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Quantum phases in spin-orbit-coupled Floquet spinor Bose gases
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We propose a spin-orbit-coupled Floquet spinor Bose-Einstein condensate (BEC) which can be implemented
by Floquet engineering of a quadratic Zeeman field. The Floquet spinor BEC has a Bessel-function-modulated
Rabi frequency and a Floquet-induced spin-exchange interaction. The quantum phase diagram of the spin-
orbit-coupled Floquet spinor BEC is investigated by considering antiferromagnetic or ferromagnetic spin-spin
interactions. In comparison with the usual spin-orbit-coupled spin-1 BEC, we find that a stripe phase for
antiferromagnetic interactions can exist in a large quadratic Zeeman field regime, and a different stripe phase
with an experimentally favorable contrast for ferromagnetic interactions is uncovered.
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I. INTRODUCTION

Ultracold neutral atoms provide a fertile playground for
engineering artificial gauge fields [1–4]. Synthetic spin-orbit
coupling, utilizing atomic hyperfine levels as pseudospins, can
be realized by coupling these states via Raman lasers [5–7].
Spin-orbit-coupled Bose-Einstein condensates (BECs) open
a new route to explore exotic superfluid states and simulate
topological matter [8–13]. One interesting feature is that the
spin-orbit coupling modifies the dispersion relation of a BEC.
The spin-orbit-coupled dispersion may have multiple energy
minima. Condensations in these energy minima present exotic
quantum phases, such as the plane-wave (PW) phase and
stripe phase [14–19]. The PW phase occupies one of the min-
ima and possesses a nonzero quasimomentum, which breaks
the time-reversal symmetry [15]. The phase transition and
excitations of PW states have been experimentally observed
[8,20]. The stripe phase, condensing at least two minima,
represents a combination of spatial density modulation and
superfluidity and is identified as having supersolid properties
[21]. The realization of the stripe phase requires miscibility
of the two spin components and a low Rabi frequency of the
Raman lasers [19,22]. This is quite a challenge in 87Rb atoms
experiments since atomic interactions are insensitive to the
hyperfine states [23–25]. Recently, the spin-orbit-coupling-
induced stripe phase was observed in atoms loaded into
superlattices [26], in which the sublattice sites are treated as
pseudospins.
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A spinor BEC has more degrees of freedom and intriguing
interactions which lead to a rich ground-state phase diagram
[27]. A spin-orbit-coupled spin-1 BEC has been experimen-
tally realized [28]. Quantum phases in spin-orbit-coupled
spin-1 BECs depend on antiferromagnetic and ferromag-
netic spin-spin interactions and show salient features [29–33].
Three different kinds of stripe phases have been revealed to
exist, and phase transitions between different phases are so
abundant that tricritical points emerge [31,32]. One of out-
standing features is that the quadratic Zeeman field plays an
important role in the existence of stripe phases. Especially,
in a ferromagnetic spinor BEC, stripes appear in the lim-
ited regime of low Rabi frequency and quadratic Zeeman
field [28].

On the other hand, Floquet engineering is a powerful
tool in quantum physics for controlling system parameters
and manipulating quantum states [34–36]. In a periodically
driven system, an effective static Hamiltonian can be tailored
which depends on the driving parameters. The driving could
lead to dramatic changes in the system properties. Ultracold
atoms provide an ideal platform for Floquet engineering due
to the tunability and purity of the system, which has been
used to explore artificial gauge fields, topological insulators,
and soliton dynamics [37–45]. In spin-orbit-coupled ultracold
atoms, a coherently periodic modulation of Raman laser in-
tensities can produce a tunable spin-orbit coupling strength
[46–48], which provides a practical way for dynamical con-
trol. A periodic modulation of Raman laser frequencies is
employed to manipulate the emergence of the Dirac point
in Floquet bands and thus to change band topology [49]. A
shaking Raman lattice that generates high-dimensional spin-
orbit coupling is implemented to tune Floquet topological
bands [50]. Recently, a Floquet spinor BEC was proposed
using a periodically driven quadratic Zeeman field [51]. Com-
pared with the usual spinor BEC, the Floquet spinor BEC has
an additional spin-exchange interaction which is induced by
the high-frequency driving. Such an induced spin-exchange
interaction can have a profound effect on ferromagnetic
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condensates and can generate unconventional quantum phases
[51].

In this paper, we study a Floquet spin-1 BEC with spin-
orbit coupling. In spin-1 spin-orbit coupling experiments,
three external Raman lasers are used to couple three hyperfine
states, and the quadratic Zeeman effect is proportional to the
two-photon detunings between Raman lasers and hyperfine
states [28]. We propose to drive the quadratic Zeeman effect
periodically around a constant value via periodic modulation
of Raman laser frequencies. Under high-frequency driving,
the spin-orbit-coupled spinor BEC is effectively described by
a static Floquet spinor BEC, in which the Rabi coupling is
modulated by a Bessel function and a unique spin-exchange
interaction emerges. Quantum ground phases are investigated
in such a spin-orbit-coupled Floquet spinor BEC with antifer-
romagnetic or ferromagnetic spin-spin interactions. Our main
results are as follows.

(i) Due to the Bessel-function-modulated Rabi frequency,
each quantum phase can exist in a broad region of the Rabi
frequency. Previous studies showed that the stripe phases in
antiferromagnetic and ferromagnetic spinor BECs exist in a
small regime of the Rabi frequency, say, �c1 < � < �c2,
where � is the Rabi frequency and �c1,c2 are two critical
values, with �c2 − �c1 being a small quantity [28,31,32]. In
the Floquet spinor BEC, the Rabi frequency is modulated
as �J0, with J0 being the zero-order Bessel function of the
first kind. We find that the corresponding phases appear in
�c1/J0 < � < �c2/J0. Since J0 is tunable and less than 1,
the � region for the existence of the stripe phase is enlarged
significantly. This extension of the Rabi frequency for the
stripe phases is beneficial for their experimental observations.

(ii) For antiferromagnetic interactions, the appearance of
the Floquet-induced spin-exchange interaction extends the
second stripe phase to broaden the quadratic Zeeman field
domain, which exists in an extremely narrow region of the
quadratic Zeeman field in a typical spin-orbit-coupled spinor
BEC.

(iii) For ferromagnetic interactions, a different stripe phase
is induced by the combined effects of the Floquet-induced
spin-exchange interaction and the Rabi coupling. These
stripes have a very high density contrast. Their Bogoliubov
excitations are identified as having two gapless Nambu-
Goldstone modes.

This paper is organized as follows. In Sec. II, we present
the theoretical model for a spin-orbit-coupled Floquet spinor
BEC. It features the Floquet-induced spin-exchange interac-
tion and the Bessel-function-modulated Rabi frequency. In
Sec. III, the phase diagram of a noninteracting spin-orbit-
coupled Floquet spinor BEC is analyzed. In Sec. IV, phase
diagrams for antiferromagnetic and ferromagnetic spin-spin
interactions are studied separately. Finally, the conclusion fol-
lows in Sec. V.

II. MODEL

We consider an experimentally realizable spin-orbit-
coupled spin-1 BEC. The spin-orbit coupling is implemented
by coupling three hyperfine states with total angular momen-
tum F = 1 (mF = 0,±1) via three Raman lasers propagating
along the x axis [28]. Adjusting two-photon detunings be-

tween Raman lasers and hyperfine states so that they are equal
can mimic an effective quadratic Zeeman field. We propose to
periodically drive it by a periodic oscillation of the Raman
laser frequencies. The mean-field energy functional of the
oscillating system is

E [�] =
∫

dr�†
[
HSOC + ξ (t )F 2

z

]
�

+
∫

dr�†

[
c0

2
�†� + c2

2
�†F� · F

]
�, (1)

with � = (�1,�2,�3) being the spin-1 spinor describing
three-component wave functions. F = (Fx, Fy, Fz ) are the
spin-1 Pauli matrices. HSOC is the single-particle spin-orbit-
coupled Hamiltonian,

HSOC =
(

−i
∂

∂x
+ 2Fz

)2

+ εF 2
z + �√

2
Fx, (2)

where � is the Rabi frequency depending on the laser in-
tensities and ε is a constant quadratic Zeeman shift which
is induced by the detunings of the Raman lasers [28]. The
spin-1 spin-orbit coupling is represented by the second term
in Eq. (2) with a fixed coupling strength due to the experi-
mentally chosen gauge. In our dimensionless equations, the
units of momentum, length, and energy are h̄kRam, 1/kRam,
and ER = h̄2k2

Ram/2m, respectively. Here, m is the atom mass,
and kRam = 2π/λRam is the wave number of the Raman lasers,
with λRam being the wavelength. Considering the typically ex-
perimental parameter λRam = 790 nm, we have ER = 2π h̄ ×
3.67 kHz as the units of energy for rubidium atoms [28]. The
quadratic Zeeman field is periodically driven,

ξ (t ) = α cos(ωt ), (3)

with ω and α being the frequency and amplitude of the
driving, respectively. c0 and c2 in Eq. (1) denote density-
density and spin-spin interactions, respectively, which depend
on the s-wave scattering lengths in the total spin channels. In
this work, we assume a repulsive density-density interaction
(c0 > 0), while the spin-spin interaction c2 can be either pos-
itive (antiferromagnetic) or negative (ferromagnetic).

For high-frequency driving, we can derive an effective
static Hamiltonian by averaging the time-dependent Hamil-
tonian over one modulation period [35]. We transform the
system into an oscillating frame by using the transformation,

U (t ) = exp

(
− i

α

ω
sin(ωt )F 2

z

)
. (4)

After applying the transformation � = U (t )�, the resultant
time oscillating terms are dropped due to the average in a pe-
riod. Finally, we end up with the following time-independent
energy functional:

E [�] =
∫

dr�†

[
H ′

SOC + c0

2
�†� + c2

2
�†F� · F

]
�

+ c f

∫
dr

(
�

†
1�

†
3�2

2 + �1�3�
†2
2

)
. (5)

The energy functional describes a spin-orbit-coupled Flo-
quet spinor BEC with the spinor � = (�1, �2, �3). The
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modulated single-particle Hamiltonian is

H ′
SOC =

(
−i

∂

∂x
+ 2Fz

)2

+ εF 2
z + �√

2
J0

(
α

ω

)
Fx. (6)

Note that the only difference between the Floquet spin-orbit-
coupled Hamiltonian H ′

SOC and the original one HSOC is that
the Rabi frequency is modulated by the zero-order Bessel
function of the first kind J0(α/ω). The density-density and
spin-spin interactions in Eq. (5) are the same as those in the
usual spinor BEC. Nevertheless, there is a new spin-exchange
interaction with the coefficient c f which is a pure effect of
Floquet modulation [51],

c f = c2[1 − J0(2α/ω)]. (7)

The spin-orbit-coupled Floquet spinor BEC is reduced back
to the usual spin-orbit-coupled spinor BEC if the driving
disappears, i.e., α/ω = 0.

III. PHASE DIAGRAM OF THE NONINTERACTING
SPIN-ORBIT-COUPLED FLOQUET SPINOR BEC

We study quantum phases in a spin-orbit-coupled Floquet
spinor BEC. First, we analyze the single-particle phase di-
agram, which was addressed in Refs. [29–31]. An analysis
of the single-particle phase diagram can provide insight into
ground states in an interacting system. The dispersion of H ′

SOC
can be calculated by direct diagonalization. Depending on
spin-orbit coupling parameters, the lowest band in the disper-
sion may have one, two, or three local minima. Ground states
choose one of the minima to occupy. Therefore, a general
ground-state wave function should be

� = √
n̄eikx

⎛
⎜⎜⎝

cos θ cos ϕ

− sin θ

cos θ sin ϕ

⎞
⎟⎟⎠, (8)

where n̄ = N/V , with N being the total atom number and V
being the volume of the system; k is the quasimomentum;
and θ and ϕ are two parameters. By substituting Eq. (8) into
Eq. (5) (with c0 = c2 = 0), we obtain the energy per particle,

Ek = k2 −
(

A′
k

54

) 3
2

− Ak

(
2

27A′
k

) 3
2

+ 2

3
A0, (9)

with

Ak = 48k2 + (ε + 4)2 + 3

2
J2

0

(
α

ω

)
�2,

A′
k = (ε + 4)A′′

k +
√

(ε + 4)2A′′2
k − 4A3

k,

A′′
k = −288k2 + 2(ε + 4)2 + 9

2
J2

0

(
α

ω

)
�2.

Then the quasimomentum can be determined by solving
∂Ek/∂k = 0. The occupation of k = 0 is the zero-momentum
(ZM) state, and the occupation of a nonzero quasimomentum
is the PW state.

Figure 1 shows the ground-state phase diagram in the
(�, ε) plane, in which the tensor magnetization 〈F 2

z 〉 = cos2 θ

is chosen as the order parameter. The solid lines with dots are

FIG. 1. Quantum ground-state phase diagram of a noninteracting
spin-orbit-coupled Floquet spinor BEC in the space of the Rabi fre-
quency � and the quadratic Zeeman field ε. The driving is α/ω = 2
[J0(α/ω) = 0.224]. The background corresponds to values of the
tensor magnetization 〈F 2

z 〉. The black and white solid lines with dots
represent first-order and second-order phase transitions, respectively.
Below these lines is the plane-wave phase, and beyond is the zero-
momentum phase. The red star denotes a tricritical point. Insets
show the lowest bands of the single-particle dispersion. The black
dashed lines separate different regions where the lowest band of the
dispersion has one, two, or three local energy minima.

the transition lines between PW and ZM phases, above which
is the ZM phase and below which is the PW phase. We also
show the lowest band of H ′

SOC in Fig. 1. The dashed line in
the ZM regime is a separation, above which the lowest band
has only one minimum at k = 0 and below which it has three
local minima but the lowest one is at k = 0. In the PW regime,
the lowest band may have two or three local minima. The sep-
aration between these two cases is demonstrated by the black
dashed lines. Two dashed lines merge together with the phase
transition line at the so-called tricritical point, which is labeled
by the red star in Fig. 1. The location of the tricritical point can
be analytically calculated from ∂2Ek/∂k2 = 0 and the equal
energy between the PW and ZM states [30,31]. The calculated
value for the tricritical point is (�∗, ε∗) = (30.14,−1.66).
When � < �∗, the PW-ZM transition is first order, and when
� > �∗, the phase transition is second order.

IV. PHASE DIAGRAM OF THE INTERACTING
SPIN-ORBIT-COUPLED FLOQUET SPINOR BEC

For a spin-orbit-coupled spin-1 BEC, previous works re-
vealed ground states, including PW, ZM, and stripe phases,
and rich phase transitions between them [28,30–32]. The
single-particle dispersion of spin-orbit coupling provides
diverse arrangements of energy minima, and interactions de-
termine how they condense into these minima. Since the
dispersion of H ′

SOC has three energy minima at most, we
construct ground-state wave functions as a superposition of
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the spinors at these minima, which can be assumed to be

� = √
n̄C+eikx

⎛
⎜⎜⎝

cos θ1 cos ϕ

− sin θ1

cos θ1 sin ϕ

⎞
⎟⎟⎠ + √

n̄C0

⎛
⎜⎜⎝

sin θ2/
√

2

− cos θ2

sin θ2/
√

2

⎞
⎟⎟⎠

+ √
n̄C−e−ikx

⎛
⎜⎜⎝

cos θ1 sin ϕ

− sin θ1

cos θ1 cos ϕ

⎞
⎟⎟⎠. (10)

The superposition coefficients satisfy the normalization con-
dition, |C+|2 + |C0|2 + |C−|2 = 1. The spinors are the eigen-
states of H ′

SOC, with the exact parameters θ1,2 and ϕ to be
specified. The second state in Eq. (10) is the spinor at k = 0,
and the first and third ones are spinors modulated by the plane
waves at ±k. The symmetry of H ′

SOC requires that the first and
third states have the same θ1 and ϕ. We substitute the above
variational wave functions (10) into the energy functional in
Eq. (5). The minimization of the resultant energy functional
gives the values of parameters k, C0,±, θ1,2, and ϕ. From these
parameters, we can classify ground states: the ZM phase has
C± = 0; the PW phase has a nonzero k and C0 = 0, with one
of C± being nonzero; and the stripe phase requires that k �= 0
and at least two of C±,0 are nonzero. The stripe phases can be
further classified according to relative values of C±,0 [31,32].
Considering that the classification of ground states depends
strongly on C±,0, we use the tensor magnetization 〈F 2

z 〉 as the
order parameter to identify different phases,〈

F 2
z

〉 = (|C+|2 + |C−|2) cos2 θ1 + |C0|2 sin2 θ2. (11)

We find that antiferromagnetic and ferromagnetic spin-spin
interactions have very different ground-state phase diagrams,
which are studied separately.

A. Antiferromagnetic interactions

The antiferromagnetic interaction is c2 > 0, which is
typical for the 23Na BEC. Figure 2 demonstrates the phase dia-
gram for antiferromagnetic interactions with driving α/ω = 2
in the space of the quadratic Zeeman field ε and the Rabi
frequency �. When ε is negative, the single-particle disper-
sion has two lowest minima located at ±km (see the inset
in Fig. 1); the antiferromagnetic interaction allows atoms to
simultaneously occupy these two minima to form a stripe
for low �. This stripe phase, labeled as S1 in Fig. 2, has
|C+| = |C−| = 1/

√
2 and C0 = 0. Using the wave functions

in Eq. (10) with C0 = 0 and considering the single-particle
spinors at ±km with ϕ = π/2, we get the energy of the
antiferromagnetic interaction 〈E〉c2 and Floquet-induced spin-
exchange interaction 〈E〉c f ,

〈E〉c2 + 〈E〉c f = c2n̄2

2
cos4 θ1 + c2n̄2|C−|2|C+|2

×
[(

1 + c f

c2

)
sin2(2θ1) − 2 cos4 θ1

]
.

(12)

For a low �, we have θ1 ≈ 0, and the minimization of
〈E〉c2 + 〈E〉c f leads to |C+| = |C−| = 1/

√
2, corresponding to

FIG. 2. Quantum ground-state phase diagram of a spin-orbit
coupled Floquet spinor BEC with an antiferromagnetic spin-spin
interaction (n̄c0 = 1 and n̄c2 = 0.1). The background corresponds
to values of the tensor magnetization 〈F 2

z 〉 defined in Eq. (11). The
black and white solid lines with dots represent the first-order and
second-order phase transitions, respectively. The different tricritical
points are denoted by the red and purple stars. The driving is α/ω =
2 [J0(α/ω) = 0.224 and J0(2α/ω) = −0.397].

the S1 phase, the tensor magnetization of which is 〈F 2
z 〉 ≈ 1,

as shown in Fig. 2. θ1 prefers to be nonzero for a large �.
Meanwhile, the first term c2n̄2/2 cos4 θ1 in 〈E〉c2 + 〈E〉c f al-
lows θ1 to approach to π/2, at which it is minimized, so that θ1

can grow from zero to π/2 as � increases. Consequently, for
a high �, we may have (1 + c f /c2) sin2(2θ1) − 2 cos4 θ1 >

0. Then the minimization of 〈E〉c2 + 〈E〉c f requires one of
C± to be zero. Even though the single-particle dispersion
has two minima, the antiferromagnetic interaction chooses
one of them to occupy, generating the PW phase shown in
Fig. 2. The phase transition between the S1 and PW phases
is first order. Physically, 〈E〉c2 + 〈E〉c f is proportional to
c2n̄2|C+|2|C−|2[(1 + c f /c2)〈Fx〉+〈Fx〉− + 〈Fz〉+〈Fz〉−], where
〈Fx〉± and 〈Fz〉± are the x and z polarizations of the
spinors at ±km. The antiferromagnetic interaction generates
〈Fz〉+〈Fz〉− <0, and the Rabi coupling favors 〈Fx〉+〈Fx〉− >0.
The competition between these two effects gives rise to the
S1-PW transition, and we have 〈F 2

z 〉 < 1 in the PW phase
(see Fig. 2). The emergence of the ZM phase in Fig. 2 is
due to the fact that the lowest minimum of the single-particle
dispersion lies at k = 0. There is a second stripe phase labeled
S2 which is unique only for antiferromagnetic interactions.
The S2 phase is featured with |C−| = |C+| �= 0, |C0| �= 0, and
� ≡ arg(C−) + arg(C+) − 2 arg(C0) = π .

At first glance, the phase diagram shown in Fig. 2 is
similar to that of the usual spin-orbit-coupled BEC demon-
strated in Refs. [31,32] (i.e., Fig. 1(a) in [31] and Fig. 1 in
[32]). There are two tricritical points represented by stars in
Fig. 2. The first- (second-) order phase transitions between
different phases are shown by black (white) solid lines with
dots. However, there are two different features in our system.
(i) All phases exist in a broadened region of the Rabi
frequency. This is a straightforward consequence of the
Bessel-function modulation �J0. (ii) The existence of the S2
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FIG. 3. Phase diagram for an antiferromagnetic interaction
(n̄c0 = 1 and n̄c2 = 0.1) as a function of the driving α/ω. The Rabi
frequency is � = 2. The background corresponds to values of the
tensor magnetization 〈F 2

z 〉. The black and white solid lines with
dots represent the first-order and second-order phase transitions,
respectively.

phase is also extended in the ε domain. In the usual spin-
orbit-coupled antiferromagnetic BEC the S2 phase exists in
an extremely narrow region of ε (see Fig. 1(a) in [31] and
Fig. 1 in [32]). Our Floquet system has a large extension,
which benefits from the Floquet-induced interaction.

To reveal the extension of the stripe regions more clearly,
we study the phase diagram as a function of the driving α/ω.
The results are shown in Fig. 3 for � = 2. It is clear from
Fig. 3 that without the driving (α/ω = 0) the S2 phase exists
in an extremely narrow region of ε. This leads to a challenge
for its experimental implementation. The upper boundary of
the S2 phase corresponds to the degeneracy of three min-
ima of the single-particle dispersion, i.e., E−km = Ek=0 = Ekm ,
and beyond the boundary Ek=0 becomes the lowest one such
that ground state is the ZM phase. Below the boundary, we
have E−km = Ekm < Ek=0. For low �, the spinors at ±km have
θ1 = 0 and ϕ = π/2 and the spinor at k = 0 has θ2 = 0. The
general wave function becomes

� = √
n̄

⎛
⎜⎜⎝

C−e−ikx

−C0

C+eikx

⎞
⎟⎟⎠, (13)

which is a good approximation for low �. By using Eq. (13),
we find that the antiferromagnetic energy can be minimized
as 〈E〉c2 = 0 in both the S1 phase (|C±| = 1/

√
2,C0 = 0) and

the S2 phase (|C−| = |C+| < 1/
√

2, C0 �= 0, � = π ). How-
ever, the S2 phase is not a minimization of the quadratic
Zeeman energy 〈E〉ε = εn̄(|C−|2 + |C+|2) for ε < 0, so the
ground state is the S1 phase. A dominant Rabi frequency �

causes a small deviation θ1 from zero, i.e., θ1 = δθ , where
δθ > 0 is a very small quantity. This term leads to 〈E〉c2 =
8c2n̄2|C+|4(δθ )2 for both the S1 and S2 phases. Considering
the S1 phase with |C+|2 = 1/2 and the S2 phase with |C+|2 <

1/2, this extra antiferromagnetic energy prefers the S2 phase

as the ground state if the quadratic Zeeman energy is weak. If
the quadratic Zeeman energy exceeds this extra energy, the S1
phase is back as the ground state. Since the extra energy is a
small quantity of second order, the S2 ground state exists in a
very small ε domain.

In the presence of the driving, the region of the S2
phase is dramatically extended around ε = 0 (see Fig. 3).
The upward shift of the region is due to the Bessel-
function-modulated Rabi frequency. As the driving α/ω

increases from zero, �J0(α/ω) decreases towards zero. As
shown in Fig. 2, for small �, the S2 phase is located
around ε = 0. The dramatic expansion of the existence area
is the consequence of the Floquet-induced spin-exchange
interaction. The S2 phase can greatly minimize the spin-
exchange-interaction energy, which can be easily seen from
the approximate wave function for low � in Eq. (13).
With the wave function, the spin-exchange-interaction en-
ergy becomes 〈E〉c f = 2c f n̄2|C−||C+||C0|2 cos(�). The S2
phase, having 0 < |C−| = |C+| < 1/

√
2 and � = π , min-

imizes the spin-exchange energy. Other phases, such
as the ZM phase (C0 = 1), the PW phase (C0 = 0,
|C+| + |C−| = 1), and the S1 phase (C0 = 0, |C±| = 1/

√
2),

lead to 〈E〉c f = 0, so that the Floquet-induced spin-
exchange energy cannot be minimized. Meanwhile, the
S2 phase also minimizes the antiferromagnetic interaction
energy, 〈E〉c2 = c2n̄2/2(|C−|2 − |C+|2)2 + c2n̄2[|C−|2|C0|2 +
|C+|2|C0|2 + 2|C−||C+||C0|2 cos(�)] = 0. The only obstacle
to the existence of the S2 phase is the quadratic Zeeman
energy 〈E〉ε = εn̄(|C−|2 + |C+|2). If ε > 0, the quadratic Zee-
man energy prefers the ZM phase, and when ε < 0, it prefers
the S1 phase. Therefore, the competition between the Floquet-
induced spin-exchange interaction and the quadratic Zeeman
field leads to the existence region for the S2 phase, which is
dramatically extended in comparison with the usual case with
α/ω = 0. The S2-ZM (white line with dots) and S2-S1 (black
line with dots) transition lines oscillate as a function of α/ω.
It is noted that the maxima of the transition lines correspond
to the zeros of J0(α/ω); therefore, the oscillations come from
�J0(α/ω). It is also interesting that without the driving, the
S2 phase always exists in the negative-ε area, but with the
driving, it can exist even in positive-ε areas.

B. Ferromagnetic interactions

The ferromagnetic interaction is c2 < 0. We consider
c2/c0 = −0.5, which is typical of 7Li atoms [32]. Figure 4
demonstrates the phase diagram for ferromagnetic interac-
tions with driving α/ω = 1.6. In the low-� region, there is a
third stripe phase, which is labeled S3 in Fig. 4. It has |C−| =
|C+| �= 0, |C0| �= 0, and � = 0. Using the approximate wave
function in Eq. (13), we know that the S3 phase mini-
mizes only the second term in the ferromagnetic interaction
energy 〈E〉c2 = c2n̄2/2(|C−|2 − |C+|2)2 + c2n̄2[|C−|2|C0|2 +
|C+|2|C0|2 + 2|C−||C+||C0|2 cos(�)] (c2 < 0) and it cannot
minimize the first term c2n̄2/2(|C−|2 − |C+|2)2, which is min-
imized by the PW phase. With the effect of the quadratic
Zeeman field, the S3, PW, and ZM phases are distributed in
the way shown in Fig. 4. These three phases are similar to
those in previous studies [31,32] (i.e., Fig. 1(b) in [31] and
Fig. 2 in [32]), but with the outstanding feature that every
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FIG. 4. Quantum ground-state phase diagram of a spin-orbit-
coupled Floquet spinor BEC with a ferromagnetic interaction n̄c0 =
1 and n̄c2 = −0.5. The background corresponds to values of the
tensor magnetization 〈F 2

z 〉. The black and white solid lines with dots
represent the first-order and second-order phase transitions, respec-
tively. The different tricritical points are denoted by red and yellow
stars. The driving is α/ω = 1.6 [J0(α/ω) = 0.455 and J0(2α/ω) =
−0.320].

phase exists in a broadened region of � due to the Bessel-
function modulation.

Different from the case of α/ω = 0 in Refs. [28,31,32],
we find in the Floquet spinor BEC that a new stripe phase,
which is labeled S4, exists. The S4 phase is located inside
the region where the single-particle dispersion has two energy
minima at ±km, and they are equally occupied by the S4 phase
with |C±| = 1/

√
2 and C0 = 0. This condition is exactly the

same as the S1 phase with antiferromagnetic interactions.
Nevertheless, the S1 phase exists in the low-� region (see
Fig. 2), while the S4 phase is in the high-� region (see Fig. 4).
Such a difference in the existence region related to � leads
to different features in the S4 phase. With C0 = 0, the mini-
mization of the ferromagnetic energy and the Floquet-induced
energy demonstrated in Eq. (12) leads to |C−| = 0 or |C+| = 0
for low � (θ1 ≈ 0). In this case, the ground state is the PW
phase with 〈F 2

z 〉 ≈ 1, as shown in Fig. 4. For high �, one
may have θ1 �= 0 and (1 + c f /c2) sin2(2θ1) − 2 cos4 θ1 > 0.
The minimization of 〈E〉c2 + 〈E〉c f requires |C±| = 1/

√
2, so

that the ground state is the S4 phase. Due to the existence of
the S4 phase, there are two tricritical points, labeled by stars
in Fig. 4.

We want to emphasize that without driving (c f =
0), the S4 phase cannot exist [28,31,32]. In the ab-
sence of driving, Eq. (12) becomes 〈E〉c2 = c2n̄2/2 cos4 θ1 +
c2n̄2|C−|2|C+|2[sin2(2θ1) − 2 cos4 θ1]. For c2 < 0, the first
term c2n̄2/2 cos4 θ1 prefers θ1 = 0. According to the second
term, the realization of the S4 phase needs a nonzero θ1

satisfying sin2(2θ1) − 2 cos4 θ1 > 0, which can be achieved
by increasing the Rabi frequency. In addition, the negative
Rabi coupling energy is also beneficial for lowing the to-
tal energy. However, for the single-particle dispersion with
large � the energy minimum at k = 0 will be lower than

FIG. 5. Phase diagram in a ferromagnetic interaction (n̄c0 = 1
and n̄c2 = −0.5) as a function of the driving α/ω. The Rabi fre-
quency is � = 8. The background corresponds to values of the tensor
magnetization 〈F 2

z 〉. The black and white solid lines with dots repre-
sent the first-order and second-order phase transitions, respectively.
The different tricritical points are denoted by red and yellow stars.

the energy minima at k = ±km, and the ground state prefers
the ZM phase. Thus, there is no way for the S4 phase to
exist. The Floquet-induced interaction has the nature of spin
exchange. It has two effects: the spin-exchange interaction
causes direct competition with the first term since it prefers
θ1 = π/4, so the three components have equal populations
in each spinor; according to Eq. (12), the S4 phase requires
(1 + c f /c2) sin2(2θ1) − 2 cos4 θ1 > 0, and the positive c f /c2

as a prefactor also increases the possibility of θ1 satisfying
the requirement. Therefore, combined effects of the Rabi cou-
pling and the Floquet-induced interaction make the existence
of the S4 phase possible.

In order to understand how the S4 phase emerges in the
presence of driving, we analyze the phase diagram as a func-
tion of the driving α/ω, which is demonstrated in Fig. 5. The
Rabi frequency is fixed as � = 8. For α/ω = 0, the ground
state is the ZM phase, as shown in Fig. 5, which is consis-
tent with the results in Refs. [28,31,32]. As α/ω increases,
the S3, S4, and PW phases appear and have an interesting
distribution, as shown in Fig. 5. Transition lines (white and
black solid lines with dots) have an oscillating behavior with
the maxima matching the zeros of J0(α/ω). The S3 and S4
phases are located between two transition lines. Furthermore,
the S4 phase exists in limited regions. The change in α/ω

is equivalent to scanning �. A high α/ω leads to �J0(α/ω)
being confined around zero. According to Fig. 4, the ground
state around � = 0 is the S3 phase. Therefore, for high α/ω

there is no S4 phase anymore (see Fig. 5).
In Fig. 6(a), we show density distributions ni = |�i|2 of

a typical S4 state. The outstanding feature is that the second
component n2 is comparable with the other components n1 =
n3. This is completely different from the S1 phase with anti-
ferromagnetic interactions, where n2 
 n1 = n3. This is due
to the low-� region for the S1 phase. For low �, the spinors
at ±km can be physically approximated as eikmx(δ2, δ, 1)T and
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FIG. 6. Profiles of the S4 phase in a ferromagnetic interaction (n̄c0 = 1 and n̄c2 = −0.5). The driving is α/ω = 1.6 [J0(α/ω) = 0.455
and J0(2α/ω) = −0.320]. The quadratic Zeeman field is ε = −2. (a) Spatial density distributions, ni = |�i|2, where n is the total density
n = n1 + n2 + n3. The Rabi frequency is � = 8. (b) The contrast (nmax − nmin )/(nmax + nmin ) as a function of �.

e−ikmx(1, δ, δ2)T , respectively, where δ is a small quantity. The
S1 phase is an equal superposition of the two spinors, and we
have n1 = n3 = 1 + 2δ2 cos(2kmx) and n2 = 4δ2 cos2(kmx).
Therefore, the S1 phase has n2 
 n1 = n3 and a very low con-
trast for n1 and n2 which is proportional to a small quantity of
second order. The contrast is defined as (nmax − nmin)/(nmax +
nmin), with nmax (nmin) being the density maximum (mini-
mum). The low contrast of the S1 phase is unfavorable for
experimental observations. However, the S4 phase with fer-
romagnetic interactions exists in the high-� region, and with
further help from the Floquet-induced spin exchange, δ is not
a small quantity anymore. Therefore, the contrast of n1 and
n3 is obviously high for the S4 phase. The advantage of the
second component is that its contrast is always maximized (it
is equal to 1). The dominant occupation in the second com-
ponent makes it perfect for direct experimental observations.
In Fig. 6(b), we show the contrast in the full � region. The
contrast of n1 and n3 increases with the increase of �, and it
is always 1, as expected for the second component n2.

A closely related topic for ground states is their elemen-
tary excitations. The excitation spectrum of each phase in
typical spin-orbit-coupled spin-1 BECs has been investigated
[30,31,33]. The S4 phase exists only in Floquet spinor BECs,
and we study its Bogoliubov excitation. The stripe wave
function ansatz in Eq. (10) includes only low-order plane
waves. It is known that such an ansatz cannot precisely capture
Bogoliubov excitation and high-order plane waves should be
involved [21,23,52–54]. Therefore, we use the ansatz with
high-order modes [33],

� = √
n̄

L∑
j=−L

ei jKx

⎛
⎜⎜⎝

ϕ
( j)
1

ϕ
( j)
2

ϕ
( j)
3

⎞
⎟⎟⎠, (14)

with the normalization condition
∑

σ, j |ϕ( j)
σ |2 = 1. Here, L is

the cutoff of the plane waves, and K is related to the period
of the stripes. Spinors (ϕ( j)

1 , ϕ
( j)
2 , ϕ

( j)
3 )T and K are determined

by minimizing the energy function in Eq. (5) using Eq. (14).
In the S4 phase parameter region, we first get the stripe wave
function using minimization procedures, and then we use the

ground state to solve Bogoliubov–de Gennes equation to get
the elementary excitation energy ζ [33]. A typical excitation
spectrum ζ (qx ), i.e., the relation between excitation energy ζ

and excitation quasimomentum qx, is demonstrated in Fig. 7,
in which only the three lowest bands are shown. The size
of the Brillouin zone is 2K , which means that the period
of stripes is π/K . The lowest two bands are gapless, cor-
responding to two Nambu-Goldstone modes. The physical
origin of these two gapless modes is the fact that stripes
spontaneously break the continuously translational symmetry
and gauge symmetry [21].

Finally, we discuss possible experimental observations of
our results. In the spin-1 spin-orbit-coupled experiment in
[28], the Rabi frequency � and the constant quadratic Zeeman
shift ε are completely tunable. � can be experimentally tuned
up to 15 with units of ER, and ε can reach ±5ER. � and ε

in our study are completely within experimental accessibility.
In a spin-orbit-coupled degenerate Fermi gas experiment in
[49], the periodic driving of the frequency of a Raman laser

FIG. 7. Bogoliubov excitation spectrum ζ (qx ) of a typical S4
state. The parameters are n̄c0 = 1, n̄c2 = −0.5, � = 7, and ε =
−1.1. The two lowest bands are gapless, corresponding to two
Nambu-Goldstone modes.
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was implemented to reach the high-frequency driving regime.
We expect that similar to this experiment, our driving can
be realized precisely. Under such a high-frequency driving
regime, the possible micromotions induced by high-order
drivings are safely suppressed, as shown in spin-orbit-coupled
experiments [47,49]. So far, experiments have realized spin-1
spin-orbit coupling in a 87Rb BEC [28]. The 87Rb BEC is
ferromagnetic but with a very small ratio c2/c0. Such a small
ratio makes the stripe phase S3 exist in a negligible parameter
regime [32]. In the presence of driving, there is no S4 phase
for the 87Rb BEC.

V. CONCLUSION

Spin-orbit-coupled spin-1 BECs have been realized in ex-
periments. Based on the experimental platform, we proposed
a spin-orbit-coupled Floquet spinor BEC by periodically driv-
ing the quadratic Zeeman field with a high frequency. In
the Floquet spinor BEC, the Rabi frequency is modulated
by a Bessel function, and a Floquet-induced spin-exchange
interaction emerges. We studied quantum ground-state phase
diagram of a spin-orbit-coupled Floquet spinor BEC while

considering antiferromagnetic and ferromagnetic spin-spin
interactions separately. A general result is that due to the
Bessel-function modulation, every phase in the diagram can
exist in a broadened Rabi frequency region. For antiferro-
magnetic interactions, we found that the existence of a stripe
phase can be dramatically extended in the ε domain due to the
Floquet-induced spin-exchange interaction. For ferromagnetic
interactions, a different stripe phase was revealed, and its
features, including high contrast and Bogoliubov excitations,
were identified. In all previous studies of spin-1/2 and spin-1
spin-orbit-coupled BECs, stripes have a very low contrast
since they exist in the low-� regime and the contrast is pro-
portional to the Rabi frequency � [23]. This stripe phase in
the Floquet spinor BEC exists in the high-� region, and its
high contrast favors experimental observations.
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