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Propagation of Dirac waves through various temporal interfaces, slabs, and crystals
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We investigate the influence of the temporal variations of various medium parameters on the propagation of
Dirac-type waves in materials where the quasiparticles are described by a generalized version of the pseudospin-
1/2 Dirac equation. Our considerations also include the propagation of electromagnetic waves in metamaterials
with the Dirac-type dispersion. We focus on the variations of the scalar and vector potentials, mass, Fermi
velocity, and tilt velocity describing the Dirac cone tilt. We derive the scattering coefficients associated with
the temporal interfaces and slabs analytically and find that the temporal scattering is caused by the changes
of the mass, Fermi velocity, and vector potential, but does not arise from the changes of the scalar potential
and tilt velocity. We also explore the conditions under which the temporal Brewster effect and total interband
transition occur and calculate the change in total wave energy. We examine bilayer Dirac temporal crystals where
parameters switch between two different sets of values periodically and prove that these systems do not have
momentum gaps. Finally, we assess the potential for observing these temporal scattering effects in experiments.
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I. INTRODUCTION

The propagation of waves in time-varying media where
the medium parameters vary as a function of time is an old
topic that has been studied extensively in many branches of
physics and engineering [1–4]. Since quantum particles can be
described by wave equations such as the Schrödinger, Dirac,
and Klein-Gordon equations in many physical situations, this
topic is also relevant for the study of quantum materials as
well as of the propagation of classical waves. Recently, there
has been a strong renewed interest in the propagation of elec-
tromagnetic waves in time-varying dielectric media, where
the temporal variation of the dielectric permittivity or other
parameters causes various temporal scattering effects such as
the temporal reflection and refraction [5–12]. The temporal
reflection refers to the appearance of backward propagating
waves due to a temporal variation of the medium parame-
ters. Many other interesting phenomena including temporal
circular birefringence, temporal aiming, and temporal Brew-
ster angle have been proposed to arise in general anisotropic
and bianisotropic media [13–17]. In the presence of periodic
temporal variations, it has been long known that there appear
momentum gaps (or k gaps), which are analogous to the
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frequency gaps appearing in spatially periodic photonic crys-
tals [18–22]. Wave propagation in such photonic temporal
crystals has been studied in the framework of the Floquet
analysis [23].

In contrast to the extensive research on the photonics of
time-varying media, there have been far fewer studies on
similar problems for quantum wave equations. In the case
of the Schrödinger equation, the temporal scattering does not
occur because it is a first-order differential equation in time.
However, the temporal scattering does occur in the systems
governed by relativistic wave equations such as the Dirac
and Klein-Gordon equations. For the Dirac equation in two
dimensions, the temporal scattering effect due to the variation
of the mass term has been studied recently in the context
of quantum time mirrors [24–26]. In this paper, we study
the propagation of waves governed by a generalized form of
the pseudospin-1/2 Dirac equation in the presence of various
kinds of time-varying perturbations. More specifically, we
consider the temporal variations of the scalar and vector po-
tentials, Fermi velocity, tilt velocity describing the magnitude
and the direction of the Dirac cone tilt, and mass describing
the band gap between the upper and lower Dirac cones. For the
simplest configurations such as temporal interfaces and slabs,
we derive the analytical expressions of the temporal scattering
coefficients and prove that the variations of the vector poten-
tial, Fermi velocity, and mass cause the temporal scattering
effects, whereas those of the scalar potential and tilt velocity
do not. We also derive analytically the explicit conditions for
the temporal equivalents of the total transmission and the total
interband transition. The temporal total transmission may also
be called temporal Brewster effect [17]. In addition, we derive
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the expressions for the change of the total wave energy for
temporal interfaces and slabs. In the case of bilayer tempo-
ral crystals where the medium parameters alternate between
two different values periodically in time, we prove that the
momentum gaps never appear in the systems satisfying the
pseudospin-1/2 Dirac equation. This is in a sharp contrast to
the case of electromagnetic waves and other classical waves.

There exist many two- and three-dimensional materials
where the quasiparticles satisfy the generalized pseudospin-
1/2 Dirac equation [27–30]. In such materials, temporal
variations of the vector potential, Fermi velocity, and mass can
be readily realized experimentally and the consequences of
the temporal scattering will be manifested in various transport
properties. On the other hand, it is possible to fabricate elec-
tromagnetic and elastic metamaterials mimicking the Dirac
materials where the dispersion relations are of the Dirac type
[31–35]. The phenomena investigated in the present study can
also be tested in experiments involving such metamaterials.

The rest of this paper is organized as follows. In Sec. II,
we introduce a generalized version of the pseudospin-1/2
Dirac equation in two dimensions. In Sec. III, we derive the
temporal scattering coefficients for temporal interfaces and
the conditions for the temporal Brewster effect and total inter-
band transition analytically. We also derive the expressions for
the change of the total wave energy. Similar calculations are
performed for temporal slabs in Sec. IV. In Sec. V, we derive
the dispersion relations for general bilayer Dirac temporal
crystals and prove that there never appears a momentum gap
in such systems. Finally, we give a brief discussion of the
experimental feasibility of the effects considered in this work
and conclude the paper in Sec. VI.

II. WAVE EQUATION

We consider a generalized form of the effective Hamilto-
nian for massive pseudospin-1/2 Dirac particles moving in
the two-dimensional (2D) xy plane given by

H = vxσxπx + vyσyπy + (vtxπx + vtyπy)I + UI + Mσz

=
(

vtxπx + vtyπy + U + M vxπx − ivyπy

vxπx + ivyπy vtxπx + vtyπy + U − M

)
,

(1)

where

πx = h̄kx + eAx, πy = h̄ky + eAy. (2)

The parameters vx and vy are the anisotropic Fermi velocity
components and vtx and vty are the x and y components of
the tilt velocity describing the direction and the magnitude of
the Dirac cone tilt in the momentum space [36,37]. U is the
scalar potential and Ax and Ay are the x and y components
of the vector potential. M is the mass energy describing the
energy gap between the upper and lower Dirac cones and e is
the electron charge. kx and ky are the components of the wave
vector and σx, σy, and σz are the Pauli matrices. I is the 2×2
unity matrix.

In this paper, we consider the situation where one or several
of the parameters U , Ax, Ay, vx, vy, vtx, vty, and M are func-
tions of time, while being uniform in the entire space. Then the
wave-vector components kx and ky are constants of the motion.

The time-dependent Dirac equation in two dimensions for the
two-component vector wave function � [= (ψ1, ψ2)T] is

ih̄
d�

dt
= H�. (3)

If all the parameters are constants independent of time, then
we can easily solve this equation by assuming that the wave
function depends on time as e−iωt . The dispersion relation that
follows from this takes the form

ω = vt · q + U

h̄
± �, (4)

where

� =
√

μ2 + |ν|2, μ = M

h̄
, ν = vxqx − ivyqy,

q = k + eA
h̄

. (5)

vt , q, k, and A are 2D vectors with the x and y components.
The two solutions with the plus and minus signs represent,
respectively, the particlelike and holelike bands corresponding
to the upper and lower Dirac cones. The group velocities for
the two bands, which we call p and h bands, respectively, are
given by

vg = (vgx, vgy)T =
(

∂ω

∂kx
,

∂ω

∂ky

)T

=
⎧⎨
⎩

vt + 1
�

(
vx

2qx, vy
2qy

)T
, p band

vt − 1
�

(
vx

2qx, vy
2qy

)T
, h band.

(6)

When the tilt velocity vt or the vector potential A is nonzero,
or when the Fermi velocity is anisotropic such that vx �= vy,
the group velocity becomes anisotropic. In the absence of the
tilt, the group velocities for the p and h bands are directed
precisely opposite to each other. We notice that vg depends on
vt , v [= (vx, vy)T], A, and M, but is independent of U .

In the stationary regime, the two components of the wave
function, ψ1 and ψ2, are proportional to each other so that

ψ2 =
{
χpψ1, p band

χhψ1, h band,
(7)

where

χp = � − μ

ν
, χh = −� + μ

ν
. (8)

The quantities χp and χh can be considered as the effective
wave impedances for p- and h-band waves, respectively.

III. TEMPORAL INTERFACE

A. Temporal scattering coefficients

We assume that, at t = t0, the parameters U , Ax, Ay, vx, vy,
vtx, vty, and M change from U1, Ax1, Ay1, vx1, vy1, vtx1, vty1, and
M1 to U2, Ax2, Ay2, vx2, vy2, vtx2, vty2, and M2 abruptly. Let us
first suppose that the state before the change is a p-band state.
Then the wave functions before and after the temporal change

023162-2



PROPAGATION OF DIRAC WAVES THROUGH VARIOUS … PHYSICAL REVIEW RESEARCH 5, 023162 (2023)

can be written as

� =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1

χp1

)
e−iωp1(t−t0 ), if t < t0

Spp

(
1

χp2

)
e−iωp2(t−t0 ) + Shp

(
1

χh2

)
e−iωh2(t−t0 ), if t � t0,

(9)

where ωp j , ωh j , χp j , and χh j ( j = 1, 2) are defined by

ωp j = vtx jqx j + vty jqy j + Uj

h̄
+ � j,

ωh j = vtx jqx j + vty jqy j + Uj

h̄
− � j,

χp j = � j − μ j

ν j
, χh j = −� j + μ j

ν j
,

� j =
√

μ j
2 + |ν j |2, μ j = Mj

h̄
, ν j = vx jqx j − ivy jqy j,

qx j = kx + eAx j

h̄
, qy j = ky + eAy j

h̄
, (10)

and Spp and Shp are the intraband and interband scattering
coefficients representing p → p and p → h transitions, re-
spectively. From the continuity of � at the temporal interface
at t = t0, we obtain

Spp = χp1 − χh2

χp2 − χh2
= ν2

2�2

(
�1 − μ1

ν1
+ �2 + μ2

ν2

)
,

Shp = χp2 − χp1

χp2 − χh2
= ν2

2�2

(
−�1 − μ1

ν1
+ �2 − μ2

ν2

)
.

(11)

Similarly, when the state before the temporal change is a h-
band state, the wave functions can be written as

� =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1

χh1

)
e−iωh1(t−t0 ), if t < t0

Shh

(
1

χh2

)
e−iωh2(t−t0 ) + Sph

(
1

χp2

)
e−iωp2(t−t0 ), if t � t0,

(12)

where the scattering coefficients Shh and Sph representing
h → h and h → p transitions, respectively, are given by

Shh = χp2 − χh1

χp2 − χh2
= ν2

2�2

(
�1 + μ1

ν1
+ �2 − μ2

ν2

)
,

Sph = χh1 − χh2

χp2 − χh2
= ν2

2�2

(
−�1 + μ1

ν1
+ �2 + μ2

ν2

)
. (13)

The scattering coefficients Spp, Shp, Shh, and Sph depend on � j ,
μ j , and ν j ( j = 1, 2), which in turn depend on Mj , v j , and A j ,
but not on Uj and vt j . In other words, temporal variations of
the mass, Fermi velocity, and vector potential cause temporal
scattering, but those of the scalar potential and tilt velocity do
not.

In Fig. 1(a), we show a schematic of the temporal scattering
process through a temporal interface at t = t0, where the blue
and red arrows denote the group velocities of p- and h-band
waves, respectively. In the absence of Dirac cone tilt, the two
group velocities are directed in precisely opposite directions.

In Fig. 2, we show schematics of the temporal scattering
due to sudden changes of U , vt , M, v, and A. When the scalar
potential is varied, there appears neither the scattered wave
nor the change of the group velocity. When the tilt velocity is
varied, there appears no scattered wave, but the group velocity
is changed. When the mass is varied in the absence of Dirac
cone tilt, the group velocities of the scattered waves are the
same as or opposite to that of the initial wave. When the Fermi
velocity or the vector potential is varied, the group velocities
of the scattered waves are generally not parallel or antiparallel
to that of the initial wave. If the mass is zero all the time in

this case, some special situations can occur as is explained in
the next section.

B. Temporal Brewster effect and temporal
total interband transition

Let us suppose that the relationships

vx1qx1 = vx1

(
kx + eAx1

h̄

)

= bvx2qx2 = bvx2

(
kx + eAx2

h̄

)
,

vy1qy1 = vy1

(
ky + eAy1

h̄

)

= bvy2qy2 = bvy2

(
ky + eAy2

h̄

)
,

M1 = bM2

(14)

are satisfied with b a positive proportionality constant. Then
it is easy to show that the wave impedances are matched
such that χp1 = χp2 and χh1 = χh2 and the interband scat-
tering coefficients Shp and Sph vanish, while the intraband
scattering coefficients (or transmission coefficients) Spp and
Shh become unity. This phenomenon is an equivalent of the
temporal Brewster effect (or temporal total transmission)
for electromagnetic waves in time-varying dielectric media
[17]. Similarly, when the relationships, Eq. (14), are satisfied
with b < 0, the wave impedances are cross-matched such
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FIG. 1. Schematics of the temporal scattering processes of waves
satisfying the generalized Dirac equation through (a) a temporal
interface at t = t0 and (b) a temporal slab of interval τ , when a
p-band wave propagates initially in a uniform medium. The blue and
red arrows denote the group velocities of p- and h-band waves, re-
spectively. In the absence of Dirac cone tilt, the two group velocities
are directed in precisely opposite directions. Spp and Shp denote the
intraband and interband scattering coefficients representing p → p
and p → h transitions at the interface at t = t0, respectively. In (b),
S̃pp and S̃hp denote the scattering coefficients for the temporal slab of
interval τ .

that χp1 = χh2 and χh1 = χp2 and the intraband scattering
coefficients Spp and Shh vanish, while the interband scat-
tering coefficients Shp and Sph become unity. This can be
called temporal total interband transition between the p and h
bands.

The Fermi velocity components vx j and vy j are always pos-
itive and the wave-vector components kx and ky are constants
of the motion. Therefore the sign of b can become negative
and the temporal total interband transition can occur only
when the time-varying vector potential is present and at the
same time the mass changes its sign (unless both M1 and M2

are zero). We also notice that if both k and A are along either
the x or the y axis before and after the temporal interface and
if the mass is always zero, then either the temporal Brewster
effect or the temporal total interband transition occurs regard-
less of how the Fermi velocity and the vector potential vary.
More specifically, the temporal Brewster effect occurs if qx (or
qy) does not change its sign, while the temporal total interband
transition occurs if it does.

In the system of Dirac quasiparticles, the vector potential
can be easily tuned by varying the external electric field E(t ),

FIG. 2. Schematics of the temporal scattering of (a) a p-band
wave propagating in a uniform medium due to sudden changes of
(b) the scalar potential, (c) tilt velocity, (d) mass, (e) Fermi velocity or
vector potential. The blue and red arrows denote the group velocities
of p- and h-band waves, respectively. The dotted and straight arrows
in (b)–(e) represent the initial and scattered waves, respectively. In
(b), there is neither the scattered h-band wave nor the change of the
group velocity. In (c), there is no scattered h-band wave, but the group
velocity is changed. In (d), in the absence of Dirac cone tilt, the group
velocities of the scattered waves are the same as or opposite to that
of the initial wave. In (e), the group velocities of the scattered waves
are generally not parallel or antiparallel to that of the initial wave.

which satisfies

E(t ) = − ∂

∂t
A(t ). (15)

For instance, the vector potential Ax can be changed suddenly
by inducing a sharp spike of electric field in the x direction.
If the electric field is approximated by Ex(t ) = Jδ(t − t0), the
change of Ax is given by Ax2 − Ax1 = −J . Due to the gauge
symmetry, it is always possible to choose the initial vector
potential Ax1 to be zero. Then Ax2 is given by −J .

From the equation of continuity obtained from the Dirac
equation, we find that the probability density ρ (= |�|2 =
|ψ1|2 + |ψ2|2) in a spatially uniform medium is a constant
independent of time. Then it is straightforward to show that

Tpp + Thp = 1, Thh + Tph = 1, (16)

023162-4



PROPAGATION OF DIRAC WAVES THROUGH VARIOUS … PHYSICAL REVIEW RESEARCH 5, 023162 (2023)

FIG. 3. Transmittances (Tpp = Thh) and interband transition rates
(Thp = Tph) for a temporal interface plotted versus the mass ratio
M2/M1. The sums Tpp + Thp and Thh + Tph are always equal to 1.
The common values of the parameters are ky = Ay1 = Ay2 = 0 and
M1/(h̄kxvx1) = 1. In (a), we take vx2qx2 = 2vx1qx1. When M2/M1 =
2, the temporal Brewster effect for which Tpp = Thh = 1 arises. In
(b), we take vx2qx2 = −2vx1qx1. When M2/M1 = −2, the temporal
total interband transition for which Tpp = Thh = 0 arises.

where the transmittances Tpp and Thh and the interband transi-
tion rates Thp and Tph are defined by

Tpp = Cp2

Cp1
|Spp|2, Thp = Ch2

Cp1
|Shp|2,

Thh = Ch2

Ch1
|Shh|2, Tph = Cp2

Ch1
|Sph|2, (17)

and

Cpj = 1 + |χp j |2 = 1 + (� j − μ j )2

|ν j |2
,

Ch j = 1 + |χh j |2 = 1 + (� j + μ j )2

|ν j |2
( j = 1, 2). (18)

Furthermore, we can explicitly show that

Tpp = Thh = 1
2 (1 + f ),

Thp = Tph = 1
2 (1 − f ), (19)

where

f = μ1μ2 + vx1vx2qx1qx2 + vy1vy2qy1qy2

�1�2
. (20)

When the wave impedances are matched, f is equal to 1 and
Thp and Tph vanish, while Tpp = Thh = 1. In contrast, when the
impedances are cross-matched, f is equal to −1 and Tpp and
Thh vanish, while Thp = Tph = 1.

In Fig. 3, we show the transmittances and the interband
transition rates for a temporal interface as functions of the

FIG. 4. Transmittances (Tpp = Thh) at the temporal interface cor-
responding to Fig. 3(a) compared to those obtained for continuous
interfaces with various values of the interval τt . It is assumed that
ky = Ay = 0 and vx is constant. Before t = 0, M = M1 = h̄kxvx and
Ax = 0. During the interval 0 < t < τt , M and the normalized vector
potential ax [= eAx/(h̄kx )] change according to M = M1 + (M2 −
M1)t/τt and ax = (t/τt )2, respectively. After t = τt , they remain to
be constants M = M2 and ax = 1. With increasing τt , the maximum
transmittance shifts to smaller M2/M1 ratios, while its value remains
nearly 1.

mass ratio M2/M1. The common values of the parameters
are ky = Ay1 = Ay2 = 0 and M1/(h̄kxvx1) = 1. In Fig. 3(a),
we take vx2qx2 = 2vx1qx1. Then the temporal Brewster ef-
fect for which Tpp = Thh = 1 and Thp = Tph = 0 arises when
M2/M1 = 2. In Fig. 3(b), we take vx2qx2 = −2vx1qx1. Then
the temporal total interband transition for which Tpp = Thh =
0 and Thp = Tph = 1 arises when M2/M1 = −2. The vari-
ation of vxqx can be achieved by varying vx or Ax. For
example, when vx2 = vx1 and Ax1 = 0, we can satisfy the con-
ditions vx2qx2 = 2vx1qx1 and vx2qx2 = −2vx1qx1 if we choose
ax2 [≡ eAx2/(h̄kx )] = 1 and −3, respectively.

Thus far, we have assumed an abrupt temporal interface
characterized by instantaneous and discontinuous temporal
variation. We now consider a more realistic situation in which
the temporal variation takes place continuously within a finite
interval. In Fig. 4, we compare the transmittance at the tem-
poral interface corresponding to Fig. 3(a) to those obtained
for continuous interfaces with various values of the interval
τt . The numerical calculation of continuous interfaces has
been conducted using the well-known invariant imbedding
method [38]. We assume that ky = Ay = 0 and vx is constant.
Before t = 0, the mass energy is M = M1 = h̄kxvx and the
vector potential Ax is zero. During the interval 0 < t < τt , M
and the normalized vector potential ax [= eAx/(h̄kx )] change
according to M = M1 + (M2 − M1)t/τt and ax = (t/τt )2, re-
spectively. After t = τt , they remain to be constants M = M2

and ax = 1. With increasing τt , the maximum transmittance
shifts towards smaller M2/M1 ratios, while remaining close to
1. For example, when kxvxτt = 1, the maximum transmittance
is approximately 0.995 and occurs at M2/M1 ≈ 1.65. We ob-
serve that as long as the quantity kxvxτt , which is proportional
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to the ratio of τt to the wave period, is not excessively large,
the temporal Brewster effect persists in the presence of con-
tinuous temporal interfaces.

It is more pertinent to experiments to consider the propaga-
tion of wave pulses instead of plane waves. In Fig. 5, we con-
sider the propagation of a Gaussian pulse through an abrupt
temporal interface at t = t0. We assume that the mass en-
ergy M and the vector potential Ax change discontinuously at
t = t0, while ky = Ay = 0 and vx remains constant. At t = 0,

the initial pulse consisting of p-band states is positioned at
x = 0 and propagates towards the +x direction. The Gaussian
pulse is defined by

u(x, t ) =
∫ ∞

−∞
D(k)�(k)dk, (21)

where

�(k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1

χp1(k)

)
ei(kx−ωp1t ), if t < t0

ei(kx−ωp1t0 )

[
Spp(k)

(
1

χp2(k)

)
e−iωp2(t−t0 ) + Shp(k)

(
1

χh2(k)

)
e−iωh2(t−t0 )

]
, if t � t0,

D(k) = 1√
2πσk

e−(k−kc )2/2σ 2
k . (22)

The probability density plotted in Fig. 5 is obtained from

P(x, t ) = |u(x, t )|2∫ ∞
−∞ |u(x, 0)|2dx

. (23)

The parameter kc denotes the central wave number and σk is
a measure of the pulse width. In the present calculation, we
set σk to a fixed value of 0.1kc. It should be noted that the
frequencies ωp1, ωp2, and ωh2 are also dependent on k. In
the cases shown in Figs. 5(a)–(c), M is given by M1 = h̄kcvx

and Ax is zero at the initial time t = 0. The pulse encounters
a temporal interface at t = t0 = 5τ0, where the time unit τ0

is defined as τ0 = 1/(σkvx ). Prior to reaching the temporal
interface, the group velocity is equal to vx/

√
2.

We examine four different cases that correspond to the
temporal Brewster effect, partial reflection, total interband
transition, and nearly total reflection. In Fig. 5(a), which rep-
resents the temporal Brewster effect, the mass transitions from
M1 to M2 = 2M1, and the normalized vector potential ax shifts
from zero to 1 at the interface. In this case, the pulse remains
unaffected by the interface and continues to propagate in the
same direction with an unchanged group velocity. In Fig. 5(b),
where M and ax change to −2M1 and 1 at the interface,
the pulse undergoes a division, propagating simultaneously in
both the forward and backward directions. The p-band state
pulse, moving in the +x direction, advances with a group
velocity of vx/

√
2, while the h-band state pulse, traveling in

the −x direction, possesses a group velocity of −vx/
√

2. In
Fig. 5(c), which corresponds to the temporal total interband
transition, the mass changes from M1 to M2 = −2M1, and ax

shifts from zero to −3 at the interface. In this case, the states
comprising the pulse undergo a complete transition from the
p band to the h band. Nevertheless, the pulse continues to
propagate in the same direction with an unchanged group
velocity. This occurs because the changes in M and Ax result
in the interchange of group velocities between the p and h
bands. In other words, the group velocity for the h-band state
after the temporal interface becomes the same as that for the
p-band state before the interface. Finally, in Fig. 5(d), the mass
changes from 5h̄kcvx to −5h̄kcvx, while the vector potential

remains zero at the interface. As a result of the significant
change in mass, an almost complete reflection occurs. The
parameter f in Eq. (20) is equal to −12/13 and about 96.1%
of the pulse is reflected in the opposite direction.

C. Change of the total energy

In a time-varying environment, the total energy E is not
conserved but varies with time. We can calculate E using

E = �†H�

|�|2 . (24)

The wave function at an arbitrary time t can be written as

� = c�p + d�h, (25)

where c and d are constants and

�p =
(

1
χp

)
e−iωpt , �h =

(
1
χh

)
e−iωht . (26)

Using

H�p = h̄ωp�p, H�h = h̄ωh�h (27)

and

�†
p�h = �

†
h�p = 0, (28)

which follows from 1 + χ∗
pχh = 1 + χ∗

h χp = 0, we can ex-
press E as

E = h̄ωp|c|2|�p|2 + h̄ωh|d|2|�h|2
|c|2|�p|2 + |d|2|�h|2 . (29)

Finally, using Eqs. (16), (17), and (18), we straightforwardly
obtain the following expressions for the total wave energy
after the temporal interface at t = t0:

E (t > t0) =
{

h̄ωp2Tpp + h̄ωh2Thp, p band

h̄ωh2Thh + h̄ωp2Tph, h band,
(30)
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FIG. 5. Propagation of a Gaussian pulse through a sudden tem-
poral interface occurring at t = 5τ0. It is assumed that ky = Ay = 0
and vx is constant. At t = 0, the pulse whose central wave number
is kc is located at x = 0 and propagates towards the +x direction.
At t = 5τ0, the mass energy M and the normalized vector potential
ax [= eAx/(h̄kc )] change from M1 = h̄kcvx and ax1 = 0 to (a) M2 =
2M1 and ax2 = 1, (b) M2 = −2M1 and ax2 = 1, (c) M2 = −2M1 and
ax2 = −3. In (d), the mass changes from 5h̄kcvx to −5h̄kcvx , while Ax

remains to be zero. The pulse width is characterized by the parameter
σk (= 0.1kc) and the time unit is defined by τ0 = 1/(σkvx ). In (b) and
(d), 50% and about 96.1% of the pulse are reflected in the opposite
direction, respectively.

when the states before the temporal interface are p- and h-
band states, respectively. The change of E is given by

�E =
{

h̄ωp2Tpp + h̄ωh2Thp − h̄ωp1, p band

h̄ωh2Thh + h̄ωp2Tph − h̄ωh1, h band.
(31)

IV. TEMPORAL SLAB

In this section, we consider a simple temporal slab of inter-
val τ such that at t = t0, the parameters change from U1, Ax1,
Ay1, vx1, vy1, vtx1, vty1, and M1 to U2, Ax2, Ay2, vx2, vy2, vtx2,
vty2, and M2, and then later at t = t0 + τ , they change back
to their initial values. A schematic of the temporal scattering
process through a temporal slab is shown in Fig. 1(b). Since
the temporal scattering proceeds only in the +t direction, we
can easily obtain the scattering coefficients for the temporal
slab, which we call S̃pp, S̃hp, S̃hh, and S̃ph, in terms of those for
the two temporal interfaces:

S̃pp = SppS′
ppe−iωp2τ + ShpS′

phe−iωh2τ ,

S̃hp = SppS′
hpe−iωp2τ + ShpS′

hhe−iωh2τ ,

S̃hh = ShhS′
hhe−iωh2τ + SphS′

hpe−iωp2τ ,

S̃ph = ShhS′
phe−iωh2τ + SphS′

ppe−iωp2τ , (32)

where the scattering coefficients for the interface at t = t0 + τ ,
S′

pp, S′
hp, S′

hh, and S′
ph, are obtained by exchanging �1, μ1,

and ν1 with �2, μ2, and ν2, respectively, in the definitions
of Spp, Shp, Shh, and Sph given by Eqs. (11) and (13). In the
present case, the transmittances T̃pp and T̃hh and the interband
transition rates T̃hp and T̃ph are defined by

T̃pp = |S̃pp|2, T̃hp = Ch1

Cp1
|S̃hp|2,

T̃hh = |S̃hh|2, T̃ph = Cp1

Ch1
|S̃ph|2. (33)

By straightforward calculations, we obtain

T̃pp = T̃hh = 1 − (1 − f 2) sin2 (�2τ ),

T̃hp = T̃ph = (1 − f 2) sin2 (�2τ ). (34)

The conservation laws

T̃pp + T̃hp = 1, T̃hh + T̃ph = 1 (35)

are easily seen to be satisfied. We note that all of T̃pp, T̃hp,
T̃hh, and T̃ph depend periodically on the interval τ with pe-
riod π/�2. The temporal Brewster effect occurs when f =
±1 or τ = nπ/�2 with n an arbitrary integer, whereas the
temporal total interband transition occurs when f = 0 and
τ = (n + 1/2)π/�2 with n an arbitrary integer. In the case
of f = −1, the temporal Brewster effect arises due to the two
consecutive temporal total interband transitions at t = 0 and
t = τ . The change of the total energy when the states before
the temporal slab are p- and h-band states is given by

�E =
{−2h̄�1(1 − f 2) sin2 (�2τ ), p band

2h̄�1(1 − f 2) sin2 (�2τ ), h band.
(36)

If we ignore the scalar potential and the tilt velocity and set
ky = Ay1 = Ay2 = 0, we can derive the explicit expressions

S̃hp = i
(μ1ν2 − μ2ν1)(�1 − μ1)

ν1�1�2
sin (�2τ ),

S̃ph = i
(μ1ν2 − μ2ν1)(�1 + μ1)

ν1�1�2
sin (�2τ ),

T̃hp = T̃ph = (μ1ν2 − μ2ν1)2

ν1
2�1

2�2
2 sin2 (�2τ ).

(37)

In the special case where M1 = Ax1 = Ax2 = 0 and vx1 =
vx2 = vF , they are simplified to

S̃hp = S̃ph = −i
μ2

�2
sin (�2τ ),

T̃hp = T̃ph = μ2
2

�2
2 sin2 (�2τ ), (38)

where �2 =
√

M2
2 + (h̄vF kx )2/h̄. The expression for the in-

terband transition amplitudes S̃hp and S̃ph agrees precisely
with Eq. (3) derived in Ref. [24].

In Fig. 6, we illustrate the dependencies of the in-
terband transition rates T̃hp and T̃ph on the normalized
interval (kxvx1)τ , mass ratio M2/M1, and normalized vec-
tor potential ax2. In Fig. 6(a), we set ky = A1 = A2 =
0, M1/(h̄kxvx1) = 1, vx2/vx1 = 2, and M2/M1 = 2,−2, 0.
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FIG. 6. Interband transition rate T̃hp (= T̃ph) for a temporal
slab of interval τ plotted versus (a) normalized interval (kxvx1)τ ,
(b) mass ratio M2/M1, and (c) normalized vector potential ax2 [=
eAx2/(h̄kx )]. In (a), we set ky = A1 = A2 = 0, M1/(h̄kxvx1) = 1,
vx2/vx1 = 2, and M2/M1 = 2, −2, 0. For M2/M1 = 2, f is equal
to 1 and T̃hp = 0. For M2/M1 = −2, f is equal to 0 and T̃hp =
sin2(2

√
2kxvx1τ ). For M2/M1 = 0, f is equal to 1/

√
2 and T̃hp =

0.5 sin2(2kxvx1τ ). In (b), we set ky = A1 = A2 =0, M1/(h̄kxvx1)=1,
vx2/vx1 = 2, and kxvx1τ = 0.5. The interband transition rate van-
ishes for either f = 1 corresponding to M2/M1 = 2 or �2τ = π

corresponding to M2/M1 ≈ ±5.956. In (c), we set ky = Ax1 = Ay1 =
Ay2 = 0, M1/(h̄kxvx1)=1, M2/M1= − 2, vx2/vx1=2, and kxvx1τ=0.5.
The interband transition rate vanishes for either f = −1 cor-
responding to M2/M1 ≈ −1.998 or �2τ = π corresponding to
M2/M1 ≈ 1.978 and −3.978.

For M2/M1 = 2, f is equal to 1 and the interband tran-
sition rate vanishes. For M2/M1 = −2, f is equal to 0
and the interband transition rate is a periodic function
given by T̃hp = sin2(2

√
2kxvx1τ ). For M2/M1 = 0, f is equal

to 1/
√

2 and T̃hp = 0.5 sin2(2kxvx1τ ). In Fig. 6(b), we
set ky = A1 = A2 = 0, M1/(h̄kxvx1) = 1, vx2/vx1 = 2, and
kxvx1τ = 0.5. Then the interband transition rate vanishes
for either f = 1 corresponding to M2/M1 = 2 or �2τ =
π corresponding to M2/M1 ≈ ±5.956. In Fig. 6(c), we set

ky = Ax1 = Ay1 = Ay2 = 0, M1/(h̄kxvx1)=1, M2/M1 =−2,
vx2/vx1 =2, and kxvx1τ =0.5. Then the interband transi-
tion rate vanishes for either f = −1 corresponding to
M2/M1≈ −1.998 or �2τ=π corresponding to M2/M1≈1.978
and −3.978.

V. ABSENCE OF MOMENTUM GAPS IN DIRAC
TEMPORAL CRYSTALS

In the previous sections, we have shown that the temporal
scattering for Dirac particles and waves can be caused by the
temporal variation of the mass, Fermi velocity, and vector po-
tential. In this section, we consider a bilayer temporal crystal
where these quantities vary periodically as a function of time
with period τp such that within one period

(M(t ), Ax (t ), Ay(t ), vx(t ), vy(t ))

=
{(

M1, Ax1, Ay1, vx1, vy1
)
, if 0 < t < t1(

M2, Ax2, Ay2, vx2, vy2
)
, if t1 < t < τp,

(39)

where τp = t1 + t2. We assume that the scalar potential and
the tilt velocity are zero because they do not cause any tem-
poral scattering. From the continuity of the wave function at
t = t1 and t = τp and the Floquet-Bloch theorem demanding

ψ (t + τp) = e−i�pτpψ (t ), (40)

we obtain the characteristic matrix

R =

⎛
⎜⎜⎝

e−i�1t1 ei�1t1 −e−i�2t1 −ei�2t1

χp1e−i�1t1 χh1ei�1t1 −χp2e−i�2t1 −χh2ei�2t1

e−i�pτp e−i�pτp −e−i�2τp −ei�2τp

χp1e−i�pτp χh1e−i�pτp −χp2e−i�2τp −χh2ei�2τp

⎞
⎟⎟⎠.

(41)

The frequency �p is the eigenfrequency of the temporal crys-
tal. The momentum gap would correspond to the region of the
momentum (or wave vector) in which �p has no real-valued
solution. The dispersion relation of the temporal crystal is
obtained from the condition that the determinant of R is zero
and takes the simple form

cos (�pτp) = cos (�1t1) cos (�2t2) − f sin (�1t1) sin (�2t2)

= F cos (�1t1 + �2t2) + G cos (�1t1 − �2t2),

(42)

where f is defined by Eq. (20) and

F + G = 1, F − G = f . (43)

From this, we notice that |cos (�pτp)| satisfies the inequality

|cos (�pτp)| � Max(1, | f |). (44)

From the explicit form of f , we can prove that

(1 − f 2)(�1�2)2 = (μ1vx2qx2 − μ2vx1qx1)2

+(μ1vy2qy2 − μ2vy1qy1)2

+(vx1qx1vy2qy2 − vx2qx2vy1qy1)2 � 0.

(45)

Therefore | f | is not larger than 1 and the dispersion relation
always has a real solution. We conclude that there never
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FIG. 7. Normalized frequency �pτp/π plotted versus normal-
ized wave number (vx1τp)kx for bilayer Dirac temporal crystals where
(a) the normalized mass m̃ = Mτp/h̄ alternates between 1 and 4
while ky = A1 = A2 = 0 and vx1 = vx2, (b) the normalized vector
potential vx1eAxτp/h̄ alternates between 1 and 5 while ky = Ay1 =
Ay2 = 0, m̃1 = m̃2 = 2, and vx1 = vx2, and (c) the Fermi velocity
vx alternates between vx1 and 2vx1 while ky = A1 = A2 = 0 and
m̃1 = m̃2 = 2. Only the curves in one period in the range −1 <

�pτp/π < 1 are displayed. These curves are repeated periodically
with period 2 along the �pτp/π axis.

appears a momentum gap in bilayer Dirac temporal crystals
in sharp contrast to the case of electromagnetic waves.

In Fig. 7, we show the dispersion relations for bilayer
Dirac temporal crystals when the mass, vector potential, or
Fermi velocity varies periodically with period τp. In Fig. 7(a),
the normalized mass m̃ = Mτp/h̄ alternates between 1 and 4
while ky = A1 = A2 = 0 and vx1 = vx2. In Fig. 7(b), the nor-
malized vector potential vx1eAxτp/h̄ alternates between 1 and
5 while ky = Ay1 = Ay2 = 0, m̃1 = m̃2 = 2, and vx1 = vx2. In
Fig. 7(c), the Fermi velocity vx alternates between vx1 and 2vx1

while ky = A1 = A2 = 0 and m̃1 = m̃2 = 2. These curves are
repeated periodically with period 2 along the �pτp/π axis. In
all the cases, we find that there appears no momentum gap.
The influence of the periodic variation is seen to be strongest
in the region where |kx| is small and becomes weaker as it
increases.

VI. DISCUSSION AND CONCLUSION

Let us discuss briefly the experimental feasibility of the
effects explored in this paper. In 2D Dirac materials, the quan-
tities such as the scalar and vector potentials, Fermi velocity,
tilt velocity, and mass can be tuned readily by various means.

It is easy to tune the scalar potential by applying a uniform
gate voltage to the whole layer [39]. A spatially uniform and
time-dependent vector potential can be most easily generated
by applying a uniform electric field parallel to the 2D layer
[40]. It has been suggested that the mass, or the band gap be-
tween the upper and lower Dirac cones, in 2D materials such
as silicene and germanene can be varied by tuning the electric
field applied perpendicularly to the layer [41,42]. It has also
been proposed that the Fermi velocity of the systems such as
graphene nanoribbons and carbon nanotubes can be tuned by
applying a uniform electric field across such materials [43].
The tilt velocity of the 8Pmmn borophene sheet that has tilted
Dirac cones has been proposed to be tunable by applying an
electric field perpendicular to the sheet [44]. There exist other
systems exhibiting Dirac cones in their energy dispersion such
as suitably designed photonic crystals and metamaterials and
cold atoms trapped in optical lattices. It is also possible to
vary the parameters of those systems temporally by various
means. For example, a method to tune the effective vector
potential for polaritons supported by a strained honeycomb
metasurface composed of interacting dipole emitters/antennas
has been proposed [45]. The variation of the parameters of
cold atomic systems in optical lattices should also be possible
by optical means.

The temporal scattering effects will be manifested exper-
imentally in various physical quantities. In electronic Dirac
materials, the temporal reflection of electron matter waves
is expected to cause a modification in electronic currents. In
quasi-one-dimensional mesoscopic systems, it has been well
known that the conductance is directly proportional to the
transmittance according to the Landauer formula. Therefore,
through the measurement of current and conductance in the
presence of temporal variations, it is feasible to experimen-
tally investigate the effects of temporal reflection. In photonic
metamaterials exhibiting Dirac-type dispersion, it should be
possible to study directly the propagation of electromagnetic
wave pulses similar to those considered in Fig. 5. In all of
these cases, the observability can be assessed by evaluating
the relative change in wave transmittance caused by tempo-
ral variations. Let us suppose that only the mass energy or
the gap between the two Dirac cones varies from zero to a
nonzero value. To achieve a temporal reflectance of 0.05 at a
temporal interface, it is necessary to set f = 0.9 in Eq. (19),
which can be realized by opening a gap of M = 0.48h̄kxvx.
Similarly, to achieve a maximum temporal reflectance of 0.05
across a temporal slab, it is necessary to set f 2 = 0.95 in
Eq. (34), which can be accomplished by opening a gap of M =
0.23h̄kxvx. These values are relatively small and can be eas-
ily achieved using the experimental techniques described in
Refs. [41,42].

In conclusion, we have studied the influence of the tempo-
ral variations of the medium parameters on the propagation of
Dirac-type waves in materials where the quasiparticles are de-
scribed by a generalized version of the pseudospin-1/2 Dirac
equation. We have derived the scattering coefficients associ-
ated with the temporal interfaces and slabs analytically and
found that the temporal scattering is caused by the changes
of the mass, Fermi velocity, and vector potential, but does not
arise from the changes of the scalar potential and tilt velocity.

023162-9



SEULONG KIM AND KIHONG KIM PHYSICAL REVIEW RESEARCH 5, 023162 (2023)

Using the analytical expressions for the temporal transmit-
tances and the interband transition rates, we have obtained the
explicit conditions for which the temporal Brewster effect and
total interband transition occur. We have also proved that in
bilayer Dirac temporal crystals where the parameters alternate
between two different values, momentum gaps do not appear
in sharp contrast to the classical waves. It is highly desirable
to generalize the present investigation to the case where the
parameters change arbitrarily in time. This will be a subject
of research in the future.
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