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Theory of high-energy correlated multiphoton x-ray diffraction for synchrotron-radiation sources
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We present a theoretical formulation for the multiphoton diffraction phenomenology in the nonrelativistic
limit, suitable for interpreting high-energy x-ray diffraction measurements using synchrotron radiation sources.
A hierarchy of approximations and the systematic analysis of limiting cases are presented. A convolutional
representation of the diffraction signal allows classification of the physical resources contributing to the corre-
lation signatures. The formulation is intended for developing a theoretical description capable of describing the
plausible absence or presence of correlation signatures in elastic and inelastic diffractive scattering. Interpreting
these correlation signatures in terms of the incoming field modulated many-body electronic density correlations
provides a unique perspective for structural imaging studies. More essentially, it offers a framework necessary
for theoretical developments of associated reconstruction algorithms.
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I. INTRODUCTION

In the x-ray photon-induced diffractive scattering measure-
ments where signals are monitored in the far-field zone, one
of the central goals lies in extracting information about the
hitherto unknown structure of the materials. In these mea-
surements, high-resolution structural information in the real
space is routinely obtained by monitoring the photon scatter-
ing patterns and applying suitable inversion schemes [1–4].
Obtaining atomically resolved structural information, which
has been one of the central endeavors of the x-ray crystallo-
graphic measurements, has seen enormous progress in recent
years. Such improvements in precision and resolution were fa-
cilitated by the deployment of advanced light sources [5–13].
For structural studies, hard x-ray sources whose wavelength
corresponds to the atomic resolution are preferred as a tool.
The fact that the probe wavelength is comparable to the typical
length scales related to relative distances between the scatter-
ing centers (e.g., 1 Å corresponds to 12.4 keV) allows imaging
at the atomic resolution. The operational regime of the hard
x-ray sources corresponds to the photon energies ranging
from several keV up to hundreds of keV [14]. The higher
brilliance and the coherence of the present-day synchrotron
radiation sources available at storage rings or free-electron
lasers (FELs) allow fewer-shot measurements for nonrepro-
ducible objects. Storage rings, owing to their peak brightness
being several orders of magnitude lower than the FEL sources,
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typically operate at lower flux conditions. Therefore, even
though a typical measurement scheme may involve multiple
pulses, the mean number of photons deployed in each shot
is comparatively lower. As a consequence, the propensity
of scattering events leading to ionization during individual
pulse interaction, per atom, remains lower compared to FEL
sources. The higher brilliance of the latter, which aids the sig-
nal observation, also induces scattering processes that involve
multiple, correlated photon-matter interactions. In this paper,
we focus on the multiphoton nature of the diffractive scat-
tering at the storage-ring based synchrotron radiation sources
[15,16]. In relevant situations, the full statistical distribution of
the scattered photons involving all the higher-order moments
is required for extracting information about the full set of
diffractive scattering events. The detection schemes based on
single-photon monitoring, which effectively observes the re-
duced many-particle density operator of the scattered photon
field, may not be an adequate quantity. It calls for a theoretical
formulation that can systematically account for a multiphoton
scattering and detection scenario and, more importantly, ex-
amines the physical situations which may enable the validity
of a truncated subspace monitoring of the signal. Investigating
the cases where a particular reduced space detection may
hold also offers rationale in terms of the underlying struc-
tural features of specific materials. In typical measurements,
pixel-resolved diffracted photon intensities are sampled in the
reciprocal space of the spatial variables. Following several
acquisition steps, these outcomes are composed together to
generate diffraction patterns which, in turn, correspond to the
parametric variations of the electronic properties of scattering
centers in real space. The signal is routinely interpreted in
terms of the time-dependent, many-body electronic density
of the scattering centers [17–19]. Consequently, while invert-
ing the diffraction pattern, the commonly deployed inversion
schemes assume that the diffraction patterns have originated
solely from the time-dependent electronic density snapshots.

2643-1564/2023/5(2)/023158(14) 023158-1 Published by the American Physical Society

https://orcid.org/0000-0001-5429-4671
https://orcid.org/0000-0002-1442-9815
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.5.023158&domain=pdf&date_stamp=2023-06-12
https://doi.org/10.1103/PhysRevResearch.5.023158
https://creativecommons.org/licenses/by/4.0/


ARUNANGSHU DEBNATH AND ROBIN SANTRA PHYSICAL REVIEW RESEARCH 5, 023158 (2023)

Previous studies have demonstrated a generalization of this
phenomenology by establishing that in the one-photon diffrac-
tive scattering measurements, the signal is in fact proportional
to the many-body electronic density-density correlation func-
tion [9,20–22]. In this communication, we establish a further
generalization by extending it to the case of n-photon diffrac-
tive scattering scenario.

In Sec. II, we introduce the Hamiltonian and develop the
integral equation-based formulation for multiphoton diffrac-
tive scattering. We present a detailed analysis for the
interpretation of such signals involving the higher-order cor-
relation functions of the incoming sources, electronic density,
and the detection modes. Subsequently, in Sec. III, we analyze
various plausible physical features responsible for correlation
signatures in the signal. We systematically develop a hierar-
chy of approximations, discuss their validity, and recover, in
the asymptotic limits, the commonly used expressions. A set
of physical conditions that may justify the usage of such a
limit are described. It will be shown that the factorization of
correlation functions, often applicable, may not be a generic
prescription for interpreting the observed signal. The paper
concludes with a perspective and outlook on the theory, a
summary of the assumptions, presented in Sec. IV.

II. MULTIPHOTON DIFFRACTION PHENOMENOLOGY

A. Hamiltonian

Multiphoton diffraction phenomenology involving
interactions between electronic matter and high-energy
x-ray photons in the nonrelativistic limit is described by the
minimal-coupling Hamiltonian H = Hmatter + Hint + Hfield

[23–25]. The Hamiltonian components are presented below
using atomic units:

Hmatter =
∑

σ

∫
drψ†(σr)

(
− ∇2/2 −

∑
n

Zn

|r − Rn|
)

ψ (σr)

+
∑
σσ ′

∫∫
drdr′ψ†(σr)ψ†(σ ′r′)(1/2)

× 1

|r − r′|ψ (σ ′r′)ψ (σr),

Hint =
∑

σ

α

∫
drψ†(σr)A(r) · (−i∇)ψ (σr)

+
∑

σ

α2

2

∫
drψ†(σr)A2(r)ψ (σr),

Hfield =
∑
k,μ

ωk(a†
k,μak,μ + 1/2). (1)

In the above, the first two terms in the Hmatter correspond
to the electronic matter modes. The first term is the one-
body operator consisting of electron kinetic energy and the
electron-nuclear potential, whereas the second term is a two-
body operator describing the electron-electron interactions.
We introduced the electronic field operators ψ (σr) (asso-
ciated spin index is denoted by σ ) which follow fermionic
anticommutation relations {ψ (σr), ψ†(σ ′r′)}+ = δσσ ′δ(r −
r′). The external field-matter interaction Hamiltonian Hint is

classified into two terms, namely, H (1)
int and H (2)

int , given in
the third and fourth lines, respectively. The term H (1)

int con-
taining A(r) · (−i∇) [where the term −i∇ is the canonical
electronic momentum and A(r) is the vector potential of
the photonic field] facilitates the photon-matter processes in-
volving electronic resonances that usually trigger a hierarchy
of multielectronic processes, often involving nuclear rear-
rangements. The remaining term H (2)

int containing n(r)A2(r)
[where n(r) = ∑

σ ψ†(σr)ψ (σr) is the electronic density
operator] dominantly contributes to the scattering processes
in the high-energy regime away from resonance, often taking
place beyond the ionization thresholds. In the appropriate
parameter regime, the role of these terms in the dynamics
becomes relevant with varying degrees of importance and,
consequently, the relative contributions towards the scattering
cross sections vary. In general, the scattering events described
by the Hamiltonian component H (2)

int effectively take place
from the electronic degrees of freedom driven by the H (1)

int . Of-
ten, the ionization processes triggered by the latter leads to the
onset of the radiation damage [26]. Restriction on the fluence
of the incoming sources and plausible sparsity of the distribu-
tion of the scattering centers allows for a parameter window
within which the diffraction remains largely unaffected by
ionization events. We focus on the diffractive scattering pro-
cesses particularly suitable for structural imaging and allow
this analysis to be restricted to the scatterings induced by
H (2)

int . In the following, we separate the term H (2)
int into initially

occupied pump modes and initially unoccupied signal modes.
Subsequently, as an approximation, we omit the scattering
processes originating from pure pump or signal modes yield-
ing, n(r)A2(r) = (As(r) + Ap(r))2n(r) = (A2

s (r) + A2
p(r) +

2As(r)Ap(r))n(r) ≈ 2As(r)Ap(r)n(r). Diffractive scattering
via pure pump or signal modes may allow, as proposed
in Ref. [22], self-heterodyning of the signal. Further, we
adopt the interaction representation defined by H (2)

int (t ) =
U †(t )H (2)

int U (t ), where U (t ) = exp (−i(Hmatter + Hfield )t ) is
the propagator. Using the mode-expansion of the vector po-
tential in terms of plane waves,

A(r, t ) = A(+)(r, t ) + A(−)(r, t ) (2)

=
∑
k,μ

√
2π

V ωkα2
(εk,μak,μ exp [i(k · r − ωkt )]

+ ε∗
k,μa†

k,μ exp [−i(k · r − ωkt )]), (3)

and the assumed rotating wave approximation, we can express
the relevant Hamiltonian component as

H (2)
int (t ) = α2

∫
dr

∑
ks,kp,μs,μp

c̃√
ωksωkp

|ε∗
ks,μs

· εkp,μp
|

× a†
ks,μs

akp,μp
(e+iq̃·rn(r, t ))e−iω̃kt + H.c. (4)

In the above, we defined the polarization vector of the mode
(indexed by k, μ) as εk,μ and used c̃ = 2π/V α2, where V , and
ωp(ωs) are the mode volume and frequency of the incoming
(scattered) mode, respectively. The mode creation (annihila-
tion) operators a†

k,μ(ak,μ) follow the bosonic commutation

relations [ak,μ, a†
k′,μ′] = δkk′δμμ′ . The difference frequency
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FIG. 1. A schematic diagram describing typical multiphoton
diffraction events with array detection, which is considered in the
paper. The scattered modes contain a wealth of information regarding
correlations among the incoming field modulated scattering centers.
These can be revealed by focusing on the multiphoton diffraction
characteristics.

between the incoming and scattered photon modes is de-
noted ω̃k = ωkp − ωks . In Eq. (4), we note the appearance
of the electronic density operator and the position-dependent
phase term in the exponent, which incorporates the differ-
ence between the incoming and scattered photon momenta,
q̃ = (kp − ks).

The elastic components of the diffraction signal, where the
difference between the moduli of the incoming and scattered
photon momenta is zero, provide structural information. In
comparison, the inelastic components where the incoming
and scattered photon momenta differ in magnitude contain
structural and dynamical information regarding the electronic
excitations. The applicability of elastic scattering extends to
techniques such as small-angle x-ray scattering or wide-angle
x-ray scattering, which involves averaging over the structural
disorder. They become crucial for interfaces, amorphous ma-
terials with short-range order and molecular aggregates, and
proteins in the solution phase.

B. Multiphoton diffraction signal and classification

In the high-intensity photon-matter interaction at the rele-
vant energy regime, the typical one-pixel detection scenario
monitors fewer number of modes among the full set of
diffracted modes. As envisaged in Fig. 1, the scattered
photonic modes would impinge on the pixelated array de-
tector where photon intensities are registered. The pixel
resolved photon intensity distribution, obtained by averaging

over repeated measurements that monitor individual pixels
separately, constitute the diffraction pattern. We present a
theoretical framework that is capable of describing the gen-
eralized diffraction and detection scenario appearing in such
cases. Towards that goal, we start by defining the diffractive
scattering signal as the time-space integrated intensity of the
electric field at the pixelated detector given by

S̃(n)
out =

∫
dtn

∫
drn · · ·

∫
dt1

∫
dr1

× 〈E (−)(rn, tn) · · · E (−)(r1, t1)E (+)(r1, t1) · · ·
× E (+)(rn, tn)〉. (5)

Here, the integral expression describes the observable corre-
sponding to the n-photon diffraction signal while the operator
expectation is taken over the final state of the combined sys-
tem consisting of the electronic matter, driving field, and the
detector. The signal, defined in this manner, can describe both
the standard detections where the diffraction pattern is gener-
ated via averaging over several observed pixel distributions
and the nonstandard situations where multipixel coincident
detection is possible. The latter remains a forward-looking
scenario due to current technological limitations. However,
both cases can be described by employing different averag-
ing procedures. In the Keldysh-Schwinger formulation, the
operator expectation value can be evaluated by accounting
for the forward-backward evolution of the combined system
[27–31]. In other words, the final state can be systematically
expanded in the powers of the interaction Hamiltonian to yield
different scattering configurations. Each of these configura-
tions corresponds to a particular order of the photon-matter
scattering events. Since, the operator defined above is related
to the n-photon-matter interaction events, an expansion to the
nth order in H (2)

int (t ) for the bra and ket generates the desired
signal. A compact expression for the signal can be obtained
by collecting individual path-ordered operators and averaging
them over the initially correlated combined state φin. Further-
more, if a factorizibility assumption on the initially correlated
state is made, it implies φin ≡ φmatter,in ⊗ φfield,in, where the
term φmatter,in represents the state of the correlated electronic
matter prior to the scattering events, and φfield,in represents the
initial state of the incoming photonic sources. For the latter,
it has been assumed that the scattered modes are in a vacuum
while the rest of the modes are in an arbitrary field state. The
prior choice of neglecting H (1)

int during the expansion signifies
the absence of externally induced electronic current. The lack
of nontrivial field-induced correlation among the electronic
modes justifies the factorized form of the initial state. In this
limit, the operator expectation value defined in Eq. (5) can be
expressed as

S̃(n)
out =

∫
dtn

∫
drn · · ·

∫
dt1

∫
dr1 ×

∫
drn′′

∫
dtn′′ · · ·

∫
dr1′′

∫
dt1′′ ×

∫
drn′dtn′ · · ·

∫
dr1′dt1′

× D(n)
s (rn, tn, · · · r1, t1; r1′ , t1′ · · · rn′ , tn′ ; rn′′ , tn′′ · · · r1′′ , t1′′ )

× K (n)(r1′ , t1′ · · · rn′ , tn′ ; rn′′ , tn′′ · · · r1′′ , t1′′ )D̃(2)
p (r1′ , t1′ · · · rn′ , tn′ ; rn′′ , tn′′ · · · r1′′ , t1′′ ). (6)
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FIG. 2. Diagrams describing one-photon (left) and two-photon (right) diffractive scattering events. The highlighted patch, in gray, denotes
the detection process. The space-time arguments are abbreviated as 1′ ≡ (r′

1, t ′
1). Individual diagrams signify distinct pathways which make

interfering contributions to the observed signal. The number of pathways is two and four, respectively, for the above-mentioned scattering
events. The pathway contributions may be manipulated via shaping of the incoming photonic modes and detection configurations.

In the above, the arguments of the operators have been dis-
tinguished to indicate the time and path-ordering. In the
expression, we introduced a set of multipoint, space-time
dependent correlation functions for the sake of brevity. In
particular, we defined the correlation function of the scattered
photon and detector modes. It can be expressed as the sum
of terms consisting of the products of elementary two-point
correlation functions given by

D(n)
s (rn, tn, · · · r1, t1; r1′ , t1′ · · · rn′ , tn′ ; rn′′ , tn′′ · · · r1′′ , t1′′ )

=
∑
{m}

∏
j′, j′′,d

D(1)
s,m(rd , td ; r j′ , t j′ )D

(1),∗
s,m (rd , td ; r j′′ , t j′′ ). (7)

Here the subscripts d ∈ {1 · · · n} and j′, j′′ ∈
{1′ · · · n′; 1′′ · · · n′′} are associated with the detection and
scattering events, respectively. The elementary two-point
correlation functions are expressed as

D(1)
s (rd , td ; r j, t j ) = 〈E(+)

d (rd , td )A(−)
s (r j, t j )〉. (8)

These functions are generated by considering 2-tuples formed
by one scattering and one detection index lying within a par-
ticular branch. Two such pairings from the separate branches
yield a correlation function pair, each of which corresponds to
the population of one quantum in the detection field mode.
The summation over the combinatorial set {m} in Eq. (7)
contains products over such correlation function pairs. The
contraction of a total of 2n scattering indices with the 2n
detection indices while keeping the branch specificity yields
distinct detection configurations. The detection configurations
represent pathways that interfere among themselves to give
rise to the observed diffraction pattern upon averaging. For
the cases of one- and two-photon diffractive scattering, di-
agrams in Figs. 2 and 3 provide corroborative illustrations,
while Eqs. (A1) and (A2) provide the relevant expressions.
We note that even when all the detection times are set as
equal, the statistical weights coming from various detection
configurations should be taken into account while evaluating
the signal. In Eq. (6), we also defined the incoming photonic

field correlation function, which can be expressed as

D̃(n)
p (r1′ , t1′ · · · rn′ , tn′ ; rn′′ , tn′′ · · · r1′′ , t1′′ )

= 〈A(−)
p (r1′ , t1′ ) · · · A(−)

p (rn′ , tn′ )

× A(+)
p (rn′′ , tn′′ ) · · · A(+)

p (r1′′ , t1′′ )〉. (9)

The spatiotemporal coherence and statistical properties of the
incoming photonic field encoded in this term dictate the nature
of correlation between the scattering events [32–35]. Hence,
a prior characterization of its functional nature is essential
for carrying out controlled diffractive scattering as well as
a reliable posterior data inversion. Furthermore, we defined
the electronic density correlation function composed of the
space-time dependent density operators n(r, t) expressed as

K (n)(r1′ , t1′ · · · rn′ , tn′ ; rn′′ , tn′′ · · · r1′′ , t1′′ )

= 〈n(r1′ , t1′ ) · · · n(rn′ , tn′ )

× n(rn′′ , tn′′ ) · · · n(r1′′ , t1′′ )〉. (10)

Since at this stage the electronic density operators do not
assume any ad hoc separation in terms of a noninteracting
and a correlated part, in principle, this function retains the full
set of information regarding the correlation and fluctuation
properties of the electronic degrees of freedom [36].

The expression in Eq. (6) captures, in essence, the phe-
nomenology of multiphoton diffraction by making the role of
the density correlations, the incoming photonic field proper-
ties, and the outgoing scattered field configurations explicit.
The electronic density correlations carry information regard-
ing the relative spatial distribution of scattering centers. In
principle, the scattered photonic modes have signatures origi-
nating from both independent and correlated scattering events.
The relevant information about these events is encoded in
the specific path and time ordering of the space-time argu-
ments of the correlation functions. The fact that several such
scattering events jointly contribute to the signal mode being
populated is made evident via the convolutional nature of
the expression. The role of the incoming photonic field can
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FIG. 3. Diagram describing three-photon diffractive scattering event. The highlighted patch and the abbreviations are defined as in Fig. 2.
The number of pathways in this case is eight.

be thought of as the one facilitating the manipulation of the
electronic spectral weights of the bare system. Consequently,
the incoming photonic sources and the detection schemes can
be jointly manipulated for carrying out controlled diffraction
measurements aimed at suppressing or amplifying specific
signal components.

III. RESOURCES AND FACTORIZABILITY
CONSTRAINTS FOR CORRELATED DIFFRACTION

The expression in Eq. (6) identified the role of three
correlation resources arising from the configuration of the
scattered modes [Eq. (7)], the correlation properties of the
incoming photonic modes [Eq. (9)], and the intrinsic correla-
tions of the electronic matter [Eq. (10)]. The nontrivial mode
correlations manifest themselves in terms of the nonfactor-
izability of correlation functions in terms of the lower order
ones. In this section, we systematically explore the factor-
ization properties of correlation functions corresponding to
the above-mentioned resources. In particular, we discuss the
nature of the dynamical intermode correlation in each case
and analyze, in physical terms, the assumptions required for
their factorization. For this purpose, we begin by considering
the convolutional expression of the signal detection given
in Eq. (6).

A. Role of factorizable scattered field correlation function

The observability of the signatures of correlations in the
diffractive scattering pattern depends crucially on the details
of the detection scheme. In mathematical terms, the latter in-
volves a convolution of the scattered photonic modes with the
detector response function. Typically, the detector response is
a functional of the probability of detecting photonic modes
within a specified energy window and the pixel distribution
function. The only source of statistical correlation in Eq. (6)
has been incorporated by considering the sum of combinato-
rial terms containing the products of correlation function pairs
given in Eq. (7). The expression entails the fact that the final
state interactions among the scattered modes are neglected.
The number of terms under the summation denote the number

of ways in which the outgoing scattered field modes can
be combined with the predesignated detection field modes.
The corresponding expression for the two- and three-photon
diffractive scattering events, given in Eqs. (A1) and (A2),
shows various correlation functions related to distinct detec-
tion pathways. Given a physical scenario where the transverse
coherence of the incoming photonic source is sufficiently high
and the multipoint electronic correlation function does not
trivially factorize, the spectral weights associated with these
statistical contributions solely determine the resolution of the
correlation-induced features.

B. Role of factorizable incoming photonic field
correlation function

In certain cases, the spatiotemporal coherence properties of
the incoming photonic sources become the dominant govern-
ing factor that determines the nature of correlated scattering
processes. Typically, the incoming photonic modes are scat-
tered from the distribution of scattering centers. Information
regarding the time-dependent relative spatial distribution of
the scattering centers is contained in the correlation and fluc-
tuation characteristics of the electronic densities. The latter
alters the statistics of the scattered photonic modes and gives
rise to diagnostic interference patterns at the detector. If the
temporal and transverse coherence lengths of the incoming
photonic modes are shorter than the spatiotemporal coherence
lengths associated with the internal electronic processes, the
multipoint incoming field correlation function can be rep-
resented in a factorized form without loss of generality. In
its simplest form, the factorized form can be expressed in
terms of a sum containing products of two-point correlation
functions as given below:

D̃(n)
p (r1′ , t1′ · · · rn′ , tn′ ; rn′′ · · · tn′′ , r1′′ , t1′′ )

=
∑
{w}

∏
j′, j′′

D̃(1)
p,w(r j′ , t j′ ; r j′′ , t j′′ ). (11)

Here, the terms under the summation from a combinatorial set
constructed by taking 2-tuples constituted of indices { j′, j′′}.
The product of such pairings forms a unique combinatorial
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element, denoted by w. For two- and three-photon diffractive
scattering, these elements can be easily obtained by pair-
ing vertices lying in separate branches of the corresponding

diagrams. The expressions in Eqs. (A3) and (A4) give their
analytical forms, respectively. Using Eq. (11), the operator
expectation value in Eq. (6) assumes a simpler form:

S̃(n)
out,1 =

∫
dtndrn · · ·

∫
dt1dr1

∫
drn′′dtn′′ · · ·

∫
dr1′′dt1′′

∫
drn′dtn′ · · ·

∫
dr1′dt1′

× D(n)
s (rn, tn, · · · r1, t1; r1′ , t1′ · · · rn′ , tn′ ; rn′′ , tn′′ · · · r1′′ , t1′′ )

× K (n)(r1′ , t1′ · · · rn′ , tn′ ; rn′′ , tn′′ · · · r1′′ , t1′′ )

⎧⎨
⎩

∑
{w}

∏
j′, j′′

D̃(1)
p,w(r j′ , t j′ ; r j′′ , t j′′ )

⎫⎬
⎭. (12)

In the above, due to the spatial integrations involved, the
domain of values of the incoming field correlation functions
imposes physical bounds on the nature of the electronic den-
sity correlations. Typically, the scattering events at higher
energies involve large momentum transfers between the in-
coming and scattered photons. It restricts the long-range
electronic correlations from developing and leads to shorter
coherence length scales within the observational window. If
the coherence length scales associated with the density corre-
lations are within the bound, it may lead to a separation and
conditional factorization of the multidimensional integral. The
physical argument based on the properties of the density cor-
relation functions that may allow a semiquantitative analysis
will be presented in the next section. In a separate scenario,
where the out-of-equilibrium density fluctuations are present,
the scattering events at a certain instance may be taken as
a source for the subsequent scattering events. In such cases,
scattering events would experience dynamically cumulative
effects exerted by the preceding ones. The present expression
is capable of describing such situations arising from static
and dynamic correlated density fluctuations via appropriate
modifications of the operator expectation value. In the multi-
photon interactions as well as in the cases where the photonic
source consists of several subpulses, such effects may arise.
We note that the knowledge regarding plausible factorizability
of the incoming field correlation function is also essential for
carrying out meaningful reconstruction.

C. Role of factorizable electronic density correlation function

As made explicit in Eq. (6), for a chosen incoming field
correlation function and detection mode configuration, the
features related to correlation in the diffractive scattering
signal can be interpreted by invoking the many-body nature
of the electronic modes. In fact, the resources mentioned in
the previous subsections are made relevant (irrelevant) by the
presence (absence) of electronic correlations in the underly-
ing matter. The electronic correlations relevant for structural
imaging may have various physical origins, ranging from the
Coulomb-mediated electronic interactions to phonon-induced
renormalization present in the ground state. In this analysis,
the explicit contributions due to the induced electronic current
have not been treated and corresponding scenarios involv-
ing electronic resonances, e.g., higher-order dispersive effects
and electron-electron scattering, are omitted. To explore the
conditions that may lead to the plausible factorization of the

electronic correlation functions, we focus on the previously
introduced n-point density correlation function in Eq. (10).
This expression cannot be reexpressed in terms of the lower-
order factorized counterparts due to the many-particle nature
of the function. However, exceptions may arise due to the
physically motivated assumptions leading to the separation
of space-time variables. One such condition may originate
while considering the joint spatiotemporal characteristics of
the incoming field and electronic correlation properties. To
describe such a scenario, we introduce the notion of material-
specific spatio-temporal coherence length and define the
corresponding parametric variable λ(r1 · · · rn, t1 · · · tn), which
is a function of the distribution of scattering centers in the
real space. Using the definition, without any loss of general-
ity, we may recast the expression for the density correlation
function as

K (n)(r1′ , t1′ · · · rn′ , tn′ ; rn′′ , tn′′ · · · r1′′ , t1′′ ) ≈
∑
{g}

∏
j′, j′′

K (1)
0,g (r j′ , t j′ , r j′′ , t j′′ ) exp{−λg(r j′ , t j′ , r j′′ , t j′′ )}, (13)

where K (1)
0,g (r j′ , t j′ , r j′′ , t j′′ ) is the reference density correlation

function defined in the limit where the multipoint density cor-
relation function factorizes. The associated exponent defines a
cumulant functional dependent on the coherence length-scale
parameters which, in principle, incorporates the space-time
dependent effects arising from electronic correlation. The
set of combinatorial terms is constituted by considering all
possible pairings involving the { j′, j′′} indices. A particular
choice of all such pairings from the set of 2n indices is
denoted g. Notably, the nature of the cumulant functional
is also dependent on particular elements of the combinato-
rial set. Depending on the physical scenario, the cumulant
functional can be used to define spatial and temporal scaling
properties of the electronic density correlations. Correspond-
ing scaling parameters would depend on conditions such as
the nature of itinerant electron-electron interaction-induced
correlations governing localization properties of the electronic
wave functions, the interatomic potentials, and the nature
of the disorders. The latter two features are particularly im-
portant for liquids and amorphous materials, respectively. In
the absence of significant interparticle interactions, the co-
herence lengths become comparatively short-ranged. As a
consequence, the cumulant function may decay faster than
the reference density correlation function. In such cases, we
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FIG. 4. Diagrams describing the classification of one particular diagram from the suite of two-photon diffractive scattering events for
spatially distributed scattering (indicated on the left). The scattering events that are spatially close (i.e., at length scales shorter than the
coherence length) have been denoted by the orange-colored vertex, and the ones that are spatially far apart (i.e., at length scales larger than the
coherence length) are denoted by the blue-colored vertex. These lead to different subclasses of diagrams.

would replace the cumulant function with a c number and
arrive at a partially factorized limit. In general, any phys-
ical assumption that leads to the systematic separation of
multipoint space-time variables would result in the factoriza-
tion of the electronic correlation functions in terms of their
lower-order counterparts. A diagrammatic interpretation that
may guide such an intuitive length scale separation has been
described in Fig. 4. Therein, a classification scheme based
on whether the separation between the scattering centers is
larger (shorter) than the coherence length-scale parameter is
shown to generate several subclasses of diagrams for one
particular configuration of the detection and incoming field.
Furthermore, in cases where the properties of the incoming
field correlation allows separation of the integral variables into
noninteracting space-time clusters, the multipoint electronic

correlation functions undergo factorization that is dominantly
governed by the same. It leads to the field and electronic
density correlation functions being associated with the same
set of combinatorial indices, w. Furthermore, due to the weak
presence of correlation in the incoming field, the cumulant
functional in the signal expression can be trivially set to unity,
which yields the completely factorizable limit. In that limit,
the reference density correlation function can be presented
as a sum of the products of renormalized two-point density
correlation functions. The terms that form the relevant combi-
natorial set are explicitly given in Eqs. (A5) and (A7). These
terms and the ones given in Eqs. (A6) and (A8) put together
would constitute the larger subset {g} indicated in Eq. (13).
Incorporating the assumptions stated above, we recover the
signal given in Eq. (6) in the factorized limit as

S̃(n)
out,2 =

∫
dtndrn · · ·

∫
dt1dr1

∫
drn′′dtn′′ · · ·

∫
dr1′′dt1′′

∫
drn′dtn′ · · ·

∫
dr1′dt1′

× D(n)
s (rn, tn, · · · r1, t1; r1′ , t1′ · · · rn′ , tn′ ; rn′′ , tn′′ · · · r1′′ , t1′′ )

×
⎧⎨
⎩

∑
{w}

∏
j′, j′′

K (1)
0,w(r j′ , t j′ , r j′′ , t j′′ )

∑
{w}

∏
j′, j′′

D̃(1)
p,w(r j′ , t j′ ; r j′′ , t j′′ )

⎫⎬
⎭. (14)

Even though the signal expression is evaluated in the factorized limit, we note that the correlation contributions are combinatorial
in nature. The information remains encoded into the various products of the two-point correlation functions involving electronic
densities, incoming, and scattered field operators. To make the role of the involved photonic field modes explicit, we insert the
mode decomposition of the incoming, scattered, and detected field modes in Eq. (14) and recast the signal expression as

S(n)
out,2 = (α4)n

∫
dtndrn · · ·

∫
dt1dr1

∫
drn′′dtn′′ · · ·

∫
dr1′′dt1′′

∫
drn′dtn′ · · ·

∫
dr1′dt1′

∑
{μs j ,μp j }
{ks j ,kp j }

(c̃2)n

×
εks1′ ,μs1′

· ε∗
kp1′ ,μp1′√

ωks1′ ωkp1′
· · ·

εksn′ ,μsn′
· ε∗

kpn′ ,μpn′√
ωksn′ ωkpn′

ε∗
ksn′′ ,μsn′′

· εkpn′′ ,μpn′′√
ωksn′′ ωkpn′′

· · ·
ε∗

ks1′′ ,μs1′′
· εkp1′′ ,μp1′′√

ωks1′′ ωkp1′′
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×
⎧⎨
⎩

∑
{m}

∏
j′, j′′

∏
d

〈
aks j′ ,μs j′

a†
kd ,μd

〉〈akd ,μd
a†

ks j′′ ,μs j′′

〉⎫⎬⎭
×

⎧⎨
⎩

∑
{w}

n∏
j′, j′′=1

K (1)
0,w({r j′ , t j′ , r j′′ , t j′′ })

⎫⎬
⎭ exp(−iq̃1′ · r1′ · · · − iq̃n′ · rn′ + iq̃n′′ · rn′′ · · · + iq̃1′′ · r1′′ )

×
⎧⎨
⎩

∑
{w}

n∏
j′, j′′=1

〈
a†

kp j′ ,μp j′
akp j′′ ,μp j′′

〉⎫⎬⎭ exp(+iω̃k1′ t1′ · · · + iω̃kn′ tn′ − iω̃kn′′ tn′′ · · · − iω̃k1′′ t1′′ ), (15)

where we used the notations {μs j , μp j } and {ks j , kp j } to in-
dicate the set of polarization values μs1 · · · μsn , μp1 · · ·μpn

and momentum values ks1 · · · ksn , kp1 · · · kpn lying in either
of the branches over which the summation would be carried
out. We note that the factorized correlation functions have
common exponential factors along with permutable prefac-
tors given inside the bracketed expressions. The electronic
density correlation functions are weighted by the exponential
factors originating from the incoming and outgoing modes
(i.e., e−iq̃ j ·r j ), which incorporate effective transferred photon
momentum. During the spatial integration in Eq. (15), these
position and momentum-dependent phase terms determine the
range in the real space over which the density correlation func-
tions acquire significant values. In other words, in the limit
of large transferred momentum, these weighting terms govern
the nature of the spatial integration and help identify the
localized features in the real space. The expression, although
derived in the factorized limit, still presents a generalized
scenario capable of describing both elastic and inelastic scat-
tering. The correlator involving detection and scattered mode
operators which describes the detection scheme are usually
evaluated by vacuum averaging.

D. Limiting expressions and statistical estimators

This subsection is intended to describe another set of
assumptions that are necessary for recovering the simplest
generalization of commonly used diffractive scattering signal.
For this purpose, we further develop the expression given
in Eq. (14) for a source consisting of a coherent ensemble

of pulses and assuming a simpler detection configuration.
Motivated by the argument that the signal is dominated by
the effects arising from the incoming field intensities and the
intensity correlation between the distant space-time indices
does not exert significant influence, we approximate the elec-
tronic density correlation function in Eq. (13) by keeping the
symmetrically paired indices. It leads to the form

K (n)(r1′ , t1′ · · · rn′ , tn′ ; rn′′ , tn′′ · · · r1′′ , t1′′ )

≈ K (1)
0 (r1′ , t1′ ; r1′′ , t1′′ ) · · · K (1)

0 (rn′ , tn′ ; rn′′ , tn′′ ). (16)

Moreover, we consider a situation where the bandwidth of the
incoming photonic source encompasses the energy range of
the electronic dynamics of interest. Further, assuming that the
envelope of the incoming pulses has a narrow bandwidth and
a smaller angular spread, it leads to a case where the largest
spectral weights of the field modes are around a mean wave
vector kp j and polarization μp j . It allows the replacements√

ωkp j′
ωkp j′′

≈ ωkp j
and εkp j′ ,μp j′

= εkp j′′ ,μp j′′
≈ εkp j ,μp j

. If the

incoming pulses have negligible spatial dependence compared
to the material specific coherence length scales, a replacement
of the position dependence of the field profile by its value at
r0 can be made. This leads to the factorization of the field
intensities, keeping only the terms which are commensurate
with the approximation on electronic density operators. We
also assume ωks j′

= ωks j′′
≈ ωks j

and εks j′ ,μs j′
= εks j′′ ,μs j′′

≈
εks j ,μs j

. Alongside, it is convenient to move to a new set of

time variables defined as t̄ j = (t j′′ + t j′ )/2 and τ̄ j = (t j′′ − t j′ ).
Finally, we arrive at the expression

S(n)
out,3 = (α4)n

∫
dtndrn · · ·

∫
dt1dr1

∫
drn′′ · · · dr1′′

∫
drn′ · · · dr1′ ×

∫
dt̄nd τ̄n · · · dt̄1d τ̄1

×
∑

{μs j ,μp j }
{ks j ,kp j }

c̃2n

(∣∣ε∗
ks1 ,μs1

· εkp1 ,μp1

∣∣
√

ωks1
ωkp1

· · ·
∣∣ε∗

ksn ,μsn
· εkpn ,μpn

∣∣
√

ωksn
ωkpn

)2
⎧⎨
⎩

∑
{m}

∏
d, j′, j′′

δks j′ kd δμs j′ μd δks j′′ kd δμs j′′ μd

⎫⎬
⎭

× {
K (1)

0 (r1′ , t1′ ; r1′′ , t1′′ ) · · · K (1)
0 (rn′ , tn′ ; rn′′ , tn′′ )

}
exp(−iq̃1′ · r1′ · · · − iq̃n′ · rn′ + iq̃n′′ · rn′′ · · · + iq̃1′′ · r1′′ )

× {
I (r0, τ̄1, t̄1) · · · I (r0, τ̄n, t̄n)

}
exp(−iω̃k1

τ̄1 · · · − iω̃kn
τ̄n). (17)

In the above, I (r0, τ̄ j, t̄ j ) terms denote the incoming field intensities. In general, purely classical, nonstatistical states of the
incoming field would give rise to a situation where the combinatorial set containing two-point electronic density correlation
functions are multiplied by the classical amplitude functions of the incoming field. Equation (17) is a generalization of
conclusions obtained in previous works which, for one-photon diffractive scattering, stated that the signal depends on the
electronic correlation functions. For the case of Gaussian pulse profiles, exploiting the separation of temporal variables, the
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time integrals can be recast into two independent ones and the expression can be rewritten in the following form:

S(n)
out,4 = (α4)n

∫
dtndrn · · ·

∫
dt1dr1

∫
drn′′ · · · dr1′′

∫
drn′ · · · dr1′

×
∫

dt̄nd τ̄nF1,n(r0, t̄n)F2,n(r0, τn) · · ·
∫

dt̄1d τ̄1F1,1(r0, t̄1)F2,1(r0, τ1) exp(−iω̃k1
τ̄1 · · · − iω̃kn

τ̄n)

×
∑

{μs j ,μp j }
{ks j ,kp j }

c̃2n

( |ε∗
ks1 ,μs1

· εkp1 ,μp1
|

√
ωks1

ωkp1

· · ·
|ε∗

ksn ,μsn
· εkpn ,μpn

|
√

ωksn
ωkpn

)2
⎧⎨
⎩

∑
{m}

∏
d, j′, j′′

δks j′ kd δμs j′ μd δks j′′ kd δμs j′′ μd

⎫⎬
⎭

× {
K (1)

0 (r1′ ; r1′′ ; τ̄1, t̄1) · · · K (1)
0 (rn′ ; rn′′ ; τ̄n, t̄n)

}
exp(−iq̃1′ · r1′ · · · − iq̃n′ · rn′ + iq̃n′′ · rn′′ · · · + iq̃1′′ · r1′′ ). (18)

Here, F1, j (r0, t̄ j ) = |E0(r0, t̄ j )|2 denotes the intensity of the in-
coming field and F2, j (r0, τ̄ j ) = exp (−�0, j τ̄

2
j ), where �0, j =

2 ln 2/τ 2
0, j , with τ0, j being the temporal width of the pulse. A

more constrained approximation can be invoked at this point
by factorizing the two-point density correlation functions in
terms of products of means of electronic density operators. It
allows one to rewrite the electronic density correlation func-
tion appearing in the last line in Eq. (18) in the form

K (1)
0 (r1′ ; r1′′ ; τ̄1, t̄1) · · · K (1)

0 (rn′ ; rn′′ ; τ̄n, t̄n)

≈ 〈n(r1′ , τ̄1, t̄1)〉〈n(r1′′ , τ̄1, t̄1)〉
· · · 〈n(rn′ , τ̄n, t̄n)〉〈n(rn′′ , τ̄n, t̄n)〉. (19)

Additionally, we assume that the scattered modes are as-
signed to a particular set of predesignated detection modes.

It amounts to neglecting the combinatorial nature of the cor-
responding correlation function. Moreover, if the mean of
electronic density operators does not depend significantly on
the temporal delay variables τ̄ j , we may drop the argument
in the expression and proceed to carry out the corresponding
Fourier integral. If the detected frequencies are assumed to
lie within the vicinity of the incoming frequencies, i.e., ωks ≈
ωkp , the Fourier integral of F2, j (r0, τ̄ j ) contains a frequency
domain Gaussian function that is finite over a negligibly nar-
row range of frequencies. The exponent in the latter can be
replaced by unity, i.e.,

√
π/�0, j exp(−ω̃2

k j
/�0, j ) ≈ √

π/�0, j .
Using these approximations, the expression in Eq. (18) can
be symmetrized. For an approximation that drops time de-
pendence of the means of density operators entirely, the two
temporal integrals decouple and can be carried out separately.
These hierarchical sets of approximations are presented in the
form

S(n)
out,5 =

n∏
j=1

c̃2
√

π

�0, j

∫
dt̄ jF1, j (r0, t̄ j ) × α4

∑
μs j ,μp j
ks j ,kp j

∣∣ε∗
ks j ,μs j

· εkp j ,μp j

∣∣2

ωks j
ωkp j

×
∣∣∣∣
∫

dr je
iq̃ j ·r j 〈n(r j, t̄ j )〉

∣∣∣∣
2

(20a)

≈
n∏

j=1

{
c̃2

√
π

�0, j

∫
dt̄ jF1, j (r0, t̄ j )

}
× α4

∑
μs j ,μp j
ks j ,kp j

∣∣ε∗
ks j ,μs j

· εkp j ,μp j

∣∣2

ωks j
ωkp j

×
∣∣∣∣
∫

dr je
iq̃ j ·r j 〈n(r j )〉

∣∣∣∣
2

. (20b)

Equation (20b), for the case of n = 1, yields the diffraction
signal which frequently appears in literature. That expression
may be thought of as a limit recoverable following a set of
approximations in which dressing of electronic densities by
classical driving has been assumed. Traditionally, this lim-
iting case, for the lowest order, was derived by considering
the first-order perturbation in the photon-matter interaction
under the Born approximation. Such considerations are solely
based on the arguments regarding the field-matter interaction
strength. The Born-approximation for the multiphoton case
would imply mutual independence of the scattering events.
The presumptive application of such phenomenology leads
to the factorizability of the scattering cross section in terms
of mutually independent contributions. Within our treatment,
this limit is recovered via a more rigorous and systematic

procedure. In passing, we note that a decomposition of the
average electron density in terms of contributions from atomic
centers located at Rp can be used to re-express the density
scattering factors in terms of a linear combination of contri-
butions at positions p arising from atomic density scattering
factors. Such exercises have been taken up in several papers
previously, notably in Refs. [13,25]. Following algebraic sim-
plifications, it was concluded that the contributions to the
diffractive imaging can be decomposed in terms of one- and
two-particle contributions. In the general framework adopted
in this paper, the scattering target is treated as a single object,
even it consists of several constituents, e.g., many molecules
of the same species. Therefore, we have refrained from adopt-
ing such a decomposition in terms of one- and two-particle
contributions.
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IV. CONCLUSIONS AND OUTLOOK

In this paper, we formulated a theory of multiphoton x-ray
diffraction, with a focus on the role of higher-order photonic
and electronic correlations. The correlations and fluctuations
associated with the outgoing photonic modes were shown
to contain useful and sometimes crucial information for the
electronic matter correlations. We also pointed out the physi-
cal origins of the correlation resources that may be exploited
to design controlled diffractive imaging measurements. For
specific physical situations, these correlation-generating re-
sources may act in unison to give rise to unique signal
components that contain a wealth of information regarding
the underlying material structure. These measurements may
become crucial for designing advanced structural probes for
complex correlated matter [37–40], e.g., quantum materi-
als with unique topological properties [41], strange metals
[42–44], and quantum materials and molecules in engi-
neered electromagnetic environments [45,46]. In general, the
spatially resolved dielectric function of the corresponding
material at higher energies can be probed and the correlation
signatures, should they appear close to the ground state, can be
investigated. It may provide a complementary technique to the
widely available photoemission techniques for probing long-
range electronic correlations. Specifically, we emphasized the
role of different approximations related to individual physi-
cal resources that lead to the factorization of the correlation
functions.

The role of induced electronic current was not discussed
extensively in this paper. Diffractive scattering signals in
the presence of the electronic current bear signatures of dy-
namical electronic resonances. Explicit considerations were
made in omitting the relevant term and neglecting diffractive
scattering in the presence of radiation damage. The phys-
ical processes which are sources of the radiation damage,
e.g., multiphoton ionization, electronic relaxation following
ionization, relaxation mediated x-ray fluorescence, electronic
rearrangement assisted Auger processes, electron-electron
scattering, etc. are not considered here. A diagrammatic ex-
tension to the presented theory, which systematically includes
these roles, is the topic of upcoming work. Additionally,
explicit inclusion of the nonequilibrium structural dynam-
ics and thermalization were omitted as well. This particular
assumption is well justified in the situation where the scat-
tering centers are far in space-time. In these situations, the
scattering events at one instance does not exert dynamical in-
fluence on the other. The spatiotemporal coherence properties
of the pulse are the key controlling factor that allows these
features to be revealed. Additionally, we have not presented
any explicit treatment of the retardation effects, electromag-
netic vacuum-induced corrections to the signal, and multiple
scattering effects. Dispersive corrections are often less signif-
icant away from resonance in the elastic scattering regime.
However, they may have considerable influence in altering
the intrinsic coherence length scales in certain materials. We
also omitted the final state effects which may arise from the
interaction of the scattered photons with the residual elec-
tronic polarization in the sample. This has been done by using
vacuum averaging of the detected-scattered field mode corre-
lation function. Any generalized detection process involving

time-frequency, position-momentum filtered monitoring of
the scattered modes can be easily incorporated by extending
the averaging procedure. The joint space-time-frequency-
momentum gating is typically introduced via a modulating
function [13,30,31]. It can be systematically introduced by
replacing the outgoing fields with their gated counterparts and
evaluating the field contractions. Consequently, the detector
response function is reexpressed in a generalized form prior
to performing the detector convolution. The observed signal,
following such convolution, depends on the resolution proper-
ties of the detector, as indicated by the properties of the gating
functions.

However, we note that the incorporation of dynamical path-
ways related to the above-mentioned features may restrict the
application of the factorization hierarchy. In practice, distinct
signatures that point towards the existence of the factoriz-
able limits may need the full suite of correlation analysis.
Simulation of multipoint electronic correlation functions is
a challenging task [47–50]. Rate equations involving time-
dependent electronic configurations have shown early promise
[51–53], which may provide a multiscale simulation tool-
box towards the goal in the specified parameter regime. An
extension of the rate-equation framework incorporating the
inter-configuration coherence is underway. Such an algorithm,
still numerically expensive, may provide a realistic way to
investigate the factorization hierarchy. This, in turn, would
require unique data-inversion algorithms.

In recent years, theoretical proposals concerning the usage
of unique multimode radiation sources [22] as investigative
tools in structural biology have been made. The presented
integral equation-based formulation can easily accommodate
them via the basic modification of the incoming field cor-
relation functions. Moreover, optimally tailored incoming
photonic field properties that selectively amplify specific parts
of the signal can be found by employing control algorithms
[54–58].

The inaccessibility of the phase in the intensity-detected
scattering measurements has been a persistent problem that
prevents the unambiguous inversion of the signal. It has
been addressed in the case of crystalline and noncrystalline
finite-sized samples via oversampling and iterative algorithms
[59,60]. In a set of forward-looking proposals, which may
become challenging to implement at the current state of the
art, Mukamel and others have proposed to resolve the problem
with the help of phase-sensitive coincidence-detected diffrac-
tive scattering measurements [22,61]. This proposal holds
significant promise if it can be ingeniously combined with the
advanced detector technologies. The theoretical development
in this paper requires minimal modification to incorporate and
extend the proposed approach.

One of the consequences of the monitoring fewer detec-
tion modes was that the available reconstruction algorithms
assume the instantaneous electronic densities to be the central
quantities for the posterior data inversion. It was shown that
the multipoint density correlation functions are the general-
ized quantities carrying information about the distribution of
the scattering centers. The presented paper lays the ground-
work for the identification of specific terms in the matter
correlation functions related to the relevant features in the
diffraction signals. The analysis, possibly, sets the ground for
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more accurate interpretations of the snapshot diffraction mea-
surements, reconstruction algorithms beyond density-based
heuristics [19,62–67], and provides a theoretical frame-
work for further developments pertinent to the single-particle

imaging using FEL radiation sources [26,68]. One of the
promising applications of such an elaborate description lies
in time-domain structural biology. Work in this direction is
already underway by the authors.

APPENDIX: NOTE ON THE COMBINATORIAL FACTORIZATION OF CORRELATION FUNCTIONS

In this Appendix, we present the combinatorial expressions given in the main text [i.e., Eqs. (7), (11), and (13)] for readability.
The abbreviated expressions for factorized correlation functions related to two- and three-photon diffractive scattering are
expanded here. These expressions can also be used to rationalize the pairings of vertices for the diagrams in Figs. 2 and 3.

The correlation function that indicates the combinatorial detection pathways, for n = 2, can be expressed as

D(2)
s (r1, t1, r2, t2; r1′ , t1′ , r2′ , t2′ ; r2′′ , t2′′ , r1′′ , t1′′ )

= D(1)
s (r1, t1; r1′ , t1′ )D(1),∗

s (r1, t1; r1′′ , t1′′ ) × D(1)
s (r2, t2; r2′ , t2′ )D(1),∗

s (r2, t2; r2′′ , t2′′ )

+ D(1)
s (r1, t1; r1′ , t1′ )D(1),∗

s (r1, t1; r2′′ , t2′′ ) × D(1)
s (r2, t2; r2′ , t2′ )D(1),∗

s (r2, t2; r1′′ , t1′′ )

+ D(1)
s (r1, t1; r2′ , t2′ )D(1),∗

s (r1, t1; r1′′ , t1′′ ) × D(1)
s (r2, t2; r1′ , t1′ )D(1),∗

s (r2, t2; r2′′ , t2′′ )

+ D(1)
s (r1, t1; r2′ , t2′ )D(1),∗

s (r1, t1; r2′′ , t2′′ ) × D(1)
s (r2, t2; r1′ , t1′ )D(1),∗

s (r2, t2; r1′′ , t1′′ ). (A1)

In the above, we note that the scattered modes can be paired with the detection modes in four (i.e., m = 4) distinct ways.
Similarly, for the case of n = 3 we have m = 36 terms, which can be expressed as

D(3)
s (r1, t1, r1, t1, r2, t2, r3, t3; r1′ , t1′ , r2′ , t2′ , r3′ , t3′ ; r3′′ , t3′′ , r2′′ , t2′′ , r1′′ , t1′′ )

= {
D(1)

s (r1, t1; r1′ , t1′ )D(1)
s (r2, t2; r2′ , t2′ )D(1)

s (r3, t3; r3′ , t3′ )

+ D(1)
s (r1, t1; r2′ , t2′ )D(1)

s (r2, t2; r1′ , t1′ )D(1)
s (r3, t3; r3′ , t3′ )

+ D(1)
s (r1, t1; r3′ , t3′ )D(1)

s (r2, t2; r2′ , t2′ )D(1)
s (r3, t3; r1′ , t1′ )

+ D(1)
s (r1, t1; r1′ , t1′ )D(1)

s (r2, t2; r3′ , t3′ )D(1)
s (r3, t3; r2′ , t2′ )

+ D(1)
s (r1, t1; r2′ , t2′ )D(1)

s (r2, t2; r3′ , t3′ )D(1)
s (r3, t3; r1′ , t1′ )

+ D(1)
s (r1, t1; r3′ , t3′ )D(1)

s (r2, t2; r1′ , t1′ )D(1)
s (r3, t3; r2′ , t2′ )

}
× {

D(1)∗
s (r1, t1; r1′′ , t1′′ )D(1)∗

s (r2, t2; r2′′ , t2′′ )D(1)∗
s (r3, t3; r3′′ , t3′′ )

+ D(1)∗
s (r1, t1; r2′′ , t2′′ )D(1)∗

s (r2, t2; r1′′ , t1′′ )D(1)∗
s (r3, t3; r3′′ , t3′′ )

+ D(1)∗
s (r1, t1; r3′′ , t3′′ )D(1)∗

s (r2, t2; r2′′ , t2′′ )D(1)∗
s (r3, t3; r1′′ , t1′′ )

+ D(1)∗
s (r1, t1; r1′′ , t1′′ )D(1)∗

s (r2, t2; r3′′ , t3′′ )D(1)∗
s (r3, t3; r2′′ , t2′′ )

+ D(1)∗
s (r1, t1; r2′′ , t2′′ )D(1)∗

s (r2, t2; r3′′ , t3′′ )D(1)∗
s (r3, t3; r1′′ , t1′′ )

+ D(1)∗
s (r1, t1; r3′′ , t3′′ )D(1)∗

s (r2, t2; r1′′ , t1′′ )D(1)∗
s (r3, t3; r2′′ , t2′′ )

}
. (A2)

Following an analogous exercise, the factorization of the incoming field correlation functions can be performed as well. In doing
so, only the 2-tuples arising from the pairings across branches were kept. This particular approximation neglects the effect of
extended spatiotemporal field coherence on densities. For the two-point incoming field correlation function, it yields two terms
(i.e., w = 2) given by

D̃(2)
p (r1′ , t1′ , r2′ , t2′ ; r2′′ , t2′′ , r1′′ , t1′′ ) = D̃(1)

p (r1′ , t1′ ; r1′′ , t1′′ ) × D̃(1)
p (r2′ , t2′ ; r2′′ , t2′′ ) + D̃(1)

p (r1′ , t1′ ; r2′′ , t2′′ ) × D̃(1)
p (r2′ , t2′ ; r1′′ , t1′′ ).

(A3)

A similar exercise for the three-point incoming field correlation function yields six terms (i.e., w = 6). In doing so, we have
omitted any intermediate correlation functions of next higher-order, i.e., four-point ones. The expressions are given by

D̃(3)
p (r1′ , t1′ , r2′ , t2′ , r3′ , t3′ ; r3′′ , t3′′ , r2′′ , t2′′ , r1′′ , t1′′ )

= D̃(1)
p (r1′ , t1′ ; r1′′ , t1′′ )D̃(1)

p (r2′ , t2′ ; r2′′ , t2′′ )D̃(1)
p (r3′ , t3′ ; r3′′ , t3′′ )

+ D̃(1)
p (r1′ , t1′ ; r2′′ , t2′′ )D̃(1)

p (r2′ , t2′ ; r1′′ , t1′′ )D̃(1)
p (r3′ , t3′ ; r3′′ , t3′′ )

+ D̃(1)
p (r1′ , t1′ ; r3′′ , t3′′ )D̃(1)

p (r2′ , t2′ ; r2′′ , t2′′ )D̃(1)
p (r3′ , t3′ ; r1′′ , t1′′ )
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+ D̃(1)
p (r1′ , t1′ ; r1′′ , t1′′ )D̃(1)

p (r2′ , t2′ ; r3′′ , t3′′ )D̃(1)
p (r3′ , t3′ ; r2′′ , t2′′ )

+ D̃(1)
p (r1′ , t1′ ; r2′′ , t2′′ )D̃(1)

p (r2′ , t2′ ; r3′′ , t3′′ )D̃(1)
p (r3′ , t3′ ; r1′′ , t1′′ )

+ D̃(1)
p (r1′ , t1′ ; r3′′ , t3′′ )D̃(1)

p (r2′ , t2′ ; r1′′ , t1′′ )D̃(1)
p (r3′ , t3′ ; r2′′ , t2′′ ). (A4)

The assumption that the incoming field properties dominantly dictates the factorization of the electronic density correlation
functions leads to a factorization rule that is identical to the previous pairings. Consequently, the number of combinatorial terms
being generated is also the same. For n = 2, four-point density correlation functions can be factorized as follows:

K (2)
0 (r1′ , t1′ , r2′ , t2′ ; r2′′ , t2′′ , r1′′ , t1′′ ) = K (1)

0 (r1′ , t1′ ; r1′′ , t1′′ )K (1)
0 (r2′ , t2′ ; r2′′ , t2′′ ) + K (1)

0 (r1′ , t1′ ; r2′′ , t2′′ )K (1)
0 (r2′ , t2′ ; r1′′ , t1′′ ).

(A5)

Here, the four-point density correlation functions yielded two distinct terms. The neglected terms can be given as

K (2)
0,aux(r1′ , t1′ , r2′ , t2′ ; r2′′ , t2′′ , r1′′ , t1′′ ) = K (1)

0 (r1′ , t1′ ; r1′′ , t1′′ )K (1)
0 (r2′ , t2′ ; r2′′ , t2′′ ). (A6)

Putting these two sets together yields g = 3 terms. A more involved situation is offered by the case n = 3, which yields the
following set containing six terms, as expected. They are given by

K (3)
0 (r1′ , t1′ , r2′ , t2′ , r3′ , t3′ ; r3′′ , t3′′ , r2′′ , t2′′ , r1′′ , t1′′ )

= K (1)
0 (r1′ , t1′ ; r1′′ , t1′′ )K (1)

0 (r2′ , t2′ ; r2′′ , t2′′ )K (1)
0 (r3′ , t3′ ; r3′′ , t3′′ )

+ K (1)
0 (r1′ , t1′ ; r2′′ , t2′′ )K (1)

0 (r2′ , t2′ ; r1′′ , t1′′ )K (1)
0 (r3′ , t3′ ; r3′′ , t3′′ )

+ K (1)
0 (r1′ , t1′ ; r3′′ , t3′′ )K (1)

0 (r2′ , t2′ ; r2′′ , t2′′ )K (1)
0 (r3′ , t3′ ; r1′′ , t1′′ )

+ K (1)
0 (r1′ , t1′ ; r1′′ , t1′′ )K (1)

0 (r2′ , t2′ ; r3′′ , t3′′ )K (1)
0 (r3′ , t3′ ; r2′′ , t2′′ )

+ K (1)
0 (r1′ , t1′ ; r2′′ , t2′′ )K (1)

0 (r2′ , t2′ ; r3′′ , t3′′ )K (1)
0 (r3′ , t3′ ; r1′′ , t1′′ )

+ K (1)
0 (r1′ , t1′ ; r3′′ , t3′′ )K (1)

0 (r2′ , t2′ ; r1′′ , t1′′ )K (1)
0 (r3′ , t3′ ; r2′′ , t2′′ ). (A7)

The neglected terms in this case are given by

K (3)
0,aux(r1′ , t1′ , r2′ , t2′ , r3′ , t3′ ; r3′′ , t3′′ , r2′′ , t2′′ , r1′′ , t1′′ )

= K (1)
0 (r1′ , t1′ ; r1′′ , t1′′ )K (1)

0 (r2′ , t2′ ; r3′ , t3′ )K (1)
0 (r2′′ , t2′′ ; r3′′ , t3′′ )

× K (1)
0 (r2′ , t2′ ; r2′′ , t2′′ )K (1)

0 (r1′ , t1′ ; r3′ , t3′ )K (1)
0 (r1′′ , t1′′ ; r3′′ , t3′′ )

× K (1)
0 (r3′ , t3′ ; r3′′ , t3′′ )K (1)

0 (r2′ , t2′ ; r3′ , t3′ )K (1)
0 (r2′′ , t2′′ ; r3′′ , t3′′ )

× K (1)
0 (r1′ , t1′ ; r2′′ , t2′′ )K (1)

0 (r2′ , t2′ ; r3′ , t3′ )K (1)
0 (r1′′ , t1′′ ; r3′′ , t3′′ )

× K (1)
0 (r1′ , t1′ ; r3′′ , t3′′ )K (1)

0 (r2′ , t2′ ; r3′ , t3′ )K (1)
0 (r1′′ , t1′′ ; r2′′ , t2′′ )

× K (1)
0 (r2′ , t2′ ; r1′′ , t1′′ )K (1)

0 (r1′ , t1′ ; r3′ , t3′ )K (1)
0 (r2′′ , t2′′ ; r3′′ , t3′′ )

× K (1)
0 (r2′ , t2′ ; r3′′ , t3′′ )K (1)

0 (r1′ , t1′ ; r3′ , t3′ )K (1)
0 (r2′′ , t2′′ ; r1′′ , t1′′ )

× K (1)
0 (r2′ , t2′ ; r3′′ , t3′′ )K (1)

0 (r2′ , t2′ ; r1′ , t1′ )K (1)
0 (r2′′ , t2′′ ; r1′′ , t1′′ )

× K (1)
0 (r3′ , t3′ ; r2′′ , t2′′ )K (1)

0 (r2′ , t2′ ; r1′ , t1′ )K (1)
0 (r1′′ , t1′′ ; r3′′ , t3′′ ). (A8)

Similar to the previous case, terms belonging to these two sets can be collected together to yield a total number of g = 15
combinatorial terms. For each of these cases, the parameters defining the intrinsic spatiotemporal coherence length scale along
with the coherence properties of the incoming field is expected to provide the physical basis for the factorization.
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