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Dark quantum droplets and solitary waves in beyond-mean-field Bose-Einstein condensate mixtures
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Quantum liquidlike states of matter have been realized in an ongoing series of experiments with ultracold
Bose gases. Using a combination of analytical and numerical methods we identify the specific criteria for the
existence of dark solitons in beyond-mean-field binary condensates, revealing how these excitations exist for
both repulsive and attractive interactions, the latter leading to dark quantum droplets with properties intermediate
between a dark soliton and a quantum droplet. The phenomenology of these excitations is explored within the
full parameter space of the model, revealing a spatial profile of the excitation that differs significantly from the
Zakharov-Shabat soliton, leading to a negative effective mass that is enhanced in the presence of the quantum
fluctuations. Finally the dynamics of pairs of the excitations are explored, showing nonintegrable dynamics and
dark soliton bound states in the attractive regime.

DOI: 10.1103/PhysRevResearch.5.023175

I. INTRODUCTION

Liquid states of matter give rise to a plethora of flu-
idic phenomena caused by the interaction of atoms with
each other, external forces, and other matter [1]. For classi-
cal fluids, intermolecular potentials give rise to macroscopic
consequences such as surface tension and viscosity, as well
as transient effects like the Rayleigh-Taylor instability and
turbulence—phenomena that can be observed on terrestrial [2]
and astronomical [3] scales. The intrinsic properties of flu-
ids depend critically on their thermodynamic environment;
quantum liquids can also share some of the properties of
their classical counterparts while also exhibiting unique and
unexpected phenomena with no classical analog [4].

The last few years have seen a series of groundbreaking ex-
periments with degenerate atomic Bose-Einstein condensates
which have demonstrated the capacity of these intrinsically
weakly correlated systems to manifest liquidlike states of
matter in the form of quantum droplets, made from highly
magnetic [5–8] mixtures [9–13] and also purely Lee-Huang-
Yang [14–16] quantum gases. These surprising discoveries
have been attributed to purely quantum-mechanical effects
in the form of the Lee-Huang-Yang (LHY) correction [17],
which provides the stabilization required to avoid instability
originating from collisional forces.
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While there has been intense focus on understanding the
ground states of many-body systems, their excitations also
play a crucial role in understanding their fundamental behav-
ior. Recently there has been renewed experimental interest in
realizing nonlinear excitations with quantum gases such as
dark solitons [18–21] and domain walls [22,23] which pro-
vide insight into reduced dimensionality topology in a highly
controllable setting. Such states could provide an important
resource for future applications in atomtronics [24] as well
as providing fundamental insight into the physics of lower-
dimensional quantum systems [25].

Quantum gases possessing internal degrees of freedom
represent an important testing ground for many-body phe-
nomena. These additional degrees of freedom can facilitate
unique quantum states that sensitively depend on the nature
of the atomic interactions [26]. The presence of attrac-
tive interactions in these systems can ordinarily lead to the
collapse of the quantum state; however, it was shown the-
oretically that such a system can in principle be stabilized
by beyond-mean-field effects [27]. This stimulated an in-
tense interest in the phenomenology of beyond-mean-field
physics in these systems—here fundamental questions such
as the role of dimensionality [28–30], confinement [31,32],
dynamical [33–35], collective [36], coherent [37], and gauge
couplings [38], as well as nonequilibrium [39,40] effects
and phase separation [41] have provided key insights
into the unusual liquidlike properties of these ultradilute
droplets [42,43]. Complementary to their existence in de-
generate atomic systems, droplet states have also been
investigated in other systems such as photonic [44], optome-
chanical [45], as well as in the helium liquids [46].

While previous works have addressed aspects of the fun-
damental nature of liquidlike ground states in quantum gases,
recent work has focused on investigating the excitations in
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these systems which possess nontrivial phase windings such
as kinks [47], vortices [48], and dark solitons in dipolar sys-
tems [49].

The purpose of this work is to study the properties of
the excitations in beyond-mean-field Bose-Einstein conden-
sates in one dimension, including elucidating the fundamental
criteria for the existence of dark quantum droplets (DQDs)—
dark solitonlike excitations that exist in the beyond-mean-field
model with attractive, rather than repulsive interactions in the
cubic-quadratic Schrödinger system, as well as characterizing
their fundamental properties with a complimentary combina-
tion of numerical and analytical approaches.

The paper is organized beginning with a description of
the theoretical model describing the beyond-mean-field Bose-
Einstein condensate mixture in Sec. II, including the basic
solutions and conserved quantities that this model accommo-
dates. The crossover from a dark soliton to the dark quantum
droplet is explored in Sec. III, including a comparison of
the droplets analytical and numerical properties in terms of
the droplet’s size, integrals of motion, and effective mass, as
well as the dynamics of individual and pairs of dark solitary
waves in this system. The paper concludes with a summary
and outlook in Sec. IV.

II. BEYOND-MEAN-FIELD MODEL

The energy of N = N↑ + N↓ Bose particles with mass
m forming a two-component homogeneous atomic Bose-
Einstein condensate can be written as

E3D =
∫

d3r

⎡
⎣ h̄2

2m

∑
j

|∇� j (r)|2 +
∑

j,k

g jk

2
n j (r)nk (r)

⎤
⎦,

(1)
where j, k ∈ {↑,↓}, g jk = 4π h̄2a jk/m defines the scattering
parameter between atoms, and nj (r) ≡ |� j (r)|2 defines the
atomic density for component j. In order to understand the ef-
fect of beyond-mean-field effects, the underlying many-body
Hamiltonian is diagonalized within the standard Bogoliubov–
de Gennes formalism for the weakly interacting limit. After
integrating out the transverse spatial degrees of freedom
the one-dimensional ground state energy density is obtained
as [28]

E1D = (
√

g↑↑n↑−√
g↓↓n↓)2

2
+gδg

(
√

g↓↓n↑+√
g↑↑n↓)2

(g↑↑ + g↓↓)2

− 2
√

m

3π h̄
(g↑↑n↑ + g↓↓n↓)3/2, (2)

where g = (g↑↑n↑ + g↓↓n↑)/n, δg = g↑↓ + √
g↑↑g↓↓, and

n = n↑ + n↓ [29]. Assuming an equal number of atoms in
the spin mixture such that n↑ = n↓ ≡ n and equal intercom-
ponent interaction strengths g↑↑ = g↓↓ ≡ g, Eq. (2) simplifies
to E1D = δgn2 − 4

√
2m(gn)3/2/(3π h̄). Then within the local

density approximation an effective equation of motion can
be derived from the chemical potential μQF[ψ] = ∂E1D/∂N
giving

ih̄
∂ψ

∂t
=

[
p̂2

x

2m
− up̂x −

√
2m

π h̄
g3/2|ψ | + δg|ψ |2

]
ψ, (3)

where u defines the excitation’s velocity in the moving frame.
Equation (3) describes the dynamics of the binary system in

the equal (miscible) spin limit in the form of a cubic-quadratic
nonlinear Schrödinger system. Let us consider the funda-
mental solutions of Eq. (3) in the limits of interest, g → 0
with ψ (μ, x → ±∞) = ±√

n0 and for g 	= 0 with ψ (μ, x →
±∞) = 0. In the first limit the system is integrable with the
well-known family of dark soliton solutions ψDS(μDS, x) =√

n0[β tanh(βx/ξDS) + i
√

1 − β2], where the healing length
is ξDS = h̄/

√
mn0δg with velocity u, β = √

1 − u2 where 0 <

u < c, c is the speed of sound, and n0 = limx→∞ |ψ (μ, x)|2
defines the constant asymptotic density. Then we consider the
second situation where Eq. (3) possesses instead a quantum
droplet solution [28]

ψQD(μ, x) =
√

n0μ/μQD

1 + √
1 − μ/μQD cosh(

√−2μmx/h̄)
, (4)

where the flat-topped droplet state forms as μ → μQD where
μQD = −4mg3/9π2h̄2δg. We consider the general situation
where both g 	= δg 	= 0. As such the model, Eq. (3), has a
number of important symmetries. From a physical point of
view we consider the regularized versions of the atom number,
momentum, and energy given respectively by

N =
∫

dx[n0 − |ψ (x)|2], (5a)

P = ih̄

2

∫
dx

[
ψ

∂ψ∗

∂x
− ψ∗ ∂ψ

∂x

]
− h̄n0	φ, (5b)

E =
∫

dx

[
h̄2

2m

∣∣∣∣∂ψ

∂x

∣∣∣∣
2

+ δg

2
(n0 − |ψ |2)2

− 2
√

2m

3π h̄
g3/2

{
|ψ |3 − 3

2

√
n0|ψ |2 + 1

2

√
n3

0

}]
, (5c)

where the phase difference 	φ = arg(+∞) − arg(−∞). As
well as the three integrals of motion, Eqs. (5), the model,
Eq. (3), accommodates distinct dilation invariances in the
limits δg = 0 and g = 0. A dilation transformation is a scaling
such that x → √

αx and t → αt for α ∈ R>0, and will in
general leave a Schrödinger system with a single nonlinearity
|ψ |n invariant if ψ (x, t ) → α1/nψ (

√
αx, αt ). Then, we can

see that when δg = 0 the dark soliton solution obeys ψD →√
αψD(

√
αx, αt ) while for g = 0 the quantum droplet under-

goes the dilation ψQD → αψQD(
√

αx, αt ). The competition
between the two length scales associated with the interaction
parameters g and δg facilitates unusual phenomenology in this
nonlinear system. From Eq. (3) we can define a set of dimen-
sionless units appropriate for numerical simulations. Since the
interactions can be either repulsive (μ > 0) or attractive (μ <

0) we expect the excitation’s size to be of order ∼h̄/
√

mn0δg
when the mean-field van der Waals term dominates over the
LHY term, while in the attractive regime the excitation’s
size is of order ∼h̄/

√
m|μQD|. Then, the healing length ξ0 =

h̄/
√

m|μ0| with μ0 = −
√

2mn0g3/π h̄ + δgn0 defines the in-
trinsic length of the system, and from this a timescale h̄/|μ0|
follows. The resulting dimensionless interaction strength used
in the numerical simulations is

√
9|μQD|/2n0δg.

To understand how a particular value of the dimensionless
interaction strength changes the sign of the interactions, we
consider the homogeneous limit of Eq. (3) where ψ (x, t ) =√

n0 exp(−iμ0t/h̄), then the point at which the interactions
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FIG. 1. Soliton to dark quantum droplet crossover. The transition from a dark soliton to the dark quantum droplet is shown in panel (a) for
the fixed backgrounds n0ξ0 = 0.29, 0.25, 0.18, 1/9, with the insets (i)–(iv) showing selected solutions from (a). Heat maps of the excitation
and ground state density with n0ξ0 ∼ 0.29 are shown in (b) and (c), respectively. Panel (d) shows the atom number [Eq. (5a)] corresponding to
(b) and (c). Comparisons of the excitation’s wave function and phase are presented in panels (e) and (f).

change sign is μ0, which corresponds to
√

9|μQD|/2n0δg =√
ξ0n0. Then for 0 <

√
9|μQD|/2n0δg <

√
ξ0n0 the interac-

tions are repulsive (μ > 0), while for
√

9|μQD|/2n0δg >√
ξ0n0 we have μ < 0, attractive interactions. A comparison

of the analytical values of the interaction strength at which μ

changes sign shows close agreement with the numerical data
presented in Fig. 1(a).

Using scattering lengths appropriate for 39K [50] we can
compute approximate values for the equilibrium density n0

using [28]

n0 = 8

9π2

mg3

h̄2δg2
(6)

with m = m39 K = 6.5 × 10−26 kg, a↑↑ = a↓↓ � 100a0,
|a↑↓| � 50a0 gives δg � 10−37 J m and g = 7 × 10−38 J m.
Previous experiments with strongly confined quantum
gases have been able to achieve optical confinement with
strengths of order ωr � 2π × 10 kHz [51] which gives a
one-dimensional density n0 ∼ 1.6 × 104/m. Admittedly this
is quite a small value, but optimistically could be improved
in the future with the ever improving toolbox of quantum
technologies for cold atom experiments [52]. Then, the
dimensionless interaction parameter

√
9|μQD|/2n0δg ∼ 1,

similar to the values that will be used in this work.

III. DARK QUANTUM DROPLETS

A. Dark soliton to dark quantum droplet crossover

In this section we explore the nature of the solutions to
Eq. (3) in the limit u = 0. Since we are interested in the ex-
cited states, we use an iterative (Newton-Raphson) approach
to compute these states. An overview of the numerical proce-
dure is given in the Appendix.

We explore the transition from a dark soliton excitation to
the dark quantum droplet in Fig. 1. In panel (a) we solve the
cubic-quadratic Schrödinger equation [Eq. (3)] as a function
of the interaction strength for both the excited (dark soliton-
like excitation) and the quantum droplet ground state. Each

dark soliton solution is computed using a Newton-Raphson
method with fixed Neumann boundary conditions. From this,
the atom number, Eq. (5a), is calculated. This in turn is used as
the input for the ground state quantum droplet’s atom number
NQD = ∫

dx|ψQD(x)|2, so for a fixed value of the interaction
strength in Fig. 1(a) NDQD = NQD. Each quantum droplet’s
ground state is computed using an imaginary time Fourier
split-step method. The chemical potential is plotted for both
situations, and for each fixed boundary condition, it is found
that the chemical potential of the dark soliton eventually meets
that of the droplet state. We can calculate the critical point at
which this occurs by equating the quantum droplet’s chemical
potential μQD with the homogeneous chemical potential μ0,
which leads to the criterion√

9|μQD|
2n0δg

= (1 − 10−λ)
3

2

√
n0ξ0 (7)

with corresponding critical chemical potential μcrit =
−n0δg/2. Very close to this point, the dark soliton acquires a
profile resembling an inverted quantum droplet with a hollow
central region, but with an asymmetric wave function. The
final simulation point is chosen by including the prefactor
1 − 10−λ in Eq. (7) with λ = 3 for Fig. 1 (for λ → ∞ the
size of the droplet diverges). Panels (i)–(iv) show a number
of example density profiles taken from the red-dotted data
(n0ξ0 ∼ 0.29). Far from the transition point at weak attractive
(repulsive) values of the chemical potential a broad quantum
droplet (narrow dark soliton) is observed [panels (i) and (ii),
respectively]. Then, very close to the point at which the chem-
ical potentials cross, the dark soliton develops a wide hollow
region around its core, while the droplet state at this point
becomes narrow and tall [panels (iii) and (iv), respectively].
A heat map of the red-dotted transition data from (a) is shown
in (b), along with the accompanying quantum droplet ground
state data in panel (c), while the dashed lines in panels (b) and
(c) correspond to the solutions (iii) and (iv) discussed above.
Following this, panels (e) and (f) compare the solutions ψDS,
scaled to the asymptotic spatial values and the accompany-
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ing phase φ(x) = tan−1[Im(ψDS)/Re(ψDS)], respectively, for
μ � 0.32μ0 (dark soliton) and μ � −0.74μ0 (dark quantum
droplet). Panel (d) presents the atom number NDQD [Eq. (5a)]
for both situations, showing the gradual increase that occurs
as the transition point is approached. Recent work has also
studied the existence of dark solitonlike excitations in the
binary LHY system (Refs. [47,48]). These works interpreted
the excitation’s unusual shape in terms of a pair of separating
kink-antikink pairs.

B. Root-mean-squared width

The results presented in Fig. 1 reveal that as the chemical
potential of the dark soliton approaches that of the quantum
droplet, the soliton’s profile resembled that of an inverted
droplet. Previous experimental studies of the soliton to droplet
crossover [11,53] have established that one can define a soli-
ton at relatively small atom numbers, while for large atom
numbers a quantum droplet emerges. We can perform a sim-
ilar distinction here to understand the crossover from a dark
soliton to a dark quantum droplet. From Fig. 1, (iii) and (iv),
we can infer that

lim
μ→μQD

(nQD(μ, x) + nDQD(μ, x)) = n0. (8)

Equation (8) will allow us to calculate observables of the
dark quantum droplet state. The mean-squared width is an
important characteristic which can be used to characterize
the behavior of the dark droplet as the chemical potential
approaches that of the quantum droplet’s. Similarly to the reg-
ularized forms of the atom number, momentum, and energy
[Eqs. (5a)–(5c)] we can also compute the mean-squared width
from

〈x2〉 = 1

NDQD(μ)

∫ ∞

−∞
dx x2[n0 − lim

μ→μQD

nDQD(μ, x)
]

= 1

NDQD(μ)

∫ ∞

−∞
dx x2 lim

μ→μQD

nQD(μ, x). (9)

Here the second line of Eq. (9) has been written using Eq. (8).
From here the known solution for the droplet nQD(μ, x) ≡
|ψQD(μ, x)|2 [Eq. (4)] can be used to obtain an expression for
both the atom number NDQD(μ) and the mean-squared width
〈x2〉 using the inversion formulas for the polylogarithms for
the latter, yielding

〈x2〉
ξ 2

QD

= N0

NDQD(μ)

μQD

μ

{
1

3

(
arsech3

√
1− μ

μQD
+ π2

× arsech
√

1− μ

μQD

)
−

√
μ

μQD

[
arsech2

√
1− μ

μQD
+π2

3

]}
,

(10)

where ξQD = h̄/
√

m|μQD| with the constant N0 = 2n0ξQD =√
2n2

0 h̄2/m|μQD|. Then the atom number NDQD(μ) appearing
in Eq. (10) can be evaluated in a similar manner, giving

NDQD(μ)

N0
= 2artanh

[ √
μ/μQD

1+√
1−μ/μQD

]
−

√
μ

μQD
. (11)

Using Eqs. (10) and (11) we can understand the intrinsic
properties of the dark quantum droplet. First, let us de-
rive the asymptotic behavior of Eqs. (10) and (11) when

(a)

(b)

(c)

FIG. 2. Dark quantum droplet root-mean-squared width. Panel
(a) shows Eq. (10),

√
〈x2〉/ξQD, as a function of μ/μQD—the minima

occurs for μ � 0.8306μQD; while the inset shows Eq. (11) for several
values of n0ξQD. Panel (b) shows

√
〈x2〉/ξQD instead as a function

of NDQD, while the inset displays a log-log plot for n0ξQD = 1
2 . The

minima of
√

〈x2〉/ξQD in (b) are plotted in (c) (green solid) with
the red circles corresponding to the locations of the four curves
individual minima.

NDQD � 1. For the atom number, one finds the relationship
between the chemical potential and NDQD is NDQD(μ)/N0 =
ln(2/

√
1 − μ/μQD). Hence the atom number NDQD(μ) di-

verges logarithmically as μ → μQD. Expanding Eq. (10) for
μ → μQD and using the asymptotic form of Eq. (11), the
root-mean-squared width in the limit NDQD � 1 is√

〈x2〉
ξQD

=
μ→μQD

NDQD√
3N0

, (12)

showing that the effective width of the dark quantum droplet
diverges linearly in a fashion qualitatively similar to the
quantum droplet [33]. Figure 2 shows the root-mean-squared
width of the dark quantum droplet, Eq. (10). Panel (a) shows
the behavior of the width

√
〈x2〉/ξQD as a function of the
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chemical potential μ/μQD, while the inset shows the atom
number, Eq. (11), for several values of the background density
n0ξQD = 1

2 , 1, 2, 4; increasing n0ξQD has the effect of giving
an overall increase to NDQD. Note that there is no depen-
dency of 〈x2〉/ξ 2

QD on the background density n0ξQD when
plotted as a function of the dimensionless chemical potential
μ/μQD. The second panel (b) shows the root-mean-squared
width

√
〈x2〉/ξQD as a function of the atom number, for the

same values of background density shown in the inset of
(a). Increasing n0ξQD has the effect of stretching

√
〈x2〉/ξQD

such that the linear part [NDQD(μ) � 1] associated with the
dark quantum droplet occurs at larger values of NDQD(μ). The
minima of

√
〈x2〉/ξQD also shift to larger values of NDQD(μ)

as n0ξQD is increased. The inset of Fig. 2(b) shows the dataset
for n0ξQD = 1

2 in (b) in a log-log plot. The dashed lines show

the asymptotic forms of Eq. (10) for μ/μQD → 0,
√

〈x2〉 ∼
N−1/3

DQD , μ/μQD → 1, and
√

〈x2〉/ξQD = NDQD/(
√

3N0) [54],
the second of these limits being appropriate to the dark quan-
tum droplet. The minima of

√
〈x2〉/ξQD are plotted in (c) as

a function of NDQD (green solid) with the red circles corre-
sponding to the locations of the four curves minima in (b). The
shaded blue and green regions indicate the parameter regimes
where we expect dark solitons and dark quantum droplets,
respectively.

A comparison of the dark quantum droplet’s analytical
atom number and root-mean-squared width with the numer-
ically obtained values is explored next in Fig. 3. Stationary
state solutions to Eq. (3) are shown in (a) for n0ξ0 = 0.36. The
interaction strength is chosen using Eq. (7) again using the
prefactor 1 − 10−λ with λ = 1, 2, . . . , 9. The analytic atom
number of Eq. (11) (solid blue) is plotted along with the equiv-
alent values computed from the numerical (orange pluses)
data in panel (b). Here good agreement is found as μ → μQD.
The root-mean-squared width

√
〈x2〉/ξ0 is compared from

Eq. (10) (solid green) and the numerical data (blue pluses).
The agreement is found to improve as λ increases, and it was
found that due to the underlying logarithmic divergence of
NDQD(μ) as μ → μQD obtaining a convergence between the
analytical and numerical results in general requires very large
λ, which becomes impractical for numerical simulations, but
could be an interesting question to explore in a future experi-
ment. The green solid and red dashed lines in (a) are computed
from Eqs. (10) and (12), respectively. Panel (d) shows the
dynamics of the λ = 9 solution, showing the stationary profile
of the excitation. The green and red-dashed lines are plots
of Eqs. (10) and (12), respectively. Note that these solutions
show some similarity to recent work concerning vortices in
two-component immiscible condensates [55–58].

C. Moving frame solutions and integrals of motion

In this section we investigate the solutions to the beyond-
mean-field model in the moving frame such that u 	= 0 where
u is the velocity in the moving frame and ĤbMF denotes
the beyond-mean-field Hamiltonian appearing in Eq. (3). In
the limit that g = 0 we recover the well-known Zakharov-
Shabat (ZS) solution [59], where the allowed solutions exist
on the interval 0 � u < cs where cs is the speed of sound.
The depth of the excitation is directly related to its velocity

(a)

(b)

(d)

(c)

FIG. 3. Dark quantum droplet width comparison. Numerical so-
lutions for the density |ψ (x)|2 to Eq. (3) are shown in (a) for
n0ξ0 = 0.36, with the green solid and red dashed lines computed
from Eqs. (10) and (12). The atom number NDQD(μ) as a function of
the chemical potential μ/μQD is shown in (b) for the analytical result,
Eq. (11) (solid blue), and numerical values (orange pluses), while
(c) compares the root-mean-squared width

√
〈x2〉/ξ0 computed using

Eq. (10) (solid green), Eq. (12) (dashed red), and from the numeri-
cal values (blue pluses). Panel (d) shows the real-time propagation
for ttot = 30h̄/|μ0| of the final dataset from (a); here NDQD ∼ 4.5
(λ = 9).

through
√

nmin/n0 = u/cs where nmin is the density at the
center of the phase twist and n0 is the background, hence
the faster the excitation moves the smaller its depth. Fig-
ure 4 presents the solutions to Eq. (3) as the dimensionless
interaction strength is varied for a fixed background density
n0ξQD = 0.25 and velocity u = 0.1

√|μQD|/m. Panels (a) and
(b) show the real Re(ψ ) and imaginary Im(ψ ) parts of the
wave function. The top panel shows that the width of the
real part increases with interaction strength, and the imag-
inary part shows a marked departure from the ZS solution,
whose imaginary part, Im(ψ ) = √

n0u, is a constant. We ob-
serve that the spatial structure of Im(ψ ) develops a minima
localized at the center of the phase twist as the interaction
strength increases. Panel (c) shows the chemical potential as
a function of the interaction strength, with the three solutions
(i)–(iii) highlighted. Then, the spatial structure of Im(ψ) can
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(a)

(b)

(c)

(d)

(f) (g)

(e)

FIG. 4. Moving frame solutions. The real and imaginary parts
of the solutions to Eq. (3) are presented as a function of√

9|μQD|/2n0δg, respectively, in panels (a) and (b). The chemical
potential is shown as a function of the interaction strength in (c),
with the individual highlighted points (i)–(iii). Individual solutions
are shown in (d) [Re(ψ )] and (e) [Im(ψ )] for

√
9|μQD|/2n0δg =

{0.375, 0.538, 0.72}, while (f) and (g) show the same data in terms
of density |ψ (x)|2 and phase φ(x) corresponding to (i), (ii), and (iii)
respectively.

be seen clearly in panel (e) where Im(ψ ) evolves from an
almost constant solution [blue data (i),

√
9|μQD|/2n0δg =

0.375] to one with a pronounced minimum [green data (iii),√
9|μQD|/2n0δg = 0.72]. This behavior is attributed to the

presence of the quantum fluctuations. The density |ψ |2 and
phase data φ(x) corresponding to (d) and (e) are shown in (f)
and (g).

Next we consider the effect varying the excitation’s ve-
locity u. To understand the role that quantum fluctuations
play we can compute the three integrals of motion given by
Eqs. (5a)–(5c). In the limit that g → 0 these quantities can be
computed exactly in analytical form, and are given by

Nδg = 2ξδgn0β, (13a)

Pδg = −2h̄n0uβ

cδg
+ 2h̄n0arctan

(
cδgβ

u

)
, (13b)

Eδg = 4

3
n0 h̄cδgβ

3. (13c)

Here one has ξδg = h̄/
√

mn0δg and cδg = √
n0δg/m. Then one

additional quantity can be obtained using the momentum Pδg,
the excitations effective mass

m∗ = ∂P

∂u
(14)

which is given by m∗ = −4h̄n0β/cδg.
These four quantities are computed from Eqs. (5a)–

(5c), and presented in panels (a)–(d) of Fig. 5 for
several fixed interaction strengths ranging from repul-
sive (

√
9|μQD|/2n0δg, μ/|μQD|) = (0.25, 54) to attractive

(
√

9|μQD|/2n0δg, μ/|μQD|) = (1.1,−0.37). The atom num-
ber N presented in (a) shows how the size of the excitation’s
core increases as the interaction strength is increased for
a given velocity, eventually approaching zero as the speed
of sound is reached. The momentum P is presented in (b).
This quantity has a maximum value for u = 0 of P/h̄n0 = π ,
decreasing to zero as the speed of sound is reached. Increas-
ing the interaction strength has the effect of “bending” this
quantity downwards (see inset). Next, the regularized energy
E is computed in (c). For a given velocity u, the interac-
tion strength determines the curve with the largest energy,
where the gap between the blue (μ/|μQD| = 54) and green
(μ/|μQD| = 3.2) is caused by the large reduction in repul-
sive energy. The effective mass m∗, Eq. (14), is presented
in panel (d), where the four datasets cross for u/cs ∼ 0.32.
Then at velocities approaching u = 0 the effect of the quan-
tum fluctuations increasingly causes this quantity to have a
larger negative value (red data), which could be probed in a
future experiment by measuring the oscillation frequency of
a beyond-mean-field dark soliton in a harmonic trap [60]. For
0.32 � u/cs < 1 the quantum fluctuations instead enhance m∗
for increasing interaction strength.

The final two panels of Fig. 5 show example space-time
dynamics for data taken from the red points in panels (a)–(d),
where u/cs = 0.75 and 0.75 for (e) and (f), respectively. The
scale of both heat maps is the same to highlight the different
depths of the excitations. The insets show the initial density
|ψ (x, 0)|2 and phase φ(x) for (e) (blue data) and (f) (red data).

D. Excitation collision dynamics

The dark solitary wavelike excitation’s static properties as
presented in the previous sections are useful as a measure of
their fundamental properties; however, a more comprehensive
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(a)

(b)

(c)

(e)

(f)

(d)

FIG. 5. Integrals of motion and dynamics. The four panels (a)–
(d) show the calculated values of the quantities N, P, E , and m∗

given by Eqs. (5a)–(5c) and (14); the key (top) indicates the values
of the interaction strength

√
9|μQD|/2n0δg and chemical potential

μ/|μQD| that each dataset corresponds to. Panels (e) and (f) show
example dynamics taken from the red data for u/cs = 0.75, 0.25,
respectively. Insets (i) and (ii) display the initial density |ψ (x, 0)|2
and phase φ(x) from (e) and (f).

understanding of their behavior naturally incorporates their
collision dynamics. We simulate the dynamics of pairs of
moving frame dark solitary wavelike solutions to the beyond-
mean-field model of Eq. (3). In particular, we consider a
symmetric initial state of the form

ψ (x, t0) = ψ+(x − x0,−v, μ) + ψ−(x + x0,+v, μ), (15)

where x0 defines the initial center of mass of the solu-
tion with velocity v and chemical potential μ. Figure 6
presents simulations of the collisions with a fixed background
density of n0ξQD = 0.5 for repulsive and attractive interaction

strengths. Panels (a)–(c) show collisions with weak repul-
sive interactions

√
9|μQD|/2n0δg = 0.63 with μ/μQD = 0.55

and x0/ξQD = 5. Panel (a) shows a slow collision between
two excitations, where u/c+

s = 0.02 (c±
s represents the speed

of sound for repulsive c+
s � 1.74

√|μQD|/m and attractive
c−

s � 0.66
√|μQD|/m interactions) and there is an effective

repulsion at the collision point [61,62]. For u/c+
s = 0.5 the

excitations instead pass through each other, with a small
amount of sound emission attributed to the proximity of these
parameters to the attractive region of the parameter space, i.e.,
the effect of quantum fluctuations. Then panel (c) shows a
faster collision with u/c+

s = 0.75.
Next we simulate collisions with attractive interactions,

panels (d)–(f). Here
√

9|μQD|/2n0δg = 1.1 and μ/μQD =
−1.03, and x0/ξQD = 10, 7.5, 5 for (d)–(f), respectively. The
excitation’s dynamics are found to be qualitatively different
to the case of repulsive interactions. In (d) and (e) we ob-
serve the formation of short-lived bound states of pairs of
excitations. The existence of bound pairs of excitations is
attributed to the balance of attractive and repulsive forces in
Eq. (3). Below a critical velocity, the net attractive nonlinear
interactions can accommodate a moleculelike state [63]. The
length of the bound state tbs depends on the excitation’s initial
velocity: for u/c−

s = 0.61 we find ttb � 50h̄/|μQD|, and for
u/c−

s = 0.64 we find ttb � 30h̄/|μQD| instead. The emission
of radiation in the form of sound is observed in both cases,
contributing to the eventual breaking of the bound states.
Finally panel (f) shows a faster collision with u/c−

s = 0.76
showing a quasielastic collision, with a reduced amount of
sound emission. Animations of the solitary waves dynamics
corresponding to the data in Figs. 6(c) and 6(e) are included
as Supplemental Material [64].

IV. SUMMARY

In this work we have explored the phenomenology of dark
quantum droplets and solitary waves, revealing the criteria for
the existence of dark quantum droplets in beyond-mean-field
Bose-Einstein condensate mixtures. The crossover from the
dark soliton at weak repulsive to dark quantum droplets at at-
tractive interaction strengths was found to depend sensitively
on the interaction strength, a situation that was explored by
comparing the analytical and numerical values of the excita-
tion’s root-mean-squared width, finding improving agreement
as the transition point is approached. We then explored the
beyond-mean-field solutions at finite velocity, revealing the
departure of the excitation’s shape from the Zakharov-Shabat
solution. The integrals of motion of the excitation were com-
puted, allowing the calculation of the excitation’s effective
mass, which was found to be strongly affected by the quantum
fluctuations. Finally, the dynamics of pairs of the dark solitary
waves were explored, revealing the existence of bound states
in the attractive regime.

Due to the unusual profile of the dark quantum droplet,
they could find useful application, for example, hosting qubits
similar to proposals for dark solitons [65], as well as for
matter-wave box traps [66], providing an alternate route to
realizing matter-wave traps in a controllable environment.

For future studies and given the results presented in this
work concerning the excitation’s effective mass, it would
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FIG. 6. Excitation collision dynamics. Initial collisional states are prepared according to Eq. (15) for fixed background n0ξQD =
0.5. Panels (a)–(c) show collisions for repulsive interactions with (

√
9|μQD|/2n0δg, μ/μQD) = (0.63, 0.55), and speed of sound c+

s �
1.74

√|μQD|/m. Panels (d)–(f) show collisions for attractive interactions with (
√

9|μQD|/2n0δg, μ/μQD) = (1.1, −1.03), and speed of sound
c+

s � 0.66
√|μQD|/m.

be intriguing to understand the behavior of dark quantum
droplets in a harmonic trap, and how their oscillation fre-
quency depends on the properties of the excitation [67]. The
dynamical behavior, such as constructing Toda-like lattices,
provides another future direction [68].
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APPENDIX: NEWTON-RAPHSON METHOD

Here we give an overview of the numerical method used
to procure the dark quantum droplet solutions to the cubic-
quadratic Schrödinger equation [Eq. (3) of the main text].
This type of approach has been used previously to study

excitations in superfluid systems such as vortices [69], and
solitons in dipolar [70,71] and magnetic systems [72]. Our
system differs from previous studies due to the presence of
mixed nonlinearities. We consider a general scheme at finite
velocity. First we write a function whose solutions we seek in
the the Galilean-boosted frame as

F [ψ] = (ĤcqGPE − up̂x − μ)ψ, (A1)

where u is the excitation velocity. Then Eq. (A1) can be
translated into the iterative scheme

Fu(ψ p+1) ≈ F (ψ p) +
N∑

v=1

Ju,vδψv ≈ 0, (A2)

where δψ = ψ p+1 − ψ p and Ju,v defines the matrix elements
of the Jacobian. The solutions to Eq. (A1) are in general com-
plex valued, and since Newton-Raphson methods only work
with real data we write the discrete ψ (x) comprising N com-
plex numbers as 2N real numbers such that Re[ψ (x)] ≡ ψ j,0

and Im[ψ (x)] ≡ ψ j,1, with the second subscript referring to
the real and imaginary components. Then one can write the
discrete form of Eq. (A1) as

f j,s = − h̄2

2m

[
ψ j−1,s − 2ψ j,s + ψ j+1,s

	x2

]
+ (2s − 1)h̄u

[
ψ j+1,1−s − ψ j−1,1−s

2	x

]

+
{
−

√
2m

π h̄
g3/2

√
ψ2

j,0+ψ2
j,1 + δg

(
ψ2

j,0+ψ2
j,1

)}
ψ j,s − μψ j,s. (A3)

The boundary conditions for the problem are treated as the Neumann type, such that

dψ

dx

∣∣∣∣
x=±L

= 0, (A4)
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which translates into taking ψ1,s − ψ0,s = 0 and ψN+1,s − ψN,s = 0 for the kinetic term and ψ2,s − ψ0,s = 0 and ψN+1 −
ψN−1,s = 0 for the momentum operator. The matrix elements of the Jacobian appearing in Eq. (A2) are found from J j,s

k,r =
∂ f j,s/∂ψk,r . Using ∂ψ j,s/∂ψk,r = δ j,kδs,r we obtain

J j,s
k,r = − h̄2

2m
δs,r

[
δk, j−1 − 2δk, j + δk, j+1

	x2

]
+ (2s − 1)δ1−s,r h̄u

[
δk, j+1 − δk, j−1

2	x

]
−

√
2m

π h̄
g3/2δk, j

[
ψ j,s

δ0,rψ j,0+δ1,rψ j,1√
ψ2

j,0+ψ2
j,1

+ δr,s

√
ψ2

j,0+ψ2
j,1

]
+ δgδk, j

[
2ψ j,s(δ0,rψ j,0+δ1,rψ j,1)+δr,s

(
ψ2

j,0+ψ2
j,1

)] − μδk, jδs,r, (A5)

which defines a 2N × 2N matrix. Then stationary solutions
can be obtained to Eq. (3) using Eqs. (A1)–(A5) using
a tolerance-based approach for δψ . As such we employ

the Frobenius norm ||δψ || =
√

(
∑2N

j=1 |δψ j |2) as a measure
which is deemed convergence after falling below a predefined
value, typically ‖δψ‖ < 10−10. Computation of δψ at each
step is accomplished by solving the linear system J δψ =

−F using a stabilized biconjugate gradient method which ex-
ploits the symmetry of the Jacobian to expedite the solution of
the linear system by avoiding matrix inversion. The Newton-
Raphson method requires an initial guess for ψ (x), which
we take as the dark soliton solution to the cubic Schrödinger
equation. An example Python script for generating a dark
quantum droplet can be found in [73].
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