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Quantum dropout: On and over the hardness of quantum approximate optimization algorithm
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A combinatorial optimization problem becomes very difficult in situations where the energy landscape is
rugged, and the global minimum locates in a narrow region of the configuration space. When using the
quantum approximate optimization algorithm (QAOA) to tackle these harder cases, we find that difficulty mainly
originates from the QAOA quantum circuit instead of the cost function. To alleviate the issue, we selectively drop
the clauses defining the quantum circuit while keeping the cost function intact. Due to the combinatorial nature
of the optimization problems, the dropout of clauses in the circuit does not affect the solution. Our numerical
results confirm improvements in QAOA’s performance with various types of quantum-dropout implementations.
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I. INTRODUCTION

A class of important real-world combinatorial optimization
problems costs exponential resources to solve on a classical
computer [1–3]. As the size of the problem increases, the
solution becomes so costly that it is virtually impossible for
even the world’s largest supercomputers. Although quantum
computers have been shown to hold enormous advantages
over classical computers for some specific problems [4–8],
an important open question is whether a quantum computer
can provide advantages and improve our position for these
difficult optimization problems.

The quantum approximate optimization algorithm
(QAOA) is a hybrid quantum-classical variational algorithm
designed to tackle ground-state problems, especially discrete
combinatorial optimization problems [9–24]. It has been
shown to be quite effective in many problems. However, we
note that these studies mainly focus on randomly generated
problems [9–13], which may potentially concentrate on
simpler cases and fail to represent the problem’s categorical
difficulty. In this work we try to address these nontrivial and
difficult cases with a strategy that we call quantum dropout.

We focus on combinatorial optimization problems in which
the global minimum (ground state) sgs has to satisfy each
clause Ĥi in a given set C,

ĤC =
∑
i∈C

Ĥi. (1)

The difficulty of this problem depends on the energy land-
scape, the smoothness or roughness of the objective function
ĤC (s) versus s with respect to its locality in the state space.
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As illustrated in Fig. 1(a), when the global minimum lo-
cates in a large and smooth neighborhood, the problem is
simpler since its solution can be efficiently found with local-
based searches such as simulated annealing (SA) [25] and
the greedy algorithm [26]. When the minimum locates in
a narrow region in a rugged landscape, the case is harder.
This is further demonstrated in Figs. 1(b) and 1(c), which
are the energy landscapes of simpler and harder cases in the
not-all-equal 3-satisfiability (NAE3SAT) problems [27,28],
respectively. Figure 1(d) shows that the energy landscape for
harder cases becomes much smoother as more clauses are
dropped. This observation, combined with our realization that
a more rugged landscape makes the optimization of the quan-
tum circuit more costly, leads us to a strategy in which we
choose to drop a portion of clauses from the quantum circuit,
ĤC′ = ∑

i∈C′⊂C Ĥi, while keeping the original cost function to
ensure the uniqueness of the global minimum. This strategy,
as illustrated schematically in Fig. 2, utilizes the problems’
combinatorial nature and has, in general, no trivial parallel
in classical algorithms. Our numerical results show that with
quantum dropout QAOA can locate the ground states with an
enhanced probability and little to no overhead even for harder
cases, paving the way towards practical QAOA for combinato-
rial optimizations. In the deep artificial neural network, there
is a vital technique called dropout, which keeps a random
subset of neurons from optimization for more independent
neurons and thus suppresses overfitting [29,30]. Our quantum
dropout echoes this classical technique in spirit but is not a
direct generalization.

II. QAOA AND QUANTUM DROPOUT

QAOA solves optimization problems such as Eq. (1) by
finding its ground state |sgs〉, which is one of the n-qubit bases
|s〉 over the σ z configurations: σ z

r |s〉 = sr |s〉. As shown in
Fig. 2, QAOA offers a parameterized variational state:

|β, γ〉 = e−iĤBβpe−iĤCp γp · · · e−iĤBβ1 e−iĤC1 γ1 |+〉⊗n , (2)
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FIG. 1. (a) A schematic energy landscape. The global minimum
is located in a large and smooth neighborhood for a simpler problem
and a narrow region for a harder problem. Normalized landscapes
for NAE3SAT problems in terms of the Hamming distance (b) for
simpler cases and (c) for harder cases. (d) The landscape of a harder
problem becomes smoother as more clauses are dropped out, improv-
ing the global minimum’s standing. Only the minimum of E (s) for a
specific Hamming distance of s from the global minimum is shown
for clarity. n = 24.

where ĤB = −∑n
r=1 σ x

r , with |+〉⊗n being its ground state. In
Ref. [9], the original setup is inspired by a quantum adiabatic
(annealing) algorithm [31–33] such that ĤC1 = · · · = ĤCp =
ĤC . QAOA implements a quantum circuit to efficiently evalu-
ate the expectation value of Eq. (2) as a cost function:

Ep(β, γ ) = 〈β, γ|ĤC |β, γ〉 , (3)

which is, in turn, optimized classically. The quantum circuit
evaluates an exponential number of classical configurations
simultaneously, and with more layers the overlap 〈sgs |β, γ〉
may become larger. At the convergence, |β, γ〉 is measured in
the basis of {|s〉}.
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FIG. 2. QAOA is a hybrid optimization procedure that consists of
a 2p-layer quantum circuit evaluating a cost function and a classical
algorithm optimizing the corresponding parameters β and γ . Each
bilayer contains a driving layer e−iĤCγm and a mixing layer e−iĤBβm ,
where m is the bilayer index. In addition, we propose checking the
target problem with classical algorithms first to see whether QAOA
is necessary and implementing a dropout on the ĤC clauses presented
in each of the driving layers.

In comparison with a variational quantum eigensolver
[34–36], QAOA possesses far fewer variational parameters,
basically, the 2p variables of β and γ . Sometimes, e.g., for
simpler ĤC , QAOA may offer a sufficient approximation with
merely a few layers p ∼ O(1); in general, however, we need
p � O(n) for sufficient expressing power of |β, γ〉 to encode
sgs [37]. However, a larger p complicates the nonconvex op-
timization of Ep(β, γ ) [20,38–41], especially for quantum
circuits with harder ĤC , as we will see later. Can we swap
ĤC for a simpler one in the quantum circuit? Unfortunately,
the answer is negative—a quantum circuit with ĤC′ generally
does not apply to the problem of a different ĤC . Intuitively, the
QAOA quantum circuit performs as an interferometer, where
only s at the minima of ĤC interfere constructively through the
e−iĤC xm driving layers [42], especially with a large and smooth
neighborhood. We will illustrate related numerical examples
later and in the Appendixes. Applying a simpler ĤC′ that has
the same sgs as ĤC may be helpful; however, this is generally
unpractical because the required sgs is unknown beforehand.

Fortunately, for combinatorial optimization problems, the
Hamiltonian ĤC′ = ∑

i∈C′ Ĥi with a partial set C′ ⊂ C of-
fers an answer. As we mentioned earlier, dropping clauses
improves the energy landscape of a harder problem while
ensuring sgs is the ground state of ĤC′ . The caveat is that,
in addition to sgs, there could be false solutions due to the
now fewer constraints. To avoid false solutions, we substitute
these simpler problems ĤC1,...,p in Eq. (2) while keeping the
cost function in Eq. (3).

Let us summarize our improvements to the regular QAOA
via quantum dropout (Fig. 2). We start the problem with an ef-
ficient classical solver. If the result is satisfactory, we stop the
procedure since there is no point in a quantum solver. Other-
wise, these failed classical results, typically low-lying excited
states (local minima), offer insights as we prepare quantum
dropout for QAOA: whether a clause should be kept or avail-
able for quantum dropout to underweight the distracting local
minima and enhance the chances to locate sgs. Finally, we
optimize |β, γ〉 with respect to the original cost function 〈ĤC〉
with a complete set of clauses to ensure the uniqueness of the
global minimum. The current procedure does not incur obvi-
ous overhead compared to the conventional QAOA since the
preliminary approaches and the quantum-dropout controls are
both inexpensive on a classical computer (see Appendix D).
We emphasize that there are essential differences between
quantum dropout and dropout in artificial neural networks,
and their similarity is merely symbolic: there are no neurons
in QAOA’s quantum circuit, and quantum dropout operates
on the Hamiltonian level; also, we apply quantum dropout at
the beginning (removing clauses from the Hamiltonian for a
modified QAOA circuit model) and keep the architecture in
training and application afterward. This differs from classical
dropout, which randomly sets aside a fraction of the neurons
during training [29,30].

III. NOT-ALL-EQUAL 3-SATISFIABILITY PROBLEMS

We use the NAE3SAT problems to demonstrate how to
implement QAOA with quantum dropout and its effectiveness
due to the straightforward control of their hardness following
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FIG. 3. (a) and (b) The NAE3SAT problem with 10 clauses over
n = 8 spins is simpler (harder) when the clauses are more sporadic
(concentrated on a few pairs). Each color denotes a different clause,
which must traverse the central dotted line for the not-all-equal
condition. (c) and (d) A step-by-step local analysis follows first the
strongest antiferromagnetic interactions (red lines), then the second
strongest (red dashed lines), and so forth. While the result for the
simpler problem is consistent with sgs, the result for the harder
problem is largely misleading.

an intuitive, simple picture, as we explain in the follow-
ing. This choice will not cause a loss of generality as the
NAE3SAT problems are NP-complete; that is, any quadratic
unconstrained binary optimization problem of the decision
version [43] can be reduced to it, yet a polynomial algorithm
is not available in general [2,27,28,44] (see Appendix J for
further details and examples).

The solution sgs of an NAE3SAT problem satisfies not-all-
equal si, s j , and sk for a given set of clauses [i, j, k] ∈ C. For
instance, clause [1, 2, 3] allows s1 = s2 = 1, s3 = −1 but not
s1 = s2 = s3 = 1. Therefore, we may regard the solution sgs

as the ground state of the following Hamiltonian:

ĤC =
∑

[i, j,k]∈C

[(si + s j + sk )2 − 1]/2

=
∑

[i, j,k]∈C

(sis j + sisk + s jsk ) + const, (4)

where the interaction between a pair of Ising spins sis j is
antiferromagnetic and its strength depends on the number of
times i and j appear in pairs within all clauses. A clause
favors being an antiferromagnet because it imposes two oppo-
site alignments and only one parallel alignment. Therefore, a
straightforward and physically intuitive solution is to antialign
the pair of spins with the most appearances in clauses, then
the pair with the second most appearances, and so forth, in
analogy with the greedy algorithm [Fig. 3(c)] [26]. How-
ever, if such a local perspective yields globally inconsistent
deductions with sgs, e.g., multiple pairs of spins with re-
peated appearances in clauses are counterintuitively aligned
[see Figs. 3(b) and 3(d)], the NAE3SAT problem is commonly
harder. We emphasize that despite their restrictive guidelines
and thus their percentage being overshadowed by random

FIG. 4. We use the probability of achieving the ground state sgs as
a measure of the performance of QAOA and SA on an (a) simpler and
(b) harder NAE3SAT problem of system size n = 16. While QAOA
performs satisfactorily for the simpler problem ĤE

C , especially for
sufficient circuit depth p, it faces challenges for the harder problem
ĤH

C and performs no better than SA. We estimate the success proba-
bilities over 1000 trials for SA and after 500 steps for QAOA.

problems [Fig. 3(a)], these challenging problems determine
the categorical complexity and are more meaningful from a
quantum-solver perspective.

Following these guidelines in Fig. 3 for simpler and harder
problems, we generate NAE3SAT problems starting from sgs

and accumulating consistent clauses Ĥi until the ground state
of ĤC is unique (other than a global sr → −sr symmetry; see
Appendix B for details). To quantify each problem’s diffi-
culty, we evaluate the chance of finding sgs with Monte Carlo
SA [25]. For example, we gradually lower the equilibrium
temperature from 64, which is sufficiently higher than most
barriers, to 0.64, which is significantly lower than elemen-
tary excitations, in O(104) single-spin Monte Carlo steps for
N = 16 systems and obtain a success probability > 95% for
most problems following Fig. 3(a) and < 10% for selected
problems following Fig. 3(b) [45]. The qualitative nature of
the energy landscapes of such problems, as well as the effects
of quantum dropout, is illustrated in Fig. 1. Next, we exam-
ine our numerical results with QAOA for these NAE3SAT
problems.

IV. RESULTS

First, we apply regular QAOA to typical simpler and
harder NAE3SAT problems, whose results are summarized
in Fig. 4. Our QAOA employs the limited-memory Broyden–
Fletcher–Goldfarb–Shanno algorithm with a learning rate of
0.01. Indeed, QAOA is successful for a simpler problem ĤE

C ,
with the ground state’s weight tending to 100% as the circuit
depth increases; however, such success is less exciting as SA
also achieves sgs with a high probability of ∼100%. On the
other hand, QAOA performs no better than SA for a harder
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FIG. 5. We evaluate the QAOA performance with p = 30 via the
probability of achieving the ground state sgs as we graft the quantum
circuit of ĤC′ to the cost function of ĤC , where ĤC′ and ĤC can each
be a simpler problem ĤE

C or a harder problem ĤH
C with the same

sgs. The horizontal axis labels the number of optimization steps. The
legend X -Y denotes ĤX

C for the quantum circuit and ĤY
C for the cost

function, where X,Y = E , H .

problem ĤH
C , and to make matters worse, a deeper circuit

hardly improves its performance and may even become harm-
ful, as more and more weights get stuck in low-lying excited
states. Further, our initializations following heuristics with
a linear adiabatic schedule do not help with the difficulties.
These behaviors are general to other simpler and harder prob-
lems as well (see Appendix A).

As a given problem enters both the quantum circuit and the
cost function of QAOA, to locate the difficulty, we perform a
cross test in which the problem ĤC′ = ĤE

C , ĤH
C used in the

quantum circuit may differ from ĤC = ĤE
C , ĤH

C in the cost
function. We note that ĤE

C and ĤH
C , as studied in Fig. 4,

are relatively simpler and harder yet possess a consistent
sgs—QAOA generally fails when these two problems are in-
compatible (see Appendix C). We summarize the convergence
of |β, γ〉 towards |sgs〉 in Fig. 5 as a measure of the difficulty
QAOA faces. QAOA performs well as long as the quantum
circuit engages a simpler problem ĤC′ = ĤE

C and vice versa,
while the cost function ĤC plays a relatively minor role, which
demonstrates that the quantum circuit is the bottleneck and
should be our main target of simplification.

As discussed earlier, quantum dropout rightfully addresses
such concerns on QAOA quantum circuits, providing us with
simpler, yet still compatible, ĤC′ for the driving layers. As
we checked the difficulty of the harder problem ĤH

C via SA
in Fig. 4, we have also obtained, as a by-product, 29 low-
lying excited states, which help us to choose the dropout
clauses more selectively. For example, we implement quan-
tum dropout only on clauses that have no violation from
these distracting local minima (see Appendixes D and E). The
resulting energy landscape is illustrated in Fig. 1(d). We leave
the cost function ĤC = ĤH

C intact with all of the clauses and
perform the QAOA optimization following the procedure in
Fig. 2.

First, we set a uniform quantum dropout, randomly ditch-
ing R = 50% of the clauses in the available subset, for all
driving layers, i.e., ĤC1 = ĤC2 = · · · = ĤCp . The QAOA per-
formance is shown by the green lines in Fig. 6. We observe
an evident improvement in favor of quantum dropouts which
becomes more significant as the circuit depth p grows. At

FIG. 6. By the success probability versus the circuit depth p of
(a) the best case and (b) the averages and standard deviations (as
the shaded ranges) over the trials, we compare the performance
of QAOA of three forms: the regular QAOA (blue line) and the
QAOA with a quantum dropout of a uniform ĤC′ (green line) or
different ĤC1,...,p (red line) over the driving layers. For each trial
with quantum dropout, we randomize the initial parameters (β, γ )
among (−π, π )⊗2p and the clauses for the dropout Hamiltonians and
evaluate the success probability after 200 optimization steps. The
number of trials varies according to p: p � 20, 100; 25 � p � 40,
50; 45 � p, 30.

p = 50, the QAOA’s probability of locating the ground state
doubles on average with the implementation of quantum
dropouts, with the best-case scenario offering a success prob-
ability of ∼0.21, well exceeding that of ∼0.073 for the regular
QAOA and the SA probability of ∼0.069. We do not claim to
establish the quantum advantage, as we can employ similar
dropout ideas in classical SA to lift its performance (see
Appendix G). Intuitively, when p is small, the limiting factor
is the quantum circuit’s capacity; as p and thus the quantum
circuit’s expressibility increase, the bottleneck switches to the
optimization of the variational parameters, where the regular
QAOA commonly gets bogged down and quantum dropout
begins to shine [see the averaged performance in Fig. 6(b)].

We also examine the scheme of setting driving layers with
different dropouts. The corresponding result is summarized
in red in Fig. 6, indicating improvements over the regular
QAOA at sufficiently large p, especially with more aggressive
dropout ratios R (see Appendix F). We also observe a lower
performance variance than the uniform quantum dropout;
therefore, this dropout architecture is subjected less to the
random dropout configurations and advisable if the number
of trials is rather limited.

Combinatorial optimization problems are thought to be
hard to solve efficiently. With simulated annealing, one seeks
the global minimum through random exploration and energy
comparison. Interestingly, essentially a quantum interferom-
eter, the QAOA circuits with different dropouts over driving
layers may work through a focusing effect on sgs: different
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clause sets lead to different energy landscapes and minima,
whose configurations experience constructive interference
and enhanced amplitudes. Being the only common minimum
of all ĤC′ irrespective of the dropouts, sgs remains a standout
in all driving layers. Unfortunately, limited by the current
system size (n = 16) and circuit depth (p = 50), we have yet
to observe an apparent advantage, on average, for this dropout
architecture over the uniform dropout, which requires further
study in the future.

V. DISCUSSION

We have illustrated that while the regular QAOA performs
satisfactorily for simpler problems, it still faces significant
challenges for meaningful, harder problems. The benefit of
a straight increase in the circuit depth quickly saturates, with
most of the weights trapped in low-lying excited states. Cor-
respondingly, we have proposed a quantum-dropout strategy
for QAOA for harder combinatorial optimization problems,
which keeps a number of clauses out of their role in the quan-
tum circuits, therefore easing the landscape of the problem
and thus the parameter optimization. The strategy provides
an edge over the regular QAOA and SA, especially for
harder problems and deeper circuits. For the best perfor-
mance, multiple (quantum-dropout) setups and (parameter)
initializations should be attempted. Our study also provides
valuable insight into the quantum-interfering mechanism of
QAOA, which also explains why the model compatibil-
ity and simplicity of the quantum circuit are crucial to
performance.

Finally, the physical picture of the problems’ simpler-
harder dichotomy and QAOA with quantum dropout straight-
forwardly applies to quantum combinatorial optimizations,
which may lack a general, compatible classical solver, making
the efficient QAOA aided by quantum dropout very useful;
we also consider preliminary generalizations to unsatisfiable
instances (see Appendixes H and I).

The source code and the hyperparameters for the example
optimizations are available at [46].

ACKNOWLEDGMENTS

We thank J.-B. Wang for insightful discussions. The cal-
culations in this work were supported by high-performance
computing facilities at Peking University. Y.Z. and P.-L.Z.
are supported by the National Key R&D Program of China
(Grant No. 2021YFA1401900) and the National Natural Sci-
ence Foundation of China (Grants No. 12174008 and No.
92270102). Z.W. and B.W. are supported by the National
Key R&D Program of China (Grants No. 2017YFA0303302
and No. 2018YFA0305602), the National Natural Science
Foundation of China (Grant No. 11921005), and the Shanghai
Municipal Science and Technology Major Project (Grant No.
2019SHZDZX01).

APPENDIX A: ADDITIONAL EXAMPLES OF REGULAR
QAOA RESULTS FOR HARDER NAE3SAT PROBLEMS

We illustrate the performance of regular QAOA for 50
additional harder NEA3SAT problems with system size

FIG. 7. Similar to Fig. 4(b) in the main text, the regular QAOA
performs poorly for additional harder NAE3SAT problems generated
following the guidelines in the main text. The averages and standard
deviations of the outcomes’ occupation in the ground states (blue
line) and the first excited states (red line) are based upon the 50 hard-
est problems pinpointed by SA, with the average success probability
displayed as the black dashed line.

n = 16 in Fig. 7. We select these problems according to
their SA performance. The results are consistent with and
show the generality of our arguments in the main text
in Fig. 4(b). Especially, the QAOA performance, i.e., the
occupation of the target ground state sgs, stays low and
even decreases further for larger circuit depth p to some
extent.

APPENDIX B: DETAILS OF NAE3SAT PROBLEM
GENERATION

A not-all-equal 3-satisfiability (NAE3SAT) problem aims
to determine the assignment of a set of Boolean vari-
ables {x1, . . . , xn}, xr = 0, 1, given a set of clauses C =
{[i, j, k] : 1 � i, j, k � n, i 
= j 
= k}, so that for each of
the M clauses, the three variables xi, x j , and xk are not
all equal, i.e., xi + x j + xk 
= 0, 3. This problem is equiv-
alent to the determination of the ground state of a spin
Hamiltonian:

ĤC =
∑

(i, j,k)∈C

[(ŝi + ŝ j + ŝk )2 − 1]/2

=
∑

(i, j,k)∈C

(ŝi ŝ j + ŝ j ŝk + ŝk ŝi ) + const., (B1)

where the spin operators ŝi are the corresponding σ z operators
with a simple algebraic connection to the qubit Z gates.

Generally, NAE3SAT problems are NP-complete. We can
generate such problems randomly and straightforwardly as
follows:

(1) To start with, we choose a configuration to be the
solution of the problem. In the main text, we use |sgs〉 =
|1〉⊗n/2 ⊗ |−1〉⊗n/2. Note that the NAE3SAT problem is sym-
metric under the all-spin flip ŝr → −ŝr .

(2) We randomly generate mutually different 1 � i, j, k �
n. We add the clause [i, j, k] to the set C if it is consistent with
the solution.

(3) We repeat step 2 until the number of clauses is sufficient
and the solution is unique, i.e., no solution other than |sgs〉 up
to the all-spin flip symmetry.
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However, as we perform numerical experiments with sim-
ulation annealing (SA), it turns out that most NAE3SAT
problems with randomly generated clauses are quite simple,
even from such a classical algorithm point of view. In SA,
we start with a random initial state and a high equilibrium
temperature and gradually lower the temperature until it is
significantly less than the typical excitation energies, e.g., final
temperature of 0.5 over ∼20 000 steps for excitation energy 8
and n = 24 spins in our case, while keeping the Monte Carlo
sampling of the spin configurations. By “simpler,” we mean
that the probability of SA locating the target ground state is
significantly higher than those for harder problems, which
have to be generated following a more prescribed guideline,
which we summarize as follows:

(1) To start with, we choose a configuration to be the
solution of the problem. In the main text, we use |sgs〉 =
|1〉⊗n/2 ⊗ |−1〉⊗n/2.

(2) We randomly pick pairs 1 � i, j � n whose spins are
identical: si = s j . These pairs in total should be no greater
than n and cover at least a portion of the system (beyond
measure 0).

(3) For each pair, we add multiple clauses [i, j, k] to the
set C if the randomly chosen k has an opposite spin sk = −si

and is thus consistent with the solution. The number of clauses
per pair should also be less than n and larger than the average
clause number of the bonds.

(4) We generate mutually different 1 � i, j, k � n, espe-
cially dangling sites with no clauses, if any; add the clause
[i, j, k] to the set C if it is consistent with the solution; and
repeat until the solution is unique, i.e., there is no solution
other than |sgs〉 up to the all-spin flip symmetry.

Note that the nondegenerate requirement is primarily for
simplicity and not physically essential.

Behind these guidelines, physical intuition offers a per-
spective on why such problems are simpler or harder. For the
harder problems, the pairs in step 2 receive many clauses in
step 3 and thus experience large antiferromagnetic interac-
tions on their bonds, say, i j. The SA is a classical algorithm
based on the local configuration update and explores the
configuration space via local probabilities in the form of a
detailed balance between acceptance and rejection. Therefore,
SA tends to assign different spins to i and j, which opposes
the solution sgs in which si = s j . When this happens to a
non-negligible number of pairs, the SA becomes misled and
trapped in configurations in low-energy neighborhoods that
are globally different from sgs. On the contrary, a randomly
generated problem’s opposite spins are more likely to accu-
mulate clauses and thus antiferromagnetic interactions than
parallel spins following statistics, and such consistent local
clues give rise to simpler problems. For reference, SA can
reach ∼100% accuracy in the simpler problems, while a good
portion of the harder problems have <10% accuracy, indicat-
ing the usefulness of physical intuitions.

APPENDIX C: FAILURE OF QAOA
WITH INCOMPATIBLE CIRCUITS

In the main text, we mentioned that ĤC′ in the driven layers
of the QAOA quantum circuit needs to be compatible with the
target problem ĤC that we keep in the cost function. Here,

FIG. 8. We evaluate the QAOA performance with p = 30 via the
probability of achieving (a) the target ground state |sgs〉 inconsistent
with the quantum circuit and (b) the permuted state P̂|sgs〉 consistent
with the quantum circuit (but not the cost function) as we graft an
incompatible quantum circuit of ĤC′ to the target problem ĤC . Note
the logarithmic scaling in (a). The horizontal axis labels the number
of optimization steps. The legend X -Y denotes ĤX

C′ = P̂ĤX
C P̂† for the

quantum circuit and ĤY
C for the cost function, where X,Y = E , H .

we demonstrate the failure of QAOA when ĤC′ and ĤC are
incompatible.

Let us use the simpler and harder NAE3SAT problems ĤE
C

and ĤH
C in the main text as our starting point and introduce

incompatibility via permutations on the qubits. For example,
we consider a permutation P̂ that maps the first qubit to the
second, the second qubit to the third, and so forth (and the last
qubit to the first), so that the solution of ĤH

C and ĤE
C , |sgs〉 =

|1〉⊗8 |−1〉⊗8, is mapped to P̂|sgs〉 = |−1〉 ⊗ |1〉⊗8 ⊗ |−1〉⊗7,
the solution of P̂ĤE ,H

C P̂†. By keeping ĤC = ĤE
C , ĤH

C in the
cost function and applying ĤC′ = P̂ĤE

C P̂†, P̂ĤH
C P̂† to the driv-

ing layers, we introduce incompatibility (a Hamming distance
of 2) between the QAOA circuit and the target problem, which
no longer have a common ground state as in the main text.

Our main results for the incompatibility tests are shown in
Fig. 8, in analogy to Fig. 5 in the main text. The legend X -Y
denotes P̂ĤX

C P̂† for the quantum circuit and ĤY
C for the cost

function, where X,Y = E , H . Irrespective of such settings,
QAOA largely fails to achieve the target ground state |sgs〉,
indicating the necessity of the compatibility of the QAOA
circuit. On the contrary, the probability of achieving a non-
targeted state is higher, the permuted state P̂ |sgs〉 compatible
with the circuit ĤC′ , especially when the simpler problem
ĤE

C′ = P̂ĤE
C P̂† is applied. The target cost function ĤC’s in-

compatibility with P̂ |sgs〉 costs only a minor amount, from
∼100% to ∼90%. Overall, our incompatibility tests confirm
that the bottleneck of QAOA is the model difficulty at the
quantum circuit instead of the cost function.
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FIG. 9. A schematic energy landscape of a harder problem with
multiple local minima. A polynomial classical algorithm such as
SA may nonexhaustively identify some of the local minima, e.g.,
local minimum 2. The rest of the low-lying excited states, e.g., local
minimum 1, if they are competitive with the target ground state sgs

and emerge from the results of QAOA before sgs is reached, can be
included in the heuristics for a step-by-step improvement.

APPENDIX D: PROCEDURE OF (HEURISTIC)
QUANTUM DROPOUT

Here, we elaborate the detailed procedure for (heuristic)
quantum dropout, as shown in Fig. 2 in the main text:

(1) Given a combinatorial optimization problem ĤC =∑
i∈C Ĥi, we start by performing polynomial-time classical

algorithms such as simulated annealing multiple times. If
we obtain the solution, we simply end the whole procedure.
However, when a quantum solver is necessary, the classical
solver offers us a set of low-lying excited states {sex} that are
potential competitors to the target ground state sgs.

(2) We separate the clauses into two subsets according to
each clause’s number of violations of {sex}. For the NAE3SAT
example in the main text, the clauses with at least one vi-
olation are denoted as C0 and kept from dropout, while the
remaining C\C0 are cached for dropout.

(3) We generate the driving layer Hamiltonians as

ĤC′ =
∑
i∈C′

Ĥi, C′ = C0 ∪ DropoutR(C\C0), (D1)

where the function DropoutR is a random subset of its argu-
ment controlled by the dropout ratio R (e.g., 50% in the main
text): DropoutR(x) ⊂ x and |DropoutR(x)| = (1 − R)|x|.

(4) Finally, we optimize the QAOA variational state:

|β, γ〉 = e−iĤBβpe−iĤCpγp · · · e−iĤBβ1 e−iĤC1 γ1 |+〉⊗n , (D2)

with respect to its cost function. State |+〉⊗n is the ground
state of ĤB = −∑n

r=1 σ̂ x
r . Once our convergence threshold is

reached, we measure the optimized |β, γ〉 in the s basis, which
has a probability for sgs depending on the compositions.

(5) We repeat this procedure until sgs is obtained.
We note that a polynomial-time classical algorithm such

as SA may not guarantee an exhaustive set of all competi-
tive local minima (e.g., Fig. 9). On the one hand, we will
analyze the impact of heuristics with such a (partial) set in
the following Appendixes; on the other hand, if one of these
missed-out local minima emerges from QAOA’s measured
outcomes before we achieve the target ground state, we can
include it in {sex} for improved heuristics. This procedure can
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FIG. 10. An extended version of the QAOA architecture in Fig. 2
of the main text. If the obtained outcomes from QAOA are not the
target state sgs, we can add these competitive states to {sex} for more
comprehensive quantum-dropout heuristics for further optimizations.

be repeated in a step-by-step fashion. We summarize this feed-
back to quantum-dropout heuristics from unsuccessful QAOA
attempts in the extended architecture in Fig. 10.

We build the QAOA circuit and the optimizer using the
PYTORCH library.

APPENDIX E: IMPACT OF QUANTUM
DROPOUT HEURISTICS

In the main text (and detailed in Appendix D), we
introduced a heuristic quantum dropout to simplify the mod-
els ĤC′ = ∑

i∈C′⊂C Ĥi and C′ = C0 ∪ DropoutR(C\C0) of the
QAOA circuit for the original combinatorial problem Ĥ =∑

i∈C Ĥi, where

C � C0 = {i : ∃sex ∈ S → Hi(sex ) = 〈sex|Ĥi|sex〉 > 0} (E1)

is the subset of all clauses that is violated by at least one
low-lying excited state sex obtained via multiple simulated an-
nealing trials. For comparison, we can also perform a random
dropout ĤC′ = ∑

i∈DropoutR (C) Ĥi without heuristics.
Quantum dropout generally decreases the energies of the

excited states given the fewer remaining constraints while
leaving the energy of the target ground state unchanged at
zero. It lowers the barriers and thus the difficulties of harder
problems; on the other hand, the heuristics help to keep the
clauses that distinguish the low-lying excited states, especially
those with the most competitiveness, from the target ground
state, thus avoiding or at least delaying additional degeneracy
and placing a negative bias on these distractions [see Fig. 11
and also Fig. 1(d) in the main text].

To see how the inclusion of low-lying excited states in
quantum-dropout heuristics influences the performance of
QAOA, we show the probability of the QAOA outputs over the
ground state and the 29 low-lying excited states obtained with
SA with different heuristics in Fig. 12: one without heuristics,
one with heuristics from half of the low-lying excited states
(1–14), and one with heuristics from all 29 low-lying excited
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FIG. 11. (a) The landscape of a hard problem becomes smoother
as more clauses are dropped out, improving the global minimum’s
standing. In comparison with Fig. 1(d) in the main text, we apply a
random quantum dropout without heuristics and observe (many) de-
generate zero-energy states even with a smaller dropout percentage.
(b) Instead of dropout, we can also improve the energy landscape,
to a degree, by adding clauses that violate the competing low-lying
excited states. Only the minimum of E (s) for a specific Hamming
distance of s from the global minimum is shown for clarity. n = 24.

states. We find that the QAOA outputs of the low-lying excited
states included in the quantum-dropout heuristics are sup-
pressed and lowered, with more probability redistributed to
the other low-lying excited states and, importantly, the target
ground states, especially when we incorporate more compet-
itive low-lying excited states. In summary, although optional,
the heuristics are consistent with our physical intuition and
helpful for their negative biases in the low-lying excited states
and enhanced competitiveness of the target ground state in
QAOA. We will discuss the robustness of the QAOA perfor-
mance to such variability in the quantum-dropout heuristics in
Appendix F.

We note that quantum dropout is not the only way to
ease the landscape. Given the set of competitive low-lying
excited states, we can also opt for more weights on clauses
disagreeing with them and increase their energies. In practice,
however, it is difficult to guarantee an exclusive list of all com-
petitive low-lying excited states, which may be necessary to
improve the energy landscape significantly. In Fig. 11(b), we

FIG. 12. The relative probability of the QAOA outcome in the
ground state (denoted as 0) and the 29 low-lying excited states lo-
cated by SA. The data are normalized to show the relative value. We
show the probability without heuristics (black bars), with heuristics
on half (1 ∼ 14) of the low-lying excited states (blue bars), and with
heuristics on all of them (red bars). The target problem is the harder
NAE3SAT problem ĤH

C we consider in the main text and in the
previous Appendixes. The QAOA circuit has a depth of p = 30.

show the impact of such an approach on the same NAE3SAT
problem as in Figs. 11(a) and 1(d). On the other hand, more
clauses usually require a higher-precision platform. There-
fore, such an alternative’s inefficiency and additional cost
make quantum dropout a more suitable implementation in
experiments.

In addition, we have studied soft quantum dropout, in
which we allow clauses to contribute to ĤC′ at variable per-
centages instead of the binary assignment of in or out. In
theory, this setup may shuffle the spectrum, leading to more
destructive and inconsistent interference through the driving
layers for the low-lying excited states. However, we have
not observed numerical evidence supporting its advantages
yet.

APPENDIX F: ROBUSTNESS OF HEURISTIC QUANTUM
DROPOUT TO THE NUMBER OF DISTRACTIONS

There are two core hyperparameters controlling the quan-
tum dropout of the algorithm, the dropout ratio R and the
number of competitive low-lying excited states l incorporated
in the heuristics, violated by a number of clauses f (l ) concave
with respect to l statistically: f (αl ) � α f (l ) for α ∈ [0, 1]. As
a result, the dropout reduces the problem with M clauses to
(1 − R)[M − f (l )] + f (l ) clauses (see Appendixes D and E).
In the main text, we showcased QAOA performance examples
with a harder NAE3SAT problem over n = 16 spins and M =
112 clauses with a dropout ratio of R = 0.5 and heuristics
from all of the l = 29 low-lying excited states obtained from
SA, ending up with ∼70 clauses.

A natural question is the impact of l on and the robustness
of the overall performance, as it is difficult to guarantee an
exhaustive search for all competitive low-lying excited states
(see Fig. 9 and the related discussion). For example, for
l = 14, around half of what we use in main text, the number
of clauses in C0 is reduced from f (29) = 22 to f (14) ∼ 16.
The corresponding results are shown in Fig. 13. We find the
performance of dropout QAOA is quantitatively similar to the
result for l = 29 in the main text, beating both the regular
QAOA and SA. Although the average success probabilities
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FIG. 13. The success probability of (a) the best case and (b) the
averages and standard deviations over a number of trials versus
the QAOA circuit depth, as we halve the number of low-lying ex-
cited states for heuristics, l = 14, shows the robustness of quantum
dropout’s advantage towards l . The number of trials is also half of
those in Fig. 6 in the main text, while the rest of the setup is the
same. R = 0.5.

of QAOA with a quantum dropout for an identical ĤC′ or
different ĤC1,...,p over the driving layers are 0.076 and 0.077,
respectively, slightly less than the values of 0.076 and 0.079
for l = 29 in the main text, the difference is small and below
the level of uncertainty. Therefore, it suffices to say that our
quantum dropout strategy is robust to l .

We also examine how the other hyperparameter, the
dropout ratio R, impacts the QAOA performance. We sum-
marize the results for R = 0.2 and R = 0.8 in Fig. 14, while
the results for R = 0.5 are in Fig. 13 as well as Fig. 6 in the
main text (l = 29). Intuitively, a larger R keeps more clauses
and is closer to the regular QAOA without quantum dropout.
It reduces the variations and the extent of improvement on
the energy landscape and thus the performance. The results
in Fig. 14(a) agree with our intuition, as the performances
share closer resemblances among different QAOA setups. On
the other hand, a smaller R drops a larger portion of clauses,
enhancing the potential benefits of quantum dropout. How-
ever, depending on the specific clause choice, the dropout may
introduce degeneracy to the problem and increase diversity.
Therefore, more trials may be necessary to utilize the benefits
fully. Indeed, the results in Fig. 14(b) show larger average
success probabilities. Interestingly, QAOA with a quantum
dropout of different ĤC1,...,p over the driving layers is more ca-
pable of utilizing a lower R ratio and suppressing the variance
at the same time.

Finally, we note that the regular QAOA tends to per-
form worse with increasing circuit depth p beyond larger
p � 40 in Figs. 13, 14(a), and 14(b). It is less apparent in
Fig. 6(b) in the main text; however, there is some random-
ness, and we have refrained from cherry-picking results to

FIG. 14. We compare the average success probability and its
standard deviation versus the model depth of QAOA with different
quantum dropout ratios: (a) R = 0.8 and (b) R = 0.2. The rest of the
settings are the same as in Fig. 13(b) l = 14.

support a particular claim. If this tendency is general, deeper
QAOA circuits are not the solutions for harder problems
due to the difficulties commonly associated with the opti-
mizations, which our quantum dropout strategy may largely
alleviate. In short, QAOA with quantum dropout is more ca-
pable of utilizing a deeper circuit for more meaningful harder
problems.

APPENDIX G: IMPACT OF DROPOUT ON SIMULATED
ANNEALING PERFORMANCE

As quantum dropout significantly eases the energy land-
scapes of harder problems, it is understandably capable of
boosting the performance of classical simulated annealing as
well. We carried out classical SA algorithms for a harder
problem HC (∼7% success rate in regular SA) with an R =
50% (heuristic) dropout of its clauses, and the success rate
indeed increased significantly to 7%–35% with a large stan-
dard deviation. Such performances are similar to QAOA with
a quantum dropout of a uniform HC over the driving layers
[green in Fig. 6(b)]. It is still unclear whether a classical
analogy of QAOA with different dropouts over driving layers
exists or not.

Although quantum dropout also enhances SA performance,
we find that the classical (SA) and quantum (QAOA) methods
favor vastly different dropout configurations. For example, we
study 100 HC following the harder problem in the main text
(with N = 16 and ∼7% success probability in regular SA)
and different (heuristic) dropouts. The performances of SA
and QAOA (with uniform dropout) show little correlation (see
Fig. 15 and Table I), suggesting that quantum and classical al-
gorithms function differently and are not entirely analogous.
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FIG. 15. The success probabilities of QAOA (ISO scheme) and
classical SA suggest a lack of clear correlation over 100 HC with
quantum dropout. We obtain the SA success probability via 1000
trials, each of which lowers the temperature from 100 to 0.05 in 2000
steps. The QAOA success probability equals the sgs weight, where we
consider circuit depths of p = 20 (circles) and p = 40 (squares). The
dashed lines are linear regressions.

APPENDIX H: QUANTUM COMBINATORIAL
OPTIMIZATION PROBLEMS

Here, we give an example of quantum combinatorial opti-
mization problems:

Ĥ =
∑

[i jk]∈C

(�Si + �S j + �Sk )2/2 (H1)

=
∑

[i jk]∈C

(�Si · �S j + �Si · �Sk + �S j · �Sk ) + const.,

whose ground state is a direct product of dimers (sin-
glets) |gs〉 = ∏

[mn]∈D |↑〉m|↓〉n − |↓〉m|↑〉n. In analogy to the
Majumdar-Ghosh spin-chain model [47], each clause serves
as a projection operator in the total spin-1/2 sector of the three
included spins; when a spin singlet exists between either i j,
ik, or jk for a clause, the total spin �Si + �S j + �Sk becomes 1/2,
and the clause is satisfied.

Given the set of clauses C, the optimization target is
to determine |gs〉 and its dimer configuration D. In com-
parison with the NAE3SAT problems in the main text, the
Hamiltonian in Eq. (H1) is quantum due to the Heisenberg
interactions; thus, Ĥi for the clauses no longer commute with
each other, and a classical solution is generally not available.
Still, the target ground state |gs〉 individually satisfies (the
ground-state condition for) each Ĥi. On the other hand, QAOA
[14] as well as our quantum dropout strategy can readily be
applied to such quantum optimization problems without any
modifications or complications.

TABLE I. The Pearson correlations between the successes of
classical SA and QAOA with circuit depths p = 20, 30, 40 for vari-
ous harder problems HC with consistent quantum dropout.

QAOA depth p Correlation coefficient

20 −0.0785
30 −0.0082
40 0.0512

Similar to the NAE3SAT problems, the quantum combina-
torial optimization problems in Eq. (H1) can be constructed
by generating consistent clauses with a predetermined |gs〉
until the number of clauses is sufficient and the ground state
is unique. We can also establish relatively harder problems
that contradict local intuitions. For instance, a clause signals
the existence of a singlet pair among its three spins and
contributes antiferromagnetic Heisenberg interactions to the
three corresponding bonds. Therefore, local intuitions in two
overlapping clauses, [i jk] and [ jkl], suggest the preference
for a singlet over the shared pair jk. However, the actual dimer
configuration may turn out to be on pairs i j and kl or ik and
jl instead, and if such local intuitions mislead throughout the
system, the conclusions may end up globally different from
|gs〉.

APPENDIX I: GENERALIZATION TO UNSATISFIABLE
PROBLEMS

In the main text and the above Appendixes, we focus on
the NAE3SAT problems generated with an existing solution;
that is, there is at least one configuration (other than −sgs) that
can satisfy all clauses in a given problem. The corresponding
complexity class to locate sgs is NP-complete. However, a
general NAE3SAT problem may be unsatisfiable. Finding the
ground state of the corresponding Hamiltonian in this case is
known to be of the NP-hard class.

To generate a harder, unsatisfiable NAE3SAT problem,
we start from a harder, satisfiable NAE3SAT problem, the
primary example of this paper. Then, we append additional
clause(s) violating the target ground state and make sure that
it has lower energy than all first excited states, adding further
clauses if necessary. The scarcity of the added clauses ensures
that the energy landscape is approximately and qualitatively
intact.

One of the harder, unsatisfiable NAE3SAT problems we
generate has a success probability of ∼7% and 31 low-lying
states in SA. However, without clear knowledge of the satisfi-
ability, we generally have no idea whether these 31 low-lying
states are the target ground state or not. Still, we can efficiently
count the number of violations each s outcome receives and
select the subset of low-lying excited states with violations
(energy) above their common minimum; these are definitely
the excited states, and we can implement quantum-dropout
heuristics based upon them. Here, we obtain 15 valid excited
states out of the 31 low-lying states.

Another complication due to the unsatisfiability is quantum
dropout’s threat to circuit compatibility, as the problem ĤC′

after the dropout may have a (globally) different ground state
than sgs, which becomes a low-lying excited state instead since
it does not satisfy all clauses in the first place. Still, such
a low-lying excited state may form a constructive quantum
interference (probably to a lesser degree), and we can also
attempt multiple quantum dropout scenarios so that cases in
favor of instead of against the target ground state exist.

We summarize the numerical results of QAOA perfor-
mance for such a harder, unsatisfiable NAE3SAT problem in
Fig. 16. A general performance boost from quantum dropout
still exists, especially when circuit depth p is sufficient.
However, there is a reduced margin over SA, and there are
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FIG. 16. The success probability of (a) the best case and (b) the
averages and standard deviations over a number of trials versus the
QAOA circuit depth for a NAE3SAT problem that is unsatisfiable.
The quantum dropout is based upon the heuristics over 15 excited
states obtained by SA. The dropout ratio R = 0.5 and the number of
trials are the same as in Fig. 13.

cases in which the QAOA success probability becomes worse
with quantum dropout. With a quantum dropout of an identical
ĤC′ over the layers, the success probability reaches 0.123
at p = 45, surpassing the regular QAOA at 0.057 and SA
at 0.070. With a quantum dropout of different ĤC1,...,p over
the layers, QAOA also works well on average, and its lower
variance offers an approach that is more controlled and useful
given the worse lower bound. We also note that heuristics
are considerably more helpful in unsatisfiable problems than
satisfiable ones.

APPENDIX J: EQUIVALENCE AND MAPPING BETWEEN
PROBLEMS OF EQUIVALENT NP COMPLEXITY CLASSES

In the main text, we mainly focused on the NAE3SAT
problems for demonstrations, given the straightforward
control over their hardness. The NAE3SAT problem belongs
to the NP-complete complexity class, which implies that if a
polynomial-time algorithm exists to solve it, all NP problems
can be solved efficiently. This property of NP-completeness
provides an equivalence between different forms of
NP-complete problems: 3SAT problems, general SAT
problems, number partition problems, and graph-covering

problems can be mapped to each other with auxiliary qubits
and time complexity polynomial to the size of the problem.
Such equivalence ensures the universality and generality
of NAE3SAT problems, in which an algorithm designed to
solve NAE3SAT can be utilized to solve other NP-complete
problems without intractable costs of resources.

More specifically, we demonstrate the mapping of a
quadratic unconstrained binary optimization (QUBO) prob-
lem to an NP-like problem and the mapping of a max-cut
problem to a NAE3SAT problem as follows:

Although QUBO problems are not decision problems with
a simple yes or no answer, they are closely related to NP
problems. Without loss of generality, for a QUBO objective
function f (x) with x ∈ {0, 1}⊗n, we can design a decision
problem D(k, f ): Is there a bit string x such that f (x) � k?

The original QUBO problem becomes a series of D(k, f )
with varying k. If the cost of f (x) is polynomial in n, we
can check whether f (x) � k or not given a trial solution x,
and D(k, f ) is at most in the NP class and not “harder” than
any NP-complete problem. [If the cost of f (x) is greater than
polynomial in n, then the problem is undoubtedly intractable;
to the best of our knowledge, any optimization algorithm
necessitates the evaluation of the objective function itself.]

Also, we can map a max-cut problem to a NAE3SAT prob-
lem. Let us define a decision problem C(k;V, E ) as follows:
Is there a cut of the graph G(V, E ) whose size is larger than
k? Since the answer is undoubtedly no for k > |E |, we need
to call C(k;V, E ) at most |E | times to solve the corresponding
max-cut problem.

Next, we map C(k;V, E ) to an SAT problem. We define
Boolean variables vi and ei j on each vertex in V and edges in
E . A cut of G is thus a subset of V and also an assignment to
the language: ∧

i, j∈V

[ei j == (vi 
= v j )], (J1)

where the operator == determines whether two values are
equal, achievable by the XOR operator. The cut is specified by
the vertices i of vi = 1. ei j describes whether edge (i, j) is cut.
Thus, the satisfiability version of C(k;V, E ) reads

L =
{ ∧

i, j∈V

[ei j == (vi 
= v j )]

}∧ ( ∑
(i, j)∈E

ei j � k

)
. (J2)

Finding whether L is satisfiable answers the problem
C(k;V, E ). The summation of Boolean variables can be im-
plemented by the adder in digital circuits. As a general
SAT problem, L cannot be harder than a NAE3SAT prob-
lem. Indeed, the existence of such mapping is guaranteed by
NP-completeness.
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