by dashed orange and purple
lines, respectively. Deviations of the expansion at large mo-
mentum are due to lattice effects which were neglected as
they do not change the qualitative picture. Clearly, when the
angular momentum becomes quenched the spin-orbit assisted
electron-phonon interaction becomes ineffective and dies out.
In the continuum limit the maximum of the coupling is given
by

kmaxa =
√

ξ

2t4
≈ 0.42, (44)

which again illustrates the competition between spin orbit
and band mass mismatch energies. The right hand side cor-
responds to the present parameters, relevant for STO. As it
will be clear below, the maximum of the coupling is the more
important factor to determine the optimum Fermi momentum
and density for superconductivity.

Because the pairing interaction arising from the polar
coupling is in turn proportional to the square of the electron-
phonon matrix element [30] (shown in the right y axis of
Fig. 6), VTO ∝ |gTO|2, it also acquires a pronounced peak
as a function of k = kF , the Fermi momentum. The initial
quadratic increase with kF peaks and decreases as VTO ∝ 1/k2

F
for all three bands. Consequently the pairing coupling con-
stant [30] λBCS,A = 2

3 NFVTO ∝ kFVTO of each band (assuming
parabolic bands) shows a domelike form with increasing kF

(inset of Fig. 8). We took a constant factor of 2 effective mass
enhancement in NF , chosen to match the values from specific
heat [82] at low carrier densities. This mass renormalization
can be viewed as effectively taking into account the coupling
to other phonons not considered explicitly so far, such as the
longitudinal optical modes. The obtained values of λBCS,A

are in the weak coupling limit so we can use a simple BCS
formalism. This is in agreement with the 2�(T = 0)/Tc ratio
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FIG. 8. Tc dome (normalized to its maximum value) vs carrier

density ne = k3
F

3π2 assuming a parabolic band and using λBCS,A from
lowest band n = 1 shown in inset. Full (dashed) line neglects (in-
cludes) the hardening of the TO mode. Inset: Band resolved λBCS,A =
2
3 NF

|gTO
n,A|2
ωTO

using the ab initio results gTO
n,A of Fig. 6(a). Open symbols

are bulk Tc experimental data from Ref. [83] (circles), Ref. [84]
(triangles), and Ref. [85] (diamonds) with Tc,max = 0.35K. Notice
that for simplicity an effective one-band is considered in the theory to
compute ne, while in the experiment ne is the total electronic density.

obtained with tunneling and microwave spectroscopy studies
[85,86] which suggest that a weak coupling picture applies.
Neglecting interband (finite-q) couplings in Eq. (22), we ob-
tain three uncoupled SC gap equations, one for each electronic
band. In this approximation, the higher Tc corresponds to the
bulk critical temperature of the material.

This simplified picture already predicts a dome of Tc ∝
exp[−1/λBCS,A] within the generalized Rashba coupling pair-
ing mechanism, shown in Fig. 8 for the first band n = 1.
Notice that the largest Tc corresponds to n = 2, but since both
curves are very similar there is little difference on which one
is chosen. Note also that we are assuming a rigid band picture,
which seems to be a good approximation for bulk SC obtained
by Nb and La doping [87].

Within the present mechanism, we believe that the dom-
inant correction to the above computation of the dome is
given by the hardening of the TO mode with carrier density
[17,31], ω̃TO(kF a) = √

ω2
TO + D(kF a)3 with D = 1.64 meV2.

This parametrization was chosen to match the factor of three
hardening of the soft mode at low temperatures when reaching
ne = 1.5 × 1020 as measured by infra-red spectroscopy [88].
As seen by the dashed lines in Fig. 8, since λBCS ∝ 1/ω2

TO,
the hardening reduces the pairing constant even faster at
high Fermi momenta where the hardening effect is largest.
Consequently, the Tc dome is narrowed and shifted to lower
densities.

C. Comparison with experiments

A key prediction of the present mechanism is the density
where Tc peaks, which including (neglecting) the hardening
of the soft mode is found to be nopt

e ≈ 7 × 1019 cm−3 (nopt
e ≈

1 × 1020 cm−3). This can slightly change by multiband effects
and mass anisotropy but the order of magnitude is in ex-
cellent agreement with diamagnetic experiments [83,85,89],
without free parameters. To the best of our knowledge, the fine
resolution in carrier density achieved in early Refs. [83,89]
has not since been attained in bulk superconductivity mea-
surements. To determine the experimental optimum density,
we have neglected two outlier points in Ref. [83] that were
neglected also in their fit and a similar outlier point in the
data of Ref. [84], which unfortunately does not cover the
maxima of Refs. [83,85,89]. More experimental and theo-
retical work is needed to understand if those outliers are a
systematic effect. Eventually, they may be attributed to multi-
band effects neglected here. Furthermore, we are not taking
into consideration resistivity data, as it is not a bulk super-
conductivity probe. Indeed, Tc in bulk probes (specific heat,
thermal conductivity and diamagnetism) is consistently lower
than the zero-resistance T , which points toward filamentary
superconductivity at higher temperatures and extremely dilute
samples [2,87,90].

When plotted in linear scale, it becomes clear that the
dome is very asymmetric, with a rapid rise and a much slower
decrease (Fig. 8). Also this asymmetry is well reproduced by
the theory presented here. The rise of Tc appears at a density
slightly higher than in experiments while the decrease is very
sensitive to what is assumed for the hardening of the soft
mode. Within the present uncertainties on the experimental
data (Fig. 8), also the width and the asymmetry of the dome
are in very good agreement with experiment.

An important remaining question is if the present theory
can explain the observed maximum value of Tc. In Ref. [30]
we used the naive k-linear Rashba form, neglected the phonon
hardening, and obtained a good estimate of Tc near optimum
density. The present computations show that both approx-
imations can lead to an overestimation of λBCS. However,
a pure Slater mode S̄1 was assumed; Eq. (39) shows that
the details of the soft mode eigenvector strongly affects the
coupling strength. For the soft mode eigenvector found by
hyper-Raman [Eq. (37)], the overestimation error of Ref. [30]
tends to cancel with the amplification of Eq. (39) so the com-
puted λBCS is again close to the one required by experiments.
Indeed, taking the BCS form kBTc = 1.13h̄ωT O exp[−1/λBCS]
and assuming the soft mode frequency to be ωT O = 3 meV
near the optimum density requires a λBCS = 0.21 to obtain
a maximum transition temperature near the experimental one
[2,83,85,89] (Tc,max ≈ 0.35 K). In our computation the maxi-
mum λBCS, including phonon hardening, is λmax = 0.13 (see
inset of Fig. 8) which is fairly close to this BCS estimate
without any free parameters. Thus, it is clear that the present
mechanism can explain the observed Tc as λmax is in the
correct range.

As explained above, our estimate of λBCS is a lower
bound. A more accurate computation should take into account
that around optimum carrier density, three bands are filled;
our estimate takes into account only one band. Also, the

023177-12



GENERALIZED RASHBA ELECTRON-PHONON COUPLING … PHYSICAL REVIEW RESEARCH 5, 023177 (2023)

contributions of gn,B and gn,C matrix elements to the A1g

pairing channel have been neglected. Both of these aspects are
expected to increase Tc and hence improve the agreement with
the experiment. While one can incorporate the above correc-
tions in the computations, in practice, due to the exponential
dependence of Tc with λBCS and the approximate treatment of
the Coulomb interaction [91] (neglected in this work), a high
level of accuracy in Tc should not be expected. Therefore, for
the time being, we consider the present results robust enough
to claim that the magnitude of Tc can be explained within
the present mechanism. As mentioned earlier, the coupling of
electrons to pairs of TO modes, that is, the quadratic coupling
to the FE mode, is also a promising source of pairing in doped
paraelectrics, and certainly in doped STO [33–37]. Also, for
this mechanism, a domelike feature of Tc versus doping and
an optimum density in good agreement with experiment has
been claimed without free parameters [36]. Therefore, more
experimental and theoretical work is needed to decide which
of the two mechanisms is more appropriate to describe the
superconducting dome.

We remark that the dome arising in Ref. [36] is due to the
hardening of the phonons with electronic carrier density, with
the quadratic coupling constant in the interaction vertex left as
a constant. In the work presented here, however, the momen-
tum dependence (odd-parity) of the linear coupling constant
already gives rise to a dome (see full lines in Fig. 8), and the
hardening of the soft phonon modifies its shape (dashed lines
in Fig. 8).

Charge transport in the normal state of doped STO presents
a pronounced T 2 regime in the resistivity present even at very
low ne where umklapp scattering is forbidden. This behavior
has been explained invoking the combination of scattering by
a LO mode and two-TO modes [42] as well as a LO mode
and a single-TO mode over a range of temperatures [31]. This
suggests both linear and quadratic coupling mechanisms are
consistent with the observed T 2 resistivity. Whether the mo-
mentum structure of the linear coupling found in this work can
discriminate between the two scenarios for charge transport is
left for a future study.

VII. SUMMARY AND CONCLUSIONS

In this work, we have derived the most general Rashba-
like linear coupling between the electronic bands and the polar
modes at the zone center of tetragonal STO [Eq. (23)]. Fitting
the electronic band split of the Rashba model [Eqs. (25) and
(26)] to ab initio q = 0 frozen-phonon calculations (Fig. 3) we
have estimated the corresponding Rashba couplings, τ

(S̄i )
n,l , to

zone center polar modes S̄i [Fig. 4(a)]. These S̄i modes form a
complete basis of in-plane, Eu, and out-of-plane, A2u, modes
at the zone center in STO [Eqs. (15)–(19)] and hence we have
mapped out the entire Rashba-like linear coupling subspace of
these zone-center polar modes.

The origin of the Rashba couplings can be understood as
arising from induced hopping channels between neighboring
t2g orbitals in the presence of polar distortions [Eq. (27)]. We
have explicitly shown how to connect the symmetry allowed
Rashba-coupling constants τn,l in Eq. (23) to the micro-
scopic hopping processes ∂l tμν [Eqs. (29) and (30)]. Indeed, a

minimal, three-orbital model with only one induced hopping
parameter reproduces qualitatively and to some extent quanti-
tatively many results of the ab initio computations [Eq. (6)].

We have shown how to estimate the electron-polar-phonon
coupling function of a general polar mode by decomposing
it into the S̄i basis [Eqs. (33) and (32)] using the obtained
Rashba-couplings τ

(S̄i )
n,l [Fig. 4(a)]. Since an accurate determi-

nation of the soft-mode eigenvector is difficult, this allows us
to separate the problem of determining the coupling to the soft
mode from the problem of determining its eigenvector.

Starting from eigenvector cases of a Slater mode S̄1 and
those consistent with neutron data [Eq. (36)] and hyper-
Raman data [Eq. (37)] in STO, we have obtained and
compared three sets of electron-TO-phonon couplings gTO

n,l
[Fig. 4(b) and Table II]. We find substantial coupling values
for the three electronic bands, with the Eu coupling gTO

n,A being
larger than the other two couplings gTO

n,B and gTO
n,C . Physically,

the A component of the Eu irrep corresponds to the case in
which the pseudospin lies along the z-direction, as considered
in Ref. [30] and in the toy model of Sec. VI B.

We found that the details of the eigenvector can sub-
stantially alter the magnitude of the couplings. In particular,
the intermediate contribution of the S̄3 mode (which distorts
the oxygen octahedra) to the Raman determined eigenvector
[Eq. (37)] significantly increases the Eu coupling gTO

n,A for all
three bands [see Fig. 4(b)].

Certainly, the sensitivity of the couplings to the eigenvector
has important implications for the Rashba pairing mechanism
[30], since the BCS coupling constant λBCS is proportional to
the square of the electron-TO-phonon coupling in its simplest
form. Comparison with the DFT broken symmetry state sug-
gests that the oxygen cage should deform substantially in the
soft mode as found by the hyper-Raman eigenvector.
More experimental and theoretical work will be highly de-
sirable to refine the eigenvector of the soft mode and improve
the estimate of λBCS.

While the linear-in-k conventional Rashba model works
well at low momenta, our ab initio frozen phonon results
generally indicate a deviation from the linear-k Rashba split
of the three electronic bands beyond a critical wave vector for
all polar modes. As a result, we find a domelike behavior of
the electron-TO-phonon coupling gTO

n,l [Eq. (40)]: Beyond the
critical wave vector the linear-k growth slows and peaks, sub-
sequently evolving into a 1/k decrease (Fig. 6). This behavior
is due to a k-dependent quenching of the angular momentum,
as explicitly shown by reducing the three-orbital model to a
two-orbital toy model [Eq. (42) and Fig. 7].

Assuming a rigid band shift for electronic doping, and
without introducing electronic screening effects, this devia-
tion from Rashba already entails a dome for Tc as a function of
electronic density. We remark that this result does not depend
crucially on the particular form of the polar mode eigenvector.
A popular explanation of the dome invokes the proximity
to a ferroelectric quantum critical point [1]. In the simplest
picture, the dome is attributed to the change of the frequency
of the soft-mode with density, possibly with the structural
transition laying below the dome [92]. This last simplified
picture, however, requires that the system breaks inversion
symmetry to the right or to the left of the optimum density
which, to the best of our knowledge, is not the case. In the
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TABLE III. 4b Wyckoff positions in the Ima2 space group of an
Eu mode, representative of Ti, Ox and Oy atoms used to generate the
atomic displacements in Fig. 2.

1 x y 1
4

2 1
2 + x 1

2 − y 1
4

3 x −y 3
4

4 1
2 + x 1

2 + y 3
4

mechanism we presented, the proximity to the ferroelectric
quantum critical point is important to have a soft-mode in
the first place, which increases λBCS ∝ 1/ω2

TO, but it is not
responsible for the nonmonotonous behavior of Tc. Including
the hardening with doping increases the agreement with the
experimental data of Refs. [83,89] (Fig. 8).

The obtained maximum value of Tc, the density at which
it peaks, and the characteristic asymmetry of the dome are
in surprisingly good agreement with experiments without free
parameters (Fig. 8) providing a compelling solution to a more
than 50-year-old open problem in the field. Small deviations
remain, which we attribute to several simplifications we have
made to avoid introducing more parameters in the theory. For
example, additional Rashba coupling contributions to the A1g

pairing channel can be considered, which will increase Tc and
possibly decrease the smaller density at which bulk supercon-
ductivity becomes robust. It remains an interesting question
for future research to find out if the spin-orbit processes ne-
glected [labeled B and C in Eq. (23)] can stabilize different
pairing symmetries other than the conventional s-wave we
have considered.

The approach presented here can be generalized to study
the linear coupling characteristics between electrons and FE
soft TO modes, as well as the corresponding pairing mecha-
nism in other incipient ferroelectrics. A noteworthy example
are KTO interfaces, where the linear coupling to the TO mode
has recently been invoked for pairing [51].
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APPENDIX A: PSEUDOSPIN
OF THE ELECTRONIC BANDS

The spin-orbit coupling acts on the triplet formed by the t2g

states. Its matrix elements are the same as for the p orbitals
but with the opposite sign of the interaction [60,61]. There-
fore one can in the simplest approximation describe the t2g

manifold with l = 2 by an effective orbital moment l = 1.
Hence, the difference from the real orbit moment is that the

TABLE IV. k-linear Rashba couplings in Eq. (23) in meV/Å
for band n and mode S̄i [Eqs. (15)–(19)] shown in Fig. 4(a). They
were obtained from fits of the band-split Eqs. (25) and (26) to frozen
phonon ab initio results.

S̄i n τn,A τn,B τn,C

S̄1 1 214 122 85
2 −240 −142 105
3 130 166 −160

S̄2 1 170 −10 10
2 −120 −150 130
3 60 150 −130

S̄3 1 −985 60 15
2 770 −515 205
3 −350 515 −205

S̄4 1 105 5 —
2 −80 −12 —
3 38 12 —

S̄5 1 220 −25 —
2 −170 420 —
3 70 −420 —

sign of the SOC interaction is the opposite [l (t2g) = −l (p)].
The eigenfunctions of the z component of the effective orbital
moment are then |lz

0〉 = |xy〉 and |lz
±1〉 = −(i|zx〉 ± |yz〉)/

√
2,

and the wave functions of the effective j = 3
2 quartet and

j = 1
2 doublet become∣∣∣∣3

2
,±3

2

〉
= ∣∣lz

±1,±
〉
, (A1)

∣∣∣∣3

2
,±1

2

〉
= 1√

3

( ± ∣∣lz
±1,∓

〉 + √
2
∣∣lz

0,±
〉)

, (A2)

∣∣∣∣1

2
,±1

2

〉
= 1√

3

( ±
√

2
∣∣lz

±1,∓
〉 − ∣∣lz

0,±
〉)

. (A3)

From these expressions one can obtain Eqs. (7)–(9) in the
main text. The pseudospin index of the doubly degenerate
bands Eqs. (10)–(12) in the tetragonal state is chosen to co-
incide with the projection of the real orbital momentum. That
is, states with effective jz = ± 1

2 [Eqs. (8) and (9)] have band
pseudospin index ±, whereas states with jz = ± 3

2 [Eq. (7)]
have band pseudospin index ∓. This choice is consistent with
the basis functions we chose to represent the polar Hamilto-
nian in the presence of a polar distortion Eq. (23).

APPENDIX B: WYCKOFF POSITIONS OF Ti,
Ox AND Oy IN Ima2 GROUP

In Table III we list the Wyckoff positions for Ti and O
atoms in the Ima2 space group of an Eu mode, which are
needed to complete the atomic displacements shown in Fig. 2.

APPENDIX C: ELECTRONIC BAND SPLIT OF S̄i MODES

The conventional linear-in-k Rashba-like couplings for
tetragonal STO to the complete basis modes S̄i, extracted
from linear-in-k fits to frozen-phonon ab initio and shown in
Fig. 4(a), are listed in Table IV. They can be used to estimate
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FIG. 9. Electronic band split analogous to Fig. 3 but with a polar
amplitude u1 = 0.08 Å, beyond the linear regime in u1. The polar
axis is along (a) n̂Eu

p ‖ [11̄0] and (b) n̂A2u
p ‖ [001] in pseudocubic

coordinates. Dashed lines are ab initio results from frozen phonon
distortions. Full lines are the k-linear Rashba split obtained in the
linear u1 regime (shown in Fig. 3). Deviations between dashed and
solid lines signal nonlinear u1 effects at this polar amplitude, with
strongly renormalized k-linear Rashba splits.

the conventional Rashba dynamic coupling to any general
zone center α mode in STO via its decomposition into the
S̄i basis using Eqs. (32) and (34).

APPENDIX D: BEYOND THE LINEAR-IN-u POLAR
COUPLING REGIME

In Sec. IV A we presented and estimated the coupling
between the electrons and the polar phonon modes to linear
order in the polar distortion ui. In the following, we explore
the validity of this regime and connect it to experimentally
relevant cases in the ordered polar state.

We repeat the ab initio frozen phonon computations with
polar amplitudes up to around 0.1 Å, which is the experi-
mentally reported values in the ordered state. The resulting
band-split for the three electronic bands for a Eu and A2u Slater
mode is shown in Fig. 9 by dashed lines. For comparison,
the fitted k-linear split obtained for amplitudes in the linear
regime obtained in Sec. IV A (Fig. 3) is shown as solid lines.
Two aspects are to be highlighted. First, by comparing the
ab initio results with these larger polar amplitudes u1 to the
ones in the linear regime shown in Fig. 3 (also shown by
dashed lines), one concludes the momentum dependence of
the split has qualitatively changed, most notably for the lowest
two electronic bands n = 1 and n = 2. Second, the k-linear
coefficient one would extract from the large-amplitude case is
strongly renormalized, as evident from the strong deviations
between the dashed and solid lines in Fig. 9. This renormal-
ization is particularly striking for the lowest band n = 1. The
k-linear split has essentially vanished both for the in-plane
Eu mode along kz (τ̃1,B → 0) as well as for the A2u mode
(τ̃1,C → 0), and is been significantly reduced in the remain-
ing channel τ̃1,A � τ1,A. Therefore, anharmonic terms in the
electron-phonon coupling may play an important role in this
system and deserve further study.
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