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Unified description of the Aharonov-Bohm effect in isotropic multiband electronic systems

Róbert Németh and József Cserti *

Department of Physics of Complex Systems, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary

(Received 16 February 2023; accepted 4 April 2023; published 6 June 2023)

We present a unified treatment of the Aharonov-Bohm (AB) effect for two-dimensional multiband electronic
systems possessing isotropic band structures. We propose an integral representation of the AB scattering state
of an electron scattered by an infinitely thin solenoid. Moreover, we derive the asymptotic form of the AB
scattering state and obtain the differential cross section from that. We found a remarkable result, namely, that
this cross section is the same for all isotropic systems and agrees with that obtained first by Aharonov and Bohm
for spinless free-particle systems. To demonstrate the generality of our theory, we consider several specific
multiband systems relevant to condensed matter physics.
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I. INTRODUCTION

Aharonov and Bohm in their seminal paper [1] calcu-
lated how the incident plane wave of a spinless free particle
is scattered by an infinitely thin magnetic solenoid and the
differential scattering cross section. The first positive obser-
vations of this quantum effect were reported by Chambers
[2], Tonomura et al. [3], Web et al. [4], and Ensslin and
co-workers [5–7]. For a review, see Olariu and Popescu’s
work [8]. Further theoretical work [9] clarified the subtle issue
regarding the scattering amplitude in the forward direction.
The concept of whirling states introduced by Berry [10] has
been proved to be an alternative procedure for constructing
the Aharonov-Bohm (AB) scattering state.

The scattering of a relativistic fermion off a vortex in
2 + 1 dimensions as an extension of the original work [1] was
studied first by Alford and Wilczek [11] and subsequently
discussed in Refs. [12–16]. Furthermore, the whirling-state
idea introduced by Berry [10] has been generalized to the rela-
tivistic regime by Girotti and Romero [17]. More recently, the
Aharonov-Bohm interferences in a usual two-slit-like setup
have been studied in single-layer graphene [18–23] and in bi-
layer graphene [24]. The conventional AB scattering problem
has also been studied recently in graphene [25,26]. Magnetic
scattering of Dirac fermions in topological insulators and
graphene was investigated in Ref. [27].

In the present work, we extend the Aharonov-Bohm
scattering problem to a broader class of Hamiltonians. In par-
ticular, for isotropic multiband Hamiltonians, we present an
integral representation of the AB scattering state in which the
electron is scattered by an idealized, infinitely thin solenoid
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carrying a flux �. We will show rigorously that our proposed
AB scattering state constructed from the energy eigenstates
in the absence of a magnetic field satisfies the Schrödinger
equation of the electron scattering off a flux line. Moreover,
from the asymptotic form of the AB scattering state, we found
a remarkable result for the differential cross section; namely,
it is the same for all isotropic multiband systems. Note that
as a special case of our work, Alford and Wilczek found the
same results for Dirac electrons [11].

II. CONSTRUCTION OF THE SCATTERING STATES

The most general Hilbert space of the systems we study
in this work takes the form H = L2(R2,C) ⊗ CD consisting
of the two-dimensional spatial and D-dimensional internal
degrees of freedom, for instance, spin or isospin. Furthermore,
we limit ourselves to studying Hamiltonians satisfying the
following requirements:

Polynomicity. The Hamiltonian of the system is given as a
polynomial of the momentum operators p̂x and p̂y with degree
(I + J ):

Ĥ =
I∑

i=0

J∑
j=0

p̂i
x p̂ j

y ⊗ T̂i j, (1)

where T̂i j is a D × D Hermitian matrix for each i, j. A
few well-known examples of such Hamiltonians are listed in
Table I.

Isotropy. In the absence of a magnetic field the eigen-
function of Hamiltonian (1) as a plane-wave solution of the
Schrödinger equation with energy Es(k) propagating in the
direction k takes the form

�s,k(r) = eikr us(k) = eikr cos(ϕ−ϑ ) us(k, ϑ ), (2)

where k = k[cos ϑ, sin ϑ] is the wave number in polar co-
ordinates (k, ϑ ), r = r[cos ϕ, sin ϕ] is the position in polar
coordinates (r, ϕ), us(k) is a D-component vector, and s =
1, . . . , D labels the energy band. Here we assume that the
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TABLE I. The Hamiltonian of a few systems and the partial wave function Us,k,m in magnetic field obtained from Eq. (5). Here D is the
number of internal degrees of freedom, Î is a 2 × 2 identity matrix, σ̂x and σ̂y are the Pauli matrices, and τ̂x and τ̂y are the corresponding spin-1
matrices. More details of these systems can be found in the references listed in the last column.

System D Ĥ us(k, ϑ ) Us,k,m(r, ϕ) for s = 1 Refs.

Two-dimensional electron gas 1
p̂2

x+ p̂2
y

2M 1 J|m+α|(kr)eimϕ [34]

Monolayer graphene 2 v( p̂x ⊗ σ̂x + p̂y ⊗ σ̂y ) 1√
2

(
1

s eiϑ

)
eimϕ√

2

(
J|m+α|(kr)

iε(m + α)J|m+α|+ε(m+α) (kr)eiϕ

)
[35–38]

Bilayer graphene 2 − ( p̂2
x− p̂2

y )⊗σ̂x+2 p̂x p̂y⊗σ̂y

2M
1√
2

(
1

−s e2iϑ

)
eimϕ√

2

(
J|m+α|(kr)

J|m+α|+2ε(m+α) (kr) e2iϕ

)
[39,40]

Rashba system 2
p̂2

x+ p̂2
y

2M ⊗ Î + v( p̂y ⊗ σ̂x − p̂x ⊗ σ̂y ) 1√
2

(
1

−i s eiϑ

)
eimϕ√

2

(
J|m+α|(kr)

ε(m + α)J|m+α|+ε(m+α) (kr)eiϕ

)
[41–44]

Pseudospin-1 system 3 v( p̂x ⊗ τ̂x + p̂y ⊗ τ̂y ) 1
2

(
e−iϑ√

2 s
eiϑ

)
eimϕ

2i

(
ε(m + α)J|m+α|−ε(m+α) (kr)e−iϕ√

2 i J|m+α|(kr)
ε(m + α)J|m+α|+ε(m+α) (kr)eiϕ

)
[45–48]

dispersion relation Es(k) for all bands s is isotropic; i.e., it
depends only on the magnitude |k|.

Regularity. At the flux line, the regularity of at least one
component of the AB scattering state is required. This is a
purely mathematical assumption which, however, has been
physically justified in several special cases [11–14,28]. Relax-
ation of this requirement might also become possible in future
generalizations of our method.

We should emphasize that the above constraints on the
multiband systems still allow a very wide class of Hamiltonian
operators.

For a flux line with magnetic flux � along the z axis, the
vector potential in symmetric gauge reads

A(x, y) = �

2π (x2 + y2)

(−y
x

)
. (3)

Thus, Hamiltonian (1) must be modified such that the momen-
tum operators p̂x and p̂y are replaced by 
̂x = p̂x + eAx(x̂, ŷ)
and 
̂y = p̂y + eAy(x̂, ŷ) (here e > 0 is the magnitude of the
electron charge):

Ĥ =
I∑

i=0

J∑
j=0


̂i
x
̂

j
y ⊗ T̂i j . (4)

To obtain the general solution of an incident electron scat-
tered by the flux tube in multiband systems we construct it
from plane-wave solution (2) propagating along the direction
ϑ , in the following way:

�
(+)
s,k (r, ϕ) =

∞∑
m=−∞

ε(m + α)

2π

×
∫

�(m+α,ϕ)
dξ �s,K (r, ϕ)eim(ξ−ϑ )−iα(ϕ−ξ ), (5)

where α = �/�0 and �0 = h/e is the flux quantum, while
ε(x) is the sign function defined as ε(x) = 1 if x � 0 and
ε(x) = −1 if x < 0. Furthermore, the wave number in the
plane wave �s,k is replaced by a complex wave number as
k → K = k[cos ξ, sin ξ ], where ξ is defined in the complex
plane. The integration contours �(m + α, ϕ) are curves on the
complex plane depending on the sign of m + α and the value

of the real space polar angle ϕ:

�(m + α, ϕ) =
{
�+(ϕ) if m + α � 0
�−(ϕ) if m + α < 0.

(6)

The curves �+(ϕ) and �−(ϕ) further depend on the sign of
the radial component vs,k of the group velocity

vs = 1

h̄

∂Es

∂k
(7)

in k space.
In particular, if vs,k > 0, the curve �+(ϕ) is ∪ shaped,

running from ξ = −5π/2 + ϕ + i∞ to ξ = −π/2 + ϕ + i∞
with Re(ξ ) > 0, and the curve �−(ϕ) is ∩ shaped, run-
ning from ξ = −3π/2 + ϕ − i∞ to ξ = π/2 + ϕ − i∞ with
Re(ξ ) < 0. However, if vs,k < 0, the curve �+(ϕ) must be
shifted by 2π along the real axis compared to the previous
definition. Furthermore, if vs,k = 0, the AB scattering state
has no physical meaning as the corresponding plane waves
have constant zero current density indicating that they do not
propagate. Such curves are shown in Fig. 1. Note that these
“∪-shaped” (�+(ϕ)) and “∩-shaped” (�−(ϕ)) contours stem
from one of the integral representations of the Bessel function
[29].

The wave function �
(+)
s,k proposed in Eq. (5) must satisfy

the following conditions:
(1) It must be well defined (convergent and single valued).
(2) It must be an eigenvector of Hamiltonian (4) with

eigenvalue Es(k).
(3) Its asymptotic form (as r → ∞) is the sum of an

incoming plane wave �in
s,k and an outgoing cylindrical wave

�out
s,k .

Our detailed proof of these conditions is presented in Ap-
pendix A. In summary, one of the central results is the exact
solution �

(+)
s,k of the scattering by a flux line given by Eq. (5)

constructed from the plane-wave solution �s,k in the absence
of a magnetic field given by Eq. (2). In reverse, for α = 0 the
scattering state is reduced to the plane-wave solution.

III. THE DIFFERENTIAL SCATTERING CROSS SECTION

Similarly to the work by Aharonov and Bohm [1], we
now calculate the differential cross section based on condi-
tion (iii) mentioned above. We obtain the asymptotic form
of the wave function given by Eq. (5) using the saddle-point
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FIG. 1. An illustration of the contours �+(ϕ) and �−(ϕ) in the
complex ξ plane for vs,k (k) > 0 (top) and vs,k (k) < 0 (bottom), and
ϕ = π/3.

approximation [30,31]. In particular, we find that the incom-
ing wave propagating in the direction k = k[cos ϑ, sin ϑ] and
the outgoing wave are

�in
s,k(r, ϕ) = eikr cos(ϕ−ϑ )e−iα(ϕ−ϑ+π )us(k, ϑ ), (8a)

�out
s,k (r, ϕ) = F (ϕ − ϑ )√

r
e±ikrus(k, ϕ), (8b)

where the sign ± corresponds to whether the radial group ve-
locity is positive or negative, respectively, while the scattering
amplitude F for positive radial group velocity, i.e., vs,k > 0, is
given by

F (ϕ − ϑ ) = sin(απ )e−iαπ ei(�α	+ 1
2 )(ϑ−ϕ)

√
2π ik sin

(
ϕ−ϑ

2

) . (8c)

Similarly, we calculated the scattering amplitude for negative
radial group velocity, i.e., for vs,k < 0. The detailed derivation
of Eq. (8) is in Appendix A.

Finally, for our multiband systems, the differential cross
section can be written as

σAB(ϕ) ≡ dσ

dϕ
(s, k; ϕ) = lim

r→∞ r

∣∣ jout
s,k (r, ϕ)

∣∣∣∣ jin
s,k(r, ϕ)

∣∣ , (9)

where jin
s,k and jout

s,k are the particle current densities corre-
sponding to �in

s,k and �out
s,k given by Eq. (8), respectively,

derived from the Schrödinger equation. Then, after some
straightforward algebra detailed in Appendix B, we obtain

jin
s,k(r, ϕ) = vs(k, ϑ ), (10a)

jout
s,k (r, ϕ) = |F (ϕ − ϑ )|2

r
vs(k, ϕ) + O(r−3/2). (10b)

Using Eqs. (9) and (10), the O(r−3/2) terms vanish in the limit
r → ∞, and the differential scattering cross section becomes

σAB(ϕ) = |F (ϕ − ϑ )|2 = sin2(απ )

2πk sin2 [(ϕ − ϑ )/2]
. (11)

This is the famous result obtained first by Aharonov and Bohm
[1] for spinless charged particles (in their case, ϑ = π ). How-
ever, we should emphasize that our result is a more general
one, valid for all isotropic systems, and independent of the
band label s as well.

IV. APPLICATIONS

Now, using our general integral representation of the AB
scattering state given by Eq. (5), we calculate explicitly the
wave function for a few well-known systems listed in Table I.
Actually, using Eq. (5) we find that the AB scattering state can
be written in a compact form as

�
(+)
s,k (r, ϕ) =

∞∑
m=−∞

(−i)|m+α|eim(π−ϑ )Us,k,m(r, ϕ), (12)

where the D-component partial wave function Us,k,m for dif-
ferent systems is listed in Table I. For details see Appendix C,
where derivations and visualization of the scattering states are
presented. Note that these wave functions are indeed solutions
of the Schrödinger equation corresponding to Hamiltonian
(4). Moreover, we should stress that one could apply our
approach to other isotropic multiband systems not listed in
Table I. Even for experimentally relevant situations such as
strained or gapped systems, the scattering cross section does
not change provided that the dispersion relation remains
isotropic.

V. CONCLUSION

In summary, we proposed an integral representation of the
scattering state given by Eq. (5) for the Aharonov-Bohm scat-
tering problem in isotropic multiband systems. We provided
rigorous proofs that this AB scattering state indeed satisfies
the Schrödinger equation. We also showed that for a system
of spinless free particles our AB scattering state reduces to
the form obtained first by Aharonov and Bohm. Moreover, we
found a remarkable result; namely, the differential scattering
cross section is the same for all isotropic multiband systems.
As an application, for a few specific isotropic multiband sys-
tems, we carried out the complex integrals given in Eq. (5).
In Appendix C, we visualized the wave functions for the
systems listed in Table I in a similar way as in Ref. [32]. We
believe that our work provides a better insight into the famous
Aharonov-Bohm effect for multiband systems, and could be
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experimentally applicable, for example, to strained or gapped
graphenes, or to tomographic imaging [33]. Finally, the exten-
sion of our integral representation of the AB scattering state to
anisotropic multiband systems, or to the case of a finite radius
solenoid, is a further relevant research direction.
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APPENDIX A: CONSTRUCTION
OF THE SCATTERING STATE

In the following section, we give rigorous mathematical
proofs that conditions (i), (ii), and (iii) indeed hold for the
integral representation given in Eq. (5). All of the proceeding
calculations are results of the authors.

1. Condition (i): Convergence and single-valuedness

Although the trial solution given in Eq. (5) might seem
well defined, in fact there are a couple of details that need
to be addressed. First of all, the plane-wave solution �s,k is
not unique. Namely, isotropy has an effect on the momen-
tum space eigenvectors us(k): they transform according to
the unitary maps generated by the inner angular momentum
operators,

Ŝz = h̄

2

⎛
⎜⎜⎝

D − 1 0 . . . 0
0 D − 3 . . . 0
...

...
. . .

...

0 0 . . . 1 − D

⎞
⎟⎟⎠. (A1)

Additionally, we can choose the phase of the eigenvector
freely at every point; that is, we have a gauge freedom. These
two effects can be combined to obtain

us(k, ϑ ) = eiχ (ϑ ) exp

(
− i

h̄
ϑ Ŝz

)
us(k, 0) (A2)

for all ϑ ∈ [0, 2π ).
However, the regularity requirement postulated in Sec. II

reduces this freedom to a certain subset. More concretely,
if the ath component (1 � a � D) is meant to be regular, a
correct gauge choice is

χ (ϑ ) = (D + 1 − 2a)ϑ

2
. (A3)

In other words, the ath component of the vectors us(k, ϑ )
must be independent of the polar angle ϑ . The proof of regu-
larity is not trivial even in this case; thereby it is given in detail
below.

Lemma. The gauge choice defined in Eq. (A3) is equivalent
to the ath component of the momentum space eigenvectors
being independent of the polar angle ϑ .

Proof. Assume first that a = 1. Then substituting Eqs. (A1)
and (A3) into Eq. (A2), we can obtain the explicit form of the
transformation of momentum space eigenvectors:

us(k, ϑ ) =

⎛
⎜⎜⎜⎝

1 0 . . . 0
0 eiϑ . . . 0
...

...
. . .

...

0 0 . . . ei(D−1)ϑ

⎞
⎟⎟⎟⎠us(k, 0). (A4)

We can clearly see that the first component is invariant under
the transformation; thereby it cannot depend on ϑ . If a �= 1
then the above matrix is modified such that the ath diagonal
element is unity; in that case, the ath component is indepen-
dent of ϑ . This completes the proof. �

Proposition. If the ath component of the momentum space
eigenvectors is independent of ϑ then the ath component of
the scattering state defined in Eq. (5) is regular at the origin.

Proof. Using the assumption of the proposition, the ath
component of the momentum space eigenvectors us(k) can be
chosen as one, without loss of generality. Therefore, the ath
component of the scattering state, based on Eq. (5), takes the
form

�
(+)
s,k;a(r, ϕ) =

∞∑
m=−∞

ε(m + α)

2π

×
∫

�(m+α,ϕ)
dξ eikr cos(ϑ−ξ )eim(ξ−ϑ )−iα(ϕ−ξ ),

(A5)

and evaluation at the origin r = 0 results in

�
(+)
s,k;a(0, ϕ) =

∞∑
m=−∞

ε(m + α)e−imϑ−iαϕ

2π

×
∫

�(m+α,ϕ)
dξ ei(m+α)ξ . (A6)

The contour integral appearing in the above expression can
be easily calculated, but we ought to separate three cases. If
m + α = 0, then the integrand is unity and the contour �+(ϕ)
depicted in Fig. 1 can be deformed into a -shaped curve
such that its segments are either parallel to the imaginary axis
or running on the real axis. The contributions of the former
vanish due to periodicity and the remaining part gives 2π .
If m + α > 0, then the integrand is a holomorphic function
approaching zero towards Re(ξ ) + i∞ while the curve �+(ϕ)
can be continuously shifted upwards by an arbitrary imaginary
unit. Due to Cauchy’s theorem [31], these together imply that
the value of the integral in question must be zero. A similar
argument holds for m + α < 0. Altogether we can see that for
α ∈ Z only one term does not vanish in the series,

�
(+)
s,k;a(0, ϕ) = eiα(ϑ−ϕ), (A7)

whereas for α /∈ Z every term vanishes:

�
(+)
s,k;a(0, ϕ) = 0. (A8)
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In either case, the scattering state is regular, which completes
the proof. �

The next nontrivial issue regarding the scattering state is
whether the contour integrals and the function series appear-
ing in its definition are convergent for all (r, ϕ). The proof
can be given for a general multiband electronic system; this is
presented below separately for α ∈ Z and α /∈ Z. The former
case is simpler and thereby given first.

Proposition. The scattering states defined in Eq. (5) are
convergent for α ∈ Z.

Proof. With the constraint of α ∈ Z, the integrand in the
trial solution becomes periodic along the real axis with a
period of 2π . Let us deform the contours �±(ϕ) into -shaped
and �-shaped curves such that its segments are either parallel
to the imaginary axis or running on the real axis. The contribu-
tions of the former vanish due to periodicity and the following
expression remains:

�
(+)
s,k (r, ϕ) =

∞∑
m=−∞

e−imϑ

2π

∫ π

−π

dξ �s,K (r, ϕ)eimξ , (A9)

where K = k[cos ξ, sin ξ ] as introduced in Sec. II. The right-
hand side is manifestly the Fourier expansion of the plane-
wave solution with respect to the variable −ξ ; that is, for the
α = 0 case,

�
(+)
s,k (r, ϕ) = �s,k(r, ϕ). (A10)

The more general case of α ∈ Z can be retraced to the above
result by performing the variable change m → m + α. In this
case, the scattering state is a plane wave multiplied by the
phase factor given in Eq. (A7). �

Next, we can turn to the case of α /∈ Z. To this end, recall
the partial waves Us,k,m introduced in Eq. (12) by an implicit
definition:

�
(+)
s,k (r, ϕ) =

∞∑
m=−∞

(−i)|m+α|eim(π−ϑ )Us,k,m(r, ϕ). (A11)

Lemma. The partial waves defined in Eq. (A11) are conver-
gent for α /∈ Z.

Proof. By definition, the partial waves can be written as

Us,k,m(r, ϕ) = ε(m + α)i|m+α|e−imπ

2π

×
∫

�(m+α,ϕ)
dξ �s,K (r, ϕ)ei(m+α)ξ−iαϕ. (A12)

Since the integrand appearing in the above expression is
a holomorphic function for each component, it suffices to
prove that the integral is finite. To this end, consider first
the case with m + α � 0 and vs,k (k) > 0 when the contour
�(m + α, ϕ) becomes the �+(ϕ) depicted in Fig. 1. The in-
tegration contour can then be deformed to a -shaped curve
again separating Eq. (A12) into three integrals I (1)

s,k,m(r, ϕ),

I (2)
s,k,m(r, ϕ), and I (3)

s,k,m(r, ϕ) as

I (1)
s,k,m(r, ϕ) = (−i)m−αe−iαϕ

2π

×
∫ −5π/2+ϕ+iε

−5π/2+ϕ+i∞
dξ �s,K (r, ϕ)ei(m+α)ξ ,

(A13a)

I (2)
s,k,m(r, ϕ) = (−i)m−αe−iαϕ

2π

×
∫ −π/2+ϕ+iε

−5π/2+ϕ+iε
dξ �s,K (r, ϕ)ei(m+α)ξ ,

(A13b)

I (3)
s,k,m(r, ϕ) = (−i)m−αe−iαϕ

2π

×
∫ −π/2+ϕ+i∞

−π/2+ϕ+iε
dξ �s,K (r, ϕ)ei(m+α)ξ .

(A13c)

Here ε ∈ R+ is an arbitrary positive real number. The second
integral is manifestly finite as its domain is a compact set;
the first and the third need further investigation. Consider the
plane-wave term in the integrand evaluated on one of these
segments. With the gauge choice given in Eq. (A3), the bth
component is (up to a constant multiplier) given as

�s,K;b(r, ϕ) = eikr cos(ϕ−ξ )+i(b−a)ξ

= (−i)b−aei(b−a)ϕe−kr sinh [Im(ξ )]+(a−b)Im(ξ ).

(A14)

For any kr ∈ R+ and a, b ∈ Z, the function (a − b)Im(ξ )
is linearly increasing whereas the function kr sinh[Im(ξ )]
is exponentially increasing as Im(ξ ) → ∞. Therefore,
above a certain limiting point Im(ξ ) = δ, the real term
e−kr sinh[Im(ξ )]+(a−b)Im(ξ ) becomes smaller than one. Choosing
ε > δ, the bth component of the integrals in Eqs. (A13a) and
(A13c) have the following upper bound:∣∣I (1)

s,k,m;b(r, ϕ)
∣∣ � 1

2π

∫ ∞

ε

d Im(ξ ) e−(m+α)Im(ξ ) = e−(m+α)ε

2(m + α)π
,

(A15a)∣∣I (3)
s,k,m;b(r, ϕ)

∣∣ � 1

2π

∫ ∞

ε

d Im(ξ ) e−(m+α)Im(ξ ) = e−(m+α)ε

2(m + α)π
.

(A15b)

This is clearly finite for any m ∈ Z whenever α /∈ Z. In sum-
mary, all three terms in Eqs. (A13a), (A13b), and (A13c), and
thereby the complete integral in Eq. (A12), are convergent.
The generalization of the previous calculations to the cases
with m + α < 0 or vs,k (k) < 0 is straightforward. This com-
pletes the proof. �

Proposition. The scattering states defined in Eq. (5) are
convergent for α /∈ Z.

Proof. A well-known theorem of complex analysis [31]
states that a series of contour integrals

I =
∞∑

m=0

∫
�

dz fm(z) (A16)

023154-5



RÓBERT NÉMETH AND JÓZSEF CSERTI PHYSICAL REVIEW RESEARCH 5, 023154 (2023)

exists and summation is interchangeable with integration; that
is,

I =
∫

�

dz
∞∑

m=0

fm(z), (A17)

if the integrand of the latter expression is uniformly con-
vergent and its limit is integrable. Consequently, the proof
of our proposition requires the verification of the aforemen-
tioned properties. To this end, separate the summation over m
into two parts corresponding to m + α � 0 and m + α < 0.
The resulting function series contain only integrals along the
curves �+(ϕ) and �−(ϕ), respectively. These contours are
such that either Imξ > 0 or Imξ < 0 is satisfied along them.
Then the following function series appear in the integrands:

Im(ξ ) > 0 :
∞∑

m=−�α	
eim(ξ−ϑ ), (A18a)

Im(ξ ) < 0 :
−�α	−1∑
m=−∞

eim(ξ−ϑ ). (A18b)

These are simple geometric series that are uniformly con-
vergent owing to the relation Im(ϑ ) = 0. Substituting the
well-known formula of the limit leads to the alternative form
of the scattering states:

�
(+)
s,k (r, ϕ)

= i

4π

∫
�+(ϕ)∪�−(ϕ)

dξ �s,K (r, ϕ)
eiα(ξ−ϕ)ei(�α	+ 1

2 )(ϑ−ξ )

sin
(

ξ−ϑ

2

) ,

(A19)

where �·	 denotes the floor function. Note that the integral is
taken along the concatenation of contours �+(ϕ) and �−(ϕ),
which can also be regarded as the sum of two separate in-
tegrals along the aforementioned contours. As a final step,
we need to show that these integrals are finite. Consider
first the integral over �+(ϕ) and assume that vs,k (k) > 0.
As before, the integration contour can then be deformed to
a -shaped curve separating Eq. (A19) into three integrals
I (1)
s,k (r, ϕ), I (2)

s,k (r, ϕ), and I (3)
s,k (r, ϕ):

I (1)
s,k (r, ϕ) = ie−iαϕei(�α	+ 1

2 )ϑ

4π

∫ −5π/2+ϕ+iε

−5π/2+ϕ+i∞
dξ

×�s,K (r, ϕ)
ei({α}− 1

2 )ξ

sin
(

ξ−ϑ

2

) , (A20a)

I (2)
s,k (r, ϕ) = ie−iαϕei(�α	+ 1

2 )ϑ

4π

∫ −π/2+ϕ+iε

−5π/2+ϕ+iε
dξ

×�s,K (r, ϕ)
ei({α}− 1

2 )ξ

sin
(

ξ−ϑ

2

) , (A20b)

I (3)
s,k (r, ϕ) = ie−iαϕei(�α	+ 1

2 )ϑ

4π

∫ −π/2+ϕ+i∞

−π/2+ϕ+iε
dξ

×�s,K (r, ϕ)
ei({α}− 1

2 )ξ

sin
(

ξ−ϑ

2

) . (A20c)

Here ε ∈ R+ is an arbitrary positive real number. The second
integral is manifestly finite as its domain is a compact set; the
first and the third need further investigation. Choosing ε >

log(2)/2, consider the following estimation on one of these
segments:

Im(ξ ) � ε :

∣∣∣∣sin

(
ξ − ϑ

2

)∣∣∣∣ � sinh

[
Im(ξ )

2

]

� 1

4
exp

[
Im(ξ )

2

]
. (A21)

Using this and the expression for the plane-wave term ex-
pounded in Eq. (A14), an upper bound for the bth component
of the integrals in Eqs. (A20a) and (A20c), while choosing
ε > max[δ, log(2)/2], reads

∣∣I (1)
s,k;b(r, ϕ)

∣∣ � 1

π

∫ ∞

ε

d Im(ξ ) e−{α}Im(ξ ) = e−{α}ε

{α}π , (A22a)

∣∣I (3)
s,k;b(r, ϕ)

∣∣ � 1

π

∫ ∞

ε

d Im(ξ ) e−{α}Im(ξ ) = e−{α}ε

{α}π . (A22b)

This is clearly finite whenever α /∈ Z. In summary, all three
terms in Eqs. (A20a), (A20b), and (A20c), and thereby the
complete integral in Eq. (A19), are convergent. The general-
ization of the previous calculations to the contour �−(ϕ) or
the case of vs,k (k) < 0 is straightforward. This completes the
proof. �

The only remaining question is that of single-valuedness,
which is essentially nontrivial since the trial solution was
defined in terms of coordinates. To prove it, one needs to
check whether the substitutions of any ϕ ∈ R and ϕ + 2π

return the same value. Using the definitions of the contours
�±(ϕ) given in Sec. II, and performing a change of variables
ξ → ξ − 2π , the following results are simply obtained:

�
(+)
s,k (r, ϕ + 2π ) = �

(+)
s,k (r, ϕ). (A23)

With this problem resolved, the trial solution is now rigor-
ously defined.

2. Condition (ii): Eigenvector property

Having a well-defined trial solution, one needs to show that
it satisfies the time-independent Schrödinger equation, that is,
whether it is an eigenvector of the Hamiltonian operator. To
this end, we first have to prove that the Hamiltonian can be ex-
changed with the infinite sum and contour integral appearing
in the trial solution. This is shown in the following for α /∈ Z,
whereas the case of α ∈ Z is trivial based on Appendix A 1.

Proposition. The Hamiltonian operator defined in
Eq. (4) can be interchanged with the summation and
integration appearing in the scattering states of Eq. (5) for
α /∈ Z.

Proof. The Leibniz integral rule applicable for complex
integrals [31] states that the derivative of a contour integral
depending on some real parameter x ∈ R,

I (x) =
∫ b(x)

a(x)
dz f (z, x), (A24)
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can be expressed as

I ′(x) = f (b(x), x) b′(x) − f (a(x), x) a′(x)

+
∫ b(x)

a(x)
dz ∂x f (z, x) (A25)

provided that f is holomorphic in a neighborhood of the inte-
gration curve and the absolute value of ∂x f (z, x) is bounded
from above independently of x. In our case, the Hamiltonian
is a polynomial of operators 
̂x and 
̂y, or equivalently,
of operators 
̂± = 
̂x ± i
̂y due to Eq. (4). Therefore, it
suffices to prove that the operator 
̂i

+
̂
j
− is interchangeable

with the integration in Eq. (5). Following a similar approach as
before, consider the case of the contour �+(ϕ) and vs,k (k) > 0
in Eq. (A19), and perform the following separation:

I (4)
s,k (r, ϕ) = iei(�α	+ 1

2 )ϑ

4π

∫ −5π/2+ϕ+iε

−5π/2+ϕ+i∞
dξ 
̂i

+
̂
j
−�s,K (r, ϕ)

× e−iαϕ ei({α}− 1
2 )ξ

sin
(

ξ−ϑ

2

) , (A26a)

I (5)
s,k (r, ϕ) = iei(�α	+ 1

2 )ϑ

4π

∫ −π/2+ϕ+iε

−5π/2+ϕ+iε
dξ 
̂i

+
̂
j
−�s,K (r, ϕ)

× e−iαϕ ei({α}− 1
2 )ξ

sin
(

ξ−ϑ

2

) , (A26b)

I (6)
s,k (r, ϕ) = iei(�α	+ 1

2 )ϑ

4π

∫ −π/2+ϕ+i∞

−π/2+ϕ+iε
dξ 
̂i

+
̂
j
−�s,K (r, ϕ)

× e−iαϕ ei({α}− 1
2 )ξ

sin
(

ξ−ϑ

2

) . (A26c)

Here ε ∈ R+ is an arbitrary positive real number. The second
integral is manifestly finite as its domain is a compact set;
the first and the third need further investigation. Consider
the action of 
̂± operators on the plane-wave term in the
integrand evaluated on one of these segments. With the gauge
choice given in Eq. (A3), the bth component is given as


̂i
+
̂

j
−[�s,K;b(r, ϕ)e−iαϕ]

= (h̄k)i+ j (−i)b−a+i− jei(a−b+i− j)ϕ

× e−kr sinh [Im(ξ )]+(b−a+i− j)Im(ξ ). (A27)

For any kr ∈ R+ and a, b, i, j ∈ Z, the function (b − a +
i − j)Im(ξ ) is linearly increasing whereas the function
kr sinh[Im(ξ )] is exponentially increasing as Im(ξ ) → ∞.
Therefore, above a certain limiting point Im(ξ ) = δ, the real
term e−kr sinh[Im(ξ )]+(b−a+i− j)Im(ξ ) becomes smaller than one.
Choosing ε > δ, the bth component of Eqs. (A26a) and
(A26c) can be estimated:∣∣I (4)

s,k (r, ϕ)
∣∣ � (h̄k)i+ j

2π

∫ ∞

ε

d Im(ξ ) e−{α}Im(ξ ) = (h̄k)i+ je−{α}ε

2π{α} ,

(A28a)∣∣I (6)
s,k (r, ϕ)

∣∣ � (h̄k)i+ j

2π

∫ ∞

ε

d Im(ξ ) e−{α}Im(ξ ) = (h̄k)i+ je−{α}ε

2π{α} .

(A28b)

This is clearly finite whenever α /∈ Z. In summary, all three
terms in Eqs. (A26a), (A26b), and (A26c) are convergent. Due
to the Leibniz integral rule—noting that all boundary terms
vanish as the integrand is rapidly decaying—this implies the
interchangeability of the differential operator and integration.
The generalization of the previous calculations to the contour
�−(ϕ) or the case of vs,k (k) < 0 is straightforward. This com-
pletes the proof. �

Based on the proposition above, we can continue the cal-
culation:

[Ĥ�
(+)
s,k ](r, ϕ) =

∞∑
m=−∞

ε(m + α)

2π

∫
�(m+α,ϕ)

dξ

× Ĥ [�s,K (r, ϕ)eim(ξ−ϑ )−iα(ϕ−ξ )]. (A29)

Next, exploiting Eqs. (A14) and (A27), the following impor-
tant identity is obtained:


̂i
+
̂

j
−[�s,K (r, ϕ)e−iαϕ] = p̂i

+ p̂ j
−[�s,K (r, ϕ]e−iαϕ, (A30)

which in fact holds for more general wave functions as well.
Together with the isotropy of the dispersion relation, this leads
to

Ĥ [�s,K (r, ϕ)eim(ξ−ϑ )−iα(ϕ−ξ )]

= Es(k)�s,K (r, ϕ)eim(ξ−ϑ )−iα(ϕ−ξ ). (A31)

The comparison of Eqs. (A29) and (A31) results in the quick
verification of the eigenvector property:

Ĥ�
(+)
s,k = Es(k)�(+)

s,k . (A32)

Note that the essence of the above derivation was the presence
of the e−iαϕ multiplier in the integrand. This procedure has
historical precursors: in earlier attempts, physicists tried solv-
ing magnetic problems by multiplying plane-wave solutions
by such phase factors; this is called Dirac’s prescription.
However, these solutions were ill defined when α /∈ Z as
they returned different values for ϕ = 0 and ϕ = 2π . In our
case, the multiplication is performed inside the integrand
and there is an additional ϕ dependence in the integration
contours �±(ϕ) ensuring the single-valuedness as seen in
Appendix A 1. Consequently, the general method proposed
here could be regarded as an improved version of Dirac’s
prescription.

3. Condition (iii): Asymptotic form

The examination of the trial solution is nearly finished; the
only remaining task is the calculation of the asymptotic form
in the r → ∞ limit. To this end, we need to apply the method
of steepest descent, well known from complex analysis [31],
to the trial solution expressed in Eq. (A19). The illustrative
picture behind this method is that the integral in question is
dominated by the exponential factor eikr cos(ϕ−ξ ) appearing in
the integrand which is a rapidly oscillating function. There-
fore, considerable contribution is only expected around saddle
points where the derivative of the exponent vanishes and its
imaginary part is zero. The asymptotic form can be obtained
by deforming the contour such that it touches these saddle
points and the imaginary part of the exponent is constant all
along.
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FIG. 2. Deformation of the contours �±(ϕ) during the method of steepest descent for the case of ϑ = π , ϕ = π/3, and vs,k (k) > 0 (left
panel) or vs,k (k) < 0 (right panel). Saddle points and poles of the integrand are denoted by orange and red dots. Orange dashed lines mark the
loci of Re(ξ ) = ϕ − π (left panel) and Re(ξ ) = ϕ (right panel).

Consequently, we first need to find the saddle points. These
appear where the derivative of cos(ϕ − ξ ) with respect to ξ is
zero, that is, at

ξn = ϕ − nπ, n ∈ Z. (A33)

Around the saddle points, the cosine function can be expanded
in a Taylor series:

cos(ϕ − ξ ) = (−1)n − (−1)n

2
(ξ − ξn)2 + O[(ξ − ξn)4].

(A34)
This expression shows that the direction in which the real part
is asymptotically constant around ξ = ξn is that of eiπ/4 or
e3iπ/4 depending on whether n is odd or even, respectively.
Based on this, the correct deformation of the contours �±(ϕ)
are shown in Fig. 2. Note that the contours cross only two
of the saddle points since they must avoid regions where the
imaginary part of cos(ϕ − ξ ) is negative, as in these regions
the integrand would be infinitely large.

After this preparation, the contribution of saddle points
can finally be calculated. Since there are two contours, a
term appears for both and they have to be summed up. The
curves �±(ϕ) defined in Fig. 1 depend strongly on the sign of
the radial group velocity; thereby the two cases ought to be
separated.

(a) If vs,k (k) > 0 then the saddle point ξ1 = ϕ − π is
touched by both �+(ϕ) and �−(ϕ) in opposite directions,
whereas the equivalent saddle points ξ0 = ϕ and ξ2 = ϕ − 2π

are only touched by either �+(ϕ) or �−(ϕ). The prefactor
appearing in the former case vanishes,

ieiα(ξ1−ϕ)ei(�α	+ 1
2 )(ϑ−ξ1 )

2 sin
(

ξ1−ϑ

2

) − ieiα(ξ1−ϕ)ei(�α	+ 1
2 )(ϑ−ξ1 )

2 sin
(

ξ1−ϑ

2

) = 0,

(A35)
whereas in the latter case it does not:

ieiα(ξ0−ϕ)ei(�α	+ 1
2 )(ϑ−ξ0 )

2 sin
(

ξ0−ϑ

2

) − ieiα(ξ2−ϕ)ei(�α	+ 1
2 )(ϑ−ξ2 )

2 sin
(

ξ2−ϑ

2

)
= sin(απ )

sin
(

ϕ−ϑ

2

)e−iαπ ei(�α	+ 1
2 )(ϑ−ϕ). (A36)

Using this, the complete contribution gives us the outgoing
wave,

�out
s,k (r, ϕ) = F (ϕ − ϑ )√

r
eikrus(k, ϕ), (A37)

where the scattering function F takes the following form:

F (ϕ − ϑ ) = sin(απ )e−iαπ ei(�α	+ 1
2 )(ϑ−ϕ)

√
2π ik sin

(
ϕ−ϑ

2

) . (A38)

(b) If vs,k (k) < 0 then the saddle point ξ0 = ϕ is touched
by both �+(ϕ) and �−(ϕ) in opposite directions, whereas
the equivalent saddle points ξ1 = ϕ − π and ξ−1 = ϕ + π

are only touched by either �+(ϕ) or �−(ϕ). The prefactor
appearing in the former case vanishes,

ieiα(ξ0−ϕ)ei(�α	+ 1
2 )(ϑ−ξ0 )

2 sin
(

ξ0−ϑ

2

) − ieiα(ξ0−ϕ)ei(�α	+ 1
2 )(ϑ−ξ0 )

2 sin
(

ξ0−ϑ

2

) = 0,

(A39)
whereas in the latter case it does not:

ieiα(ξ−1−ϕ)ei(�α	+ 1
2 )(ϑ−ξ−1 )

2 sin
(

ξ−1−ϑ

2

) − ieiα(ξ1−ϕ)ei(�α	+ 1
2 )(ϑ−ξ1 )

2 sin
(

ξ1−ϑ

2

)
= sin(απ )

sin
(

ϕ−ϑ−π

2

)ei(�α	+ 1
2 )(ϑ−ϕ+π ). (A40)

Using this, the complete contribution gives us the outgoing
wave,

�out
s,k (r, ϕ) = F (ϕ − ϑ )√

r
e−ikrus(k, ϕ), (A41)

where the scattering function F takes the following form:

F (ϕ − ϑ ) = sin(απ )ei(�α	+ 1
2 )(ϑ−ϕ+π )

√
2π ik sin

(
ϕ−ϑ−π

2

) . (A42)

So far, we have calculated the contribution of the saddle
points, that is, the outgoing components of the asymptotic
form. However, we also need to take into account the presence
of poles in the integrand which appear at the point ξ = ϑ

and equivalent points separated by multiples of 2π . While
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deforming the contour as seen in Fig. 2, we crossed one of
these poles (exactly which one depends on the value of ϑ and
ϕ). Consequently, we need to include the contribution of this
pole as well using the residue of the following term in the
integrand:

Resξ=ϑ

[
1

sin
(

ξ−ϑ

2

)
]

= 2. (A43)

The contribution can then be easily calculated:

�in
s,k(r, ϕ) = eikr cos(ϕ−ϑ )−iα(ϕ−ϑ+π )us(k). (A44)

Considering all the contributions from Eqs. (A37), (A41), and
(A44), the asymptotic form of the trial solution reads

�
(+)
s,k (r, ϕ) ∼ �in

s,k(r, ϕ) + �out
s,k (r, ϕ), (A45)

and thereby the final condition of �
(+)
s,k being the scattering

state is also satisfied. Note that the asymptotic form given
in Eq. (A45) is only valid for ϕ ∈ (−π, π ), since for ϕ = π

the poles and the saddle points coincide and thereby the ap-
plication of the method of steepest descent is not possible.
In this special case, other approaches are available to obtain
an asymptotic expansion, but it is irrelevant for our present
purposes, and it will be discussed elsewhere.

APPENDIX B: PROBABILITY CURRENT DENSITY

In the following section, we introduce the concept of prob-
ability density and probability current in general multiband
electronic systems. These quantities are used to define the
differential cross section, serving as the central observable of
scattering theory.

1. General derivation

To obtain the probability current density, we need the
time-dependent Schrödinger equation with respect to the
Hamiltonian given in Eq. (4):

ih̄(∂t�)(t ) = (Ĥ�)(t ), (B1)

where we used the time-dependent state � : R → H. The
probability density of the electron position can be generally
expressed as

�(t ) =
D∑

a=1

�∗
a (t )�a(t ), (B2)

where for some 1 � a � D the functions �a(t ) ∈ L2(R2) are
the components of the vector �(t ). The time derivative of the
probability density can be transformed using Eq. (B1):

(∂t�)(t ) =
D∑

a=1

∂t�
∗
a (t )�a(t ) + �∗

a (t )∂t�a(t )

= i

h̄

D∑
a=1

(Ĥ�a)∗(t )�a(t ) − �∗
a (t )(Ĥ�a)(t ). (B3)

After substitution of the concrete form of the Hamiltonian
from Eq. (4),

(∂t�)(t ) = i

h̄

D∑
a=1

D∑
b=1

I∑
i=0

J∑
j=0

T ab
i j

[(

̂i

x
̂
j
y�a

)∗
(t )�b(t )

− �∗
a (t )

(

̂i

x
̂
j
y�b

)
(t )

]
, (B4)

where the matrix elements of the operators T̂i j are denoted
by T ab

i j ∈ C. Using the definition of the kinetic momentum
operators 
̂x and 
̂y together with the product rule of differ-
entiation we can bring Eq. (B4) to the form of a continuity
equation,

∂t�(t ) + (∂x jx )(t ) + (
∂y jy

)
(t ) = 0, (B5)

where the components jx and jy of the probability current
density are defined as follows:

jx(t ) = Re

⎧⎨
⎩

D∑
a=1

D∑
b=1

I∑
i=0

J∑
j=0

i−1∑
l=0

T ab
i j

(

̂i−l−1

x 
̂ j
y�a

)∗
(t )

× (

̂l

x�b
)
(t )

}
, (B6a)

jy(t ) = Re

⎧⎨
⎩

D∑
a=1

D∑
b=1

I∑
i=0

J∑
j=0

j−1∑
l=0

T ab
i j

(

̂ j−l−1

y �a
)∗

(t )

× (

̂l

y
̂
i
x�b

)
(t )

}
. (B6b)

2. Examples: Plane wave and asymptotic waves

In summary, Eqs. (B6a) and (B6b) define the general form
of the probability current density. Apart from time-dependent
real states, these formulas can also be applied to scattering
states, i.e., distributions.

One such example is the probability current in the absence
of a magnetic field with respect to a plane wave of the form
written in Eq. (2). Then the operators 
̂x and 
̂y are replaced
by p̂x and p̂y which act on plane waves by multiplicative
factors h̄kx and h̄ky, respectively. The resulting polynomials
are then manifestly the partial derivatives of the dispersion
relation with respect to h̄kx and h̄ky, respectively; that is,

js,k(r, ϕ) = vs(k, ϑ ), (B7)

where vs is the group velocity defined in Eq. (7). Rigorously,
Eq. (B7) represents equality only componentwise since the
two vector fields lie on different manifolds. Nevertheless, this
conclusion is extremely useful.

Another example is the current density in the presence of
a magnetic field with respect to the asymptotic components
given in Eqs. (A37), (A41), and (A44). These can be calcu-
lated using Eqs. (B7) and (A30):

jin
s,k(r, ϕ) = vs(k, ϑ ), (B8a)

jout
s,k (r, ϕ) = |F (ϕ − ϑ )|2

r
vs(k, ϕ) + O(r−3/2). (B8b)
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The results agree with Eq. (10), which is a crucial identity
towards the determination of the differential cross section.

APPENDIX C: DETAILS OF THE APPLICATIONS

In the following section, the application of our general
theory to specific multiband electronic systems is presented.
Apart from the more detailed derivation of the scattering states
given in Table I, we also provide an insightful visualization of
the wave functions.

1. Two-dimensional electron gas

The first example to be discussed is the two-dimensional
electron gas. Such a system can appear in GaAs-AlGaAs
heterojunctions where the difference of Fermi energies causes
a rearrangement in the electron distribution producing an
electrostatic potential. This electric field confines other elec-
trons into a thin two-dimensional layer at the interface of
the two semiconductors, producing a quasi-two-dimensional
conducting layer [34]. The dynamics in this system can be
described by a two-dimensional model of free particles with
some effective mass differing from the mass of the electron.
The Aharonov-Bohm effect in an analogous system of free
nonrelativistic particles was investigated before by Aharonov
and Bohm, and also by Berry [1,10,30]. In the following, we
aim to reproduce their results using our methods.

The Hilbert space corresponding to the two-dimensional
electron gas is simply H = L2(R2,C); that is, there is no
inner degree of freedom present (D = 1). Note that although
the electron has a spin, it is not relevant in our case as it
has no effect on the dynamics. The Hamiltonian operator
Ĥ : DH → H is given as a quadratic polynomial of the mo-
mentum operators:

Ĥ = 1

2M

(
p̂2

x + p̂2
y

)
, (C1)

where M is the effective mass of the electrons.
The band structure corresponding to the Hamiltonian in

Eq. (C1) consists of a single band which is given in polar
coordinates as

E (k, ϑ ) = h̄2k2

2M
. (C2)

As expected, the isotropy of the system is manifested in the
shape of the band structure: the constant energy curves are
circles for all values of the energy. The momentum space
eigenvectors need to be chosen such that one of its com-
ponents is independent of ϑ . In this case, there is only one
possible choice up to a constant multiplier:

u(k, ϑ ) = 1. (C3)

The group velocity vector field is easily determined from
Eq. (C2) by taking its gradient with respect to h̄k. The results
are the following:

vk (k, ϑ ) = h̄k

M
, (C4a)

vϑ (k, ϑ ) = 0. (C4b)

It is clearly seen that the radial group velocity is everywhere
positive (except at the origin); thereby we can call the single

band of this model an electronlike band. As we have seen
before, this observation is important from the point of view
of the scattering states.

A further important quantity is the probability density of
the electron position corresponding to an arbitrary state � ∈
H. This can be written as a special case of Eq. (B2) for this
single-band system:

� = �∗�. (C5)

The probability current density, on the other hand, depends on
the Hamiltonian in Eq. (C1) as well. Applying the results of
Eqs. (B6a) and (B6b), we find

jx = 1

M
Re[�∗(
̂x�)], (C6a)

jy = 1

M
Re[�∗(
̂y�)]. (C6b)

With all the ingredients collected, now Eq. (5) can be
applied to calculate the scattering states. Since the wave func-
tion has a single component in this case, the general formula
reduces to Eq. (A5). After direct substitution, we can further
apply the Schäfli-Sommerfeld integral formula of the Bessel
functions of the first kind [29] to simplify the expressions. The
final result is the following:

�
(+)
k (r, ϕ) =

∞∑
m=−∞

(−i)|m+α|J|m+α|(kr)eim(ϕ−ϑ+π ). (C7)

Setting ϑ = π , this is exactly the solution obtained by
Aharonov and Bohm in their original paper [1]; thus, we
managed to reproduce their results as hoped. This observation
gives strong support to our method.

To gain a deeper understanding of the scattering states,
we can calculate the corresponding probability density and
current density using Eqs. (C5), (C6a), and (C6b). The re-
sults of the numerical calculations are shown in Fig. 3; let
us now examine them in detail. In the α = 0 case shown in
Fig. 3(a), a simple plane wave can be seen in agreement with
our analytical calculations done in Eq. (A10). However, if α

is increased, a nontrivial scattering occurs [see Fig. 3(b)]. Fur-
ther increasing the flux, the scattering is maximal for α = 0.5
[see Fig. 3(c)]. After this value, a weakening is observed [see
Fig. 3(d)], and eventually, for integer α = 1, one gets back
the same result as for α = 0. Furthermore, for any integer
α value the same plane wave is recovered (up to a complex
phase): this periodicity indicates the strictly quantum nature
of the Aharonov-Bohm effect. Additionally, the system has an
interesting symmetry: reflection with respect to the x axis and
a simultaneous α → −α transformation (the latter is needed
due to the axial vector behavior of the magnetic field). This
symmetry together with the periodicity property implies that
the scattering states corresponding to any α and 1 − α are
the reflections of each other. Specifically, states belonging
to half-integer values of the dimensionless flux are reflection
invariant [see Fig. 3(c)].

2. Monolayer graphene

The second example to be discussed is the monolayer
graphene, that is, the two-dimensional honeycomb lattice of

023154-10



UNIFIED DESCRIPTION OF THE AHARONOV-BOHM … PHYSICAL REVIEW RESEARCH 5, 023154 (2023)

−20 −10 0 10 20

x/d0

−20

−10

0

10

20

y
/d

0

0

1

2
(a)

−20 −10 0 10 20

x/d0

−20

−10

0

10

20

y
/d

0

0

1

2
(b)

−20 −10 0 10 20

x/d0

−20

−10

0

10

20

y
/d

0

0

1

2
(c)

−20 −10 0 10 20

x/d0

−20

−10

0

10

20

y
/d

0

0

1

2
(d)

FIG. 3. Scattering states corresponding to the Aharonov-Bohm effect in a two-dimensional electron gas. The probability density �

(represented by the colors) and current density j (represented by the arrows) are computed for kd0 = 1 (where d0 is a natural length unit)
and (a) α = 0, (b) α = 0.2, (c) α = 0.5, and (d) α = 0.8.

carbon atoms [35–38]. In this system, the band structure con-
tains so-called Dirac cones; that is, in a close neighborhood of
points K and K ′ of the Brillouin zone the dispersion relation
has a conic behavior. As a consequence, the low-energy be-
havior of electrons in graphene is similar to that of massless
spin-1/2 relativistic particles which gives us an opportunity
to use an effective description in this regime. More precisely,
the so-called envelope function approximation can be used,
which states that sharply peaked wave packets around the K
and K ′ points obey an effective Dirac-Weyl dynamics. The
Aharonov-Bohm effect in the analogous system of relativistic
particles was investigated before by Alford, Wilczek, Gerbert,
and Hagen [11–14]. In the following, we aim to reproduce
their results using our methods.

The Hilbert space corresponding to monolayer graphene is
H = L2(R2,C) ⊗ C2; that is, there is a two-state inner degree
of freedom (D = 2) corresponding to the two sublattices of the
crystal. The Hamiltonian operator Ĥ : DH → H is given as a
linear polynomial of the momentum operators:

Ĥ = v( p̂x ⊗ σ̂x + p̂y ⊗ σ̂y), (C8)

where v is an effective velocity parameter and

σ̂x =
(

0 1
1 0

)
, σ̂y =

(
0 −i
i 0

)
, σ̂z =

(
1 0
0 −1

)
(C9)

are the Pauli operators given in matrix representation.
The band structure corresponding to the Hamiltonian in

Eq. (C8) consists of two bands with s ∈ {−1, 1} which are
given in polar coordinates as

Es(k, ϑ ) = svh̄k. (C10)

As expected, the isotropy of the system is manifested in the
shape of the band structure: the constant energy curves are
circles for all values of the energy. The momentum space
eigenvectors need to be chosen such that one of its compo-
nents is independent of ϑ . We can choose this to be the upper
component:

us(k, ϑ ) = 1√
2

(
1

seiϑ

)
. (C11)

As was detailed in Appendix A 1, this choice corresponds to
the upper component of the scattering state being regular at
the origin. In fact, Hagen has shown that this is the boundary
condition following from taking the R → 0 limit of a finite
radius solenoid if α > 0 [13]. In the α < 0 case, the lower
component must be regular. However, in the following, we
stick to the postulated boundary condition of the upper com-
ponent being regular, in agreement with the vector given in
Eq. (C11).
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The group velocity vector field is easily determined from
Eq. (C10) by taking its gradient with respect to h̄k. The results
are the following:

vs,k (k, ϑ ) = sv, (C12a)

vs,ϑ (k, ϑ ) = 0. (C12b)

It is clearly seen that the radial group velocity is either
everywhere positive or everywhere negative depending on the
band index s. Based on this, we can call the band with s = 1
electronlike, and the band with s = −1 holelike.

A further important quantity is the probability density
of the electron position corresponding to an arbitrary state
� = (�1, �2) ∈ H. This can be written as a special case of
Eq. (B2) for this two-band system:

� = �∗
1 �1 + �∗

2 �2. (C13)

The probability current density, on the other hand, depends on
the Hamiltonian in Eq. (C8) as well. Applying the results of
Eqs. (B6a) and (B6b), we find

jx = 2v Re(�∗
1 �2), (C14a)

jy = 2v Im(�∗
1 �2). (C14b)

With all the ingredients collected, now Eq. (5) can be applied
to calculate the scattering states. The integral representation
of the Bessel functions can again be used [29], and the final
result for the electronlike band with s = 1 is

�
(+)
1,k (r, ϕ) =

∞∑
m=−∞

(−i)|m+α|eim(ϕ−ϑ+π )

√
2

×
(

J|m+α|(kr)
iε(m + α)J|m+α|+ε(m+α)(kr)eiϕ

)
, (C15)

whereas that for the holelike band with s = −1 is

�
(+)
−1,k(r, ϕ) =

∞∑
m=−∞

i|m+α|eim(ϕ−ϑ+π )

√
2

×
(

J|m+α|(kr)
−iε(m + α)J|m+α|+ε(m+α)(kr)eiϕ

)
.

(C16)

Setting ϑ = π , this is exactly the solution obtained by Alford,
Wilczek, Gerbert, and Hagen in their papers [11–13]; thus, we
managed to reproduce their results as hoped. This observation
gives further support to our method.

The probability density and current density corresponding
to these scattering states can again be numerically evaluated
using Eqs. (C13), (C14a), and (C14b); the results are shown
in Fig. 4. The results are quite similar to the case of the
two-dimensional electron gas in Appendix C 1; there are only
a few differences worth mentioning. First, we can see that
the scattering states corresponding to the two bands differ
from each other: the alternation of colors is rather different in
Figs. 4(c) and 4(d), for example. Second, there is a singularity
at the origin not present before, which can be observed in
the form of a small red dot, for instance, in Fig. 4(e). This
corresponds to the fact that both components of the scattering
states cannot be regular at the same time as pointed out by

FIG. 4. Scattering states corresponding to the Aharonov-Bohm
effect in monolayer graphene. The probability density � (represented
by the colors) and current density j (represented by the arrows) are
computed for kd0 = 1 (where d0 is a natural length unit) and (a) s =
1, α = 0, (b) s = −1, α = 0, (c) s = 1, α = 0.2, (d) s = −1, α =
0.2, (e) s = 1, α = 0.5, (f) s = −1, α = 0.5, (g) s = 1, α = 0.8, and
(h) s = −1, α = 0.8.

Gerbert [12]. We chose the upper component as regular which
results in the lower component being singular.

3. Bilayer graphene

The third example to be discussed is the bilayer graphene,
that is, two layers of graphene on top of each other in a
shifted manner [39,40]. In the usual tight-binding description
taking into account the nearest-neighbor interactions, inter-
and intralayer, the band structure of this material consists
of four parabolic bands. Two of these touch at the Fermi
energy, and the other two are shifted above and below that.
Thus, in the low-energy regime, one can consider only the
effect of the low-lying bands and neglect the other pair. This
results in an effective two-band model of bilayer graphene
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which is frequently used in the literature. To the best of our
knowledge, the Aharonov-Bohm effect in this system has not
been investigated before. In the following, we aim to do so
using our methods.

The Hilbert space corresponding to bilayer graphene is
H = L2(R2,C) ⊗ C2; that is, there is a two-state inner degree
of freedom (D = 2) corresponding to the two sublattices of the
crystal. The Hamiltonian operator Ĥ : DH → H is given as a
quadratic polynomial of the momentum operators:

Ĥ = − 1

2M

[(
p̂2

x − p̂2
y

) ⊗ σ̂x + 2 p̂x p̂y ⊗ σ̂y
]
, (C17)

where M is an effective mass parameter, and σ̂x, σ̂y, and σ̂z are
the Pauli operators defined in Eq. (C9).

The band structure corresponding to the Hamiltonian in
Eq. (C17) consists of two bands with s ∈ {−1, 1} which are
given in polar coordinates as

Es(k, ϑ ) = s
h̄2k2

2M
. (C18)

As expected, the isotropy of the system is manifested in the
shape of the band structure: the constant energy curves are
circles for all values of the energy. The momentum space
eigenvectors need to be chosen such that one of its compo-
nents is independent of ϑ . We can choose this to be the upper
component:

us(k, ϑ ) = 1√
2

(
1

−se2iϑ

)
. (C19)

The group velocity vector field is easily determined from
Eq. (C18) by taking its gradient with respect to h̄k. The results
are the following:

vs,k (k, ϑ ) = s
h̄k

M
, (C20a)

vs,ϑ (k, ϑ ) = 0. (C20b)

It is clearly seen that the radial group velocity is either every-
where positive or everywhere negative (except at the origin)
depending on the band index s. Based on this, we can call
the band with s = 1 electronlike, and the band with s = −1
holelike.

A further important quantity is the probability density
of the electron position corresponding to an arbitrary state
� = (�1, �2) ∈ H. This can be written as a special case of
Eq. (B2) for this two-band system:

� = �∗
1 �1 + �∗

2 �2. (C21)

The probability current density, on the other hand, depends on
the Hamiltonian in Eq. (C17) as well. Applying the results of
Eqs. (B6a) and (B6b), we find

jx = − 1

M
Re[�∗

1 (
̂x�2) + �∗
2 (
̂x�1) − i�∗

1 (
̂y�2)

+ i�∗
2 (
̂y�1)], (C22a)

jy = 1

M
Re[�∗

1 (
̂y�2) + �∗
2 (
̂y�1) + i�∗

1 (
̂x�2)

− i�∗
2 (
̂x�1)]. (C22b)

With all the ingredients collected, now Eq. (5) can
be applied to calculate the scattering states. The integral

representation of the Bessel functions can again be used [29],
and the final result for the electronlike band with s = 1 is

�
(+)
1,k (r, ϕ) =

∞∑
m=−∞

(−i)|m+α|eim(ϕ−ϑ+π )

√
2

×
(

J|m+α|(kr)
J|m+α|+2ε(m+α)(kr)e2iϕ

)
, (C23)

whereas that for the holelike band with s = −1 is

�
(+)
−1,k(r, ϕ) =

∞∑
m=−∞

i|m+α|eim(ϕ−ϑ+π )

√
2

×
(

J|m+α|(kr)
−J|m+α|+2ε(m+α)(kr)e2iϕ

)
. (C24)

To the best of our knowledge, these results cannot be found in
the literature.

The probability density and current density corresponding
to these scattering states can again be numerically evaluated
utilizing Eqs. (C21), (C22a), and (C22b), and the results are
shown in Fig. 5. These are quite similar to the case of mono-
layer graphene discussed in Appendix C 2.

4. Electron gas with Rashba effect

The fourth example to be discussed is the two-dimensional
electron gas subject to the Rashba effect, which appears in
semiconducting heterostructures where the spin-orbit cou-
pling is sufficiently large. Additionally, for the appearance of
the Rashba effect, it is required that a crystal has a single high-
symmetry axis [41]. This is naturally true for heterojunctions
(e.g., GaAs-AlGaAs) where the aforementioned direction is
the normal of the interface [42–44]. The spin-orbit interaction
in these systems can be well described by a Hamiltonian term
linear in both the momentum and the spin operators. To the
best of our knowledge, the Aharonov-Bohm effect in this
system has not been investigated before. In the following, we
aim to do so using our methods.

The Hilbert space corresponding to the two-dimensional
electron gas with Rashba effect is H = L2(R2,C) ⊗ C2; that
is, there is a two-state inner degree of freedom (D = 2) corre-
sponding to the spin of the electron. The Hamiltonian operator
Ĥ : DH → H is given as a quadratic polynomial of the mo-
mentum operators,

Ĥ = 1

2M

(
p̂2

x + p̂2
y

) ⊗ Î + v( p̂y ⊗ σ̂x − p̂x ⊗ σ̂y), (C25)

where M and v are an effective mass and an effective velocity
parameter, respectively, and σ̂x, σ̂y, and σ̂z are the Pauli oper-
ators defined in Eq. (C9).

The band structure corresponding to the Hamiltonian in
Eq. (C25) consists of two bands with s ∈ {−1, 1} which are
given in polar coordinates as

Es(k, ϑ ) = h̄2k2

2M
+ svh̄k. (C26)

As expected, the isotropy of the system is manifested in the
shape of the band structure: the constant energy curves are
circles for all values of the energy. The momentum space

023154-13



RÓBERT NÉMETH AND JÓZSEF CSERTI PHYSICAL REVIEW RESEARCH 5, 023154 (2023)

FIG. 5. Scattering states corresponding to the Aharonov-Bohm
effect in bilayer graphene. The probability density � (represented
by the colors) and current density j (represented by the arrows)
are computed for kd0 = 1 (where d0 is a natural length unit) and
(a) s = 1, α = 0, (b) s = −1, α = 0, (c) s = 1, α = 0.2, (d) s = −1,
α = 0.2, (e) s = 1, α = 0.5, (f) s = −1, α = 0.5, (g) s = 1, α = 0.8,
and (h) s = −1, α = 0.8.

eigenvectors need to be chosen such that one of its compo-
nents is independent of ϑ . We can choose this to be the upper
component:

us(k, ϑ ) = 1√
2

(
1

−iseiϑ

)
. (C27)

The group velocity vector field is easily determined from
Eq. (C25) by taking its gradient with respect to h̄k. The results
are the following:

vs,k (k, ϑ ) = h̄k

M
+ sv, (C28a)

vs,ϑ (k, ϑ ) = 0. (C28b)

It is clearly seen that the radial group velocity is everywhere
positive for the band with s = 1; we can call it electronlike.

However, the sign of the group velocity varies for s = −1.
More concretely, there is a critical wave number

kc = Mv

h̄
(C29)

above (below) which vs,k is positive (negative). Based on this
we can call the band with s = −1 mixed.

A further important quantity is the probability density
of the electron position corresponding to an arbitrary state
� = (�1, �2) ∈ H. This can be written as a special case of
Eq. (B2) for this two-band system:

� = �∗
1 �1 + �∗

2 �2. (C30)

The probability current density, on the other hand, depends on
the Hamiltonian in Eq. (C25) as well. Applying the results of
Eqs. (B6a) and (B6b), we find

jx = 1

M
Re[�∗

1 (
̂x�1) + �∗
2 (
̂x�2)] + 2v Im(�1�

∗
2 ),

(C31a)

jy = 1

M
Re[�∗

1 (
̂y�1) + �∗
2 (
̂y�2)] + 2v Re(�1�

∗
2 ).

(C31b)

With all the ingredients collected, now Eq. (5) can be applied
to calculate the scattering states. The integral representation
of the Bessel functions can again be used [29], and the final
result for the electronlike band with s = 1 is

�
(+)
1,k (r, ϕ) =

∞∑
m=−∞

(−i)|m+α|eim(ϕ−ϑ+π )

√
2

×
(

J|m+α|(kr)
ε(m + α)J|m+α|+ε(m+α)(kr)eiϕ

)
, (C32)

that for the mixed band with s = −1 and k < kc is

�
(+)
−1,k(r, ϕ) =

∞∑
m=−∞

i|m+α|eim(ϕ−ϑ+π )

√
2

×
(

J|m+α|(kr)
−ε(m + α)J|m+α|+ε(m+α)(kr)eiϕ

)
, (C33)

whereas that for the mixed band with s = −1 and k > kc is

�
(+)
−1,k(r, ϕ) =

∞∑
m=−∞

(−i)|m+α|eim(ϕ−ϑ+π )

√
2

×
(

J|m+α|(kr)
−ε(m + α)J|m+α|+ε(m+α)(kr)eiϕ

)
. (C34)

To the best of our knowledge, these results cannot be found in
the literature.

The probability density and current density corresponding
to these scattering states can again be numerically evaluated
utilizing Eqs. (C30), (C31a), and (C31b); the results are shown
in Fig. 6. These are quite similar to the case of monolayer
graphene discussed before; there is only one difference worth
mentioning. In the case of the mixed band with s = −1, there
are two significantly different regimes separated in Eqs. (C33)
and (C34). From these, Fig. 6 shows only the second one,
where k > kc. In this case, the probability density is perfectly
identical to that of the s = 1 band as can be seen by the
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FIG. 6. Scattering states corresponding to the Aharonov-Bohm
effect in the Rashba system. The probability density � (represented
by the colors) and current density j (represented by the arrows) are
computed for kd0 = 1 (where d0 is a natural length unit) and (a) s =
1, α = 0, (b) s = −1, α = 0, (c) s = 1, α = 0.2, (d) s = −1, α =
0.2, (e) s = 1, α = 0.5, (f) s = −1, α = 0.5, (g) s = 1, α = 0.8, and
(h) s = −1, α = 0.8.

comparison of Figs. 6(c) and 6(d), for instance. However, the
current densities are noticeably different. The k < kc case is
not depicted in the figures as it is very similar to the holelike
band of monolayer graphene. That is, both the probability
density and the current density become noticeably different
from those of the electronlike upper band.

5. Pseudospin-1 system

The fifth example to be discussed is the Lieb lattice, that
is, a two-dimensional face-centered-square lattice [45–48].
In such a system, the band structure contains a single Dirac
point in the Brillouin zone where two conic bands and a
flat band touch. Similarly to graphene, a low-energy effective
model can be applied in which the dynamics of electrons

are analogous to that of massless spin-1 relativistic particles.
The same phenomenon can be observed in other materials
such as the dice lattice, where two pseudospin-1 Dirac points
appear in the Brillouin zone. To the best of our knowledge,
the Aharonov-Bohm effect in this system has not been inves-
tigated before. In the following, we aim to do so using our
methods.

The Hilbert space corresponding to the Lieb lattice is H =
L2(R2,C) ⊗ C3; that is, there is a three-state inner degree of
freedom (D = 3) corresponding to the three sublattices of the
crystal. The Hamiltonian operator Ĥ : DH → H is given as a
linear polynomial of the momentum operators:

Ĥ = v( p̂x ⊗ τ̂x + p̂y ⊗ τ̂y), (C35)

where v is an effective velocity parameter and

τ̂x = 1√
2

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠, τ̂y = i√

2

⎛
⎝0 −1 0

1 0 −1
0 1 0

⎞
⎠,

τ̂z =
⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠ (C36)

are the spin-1 operators corresponding to the three-
dimensional representation of so(3) given as matrices.

The band structure corresponding to the Hamiltonian in
Eq. (C35) consists of three bands with s ∈ {−1, 0, 1} which
are given in polar coordinates as

Es(k, ϑ ) = svh̄k. (C37)

As expected, the isotropy of the system is manifested in the
shape of the band structure: the constant energy curves are
circles for all values of the energy. The momentum space
eigenvectors need to be chosen such that one of its compo-
nents is independent of ϑ . We can choose this to be the middle
component:

us(k, ϑ ) = 1

2

⎛
⎝e−iϑ√

2s
eiϑ

⎞
⎠ if s = ±1, (C38a)

us(k, ϑ ) = 1√
2

⎛
⎝e−iϑ

0
−eiϑ

⎞
⎠ ifs = 0. (C38b)

The group velocity vector field is easily determined from
Eq. (C37) by taking its gradient with respect to h̄k. The results
are the following:

vs,k (k, ϑ ) = sv, (C39a)

vs,ϑ (k, ϑ ) = 0. (C39b)

It is clearly seen that the radial group velocity is either ev-
erywhere positive, everywhere zero, or everywhere negative
depending on the band index s. This implies that the band
with s = 1 is electronlike, whereas the band with s = −1 is
holelike. The band with s = 0 is a nondispersive so-called flat
band. Plane waves corresponding to this band have a constant
zero current density; in other words, they are not propagat-
ing states. Consequently, it is meaningless to investigate the
scattering problem in this case.
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FIG. 7. Scattering states corresponding to the Aharonov-Bohm
effect in the Lieb lattice. The probability density � (represented
by the colors) and current density j (represented by the arrows)
are computed for kd0 = 1 (where d0 is a natural length unit) and
(a) s = 1, α = 0, (b) s = −1, α = 0, (c) s = 1, α = 0.2, (d) s = −1,
α = 0.2, (e) s = 1, α = 0.5, (f) s = −1, α = 0.5, (g) s = 1, α = 0.8,
and (h) s = −1, α = 0.8.

A further important quantity is the probability density of
the electron position corresponding to an arbitrary state � =
(�1, �2, �3) ∈ H. This can be written as a special case of
Eq. (B2) for this three-band system:

� = �∗
1 �1 + �∗

2 �2 + �∗
3 �3. (C40)

The probability current density, on the other hand, depends on
the Hamiltonian in Eq. (C35) as well. Applying the results of
Eqs. (B6a) and (B6b), we find

jx =
√

2v Re(�∗
1 �2 + �∗

2 �3), (C41a)

jy =
√

2v Im(�∗
1 �2 + �∗

2 �3). (C41b)

With all the ingredients collected, now Eq. (5) can be
applied to calculate the scattering states. The integral repre-
sentation of the Bessel functions can again be used [29], and
the final result for the electronlike band with s = 1 is

�
(+)
1,k (r, ϕ) =

∞∑
m=−∞

(−i)|m+α|eim(ϕ−ϑ+π )

2i

×

⎛
⎜⎜⎝

ε(m + α)J|m+α|−ε(m+α)(kr)e−iϕ

√
2i J|m+α|(kr)

ε(m + α)J|m+α|+ε(m+α)(kr)eiϕ

⎞
⎟⎟⎠, (C42)

whereas that for the holelike band with s = −1 is

�
(+)
−1,k(r, ϕ) =

∞∑
m=−∞

i|m+α|eim(ϕ−ϑ+π )

2i

×

⎛
⎜⎜⎝

ε(m + α)J|m+α|−ε(m+α)(kr)e−iϕ

−√
2i J|m+α|(kr)

ε(m + α)J|m+α|+ε(m+α)(kr)eiϕ

⎞
⎟⎟⎠. (C43)

To the best of our knowledge, these results cannot be found in
the literature.

The probability density and current density corresponding
to these scattering states can again be numerically evaluated
utilizing Eqs. (C40), (C41a), and (C41b); the results are shown
in Fig. 7. These are quite similar to the case of monolayer
graphene discussed before.
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