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Endocytosis is an essential biological process for the trafficking of macromolecules in cells. In yeast cells, this
involves the invagination of a tubular membrane and the formation of endocytic vesicles. The crescent-shaped
BAR proteins are generally assumed to squeeze the tubular membrane and pinch off the vesicle. Here, we
theoretically investigate how BAR proteins help drive membrane fission via generating anisotropic curvatures.
We show that increasing the isotropic spontaneous curvature at a localized region on the side of a tubular
membrane cannot induce membrane fission if the coating area is small. However, a tubular membrane coated
with proteins that generate anisotropic curvatures are prone to experience an hourglass-shaped or tube-shaped
necking process, which leads to membrane fission. In addition, we propose an experimental method to determine
the type of anisotropic curvatures of a protein.
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I. INTRODUCTION

Endocytosis is involved in many cellular processes, includ-
ing nutrient uptake, regulated recycling of plasma membrane
components, and neural signaling [1]. This process is achieved
through formation of transient, highly curved membrane con-
figurations such as tubules or vesicles, which have the targeted
molecules wrapped inside [2]. During endocytosis in yeast
cells, a small patch of the plasma membrane is first deformed
into a shallow invagination, which is subsequently elongated
into a deep one, followed by a constriction of its neck until a
cargo-carrying vesicle is formed and pinched off [3].

These membrane-shaping events are generally mediated by
a plethora of types of proteins bound to the membrane [4–7].
Clathrin proteins play an important role. They can assem-
ble into a polyhedral lattice with a mixture of pentagons
and hexagons that tends to fold into a basketlike structure.
The rigid basket scaffolds the flat membrane into a spherical
pit [8–11]. After formation of the pit, the GTPase dynamin
proteins can form a helical band at the neck of the endo-
cytic pit. In mammalian cells, it is generally thought that the
constriction of the band upon GTP hydrolysis drives vesicle
scission. Other active participants to facilitate vesicle scission
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are the Bin/amphiphysin/Rvs (BAR) domain proteins that are
found to be bound at the side of the endocytic pit and as-
semble into a cylindrical scaffold. The crescent-shaped BAR
proteins are expected to bend the membrane into different
curvatures in parallel with and perpendicular to their orienta-
tions [3,12–14]. Such a mechanical feature, enhanced by the
enrichment of BAR proteins on the membrane, can induce
tubulation [15–17]. The role of BAR proteins as facilitators
for vesicle scission has been challenged by Walani et al. [18],
who proposed that the BAR proteins help stabilize the tubular
endocytic pit, and it is the depolymerization of BAR proteins
that leads to the scission of the tubular pit through a snap-
through transition induced by high membrane tension.

Membrane budding and vesiculation have been extensively
studied, both in theory and in experiments [19–24]. In the
case of a homogeneous membrane, excessive surface area–
to–volume ratio could lead to formation of a pear-shaped
membrane where a small vesicle buds from a large vesicle, or
a pearl-shaped membrane where multiple equal-sized vesicles
are connected in series. The neck connecting the vesicles in
theory can be infinitely narrow but does not contribute to
the bending energy [25–27]. Line tension developed at the
interface between two intramembrane domains could also lead
to an infinitesimal neck [28,29]. However, the presence of var-
ious types of proteins in different locations on the membrane
during endocytosis gives rise to heterogeneity in mechanical
properties of the membrane, such as the bending rigidity [30]
and the membrane curvature [31]. The physical mechanisms
behind membrane vesiculation during endocytosis, which is a
highly heterogenous system, remains unclear.

Rapid developments in imaging technologies such as elec-
tron and fluorescence microscopy have resolved the shapes of
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the endocytic pit at different stages of endocytosis [32–34].
Experiments have confirmed that vesicle formation can arise
from the conical shape of lipid molecules [35,36], mem-
brane tension induced by external forces [37–39], as well as
spontaneous curvature generated by membrane-bound pro-
teins [40–43]. Theoretical efforts were also exploited to
interpret the underlying mechanical principles of membrane-
budding phenomena during endocytosis [18,44–48]. Most of
these works focus on the explanation of how a flat mem-
brane is deformed into either a tubular pit via external forces
or a spherical vesicle via clathrin assembly. The very last
step of vesicle scission has been studied only in a limited
number of works. By constructing a quantitative model, Liu
et al. [45] suggested that the line tension at the interface be-
tween different lipid domains on the invaginating membrane is
sufficient for a successful vesicle scission during endocytosis.
The inhomogeneity of the membrane arises from enrichment
of proteins on a localized area as a result of phase separa-
tion [21–23]. However, experimental evidence for lipid phase
separation on the endocytic pit is still lacking.

In the classical Helfrich model of membrane, the effect of
curvature generation by proteins on the membrane is embed-
ded in a parameter called spontaneous curvature. To reduce
the energetic cost for bending, the membrane tends to deform
in such a way that the mean curvature of the membrane
equals the spontaneous curvature. However, this description of
curvature generation cannot capture the effect of anisotropic
proteins, such as BAR proteins, which tend to bend the
membrane independently into different curvatures in different
tangential directions. Whether the anisotropic curvature gen-
erated by BAR proteins at the side of a tubular membrane can
induce vesicle scission remains unclear.

In this paper, using the extended Helfrich model developed
to account for the anisotropic spontaneous curvatures gener-
ated by anisotropic proteins [49–52], we investigate how a
tubular membrane is deformed by anisotropic proteins bound
to the side of the membrane. It is found that, within the classi-
cal Helfrich model of a membrane, increasing the spontaneous
curvature cannot lead to membrane fission if the coating area
of proteins is small. Anisotropic spontaneous curvatures are
necessary to narrow the membrane into a tubular neck or
an hourglass neck. We also suggest an experimental method
to distinguish the type of anisotropic spontaneous curvatures
generated by a protein by comparing the force to maintain the
membrane in a tubular shape in the presence and absence of
the protein coat.

II. MODELING ENDOCYTIC INVAGINATION AND
ANISOTROPIC PROTEINS

We consider the deformation of a tubular invagination in
the late stage of endocytosis in yeast cells when BAR proteins
are present at the side of the tube, as shown in Figs. 1(a)
and 1(b). The shape of the membrane invagination is as-
sumed to be rotationally symmetric, and the membrane profile
is parameterized by the meridional coordinates [r(s), z(s)],
where s denotes the arc length from the membrane tip (s = 0).
We introduce the angle ψ spanned between the tangential
direction and the radial horizon, as shown in Fig. 2. With these
coordinates, the two principal curvatures of the membrane

FIG. 1. (a) Electron micrograph of an endocytic invagination in
yeast cells when BAR proteins are present. The graph is adapted
from Ref. [1]. (b) Schematic illustration of the proteins involved
in endocytosis. The clathrin proteins (blue) are bound to the tip of
the membrane and generate an isotropic spontaneous curvature. The
BAR proteins (green) are bound to the side of the membrane and ex-
pected to generate an anisotropic spontaneous curvature to facilitate
membrane fission. (c) Characterization of the neck morphology. The
narrow neck formed by BAR proteins (green) is depicted by the neck
radius rneck and the two principal curvatures c1 and c2.

read

c1 = dψ

ds
≡ ψ̇, c2 = sinψ

r
. (1)

Hereafter, the overhead dot indicates the derivative with re-
spect to the arc length s.

The membrane invagination is assumed to be pulled by the
actin polymerization force f against the high turgor pressure
p inside the cell to a fixed height (Fig. 2). The membrane
tension σ is assumed to be small due to the presence of eiso-
somes which serve as a membrane reservoir. To describe the
anisotropic spontaneous curvature induced by BAR proteins
and the isotropic spontaneous curvature induced by clathrin
proteins, we adopt the extended Helfrich model proposed by

FIG. 2. Schematic picture of the theoretical model for a hetero-
geneous membrane during endocytosis. We assume a point force
f , which is thought to be provided by actin polymerization, is ap-
plied at the tip of the membrane patch to maintain the membrane
at a fixed height. The clathrin protein-coated area (blue) generates
an isotropic spontaneous curvature. The BAR protein-coated area
(green) generates an anisotropic spontaneous curvature. Depending
on the coupling constant κ12, the membrane tube undergoes a tubular
necking or an hourglass necking at the BAR protein-coated area
(green).

023176-2



VESICULATION MECHANISMS MEDIATED BY … PHYSICAL REVIEW RESEARCH 5, 023176 (2023)

Walani et al. [52], in which the bending energy density of the
membrane per unit area is written as

fb = κ

2

(
c1 − c1

0

)2 + κ

2

(
c2 − c2

0

)2

+ κ12
(
c1 − c1

0

)(
c2 − c2

0

)
, (2)

where κ denotes the bending rigidity, and c1
0 and c2

0 denote
the preferred curvature in the longitudinal and circumferential
directions, respectively. The coupling constant κ12 in general
deviates from κ , corresponding to an anisotropic curvature
model. When κ12 = κ , it reduces to the classical Helfrich
model:

fh = κ

2

(
c1 + c2 − c1

0 − c2
0

)2
. (3)

To describe the inhomogeneity of the membrane, the pa-
rameters κ (a), κ12(a), c0

1(a), and c0
2(a) are spatially varied as

a function of the area a(s) calculated from the membrane tip.
At the clathrin-coated area (a < a01, blue region in Fig. 2),
the coupling constant κ12 = κ . The spontaneous curvatures
c1

0 = c2
0 = Ccla take a positive value of Ccla = 0.028 nm−1. At

the BAR protein-coated area (a02 < a < a03, green region in
Fig. 2), the coupling constant κ12 deviates from κ in a way
of κ12 = κ + �κ . The spontaneous curvature c1

0 is fixed at
0 nm−1, while c2

0 = Cbar is varied from −0.2 to 0.2 nm−1

to see how the anisotropic curvatures shape the membrane
morphology. In the uncoated area of the membrane (a01 <

a < a02 and a > a03, orange region in Fig. 2), all spontaneous
curvatures c1

0 and c2
0 vanish, and κ12 = κ . In practice, we have

the following spatially varied material property parameters,
including the spontaneous curvatures:

c1
0(a) = 1

2Ccla{1 − tanh[As(a − a01)]}, (4)

and

c2
0(a) = 1

2Ccla{1 − tanh[As(a − a01)]}
+ 1

2Cbar{tanh[As(a03 − a)] − tanh[As(a02 − a)]},
(5)

where a01 denotes the coating area of clathrin proteins which
generate an isotropic spontaneous curvature of Ccla, Acoating =
a03 − a02 denotes the coating area of the BAR proteins which
generate an anisotropic spontaneous curvature of Cbar in the
circumferential direction, and a02 indicates the starting po-
sition of the BAR proteins. The parameter As controls the
sharpness of the coating edge. Similarly, the bending rigidity
varies as

κ (a) = κ0 + 1
2κcla{1 − tanh[As(a − a01)]}

+ 1
2κbar{tanh[As(a03 − a)] − tanh[As(a02 − a)]},

(6)

where κ0 denotes the bending rigidity of the uncoated mem-
brane, and κcla/κbar denotes the increment of the bending
rigidity due to clathrin/BAR protein coating. The coupling
constant

κ12(a) = κ0 + 1
2κcla{1 − tanh[As(a − a01)]}

+ 1
2�κ{tanh[As(a03 − a)] − tanh[As(a02 − a)]}.

(7)

FIG. 3. Illustration of the spatially varied parameters c1
0(a),

c2
0(a), κ (a), and κ12(a) as a function of the area a. For the pur-

pose of illustration, here, we set Cbar = 2Ccla, a02 = 3a01, a03 = 4a01,
κcla = 0.5κ0, κbar = 0κ0, and �κ = κ0.

In the BAR protein-coated area a02 < a < a03, �κ deviates
from κbar. The dependence of c1

0(a), c2
0(a), κ (a), and κ12(a)

on area a is shown in Fig. 3.
The bending energy of the membrane reads

Gb = 2π

∫ S

0
fbr ds, (8)

where the integral is taken over the entire surface, with s = S
indicating the point at which the membrane is in contact with
the cell wall. The total energy of the membrane also has a
contribution from the turgor pressure p, which reads

Gp = pV = 2π

∫ S

0

1

2
pr2sinψ ds, (9)

and from the external force f :

Gf = − f L = −2π

∫ S

0

f

2π
sinψ ds. (10)

In addition, we introduce three Lagrangian multipliers to im-
pose the geometric constraints:

Gc = 2π

∫ S

0
[α(ṙ − cosψ ) + β(ż + sinψ ) + λ(ȧ − r)] ds.

(11)
Note that the Lagrangian multiplier −λ happens to be the
membrane tension. The total energy of the membrane then
reads

Gtot[ψ, ψ̇, r, ṙ, z, ż, a, ȧ, α, β, λ]

= Gb + Gp + Gf + Gc

= 2π

∫ S

0
L[ψ, ψ̇, r, ṙ, z, ż, a, ȧ, α, β, λ]ds. (12)

To derive the shape equations that govern the morphology
of the membrane surface of the endocytic invagination, Euler-
Lagrange variational methods were performed on the total
free energy of the membrane in Eq. (12) with respect to the
shape variables. The detailed derivations of the shape equa-
tions are presented in Appendix A. We numerically solve the
shape equations in MATLAB using the bvp4c solver, which
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FIG. 4. (a) The mean value of the neck radius 〈rneck〉 and the two
principal curvatures (b) 〈c1〉 and (c) 〈c2〉, as a function of the spon-
taneous curvature c2

0 for the Helfrich model κ12 = κ . The average
is taken over the protein-coated area at the side of the membrane.
The three curves in (a)–(c) correspond to different coating areas.
(d) Profile views of membrane morphologies for positive (dotted
line), negative (dashed line), and zero (solid line) spontaneous curva-
ture c2

0.

is designed to solve the boundary value problems of ordinary
differential equations.

In this paper, we are particularly interested in the morphol-
ogy of the membrane in the BAR protein-coated area, which
is referred to as a neck in the rest of the paper. By choosing
different κ12 = κ0 + �κ , which represent different types of
anisotropic spontaneous curvatures, we vary the parameter
c2

0 = Cbar in the neck and observe the morphology change,
which is characterized by the mean neck radius 〈rneck〉 and
the mean of two principal curvatures 〈c1〉 and 〈c2〉 over the
area range a02 < a < a03. Vesiculation is indicated by reduc-
ing the narrowest neck radius <5 nm, a typical critical value
conventionally set in previous works [45,47], though we can
reduce the neck radius far <5 nm in theory.

III. RESULTS

A. Isotropic spontaneous curvature cannot produce vesiculation
if the coating area is small

We first study the case κ12 = κ in the neck. In this case, the
model is essentially the classical Helfrich model (κ12 = κ),
and varying c2

0 is equivalent to tuning the spontaneous cur-
vature of the Helfrich model. It is shown that the average
neck radius 〈rneck〉 is a nonmonotonic function of c2

0 with a
minimum of ∼14 nm, far from the critical value for vesicula-
tion to occur (5 nm) [see Fig. 4(a)]. The average longitudinal
curvature 〈c1〉 increases with c2

0 and changes its sign when
c2

0 crosses 0 [Fig. 4(b)], while the average circumferential
curvature 〈c2〉 reaches a peak value at an intermediate value
of c2

0 [see Fig. 4(c)]. Membrane shapes of positive, negative,
and zero spontaneous curvatures c2

0 are depicted in Fig. 4(d),
where the protein-coated area of positive/negative sponta-
neous curvatures shows a wider radius than that of zero spon-
taneous curvature. These results suggest that increasing the
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FIG. 5. (a) The mean value of the neck radius 〈rneck〉 and the
two principal curvatures (b) 〈c1〉 and (c) 〈c2〉, as a function of
the spontaneous curvature c2

0 for κ12 = 0. The average is taken over
the protein-coated area at the side of the membrane. The three curves
in (a)–(c) correspond to different coating areas. (d) Profile views of
membrane morphologies for positive (dotted line), negative (dashed
line), and zero (solid line) spontaneous curvature c2

0.

spontaneous curvature in the Helfrich model cannot produce
vesiculation if the coating area of proteins is relatively small
(<2000 nm2). When the coating area is large (>2200 nm2),
we find that the original Helfrich model can also form a
pearl-shaped neck with the narrowest radius <5 nm (see Ap-
pendix B). This fission mechanism is essentially due to the
excessive coating area of the proteins such that the mem-
brane tends to be shaped into multiple spheres connected
by necks with a mean curvature equal to the spontaneous
curvature, which has been extensively studied [26,27]. For
the rest of the paper, we will limit our discussion to the case
where the coating area of proteins is <2000 nm2 and investi-
gate if anisotropic curvature (κ12 �= κ) can induce membrane
fission.

B. Anisotropic spontaneous curvature
with κ12 = 0 produces tubular necking

As a first attempt to study the anisotropic spontaneous
curvature with κ12 �= κ , we consider the case κ12 = 0. If the
area of the anisotropic protein-coated membrane is small,
the average neck radius 〈rneck〉 and the average circumferen-
tial curvature 〈c2〉 are almost independent of c2

0 [see black
curves in Figs. 5(a) and 5(c)], while the average longitudinal
curvature 〈c1〉 increases with c2

0 in a considerable way [see
the black curve in Fig. 5(b)]. In contrast, for larger coating
area, 〈rneck〉 is narrowed down with the increase of c2

0, and
the longitudinal curvature 〈c1〉 drops to a value that is close
to zero [see blue and red curves in Figs. 5(a) and 5(b)],
corresponding to a membrane morphology classified as a
tubular neck, as depicted by the dotted profile in Fig. 5(d).
These results suggest that the extended Helfrich model κ12 =
0 can produce vesiculation if the coating area is large
enough.

023176-4



VESICULATION MECHANISMS MEDIATED BY … PHYSICAL REVIEW RESEARCH 5, 023176 (2023)

-0.22 -0.11 0.00 0.11 0.22

7.2

10.8

14.4

18.0

21.6

25.2

-0.22 -0.11 0.00 0.11 0.22
-0.33

-0.22

-0.11

0.00

0.11

0.22

-0.22 -0.11 0.00 0.11 0.22

0.06

0.11

0.17

0.22

0.28

-80 -40 0 40 80
0

20

40

60

80

100

120

-0.22 -0.11 0.00 0.11 0.22
3.6
7.2
10.8
14.4
18.0
21.6

-0.22-0.11 0.00 0.11 0.22
10.8
14.4
18.0
21.6
25.2
28.8

<
r n
ec
k
>
(n
m
)

c2
0
(nm

-1
)

c 1
(n
m
-1
)

c2
0
(nm

-1
)

A
coating

=400 nm
2

A
coating

=1200 nm
2

A
coating

=2000 nm
2

A
02
=5300 nm

2

12
=2

A
coating

=400 nm
2

A
coating

=1200 nm
2

A
coating

=2000 nm
2

A
02
=5300 nm

2

12
=2

A
coating

=400 nm
2

A
coating

=1200 nm
2

A
coating

=2000 nm
2

A
02
=5300 nm

2

12
=2

c 2
(n
m
-1
)

c2
0
(nm

-1
)

(c) (d)

(b)

c2
0
=0 (nm

-1
)

c2
0
=-0.22 (nm

-1
)

c2
0
=0.07 (nm

-1
)

12
=2

Z
(n
m
)

r (nm)

(a)

r n
ec
k
,m
in
(n
m
)

c2
0
(nm

-1
)r n

e
c
k
,m
a
x
(n
m
)

c2
0
(nm

-1
)

FIG. 6. (a) The mean value of the neck radius 〈rneck〉 and the
two principal curvatures (b) 〈c1〉 and (c) 〈c2〉, as a function of
the spontaneous curvature c2

0 for κ12 = 2κ . The average is taken over
the protein-coated area at the side of the membrane. The three curves
in (a)–(c) correspond to different coating areas. (d) Profile views of
membrane morphologies for positive (dotted line), negative (dashed
line), and zero (solid line) spontaneous curvature c2

0.

C. Anisotropic spontaneous curvature
with κ12 = 2κ produces hourglass necking

Subsequently, we consider the anisotropic spontaneous
curvature with κ12 = 2κ . As the coating area exceeds a certain
value, the average neck radius 〈rneck〉 decreases monotonically
with the spontaneous curvature c2

0. The minimum neck radius
rneck,min drops to a few nanometers, indicating the occur-
rence of vesiculation [see blue and red curves in the inset of
Fig. 6(a)]. The morphology of the membrane in this situation
corresponds to an hourglass-shaped neck [see the dotted pro-
file in Fig. 6(d)], which is reflected in the large magnitude of
principal curvatures c1 and c2 with opposite signs [see red and
blue curves in Figs. 6(b) and 6(c)].

D. Phase diagram of the neck morphology

To systematically investigate how membrane morphology
depends on the coupling constant κ12, we construct a κ12-c2

0
phase diagram (Fig. 7) summarizing the possible membrane
morphologies. For negative and small positive values of κ12,
increasing the spontaneous curvature c2

0 to a critical value
leads to vesiculation with a tube-shaped neck (see the black
curve encompassing the white region in the top-left corner of
Fig. 7). For large positive values of κ12, vesiculation with an
hourglass-shaped neck can occur if the spontaneous curvature
c2

0 is beyond a critical value (see the black curve encompassing
the white region in the top-right corner of Fig. 7). There exists
an intermediate range of κ12 in which vesiculation does not
occur even for very large c2

0.

E. A possible experiment to determine the type of anisotropic
spontaneous curvature

So far, we have shown that the coupling constant κ12 ne-
glected in most previous studies plays an important role in
determining whether the anisotropic proteins at the side of the

FIG. 7. A two-dimensional phase diagram on the (c2
0-κ12) plane

characterizes the interrelated effects of the spontaneous curvature c2
0

and the coupling constant κ12 on the formation of vesicles. The col-
ored region represents the membrane shapes that have not undergone
vesiculation with a color code demonstrating the force magnitude
to maintain the membrane at a tubular shape. The white regions
represent the membrane shapes that have a necking radius smaller
than the critical value of 5 nm, by which a vesiculation is regarded
to occur. The top-left corner denotes tube-shaped necking, and the
top-right corner denotes hourglass-shaped necking. The coating area
Acoat is 1200 nm2.

tubular membrane can drive membrane fission and generate
the morphology of the membrane neck if fission occurs. Here,
we propose an experimental method to estimate the value of
κ12. It should be noted that, to maintain the membrane at a
tubular shape, a pulling force f is needed to resist the mem-
brane from being flatten since the membrane tension tends to
straighten the membrane, and the turgor pressure tends to push
down the membrane against the cell wall. An investigation on
how anisotropic proteins bound to the side of the membrane
influences the force f shows that f increases with c2

0 for the
classical Helfrich model [see curves in Fig. 8(a)]. In contrast,
for the extended Helfrich model κ12 = 0, the force exhibits a
gentle increase followed by a decrease with the increase of
c2

0 [see blue and red curves in Fig. 8(b)]. As for the model
κ12 = 2κ , a sharp increase in the force f is accompanied with
a small increase of the spontaneous curvature c2

0 [see blue
and red curves in Fig. 8(c)]. The colored region in Fig. 7
demonstrates how the force depends on the combination of the
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FIG. 8. The dependence of the pulling force f on the spon-
taneous curvature c2

0 for different coupling constants (a) κ12 = κ ,
(b) κ12 = 0, and (c) κ12 = 2κ . The curves could terminate at certain
values of c2

0 when vesiculation occurs.
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coupling constant κ12 and the spontaneous curvature c2
0. In the

intermediate range of κ12 (0.7κ < κ12 < 1.9κ), the force f is
almost independent of c2

0. For large κ12 (κ12 < 0.7κ), the force
f has a sharp increase with c2

0. For small and negative κ12

(κ12 < 1.9κ), the force f shows a nonmonotonic dependence
on c2

0.
Pulling a membrane tube from a giant liposome with op-

tical tweezers is a common in vitro experiment to determine
the membrane tension and bending rigidity. When the tube is
formed, by flowing the proteins of interest into the solution,
the membrane could be gradually bound with the proteins at
the lateral side of the tube, and the spontaneous curvature
is expected to increase with the enrichment of the proteins.
Measuring the force to maintain the membrane at a tubular
shape in response to the growth of the protein coat, checking
a figure like Fig. 7, and reading how the force depends on
the protein concentration, we can estimate the range of the
coupling constant for that type of protein.

IV. DISCUSSION

BAR proteins have been proposed as active players in
membrane fission during the late stage of endocytosis in
yeast cells. The crescent-shaped N-BAR proteins have a typi-
cal radius of 10 nm and can induce membrane tubulation of
the same radius when the density is high enough [15–17].
We have shown in the phase diagram of Fig. 7 that the
coupling constant κ12 determines whether membrane fission
could happen upon increasing the spontaneous curvature c2

0.
For strong coupling (κ12 > 2κ), a small spontaneous curvature
c2

0 (>0.05 nm−1) generated by the binding of BAR proteins
is enough to induce vesiculation. However, for small positive
and negative values of κ12, a very large spontaneous curvature
c2

0 (>0.13 nm−1) is needed to induce vesiculation. As it is
known that N-BAR proteins have a curvature of ≈0.1 nm−1

(<0.13 nm−1 but >0.05 nm−1), our results therefore suggest
that N-BAR proteins can actively induce membrane fission
not via tubular necking but via hourglass necking. We stress
that this conjecture holds only if the coating area of the BAR
proteins is small (<2000 nm2). To estimate the coating area of
BAR proteins in yeast cells, we find that the copy number of
Rvs167 is ∼100 [53]. They can make up 50 dimers which
have a crescent shape that spans a dimension of 10 nm in
length and 3 nm in width due to three α-helices, each having

a diameter of 1 nm [17]. Assuming they are tightly packed
on the surface of the membrane, the coating area therefore is
∼1500 nm2. On the other hand, we might underestimate the
coating area if the BAR proteins are loosely packed.

As a result of the high turgor pressure inside yeast cells,
maintaining the membrane in a tubular shape requires a very
large force. Actin polymerization is assumed to provide the
force. However, based on the copy number analysis of actin
filaments, polymerization alone seems unable to generate
enough force [48,54]. We have found that anisotropic proteins
with a coupling constant κ12 = 0 could significantly reduce
the force to maintain the membrane at a tubular shape from
2000 to 600 pN. This result provides a perspective to explain
the large difference between the required force and the actual
force generated by actin polymerization.

V. CONCLUSIONS

In summary, we study the physics behind vesiculation phe-
nomena via anisotropic proteins bound to the side of a tubular
membrane during endocytosis. It is found that the classical
Helfrich model is incapable of explaining vesiculation if the
coating area of proteins is relatively small. Anisotropic spon-
taneous curvatures based on the extended Helfrich model are
needed to drive membrane fission. Depending on the type
of anisotropic curvatures, the membrane tube could undergo
tubular or hourglass necking. Furthermore, we suggest an
experimental method to distinguish the type of anisotropic
curvatures of a protein by comparing the force to maintain
the membrane in a tubular shape in the presence and absence
of the proteins.
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APPENDIX A: DERIVATION OF THE MEMBRANE
SHAPE EQUATIONS

Here, we show how to obtain the shape equations via the
variational methods. The variation of the functional Gtot in
Eq. (12) reads

δGtot

2π
=

∫ S

0
ds

[(
∂L
∂ψ

− d

ds

∂L
∂ψ̇

)
δψ +

(
∂L
∂r

− d

ds

∂L
∂ ṙ

)
δr +

(
∂L
∂z

− d

ds

∂L
∂ ż

)
δz

+
(

∂L
∂a

− d

ds

∂L
∂ ȧ

)
δa + ∂L

∂α
δα + ∂L

∂β
δβ + ∂L

∂λ
δλ

]
+ ∂L

∂ψ̇
δψ |s=S

s=0 + ∂L
∂ ṙ

δr|s=S
s=0 + ∂L

∂ ż
δz|s=S

s=0, (A1)

which contains both the bulk terms (the terms in the square bracket) and the boundary terms (last three terms). A set of Euler-
Lagrange equations can be obtained by the vanishing bulk terms, which are reduced to

ψ̈ = (
c1

0 − c2
0

)cosψ

r
+ sinψcosψ

r2
− f cosψ

2πκr
+ prcosψ

2κ
+ αsinψ

κr
+ βcosψ

κr

+ (
c2

0 − c1
0

)κ12cosψ

κr
+ ċ1

0 + ċ2
0

κ12

κ
+ c1

0
κ̇

κ
+ c2

0
˙κ12

κ
− ˙κ12sinψ

κr
− ψ̇cosψ

r
− ψ̇

κ̇

κ
, (A2)
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α̇ = prsinψ + κ

2

[(
c1

0

)2 + (
c2

0

)2] − κsin2ψ

2r2
+ κ12c1

0c2
0 − λ − c1

0κψ̇ − c2
0κ12ψ̇ + κ

2
ψ̇2, (A3)

β̇ = 0, (A4)

λ̇ = κ̇

2

(
c1 − c1

0

)2 + κ̇

2

(
c2 − c2

0

)2 + ˙κ12
(
c1 − c1

0

)(
c2 − c2

0

) − κ ċ1
0

(
c1 − c1

0

) − κ ċ2
0

(
c2 − c2

0

) − κ12ċ2
0

(
c1 − c1

0

) − κ12ċ1
0

(
c2 − c2

0

)
,

(A5)

ṙ = cosψ, (A6)

ż = −sinψ, (A7)

ȧ = r. (A8)

It should be noted that a denotes the area of the membrane
calculated from the tip, and the prefactor 2π in front of r in
Eq. (A8) is neglected.

So far, we have derived seven equations, Eqs. (A2)–
(A8), which are all first order except Eq. (A2), which
is second order with respect to ψ . In addition, the total
arc length S is an unknown parameter. Therefore, a total
number of nine boundary conditions (BCs) are needed to
close the problem. To obtain the BCs, we set the boundary
terms in Eq. (A1) to zero. At the membrane tip (s = 0),
we have

ψ (s = 0) = 0, r(s = 0) = 0, β(s = 0) = 0, a(s = 0) = 0.

(A9)

At the base of the membrane (s = S), we impose

z(s = S) = 0, r(s = S) = Rb, σ (s = S) = σ0. (A10)

As for the angle ψ (s = S) at the boundary, we allow it to
freely rotate. This implicates the free-hinge BC:

∂L
∂ψ̇

= [
κ
(
c1 − c1

0

) + κ12
(
c2 − c2

0

)]∣∣
s=S = 0. (A11)

To complete the BCs, we construct the effective Hamiltonian:

H = L − ψ̇
∂L
∂ψ̇

− ṙ
∂L
∂ ṙ

− ż
∂L
∂ ż

− ȧ
∂L
∂ ȧ

. (A12)

It is easy to prove that H is conserved along the arc length,
i.e., H(s) = 0. We therefore impose the ninth BC:

H(s = 0) = 0. (A13)

The seven equations, Eqs. (A2)–(A8), and one unknown
parameter S together with the nine BCs, Eqs. (A9)–(A11)
and (A13), constitute a well-defined boundary value problem
of ordinary differential equations.

APPENDIX B: PHASE DIAGRAM OF THE HELFRICH
MODEL WITH VARIED COATING AREA

We have shown that, if the coating area of BAR pro-
teins is <2000 nm2, increasing the spontaneous curvature
in the Helfrich model (κ12 = κ) cannot form a narrow
enough neck to trigger vesiculation. Here, we study the

effect of the coating area on the neck morphology for
the Helfrich model, which is shown in Fig. 9. We find
that, if the coating area is >2000 nm2, increasing the
spontaneous curvature c2

0 can also reduce the neck ra-
dius <5 nm [Fig. 9(a)]. For large c2

0, the neck becomes
pearl shaped with multiple undulations, and the neck ra-
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80
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FIG. 9. (a) A two-dimensional phase diagram on the (c2
0-Acoating)

plane characterizes the interrelated effects of the spontaneous cur-
vature c2

0 and the coating area Acoating on the formation of vesicles.
The colored region represents the membrane shapes that have not
undergone vesiculation with a color code demonstrating the force
magnitude to maintain the membrane at a certain height. The white
regions represent the membrane shapes that have a necking radius
smaller than the critical value of 5 nm, by which a vesiculation is
regarded to occur. The coupling constant κ12 equals κ . Profile views
of membrane morphologies for the neck radius close to (b) 5 nm and
(c) <5 nm.
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dius can be much smaller than 5 nm [Figs. 9(b) and 9(c)],
which is like the infinitesimal radius studied in previous
works [26,27].

APPENDIX C: NECK MORPHOLOGY FOR AN
ELONGATED TUBULAR MEMBRANE

In the main text, we consider a tubular membrane of which
the tip is coated with clathrins that generate isotropic sponta-
neous curvature, and the side is coated with BAR proteins that
generate anisotropic spontaneous curvature. To test whether
our results about the anisotropic proteins at the side of the
tubular membrane are influenced by the isotropic proteins at
the membrane tip, we pull the membrane to a height of 540 nm
and coat the anisotropic proteins at a position between 250
and 300 nm. When comparing with the original results for
which the membrane is fixed to a height of 130 nm, we find
only a minor quantitative difference (Fig. 10). Therefore, our
results about the anisotropic proteins are independent of the
particular geometry we have used in the main text.
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FIG. 10. The mean value of the neck radius 〈rneck〉 as a function
of the spontaneous curvature c2

0 for (a) κ12 = 0, (b) κ12 = 1, and
(c) κ12 = 2. The average is taken over the protein-coated area at the
side of the membrane. (d) Profile views of membrane morphologies
for positive spontaneous curvature c2

0 when κ12 = 2 and the mem-
brane height is Z = 540 nm.
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