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It is well known that two-dimensional fermionic systems with a nonzero Chern number must break the
time-reversal symmetry, manifested by the appearance of chiral edge modes on an open boundary. Such an
incompatibility between topology and symmetry can occur more generally. We will refer to this phenomenon
as enforced symmetry breaking (ESB) by topological orders. In this work, we systematically study ESB of a
finite symmetry group Gf by fermionic invertible topological orders. Mathematically, the group Gf is a central
extension over a bosonic symmetry group G by the fermion parity group Z f

2 , characterized by a 2-cocycle
λ ∈ H2(G,Z2). For given G and λ, we are able to obtain a series of criteria on the existence or nonexistence of
ESB by the corresponding fermionic invertible topological orders. For 2D systems, we define a set of physical
quantities to describe symmetry-enriched invertible topological orders and derive obstruction functions using
both fermionic and bosonic languages. The study in the bosonic language is performed after gauging the fermion
parity, and we find that some obstruction functions are consequences of conditional anomalies of the bosonic
symmetry-enriched topological states, with the conditions inherited from the original fermionic system. The
obstruction functions are crucial components of the ESB criteria that we derive. With these criteria, we discover
many new ESB examples, e.g., we find that the quaternion group Q8 is incompatible with two copies of p + ip
superconductors. We also obtain explicit results on the ESB phenomena of the continuous group SU f (N ) by 2D
invertible topological orders through a different argument.
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I. INTRODUCTION

Symmetry and topology play very important roles in mod-
ern physics. One of the most profound concepts in physics
is spontaneous symmetry breaking [1]. It is behind many
physical phenomena, ranging from superconductivity and
Bose-Einstein condensation in condensed matter systems to
the unification of electromagnetic and weak forces in par-
ticle physics. For a long time, people believed that Landau
symmetry-breaking theory could describe all possible phases
and continuous phase transitions. The discovery of fractional
quantum Hall effects (FQHE) [2] opened the door to the realm
of topological phases of matter where interesting physics such
as fractional charge and fractional statistics were uncovered
[3].
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Very recently, great effort has been made in the study of
the interplay between symmetry and topology in quantum
many-body systems. The concept of topological insulators
[4–9] has been extended to a large class of short-range entan-
gled states of matter, namely, symmetry-protected topological
(SPT) phases [10]. Complete classifications [11–25] as well as
various characterizations [17,26–41] and model realizations
[12,26,42–46] have been obtained for interacting bosonic and
fermionic SPT phases. Moreover, for systems with anyon ex-
citations, the interplay between symmetry and topology gives
rise to various symmetry-enriched topological (SET) phases
[42,47–50]. The FQHE states actually can be regarded as the
simplest SET state with U(1) charge conservation symmetry.
For bosonic systems, a complete classification of SET phases
has been achieved by using the so-called G-crossed braided
fusion category theory [47]. However, fermionic SET phases
are much more complicated, and their classification and phys-
ical characterization have not been fully understood so far.

While the mutual appreciation between topology and sym-
metry has resulted in many interesting physics, it is also
known that they are not always compatible. For example,
2D Chern insulators with a nonzero Chern number must
break the time-reversal symmetry [51]. It is manifested by
the existence of chiral edge modes that reverse the direc-
tion under time-reversal action and thereby cannot appear in
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time-reversal symmetric systems. In fact, time-reversal is bro-
ken in any chiral topological order. Such incompatibility can
occur more generally in other systems and for other symme-
tries. We will refer to this phenomenon as enforced symmetry
breaking (ESB) by topological orders. Of course, depending
on one’s viewpoint, it can also be called symmetry constraints
on topological order.

To be possibly enforced to break by certain topological
orders, there is a precondition on the symmetry: it must
have a nontrivial action on the Hilbert space by its very
definition. A few examples of these symmetries are (1) the
time-reversal symmetry T , under which the wave function
must be complex-conjugated, (2) the mirror reflection R,
under which the spatial orientation associated with the many-
body wave function must be reversed, and (3) the fermion
parity Pf , under which the states containing an odd number
of fermions must obtain a minus sign. More generally, a sym-
metry group G that contains Pf , T , and/or R, also satisfies
this precondition. For example, it was known that px + ipy

superconductor is incompatible with U f (1) particle number
conservation, which is a nontrivial extension of the fermion
parity group Z f

2 = {1, Pf }. If this precondition is not imposed,
then a symmetry can always be implemented as the identity
operator, a rather trivial way, so that it is compatible with
any topological order. So far, systematic exploration of ESB
physics has not been done yet and a general framework is very
much desired.

In this work, we study the ESB physics for a special class
of topological orders, namely, invertible topological orders
(iTOs) [21]. They are topological phases somewhat in be-
tween SPT phases and the topological orders that host anyons:
they cannot be smoothly connected to the trivial product state
even in the absence of symmetry, but they do not host anyon
excitations. While it sounds exotic, all iTOs in low dimen-
sions are known, including the 1D Majorana chain [52], 2D
px + ipy superconductors [53,54] (stacking even copies of
which are topologically equivalent to integer quantum Hall
states). See Table I for a summary of fermionic iTOs in
low dimensions, which can all be realized in noninteracting
fermionic systems. For bosonic systems, the only nontrivial
invertible topological order is the 2D E8 state [55]. They are
called “invertible” because, for every state, there exists an
inverse state such that stacking the two gives rise to the trivial
state. The ESB physics for the bosonic E8 state is simple,
which is not compatible with all antiunitary or orientation-
reversing symmetries but compatible with all internal unitary
symmetries. On the other hand, we will see that ESB physics
for fermionic iTOs are extremely rich.

We will study 0D, 1D, and 2D fermionic iTOs with a
general finite group G f —in other words, symmetry-enriched
iTOs. Mathematically, the group G f is a central extension of
a bosonic symmetry group G by the fermion parity symmetry
Z f

2 . Different central extensions are characterized by nontriv-
ial 2-cocycles λ ∈ H2(G,Z2). However, we will also study
an interesting example of the continuous symmetry group
SU f (N ) in Sec. III D. The main result of this work is a set of
criteria on whether a given G f is enforced to break by 0D, 1D,
or 2D iTOs (summarized in Table II) and various examples
that exhibit ESB physics. When deriving the 2D criteria, we
develop the description of 2D symmetry-enriched fermionic

TABLE I. Invertible topological orders of fermionic systems in
low dimensions.

Dimension Classification Root state

0D Z2 complex fermion
1D Z2 Kitaev’s majorana chain
2D Z px + ipy superconductor
3D Z1 trivial

iTOs using both fermionic and bosonic languages, with the
latter achieved via gauging the fermion parity and turning the
fermionic iTOs to bosonic SETs. In particular, we derive the
formulas for the so-called obstruction functions, which are
important components of the ESB criteria. It is unfortunate
that in one of the cases, our explicit formula is not the most
general. In the bosonic SET language, we also find that the
obstruction functions are consequences of conditional anoma-
lies, with the conditions inherited from the preconditions in
the definition of the fermionic group G f .

Characterization of symmetry-enriched fermionic iTOs in-
volves two categories of quantities. The first category is a
triplet (G, λ, ν), where G is the bosonic symmetry group, λ is
a cocycle in H2(G,Z2), and ν is an element of the iTO clas-
sification group (see Table I). The first two quantities G and
λ determine the fermionic group G f , and the third quantity ν

labels the iTO which can be viewed as a characterization of its
intrinsic topological property. Even between these quantities,
incompatibility may occur and lead to ESB phenomena. The
ESB criteria 1, 2 and 3 are of this type. The second category
involves the quantities that describe symmetry enrichment.
For examples, we define two quantities n1 and n2 (which are
actually functions) in Sec. III A for 2D fermionic iTOs: n1

characterizes if certain symmetry defects carry Majorana zero
modes and n2 characterizes how fermion parity conservation
is achieved when defects fuse. Unlike the quantities in the
first category which are given, they may vary. The symmetry
enrichment quantities are well-defined only when they are
compatible with the given quantities in the first category.
Otherwise, if no compatible symmetry enrichment quantities
exist, ESB occurs. The ESB criteria 4, 5, and 6 are of this
type.

The rest of this paper is organized as follows. In Sec. II, we
study ESB by 0D and 1D fermionic iTOs. We set up our con-
vention, derive the ESB criteria, and explore a few examples.
Various 2D ESB criteria and examples are given in Sec. III.
In particular, we develop a description of symmetry-enriched
fermionic iTOs in Sec. III A using defects in the fermionic lan-
guage. Also, an ESB example of SU f (N ) group is discussed
in Sec. III D. We derive the 2D criteria in Sec. IV by trans-
forming fermionic iTOs into bosonic SET states via gauging
the fermion parity. The obstruction functions are obtained.
We make a summary and discuss some potential general-
izations in Sec. V. Appendices A–C contain some technical
analyses.

II. ESB BY 0D AND 1D ITOS

To warm up, we discuss ESB by 0D and 1D fermionic
iTOs in this section. We begin with the definition of
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TABLE II. Locations of ESB criteria for 0D, 1D and 2D fermionic invertible topological orders in this paper, and a few examples of ESB
with unitary symmetries. For the dihedral group D8 and quaternion group Q8, the fermion parity group Z f

2 is identified as their Z2 centers.
For SU f (N ), the fermion parity Z f

2 is identified as the Z2 subgroup of its center which is ZN . We note that criterion 2 was known previously
in Ref. [56]. Most 2D examples are new, except Z f

4 whose incompatibility with odd-ν iTOs was known in Ref. [57] and SU f (2) whose
incompatibility with ν = 4k + 2 was known in Ref. [58].

iTO ESB criteria Examples

0D complex fermion Criterion 1 in Sec. II B D8, Q8

1D Majorana chain Criterion 2 in Sec. II E Z f
4 , any Gf with nontrivial λ

2D iTO with odd ν Criterion 3 in Sec. III B 1 Z f
4 , any Gf with nontrivial λ

2D iTO with ν = 4k + 2 Criterion 4 in Sec. III B 2 Q8, SU f (2)
2D iTO with ν = 8k + 4 Criterion 5 in Sec. III B 3 SU f (4), an order-32 group in Sec. III C 2
2D iTO with ν = 16k + 8 Criterion 6 in Sec. III B 4 SU f (8)

symmetry group in fermionic systems. Then, we discuss ESB
criteria, examples, and derivations of the criteria for 0D and
1D fermionic iTOs.

A. Symmetry

Let G f be the symmetry group of a general fermionic
system. Throughout the paper, we assume all symmetries are
internal and G f is finite, except in Sec. III D where a case
of continuous symmetries will be discussed. In all fermionic
systems, G f must contain a special element, the fermion parity
Pf , with P2

f = 1. It must be preserved due to the require-
ment of locality. Moreover, Pf should commute with all other
symmetries. Let Z f

2 = {1, Pf } be the subgroup formed by the
fermion parity, which sits inside the center of G f . Mathemati-
cally, the relation between G f and Z f

2 is given by a short exact
sequence

1 → Z f
2 → G f → G → 1, (1)

where G is the quotient group G f /Z
f
2 . For a given G, different

G f ’s are said to be different central extensions of G by Z f
2 .

A central extension of G by Z f
2 is determined by a

2-cocycle λ ∈ H2(G,Z2).1 A brief review on group coho-
mology is given in Appendix A. A 2-cocycle is a function
λ : G × G → Z2 = {0, 1} that satisfies the condition

0 = dλ(g, h, k)

= λ(h, k) − λ(gh, k) + λ(g, hk) − λ(g, h), (2)

where g, h ∈ G, d is the coboundary operator, and “modulo
2” is implicitly assumed for addition.2 Two cocycles λ and λ̃

are equivalent if λ̃ = λ + dε and

dε(g, h) = ε(g) + ε(h) − ε(gh), (3)

1The mathematically correct notation should be the cohomology
class [λ] ∈ H2(G,Z2). However, with abuse of notation, we simply
use λ ∈ H2(G,Z2) or say “λ is a 2-cocycle in H2(G,Z2)” to denote
that λ is a representative 2-cocycle in the class [λ]. Similar notation
is used for other cocycles.

2An implicit “modulo” is assumed in most additive expressions and
in the expressions of the coboundary operator d, whenever we use
additive convention for Abelian groups. If a “modulo” is not taken,
we will use d̂ for distinction.

where ε(g) is an arbitrary function ε : G → Z2, and dε(g, h)
is called a 2-coboundary (see Appendix A). A 2-coboundary
is automatically a 2-cocycle. The equivalence classes [λ] form
the cohomology group H2(G,Z2), with the equivalence class
of 2-coboundaries being the identity. Due to the cocycle con-
dition (2) and coboundary transformation (3), it is always
possible to take the convention

λ(1, g) = λ(g, 1) = 0. (4)

where 1 is the identity element of G. This convention will
simplify many of our discussions.

Given G and λ, the group G f can be constructed as follows:
G f = {gσ |g ∈ G, σ ∈ Z2} and the group multiplication is

gσ hτ = (gh)σ+τ+λ(g,h), (5)

where 10 is the identity and 11 is the fermion parity Pf . One
can check that associativity of multiplication is guaranteed by
the cocycle condition (2). Two fermionic groups G f and G̃ f ,
constructed from equivalent cocycles λ and λ̃ respectively,
are isomorphic. The isomorphism is given by gσ ↔ gσ+ε(g),
where gσ ∈ G f and gσ+ε(g) ∈ G̃ f . In this work, we will use
(G, λ) and G f interchangeably to describe symmetries in
fermion systems.3 Nevertheless, we would like to emphasize
that given any microscopic system, the symmetries g0 and
g1 are physically distinct, corresponding to different opera-
tors (a.k.a. observables). So, one should keep in mind that
a coboundary transformation ε(g) does have physical conse-
quences.

The group G may contain antiunitary symmetries, such as
time-reversal. To specify if a symmetry is unitary or antiuni-
tary, we need another piece of data, a group homomorphism

s : G → ZT
2 , (6)

where ZT
2 = {0, 1} (with group multiplication being addition

modulo 2). The element g is unitary if s(g) = 0 and antiuni-
tary if s(g) = 1. It satisfies s(g) + s(h) = s(gh) (mod 2). The
special case that s(g) = 0 for every g corresponds to that all
symmetries are unitary. Since Pf is unitary, we can make the

3Two inequivalent cocycles may also produce isomorphic Gf ’s. It
occurs when the cocycles can be related by an automorphism of G.
However, this subtlety is not important to our discussions.
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extension

s(gσ ) = s(g). (7)

After the extension, s becomes a homomorphism from G f to
ZT

2 .

B. ESB criterion for 0D iTO

In the usual sense, 0D systems neither host topological or-
der nor support spontaneous symmetry breaking. So, it is not
very interesting to study the phenomenon of ESB. However,
there is indeed a sense of ESB as we explain below, exploring
which helps to establish a few basic concepts.

One way to define 0D fermionic iTO is as follows. Con-
sider 0D fermionic systems with a gapped unique ground
state, so that they are invertible. Two systems are said to
have the same topological order if the ground states can
be smoothly deformed to each other by a fermionic unitary
transformation(or bosonic unitary transformation with a Z f

2
symmetry). Under this definition, there are two inequivalent
fermionic iTOs: those with the ground state being even under
Pf , and those with the ground state being odd under Pf .
Simple examples are the states |0〉 and c†|0〉, respectively,
where |0〉 is the vacuum in the Fock space and c† is a fermion
creation operator. The latter is considered to be topologically
nontrivial. We will refer to it as the “complex-fermion iTO.”

Now we ask if the complex-fermion iTO enforces certain
symmetry group G f to break. It should be an explicit symme-
try breaking, as there is no spontaneous symmetry breaking in
0D. Let |�0〉 be the ground state of any system that hosts the
complex-fermion iTO. It follows from the definition that

Pf |�0〉 = −|�0〉. (8)

In the presence of a symmetry group G f , the ground state
|�0〉 should form a one-dimensional representation of G f ,
with the condition (8) satisfied. Therefore, if Pf = 1 in all its
one-dimensional representations, G f is incompatible with the
complex-fermion iTO. That is, G f is enforced to break by the
complex-fermion iTO.

This understanding can be used to derive a quantita-
tive criterion on whether ESB occurs for a given symmetry
group. Let G f be determined by the pair (G, λ), where λ ∈
H2(G,Z2) is a 2-cocycle. We show that

Criterion 1. G f is enforced to break by the complex-
fermion iTO, if and only if (−1)λ(g,h) is a nontrivial cocycle
in H2(G, UT (1)).

Derivation of the criterion will be deferred to Sec. II D.
Here, we elaborate the criterion. A 2-cocycle in H2(G, UT (1))
is any function α : G × G → U(1) = {eiθ |θ ∈ [0, 2π )},
which satisfies the condition

α(g, h)α(gh, k) = α(g, hk)Ks(g)[α(h, k)], (9)

where s(g) = 0, 1 denotes if g is unitary or antiunitary and
K is the operation of complex conjugation with K[α] = α∗.
Two cocycles α and α̃ are equivalent if they differ by a 2-
coboundary:

α̃(g, h) = α(g, h)
ε(g)Ks(g)[ε(h)]

ε(gh)
. (10)

TABLE III. Character table of the dihedral group D8. The first
row shows the conjugacy classes and the next five rows show the
characters of the five irreducible representations of D8. The fermion
parity Pf is identified with the elment r2.

dim 1 r2 {r, r3} {s, sr2} {sr, sr3}
1D 1 1 1 1 1
1D 1 1 1 −1 −1
1D 1 1 −1 1 −1
1D 1 1 −1 −1 1
2D 2 −2 0 0 0

Different from Eq. (3), ε(g) can now be any U(1)-valued
function. The equivalence classes [α] define the cohomology
group H2(G, UT (1)) with the subscript “T ” denoting the non-
trivial action on U(1) values by the complex conjugation.

It is easy to see that (−1)λ(g,h) satisfies Eq. (9), follow-
ing from the fact that λ(g, h) satisfies Eq. (2). Accordingly,
(−1)λ(g,h) is indeed a 2-cocycle in H2(G, UT (1)). However,
due to the enlarged choice of ε(g) in the co-boundary transfor-
mation (10) compared to that in (3), certain λ, which belongs
to a nontrivial cohomology class in H2(G,Z2), may produce
a cocycle (−1)λ(g,h) that is trivial in H2(G, UT (1)). Criterion
1 states that ESB occurs if and only if (−1)λ(g,h) is a nontrivial
2-cocycle in H2(G, UT (1)).

C. Examples

We illustrate 0D ESB by exploring a few examples. The
simplest example is G = ZT

2 = {1, T }, where T is the time-
reversal symmetry, and G f = Z4 = {1, T, Pf , T Pf |T 2 = Pf }.
In this case, the cohomology group H2(ZT

2 ,Z2) = Z2. One
can check that the two inequivalent cocycles are specified by
a single quantity λ(T, T ) = 0 and 1, respectively. The cocycle
with λ(T, T ) = 1 is nontrivial and corresponds to G f = Z4.
One can show that (−1)λ(g,h) is nontrivial in H2(G, UT (1)).
So, G f is enforced to break by the complex-fermion iTO,
according to criterion 1. This is actually the well-known
Kramers theorem: for fermions with T 2 = Pf , the odd-parity
states must form a doublet. That is, a ground state satisfying
(8) cannot be nondegenerate.

The simplest example of unitary symmetries is G f = D8,
the dihedral group of order 8, with Z f

2 being the center of D8.
More explicitly, let D8 = {snrm|n = 0, 1, m = 0, 1, 2, 3, r4 =
s2 = 1, srs = r3, } and the fermion parity Pf = r2. All ir-
reducible representations of D8 are listed in Table III. We
observe that in all the 1D representations, Pf = r2 is repre-
sented by 1, which is inconsistent with the condition (8) for
the complex-fermion iTO. Therefore this D8 is enforced to
break by the complex-fermion iTO.

The D8 example can also be seen from criterion 1. Never-
theless, let us use the criterion to study a family of examples,
with D8 being one of them. We take G to be a general Abelian
group G = ∏k

i=1 ZNi , with all symmetries being unitary. With-
out losing too much generality, we assume all Ni are even.
Then, the cohomology group H2(G,Z2) = (Z2)k(k+1)/2. A
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class of representative 2-cocycles in H2(G,Z2) is

λ(a, b) =
∑

i

piwi(a, b) +
∑
i< j

pi jwi j (a, b), (11)

where the indices i, j run in 1, 2, . . . , k, and the parame-
ters pi, pi j = 0 or 1. To define wi(a, b) and wi j (a, b), let
us denote the group elements as a = (a1, a2, . . . , ak ) where
ai = 0, 1, . . . , Ni − 1. Then, wi(a, b) and wi j (a, b) are given
by

wi(a, b) = 1

Ni
(ai + bi − [ai + bi]Ni ), (12)

wi j (a, b) = aib j (mod 2), (13)

where [n1 + n2]N = n1 + n2 (mod N ). Both wi and wi j only
take a value 0 or 1. One can check λ(a, b) in the form (11)
is indeed a 2-cocycle in H2(

∏
i ZNi ,Z2) for any choice of pi

and pi j . It is useful to define the following quantities:

�i =
Ni−1∑
i=0

λ(nei, ei ),

�i j = λ(ei, e j ) − λ(e j, ei ), (14)

where “modulo 2” is assumed, ei = (0, . . . , 0, 1, 0, . . . , 0)
with only the ith entry being 1 and others being 0. These
quantities have a nice property that they are invariant under
coboundary transformations, so we will call them topological
invariants for H2(G,Z2) (see Appendix C 1 for more details).
Inserting the explicit cocycle in (11), we obtain

�i = pi, �i j = pi j, (15)

where i < j. By varying pi and pi j , the set {�i,�i j} can have
2k(k+1)/2 distinct values, saturating the number |H2(G,Z2)| of
cohomology classes. Therefore it is a complete set of topolog-
ical invariants and the representative cocycle in (11) exhausts
all inequivalent cocycles in H2(G,Z2).

Now consider the cocycle (−1)λ(g,h) in H2(G, U(1)) (we
drop the subscript T as we only consider unitary symme-
tries here). Under coboundary transformations of U(1)-valued
functions, one can check that (−1)�i is not invariant, but
(−1)�i j remains a well-defined topological invariant. More-
over, (−1)�i j is complete in the sense that it is enough to
tell if (−1)λ(g,h) is trivial or nontrivial in H2(G, U(1)) [59].
Therefore (−1)λ(g,h) is nontrivial in H2(G, U(1)) if and only
if any �i j = 1. For convenience, here and after, we call a
2-cocycle in H2(G,Z2) as type I if all invariants �i j = 0, and
otherwise we call it type II. Accordingly, the corresponding
G f is enforced to break by the complex-fermion iTO if and
only if λ is type II.

Take the simplest case G = Z2 × Z2 and let �12 = 1.
Then, ESB occurs for the corresponding G f . Depending on
the values of �1 and �2, we have two cases: (i) when �1 =
�2 = 1, G f is the quaternion group Q8; and (ii) otherwise, G f

is the dihedral group D8.

D. Derivation of 0D criterion

We prove an alternative statement that is equivalent to crite-
rion 1: G f is compatible with the complex-fermion iTO, if and
only if (−1)λ(g,h) is trivial in H2(G, UT (1)). The equivalence

is obvious. Derivation of this statement mainly involves the
representation theory of groups.

Let us start with the “only if” direction. To show that, we
assume that G f is compatible with the complex-fermion iTO.
Then, the ground state forms a one-dimensional representa-
tion of G f . Let the representation be U(gσ )Ks(g) for gσ ∈ G f ,
where U(gσ ) is a unitary operator and K is the operator of
complex conjugation. In the special case that s(g) = 0 for
all g ∈ G, it reduces to the usual unitary representation of a
group. The operators satisfy

U (gσ )Ks(g)U (hτ )Ks(h) = U [(gh)σ+τ+λ(g,h)]K
s(gh), (16)

which follows from the group multiplication law (5). To fulfill
Eq. (8) and the requirement U(10) = 1, we have U(1σ ) =
(−1)σ . The convention (4) implies g01σ = gσ . So, we have

U (gσ )Ks(g) = U (g0)Ks(g)U (1σ )Ks(1)

= (−1)σU (g0)Ks(g). (17)

Combining this equation with Eq. (16) and taking the short-
hand notation U(g0) = U (g), we immediately have

U (g)Ks(g)U (h)Ks(h) = (−1)λ(g,h)U (gh)Ks(gh). (18)

It is a projective representation of G, where (−1)λ(g,h) ≡
α(g, h) is called a factor set. In general, the factor set of
projective representations can be any 2-cocycle α(g, h) ∈
H2(G, UT (1)). A well known result is that if α is a nontrivial
2-cocycle, the representation cannot be 1D. The fact that we
have a 1D representation implies that λ must be a trivial
2-cocycle in H2(G, UT (1)). Therefore we have proven that
if G f is compatible with the complex-fermion iTO, (−1)λ(g,h)

must be trivial in H2(G, UT (1)).
To show the “if” direction, we explicitly construct

a 1D representation of G f with Eq. (8) satisfied. If
(−1)λ(g,h) is trivial in H2(G, UT (1)), it can be written as
ε(g)Ks(g)[ε(h)]/ε(gh), where ε(g) is some U(1)-valued func-
tion. Then, we take the representation to be

U (gσ ) = (−1)σ ε(g)Ks(g). (19)

One can check that it is a 1D representation of G f that satisfies
both (16) and (8). This completes our proof.

E. ESB by 1D iTO

Invertible topological orders in 1D fermionic systems are
classified by Z2. A representative of the nontrivial iTO is the
famous Majorana chain, first discovered by Kitaev [52]. So,
we will refer to the nontrivial iTO as the “Majorana-chain
iTO.” The salient feature of the Majorana chain is that, when
it is open, there exist robust zero modes at both ends, known
as the Majorana zero modes (MZM). More specifically, it
means the existence of Majorana operators γl and γr at the left
and right ends, respectively, such that [γl , H] = [γr, H] = 0,
where H is the Hamiltonian of the chain. Majorana opera-
tors are fermionic, self-adjoint, squared to 1, and guarantee a
two-fold ground-state degeneracy. Intuitively, the latter means
the MZM at each end carries a “fractional” Hilbert space of
dimension

√
2. The degeneracy is topologically protected and

cannot be lifted by any local perturbations that respect the
fermion parity.
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Now consider a symmetry group G f , determined by the
pair (G, λ) with λ ∈ H2(G,Z2). We ask if G f is compatible
with the Majorana-chain iTO. This question has already been
answered in the seminal paper Ref. [56]. In our language, the
result of Ref. [56] can be stated as the following criterion.

Criterion 2. G f is enforced to break by the Majorana-
chain iTO, if and only if λ is a nontrivial 2-cocycle in
H2(G,Z2).

In other words, the Majorana-chain iTO is only compati-
ble with G f = Z f

2 × G. This criterion holds regardless if G
contains antiunitary symmetries.

To be self-contained, we briefly revisit the proof given
in Ref. [56]. Without loss of generality, systems hosting the
Majorana-chain iTO can be viewed as a stack of 2n + 1 Ma-
jorana chains with interaction between the chains allowed.
For open boundaries, there are 2n + 1 Majorana operators at
each end. Let γ1, γ2 . . . , γ2n+1 be those at the left end. Then,
any local operator at the left end (left-local operator) can be
written as a sum of products of the Majorana operators. An
important feature of the algebra of left-local operators is that
there exist and only exist two operators that commute with all
left-local operators and that square to 1. The two operators are
Z and −Z , with Z = inγ1 . . . γ2n+1 and Z2 = 1. The operator
Z contains an odd number of Majorana operators so that
Pf Z = −ZPf . Note that the fermion parity Pf is not left-local.

Now consider symmetries in G f . For gσ ∈ G f , let
U(gσ )Ks(g) be the corresponding operator that acts on the
whole low-energy Hilbert space that includes both left and
right ends. Under the action of U(gσ )Ks(g), left-local operators
remain left-local, with their algebraic structure preserved. In
particular, Z can only be transformed to either Z or −Z . More
specifically,

U (gσ )Ks(g)Z[U (gσ )Ks(g)]−1 = (−1)μ(gσ )Z, (20)

where μ(gσ ) = 0, 1 specifies how Z transforms under the
action of gσ . The specific μ(gσ ) depends on details, except
μ(11) = 1 due to Pf Z = −ZPf . The operators U(gσ )Ks(g)

shall form a representation of G f , so that μ(gσ ) is a group
homomorphism from G f to Z2. Accordingly,

μ(gσ ) = σ + μ(g0), (mod 2). (21)

Then, between μ(g0) and μ(g1), one of them must be 0. Let us
pick out all the group elements with the μ value being 0. They
are closed under multiplication and form a subgroup G′ ⊂ G f .
Since Z f

2 is central in G f , we must have G f = Z f
2 × G′ and

accordingly G′ is isomorphic to G. Hence, we have shown that
the Majorana-chain iTO is compatible with G f only if it is a
trivial extension of G by Z f

2 , i.e., λ is a trivial 2-cocycle in
H2(G,Z2). On the other hand, if λ is trivial, G f is always
compatible with the Majorana-chain iTO—one simply repre-
sents all elements in G by the identity operator. This concludes
the proof.

III. ESB BY 2D ITOS

Two-dimensional fermionic invertible topological phases
are classified by Z. The iTO indexed by ν ∈ Z is exemplified
by a stack of ν layers of px + ipy superconductors (ν � 0) or

|ν| layers of px − ipy superconductors (ν < 0). It is charac-
terized by the chiral central charge c− = ν/2 of the gapless
theory that lives on its edge. Physically, c− can be measured
by the quantized thermal Hall conductance. We note that c−
is odd under antiunitary symmetries. If G f contains an antiu-
nitary symmetry, it is always incompatible with any nontrivial
2D iTOs. That is, any G f containing antiunitary symmetries
is enforced to break by any nontrivial fermionic iTOs. Hence,
from now on, we will only consider G f of unitary symme-
tries. In this section, we will define the data to describe 2D
symmetry-enriched iTOs and obtain some obstruction func-
tions, after which we state the ESB criteria, followed with
a few examples. Detailed derivations of ESB criteria will
be given in Sec. IV. Section III D is a special section that
discusses an ESB example with continuous symmetry group
SU f (N ).

A. Symmetry-enriched fermionic iTOs

Different from usual 2D topological orders, iTOs do not
support anyon excitations. Characterization of symmetry-
enriched iTOs is more like that of SPT phases rather than
SET phases. We will discuss two equivalent descriptions to
characterize 2D fermionic symmetry-enriched iTOs: (i) by
studying properties of symmetry defects (i.e., static version of
gauge fluxes) in the fermionic theory and (ii) by gauging the
fermion parity Z f

2 and studying the resulting bosonic SETs of
symmetry group G. In this section, we will use the former to
define a set of data to describe 2D symmetry-enriched iTOs,
as it is physically more intuitive. This description allows us
to obtain two obstructions, O2 and O3, which are important
quantities in the ESB criteria. However, it is theoretically less
mature than the latter, so we will use the second description
to provide more detailed derivations of the ESB criteria in
Sec. IV.

We define a triplet (ν, n1, n2) to describe 2D symmetry-
enriched fermionic iTOs. The first quantity ν ∈ Z is defined
above. It is a quantity associated with the intrinsic topol-
ogy, which indexes the iTO and determines the chiral central
charge c− = ν/2. Depending on whether ν is even or odd,
the fermion-parity defect behaves differently: for ν being odd,
it carries an odd number of Majorana zero modes (MZMs)
[54], which cannot be completely annihilated by local per-
turbations; for ν being even, it carries an even number of
MZMs, whose stability relies on the protection of other sym-
metries. A refined characterization is given by the dynamical
fermion-parity gauge flux, which is an anyon, denoted as v.
According to Kitaev’s 16-fold way [60], braiding statistics
of the fermion-parity fluxes exhibit a 16-fold periodicity. In
particular, the topological spin θv = eiπν/8. In fact, the ν = 16
fermionic iTO is topologically equivalent to the bosonic E8

state stacked with a trivial fermionic insulator. The group G f

acts the same as G on the bosonic E8 state, so they are always
compatible—we simply set all elements in G f by the identity
operator for the bosonic E8 state. Since G f is compatible with
a trivial fermionic insulator, we arrive at a conclusion: the
ν = 16 iTO is compatible with any G f , i.e., no ESB will
occur. Therefore the phenomenon of ESB exhibits a 16-fold
periodicity in ν for 2D iTOs.
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FIG. 1. Four different situations to define n2(g, h) for even ν. Black dots represent non-Majorana defects, and red dots represent Majorana
defects. The dashed lines are branch cuts needed to insert static gauge fluxes, the other end of which are not shown. In every case, we fuse and
then re-split the defects using an operator W , and the operator W is chosen in a way that produces the states depicted here (see the main text
for discussions). In (b) and (c), Z0 is a Majorana operator associated with some other defect.

1. n1 and O2

The quantity n1, a function G → Z2, describes the Ma-
jorana properties of symmetry defects: if n1(g) = 1, the g0

defect carries an odd number of MZMs; if n1(g) = 0, the g0

defect carries an even (including zero) number of MZMs. The
party of MZMs on the gσ defect is n1(g) + νσ (mod 2). Parity
of MZM numbers should respect the law of group multipli-
cation gσ hτ = (gh)σ+τ+λ(g,h), so we immediately obtain the
following constraint:

dn1(g, h) = O2(g, h), (22)

where dn1(g, h) = n1(g) + n1(h) − n1(gh) and

O2(g, h) = νλ(g, h). (23)

Here, modulo 2 is assumed in every equation. We observe
that dn1(g) is a coboundary in B2(G,Z2) and O2(g, h) is
a 2-cocycle in Z2(G,Z2). If O2 is a nontrivial 2-cocycle,
Eq. (22) can never hold, i.e., no valid n1(g) exists. This gives
the first obstruction to a valid symmetry-enriched iTOs, which
we simply call it the “O2 obstruction”.

It is easy to see that O2 obstruction is trivial if and only if (i)
ν is even, or (ii) ν is odd and λ is a coboundary. In Sec. IV B,
we will derive the same result in the context of bosonic SETs.

2. Definition of n2

Now we focus on the case that ν is even; we will comment
on the odd ν case at the end of Sec. III A 3. In this case,
O2(g, h) is always trivial and n1 is well-defined. Then, we
move on to define the third quantity n2. Mathematically, it is
a function, n2 : G × G → Z2, subject to certain ambiguities
and conditions that we will describe. The physical definition
is slightly involved, depending on whether the relevant sym-
metry defects carry MZMs or not (see Fig. 1). Below, we will
refer to the defects that carry MZMs as Majorana defects, and
otherwise as non-Majorana defects.

Let us start with simplest situation that n1(g) = n1(h) =
0 for the group elements g and h. Both gσ and hσ defects
are Abelian and non-Majorana. Due to the existence of the
local fermion f , gσ defects come in two types: g0

σ and g1
σ .

(We use gσ to denote both group elements and defects.) The
two defects are related to each other by fusing the fermion f :

g0
σ × f = g1

σ . (24)

Nevertheless, the choice of which defect is g0
σ is a convention.

One can set up the convention as follows. Since the defects
are non-Majorana, we choose a local fermion parity operator,
denoted as P(g) with P(g)2 = 1 for g0 defects.4 If P(g)|�〉 =
|�〉, where |�〉 is the state that contains a g0 defect, we call
this defect g0

0; if P(g)|�〉 = −|�〉, we call it g1
0. The local

fermion parity operator P(g) is ambiguous up to a sign. If one
instead uses P̃(g) = −P(g) for setting up the convention, the
two notations g0

σ and g1
σ will be swapped.

Since ν is even, fermion-parity defects are also non-
Majorana. We denote the two types as 10

1 and 11
1, convention-

ally determined by a local fermion parity operator P(11). We
will denote the vacuum as 10

0 and the fermion f as 11
0, and also

refer to them as “defects” by abusing notation. Obviously, they
are determined by measuring the actual fermion parity Pf . For
convenience, let P(1) be either P(11) or Pf , measuring which
allows us to determine a defect 1α

σ . They satisfy the fusion rule

1α
σ × 1β

ρ = 1α+β+σρν/2
σ+ρ . (25)

where α, β, σ, ρ = 0, 1 and modulo 2 is implicitly taken for
addition. The piece σρν/2 implies different fusion rules of
fermion-parity defects for ν = 4k + 2 and ν = 4k, which is a
well-known result (see, e.g., Ref. [60]). That being said, we
define a general gα

σ defect as

gα
σ = g0

0 × 1α
σ . (26)

The fusion outcome on the right is unique so it is a good
definition. We remark that fusion rules of defects are noncom-
mutative and the order is important in (26). We always view a

4One can calibrate different g0 defects, with the same g but sitting
at different locations, such that they are associated with the same type
of local fermion parity, e.g., by setting up a reference g0 defect for
comparison. Then, P(g) depends only on g but not on the location.
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gα
σ defect as a composite of g0

0 and 1α
σ defects, with 1α

σ sitting
on the right.

We now consider fusing two non-Majorana defects. Fusing
g0

0 and h0
0 defects must give rise to one of the two defects,

(gh)0
λ(g,h) or (gh)1

λ(g,h). Let us denote the possible superscript
as n2(g, h). Then,

g0
0 × h0

0 = (gh)n2(g,h)
λ(g,h) = (gh)0

0 × 1n2(g,h)
λ(g,h) . (27)

Figure 1(a) shows the corresponding image. The quantity
n2(g, h) depends on the symmetry-enriched iTO. Let |�〉 be
the state containing the initial g0

0 and h0
0 defects, and let W be

the operator that does the fusion and splitting associated with
(27). Then, Eq. (27) can be understood as follows: by properly
choosing W , we first require

W P(g)P(h)|�〉 = P(gh)W |�〉 (28)

and then take a measurement of P(1) on the state W |�〉 such
that

P(1)W |�〉 = (−1)n2(g,h)W |�〉. (29)

It means that we choose an operator W such that it turns
g0

0 and h0
0 into (gh)0

0, and n2(g, h) is defined by measuring
P(1). In general, the fusion and splitting can be done by other
operators, say W ′ that turns the original defects into (gh)n2(g,h)

0
and 10

λ(g,h). However, no matter which operator is used, the
total fermion parity must be conserved. That is, the equation

XP(g)P(h)|�〉 = (−1)n2(g,h)P(gh)P(1)X |�〉 (30)

holds for either X = W or X = W ′. Then, the quantity
n2(g, h) must be the same, so it is well defined. In Fig. 1(a),
we have used W instead of W ′ for illustration. If we change
the convention P(g) → (−1)ε(g)P(g) (with the convention of
P(1) fixed), the quantity n2(g, h) undergoes the following
transformation

n2(g, h) → n2(g, h) + ε(gh) − ε(g) − ε(h). (31)

Mathematically, it is a coboundary transformation. Accord-
ingly, n2(g, h) is well-defined only up to the coboundary
ambiguity (31). It is equivalent to use general defects gα

0 and
hβ

0 to define n2(g, h).
Next, we consider the situation in Fig. 1(b). In this case,

n1(g) = 1 and n1(h) = 0, i.e., g0 defects are Majorana while
the h0 defects are non-Majorana. The Majorana g0 defects
come in only one type, which we simply denote as g0. In this
case, we cannot define a local fermion parity operator. Instead,
as discussed in Ref. [56] and also Sec. II E, there exists a
local involutory fermionic unitary operator Z that commutes
with all local operators. Similar to the local fermion parity
operator, Z is also ambiguous up to a sign. Since Z is very
like the usual Majorana operator, we will simply refer to it as
the Majorana operator. For every g with n(g) = 1, we choose
a Majorana operator Z (g), out of the two available, for the g0

defect. Once this convention is set, we can define a fermion
parity operator out of these Majorana operators. Consider 2n
Majorana defects, (g j )0 with j = 1, . . . , 2n. There is a 2n

dimensional degenerate Hilbert space associated with these
defects. We define the fermion parity as P = in

∏
j Z (g j ). It

is clear that change of the convention Z (g j ) → −Z (g j ) for
any defect will result in a sign flip of P .

Fusing g0 and a fermion-parity defect 1α
1 , we obtain a g1

defect, which is also a Majorana defect. Regardless of α, we
always have g0 × 1α

1 = g1. One may want to have a “split
view” of g1 as in (26). However, such a splitting is not unique
at the level of fusion rules. One needs to define it carefully.
We will not define the splitting of an individual defect here,
but instead will define a splitting combined with a fusion of
two defects below, for our our purpose of defining n2(g, h).

We are now ready to define n2(g, h) in Fig. 1(b). Fusing
g0 and h0

0 defects gives rise to a (gh)λ(g,h) defect, which is a
Majorana defect as n1(gh) = n1(g) + n1(h). We further split
it into (gh)0 and 1n2(g,h)

λ(g,h) , with n2(g, h) determined using a
similar procedure as in the first situation. Let us describe the
procedure, which is slightly different, as Majorana operators
are involved. Since a single Majorana operator does not form a
Hilbert space, let us assume that there is an auxiliary Majorana
operator Z0, at somewhere not close to the two defects. Let
|�〉 be the initial state containing g0 and h0

0, and let W be
the operator associated with the whole fusing and splitting
process. Then, similar to the first situation, we define n2(g, h)
as follows. By properly choosing W , we first require

W [iZ0Z (g)]P(h)|�〉 = [iZ0Z (gh)]W |�〉, (32)

and then we take a measurement of P(1) on the state W |�〉,
P(1)W |�〉 = (−1)n2(g,h)W |�〉. (33)

The latter measurement defines n2(g, h). That is, we require
the final state contains (gh)0 and 1n2(g,h)

λ(g,h) defects after fusion
and splitting, as shown in Fig. 1(b). W is a fusion and splitting
operator, so it should be bosonic to preserve fermion parity.
Also it acts only near the defects. Because Z0 is away from the
defects, we must have W Z0 = Z0W . Therefore Z0 in Eq. (32)
can be readily removed, so that the definition of n2(g, h) is
independent of Z0. Like in the first situation, we may choose
another operator W ′ that does a different fusion and splitting.
However, the value of n2(g, h) cannot be changed for fixed
Z (g), P(h), Z (gh) and P(1) due to total fermion parity con-
servation. If we change our conventions of Z (g), P(h) and
Z (gh), the same ambiguity (31) results.

The situation in Fig. 1(c) is similar to Fig. 1(b). In the last
situation of Fig. 1(d), we have both n1(g) = n1(h) = 1. The
fusion outcomes are non-Majorana defects. In this case, the
two Majorana operators Z (g) and Z (h) are enough to form a
Hilbert space, so no auxiliary Majorana operator is needed.
We define n2(g, h) by first requiring

W [iZ (g)Z (h)]|�〉 = P(gh)W |�〉 (34)

and then measuring P(1) on the state W |�〉
P(1)W |�〉 = (−1)n2(g,h)W |�〉, (35)

where |�〉 is the initial state and W is a properly chosen fusion
and splitting operator associated. One can similarly argue that
n2(g, h) is well defined. The ambiguity on n2(g, h) due to
change of convention is the same as above.

This completes our definition of n2(g, h). Let us summa-
rize that, for each g0 defect, we have chosen a local operator

L(g) =
{

P(g), n1(g) = 0
Z (g), n1(g) = 1 . (36)
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FIG. 2. A configuration of four defects. When the fermion-parity
defect 10

1 moves across the branch cut of the g0 Majorana defect
(along the red dashed line), it turns into 11

1.

Also, we have chosen a local fermion parity operator P(1)
for determining defect 1α

σ . These local operators allow us
to define the fermion parity in the low-energy Hilbert space
associated with defects, which in turn allows us to define
n2(g, h). As the local operator is subject to an ambiguity
L(g) → −L(g), the quantity n2(g, h) is defined up to the
transformation (31).

3. Derivation of O3

Before showing the condition imposed on n2(g, h), we dis-
cuss a property regarding braiding between Z (g) and fermion
parity defects. For concreteness, consider the defect configu-
ration in Fig. 2. There are four defects: a g0 Majorana defect,
its antidefect g0 (which may be ḡ0 or ḡ1 depending on λ), a
fermion-parity defect 10

1, and its antidefect 10
1 (which may be

10
1 or 11

1 depending on ν). Imagine adiabatically braiding the
10

1 defect across the branch cut between the g0 and g0 defect.
We claim that 10

1 turns into 11
1 after passing through the branch

cut. One way to understand this is through the bosonic SET
language discussed in Sec. IV: when 10

1 passes through the
branch cut, the state is acted by g, whose action is permutation
of two defects 10

1 and 11
1 (v and v f in the notation of Sec. IV).

Here we consider a slightly different view. Let us assume
that the braiding process makes a full loop. Then, we retract
the loop back to the position of the fermion parity defect.

The whole process is equivalent to an action of the fermion
parity on the disk whose edge is the loop. Let this action be
the operator U (Pf ). Since Z (g) is inside this disk and it is a
fermionic operator, we must have Z (g)U (Pf ) = −U (Pf )Z (g).
More specifically, let |�〉 be the initial state before braiding
and retracting. Then

U (Pf )Z (g)|�〉 = −Z (g)U (Pf )|�〉. (37)

Accordingly the fermion parity of the pair g0 and g0 flips
a sign after the braiding and retracting process. Since the
total fermion parity must be conserved and the local parity
of 10

1 is untouched, the defect 10
1 must flip to 11

1. If the
g0 defect is non-Majorana, the local fermion parity of 10

1
remains. Stating it compactly, we have a 1α

σ defect turns
into 1α+σn1(g)

σ , when passing through the branch cut of a g0

defect.
With the above preparation, we now prove the condition

that n2(g, h) should satisfy. It follows from the associativity
of defect fusion (Fig. 3). Consider fusing three defects, g0,
h0, and k0. If n1(g) = 0, we pick the g0

0 defect; if n1(g) =
1, there is only a Majorana defect g0 to pick (similarly
for h0 and k0 defects). There are two ways that we can
fuse the defects, as shown through the two paths in Fig. 3.
Most steps only make use of the definition of n2(g, h) in
Fig. 1 under a properly chosen fusion and splitting opera-
tor W , except the step associated with the red dashed line
in the lower path that uses the property in Fig. 2. At the
end of both paths, we have two fermion-parity defects (or
simply 1, f ). Further fusing the two defects according to
Eq. (25) and requiring the fermion parity to be equal, we
obtain

n2(g, hk) + n2(h, k) + ν

2
λ(g, hk)λ(h, k)

= n2(gh, k) + n2(g, h) + λ(g, h)n1(k)

+ ν

2
λ(gh, k)λ(g, h), (38)

FIG. 3. Associativity of defect fusion. For simplicity, we do not distinguish Majorana and non-Majorana defects in the diagrams.
If some defects are non-Majorana, we have dropped the superscript and they should mean g0

0, h0
0, or k0

0. The quantity �(g, h, k) =
n2(g, h) + λ(g, h)n1(k), where the term λ(g, h)n1(k) comes from the passing of 1n2 (g,h)

λ(g,h) across the branch cut of k0.
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TABLE IV. O2, O3, or O4 obstructions for 2D fermionic iTOs
with index ν. The mark “×” means that the corresponding obstruc-
tion is always trivial, and “©” means it may be nontrivial. Note that
O3 is meaningful only if O2 is trivial, and O4 is meaningful only if
both O2 and O3 are trivial.

ν O2 O3 O4

even × © ©
odd © × ©

where “modulo 2” is assumed for the addition. We define the
function

O3(g, h, k) = λ(g, h)n1(k) + ν

2
λ(g, hk)λ(h, k)

− ν

2
λ(gh, k)λ(g, h)

=
(
λ ∪ n1 + ν

2
λ ∪1 λ

)
(g, h, k), (39)

where the higher cup product ∪1 is reviewed in Appendix A.
Then, Eq. (38) can be compactly written as

O3(g, h, k) = dn2(g, h, k), (40)

where we have adjusted a few irrelevant minus signs to match
the definitions. According to the mathematical properties of
∪ and ∪1 products, O3 is a cocycle in H3(G,Z2). It may be
a nontrivial cocycle. However, the right-hand side of Eq. (40)
is always a coboundary. Accordingly, for given ν, n1 and λ,
there might be no solution of n2 to Eq. (40), hence leading to
an obstruction to have a valid n2. Once O3 is trivial, Eq. (40) is
a condition that n2 should satisfy. Different solutions, subject
to the coboundary transformation (31), correspond to different
symmetry-enriched fermionic iTOs. Note that for ν = 4k, the
λ ∪1 λ term in O3 vanishes (after taking modulo 2). This is an
important difference between ν = 4k + 2 and ν = 4k.

Finally, we comment that O3 obstruction is absent for odd
ν’s. First of all, the triviality of O2 requires λ to be a cobound-
ary. Then, let λ(g, h) = ε(g) + ε(h) − ε(gh). One may use
the same way as above to define n2. However, let us use
the defects gε(g), instead of g0, for picking the local fermion
parity operator P(g) or Majorana operator Z (g). Then, in the
definition of n2, we always have

gε(g) × hε(h) = (gh)ε(gh) × 1n2(g,h)
0 . (41)

Note that 1n2(g,h)
0 = f n2(g,h), i.e., there is no fermion-parity

defect involved. A simple check of the fusion process in Fig. 3
shows that O3 obstruction is absent. A summary of possible
obstructions is shown in Table IV.

B. ESB criteria

We have defined the triplet (ν, n1, n2) for the description of
2D symmetry-enriched fermionic iTOs. In principle, there is
another piece of data, corresponding to stacking bosonic SPT
states. However, that data is irrelevant to our study of ESB
physics, so we will not discuss it. We have also derived the
O2 and O3 obstruction functions, by checking the consistency
between the MZM composition rule or fermion parity con-
servation and the defect fusion rules. In fact, there is another

FIG. 4. Dimensional reduction of 2D cylindrical system with a
fermion-parity flux inserted.

level of obstruction, denoted as O4, which follows from the
consistency between symmetry action on local Hilbert spaces
of defects and defect fusion rules. We will not derive O4 in
the fermionic language in this work, but instead turn to the
bosonic SET language and discuss it in Sec. IV. A symmetry
group G f is enforced to break by a fermionic iTO of index
ν, if there are no valid n1 and n2 that make O2,O3, and O4

all trivial, i.e., if there are no valid 2D symmetry-enriched
fermionic iTOs. In this section, we will state and elaborate the
ESB criteria, and illustrate the criteria via various examples.
Derivations of the criteria, including rederivation of O2 and
O3 and the derivation of O4 in bosonic SET language, will be
given in Sec. IV.

1. odd ν

We first consider 2D fermionic iTOs with ν being odd.
Consider symmetry ground G f , determined by the pair (G, λ).
We show that

Criterion 3. G f is enforced to break by the 2D fermionic
iTOs with odd ν, if and only if λ is a nontrivial 2-cocycle in
H2(G,Z2).

In other words, the odd-ν iTOs are only compatible with
G f = Z f

2 × G. This criterion can be easily seen from the
O2 obstruction alone. For odd ν, we have O2 = λ. If λ is
nontrivial in H2(G, Z2), so is O2. Then, G f is enforced to
break. On the other hand, if λ is trivial, G f = Z f

2 × G and
there is always a valid symmetry-enriched iTO—the one with
all symmetries in G represented by the identity operator.

One may notice that this criterion is the same as criterion 2
for the Majorana-chain iTO. It is not a coincidence. One can
understand this connection by dimensional reduction. Imagine
we insert a pair of fermion parity defects in a cylindrical
geometry (Fig. 4). There are two MZMs located at the two
ends when ν is odd. If we reduce the cylinder to a 1D system,
it becomes a 1D Majorana-chain iTO. It is important to note
that Pf is in the center of G f so that G f remains the symmetry
group of the effective 1D system. Then, if we apply criterion
2, the “only if” direction of criterion 3 results. One may extend
this method to argue if a general g defect is allowed to carry
MZMs. One subtlety is that inserting a g defect will break the
symmetry group G f down to the centralizer Cg of g in G f . If
Cg is a nontrivial extension by Z f

2 , then g cannot carry MZM
as it contradicts with criterion 2. However, if Cg is a trivial
extension of Z f

2 , we cannot give a definite answer.

023153-10



ENFORCED SYMMETRY BREAKING BY INVERTIBLE … PHYSICAL REVIEW RESEARCH 5, 023153 (2023)

2. ν = 4k + 2

For even ν, the obstruction O2 is always trivial and n1 is
a cocycle in H1(G,Z2). We need to consider O3 and O4.
Here, we discuss the ESB criterion for ν = 4k + 2. Given a
symmetry G f determined by (G, λ), we claim that

Criterion 4. G f is enforced to break by the 2D fermionic
iTOs with ν = 4k + 2, if one of the two situations occurs: (i)
the quantity

O3 = λ ∪ n1 + λ ∪1 λ (42)

is a nontrivial cocycle in H3(G,Z2), for any n1 ∈ H1(G,Z2);
or (ii) another quantity O4 = O4[λ, ν, n1, n2] is a nontrivial
cocycle in H4(G, U(1)), for all n1 that make O3 a coboundary
and for all n2 that satisfy O3 = dn2. We conjecture that there
is no other situation such that G f is enforced to break for ν =
4k + 2.

A few comments are in order. First, the quantities λ, n1, n2,
and O3 are valued in {0, 1}. We repeat the definitions of the
cup products for convenience:

λ ∪ n1(g, h, k) = λ(g, h)n1(k),

λ ∪1 λ(g, h, k) = λ(h, k)λ(g, hk) − λ(g, h)λ(gh, k),

where again additions are defined modulo 2. More details on
cohomology operations are reviewed in Appendix A. Accord-
ing to properties of cup products, O3 is always a (trivial or
nontrivial) 3-cocycle in H3(G,Z2) as long as n1 ∈ H1(G,Z2)
and λ ∈ H2(G,Z2). Second, we do not have the most general
expression of O4 yet. However, we know that it is a functional
of λ, n1, n2, and ν. It can be defined only if O3 is a coboundary.
We also know that it should be a U(1)-valued 4-cocycle in
H4(G, U(1)) from our knowledge of bosonic SET physics. In
the special case that n1 = 0 and O3 = λ ∪1 λ is trivial, O4 has
the following expression:

O4(g, h, k, l) = eiν π
8 [λ∪λ+d̂λ∪1λ](g,h,k,l) × eiπ (n2+λ)∪n2(g,h,k,l),

(43)

where “d̂” is used to denote the usual coboundary operation
but without taking modulo 2, and additions in the exponents
do not assume modulo 2 either. We will argue in Sec. IV that
a more general (but still incomplete) expression of O4 can
be obtained by stacking fermionic iTOs with fermionic SPT
states.

While we do not have the general expression of O4,
the O3 obstruction alone is enough to give rise to many
ESB examples. In particular, we give a complete answer to
ESB phenomena that come from the O3 obstruction for gen-
eral finite Abelian groups G = ∏

i ZNi . This is discussed in
Appendix C 2. A few simple examples will be discussed in
Sec. III C 1.

3. ν = 8k + 4

Now we consider the case ν = 8k + 4. As discussed in
Sec. III A 3, when ν = 4k, the O3 obstruction reduces to
O3 = λ ∪ n1. Then, O3 obstruction alone cannot give rise to
enforced symmetry breaking, because there always exists the
case n1 = 0 such that O3 = 0. Accordingly, ESB may occur
only if both O3 and O4 are considered. We claim that

Criterion 5. G f is enforced to break by the 2D fermionic
iTOs with ν = 8k + 4, if a quantity O4 = O4[λ, ν, n1, n2] is a
nontrivial cocycle in H4(G, U(1)), for all n1 that make O3 =
λ ∪ n1 a coboundary and for all n2 that satisfy O3 = dn2.
We conjecture that there is no other situation such that G f

is enforced to break for ν = 8k + 4.
Regarding the expression of O4, we will argue in Sec. IV E

that a general and complete expression can be obtained by a
stacking trick. Here, we give a simpler version of the formula
for the case that n1 = 0:

O4 = eiπQ4/2 (44)

and

Q4 = ν

4
(λ ∪ λ + d̂λ ∪1 λ) + 2n2 ∪ (n2 + λ), (45)

where both λ and n2 are valued in {0, 1}, “modulo 2” is not
taken for d̂, and additions elsewhere are taken to be “modulo
4.” That O4 is 4-cocycle in H4(G, U(1)) follows from the fact
that Q4 is actually a 4-cocycle in H4(G,Z4). To see that, first,
it is straightforward to check that 2n2 ∪ (n2 + λ) is Z4-valued
4-cocycle, following the general properties of cup products.
Second, the piece P (λ) ≡ λ ∪ λ + d̂λ ∪1 λ is mathematically
known as the Pontryagin square of a Z2-valued cocycle λ. It
is known that P (λ) is a Z4-valued cocycle (see Appendix A).
Accordingly, Q4 is a 4-cocycle in H4(G,Z4). This special
expression of O4 allows us to discover a few ESB examples
for ν = 8k + 4 fermionic iTOs with a finite Abelian group G,
which we will discuss in Sec. III C 2. We note that (44) and
(43) are the same but ν takes different values.

4. ν = 16k + 8

In the case ν = 16k + 8, again both O3 and O4 need to
be taken into account to support ESB. The statement of ESB
criterion is the same as in criterion 5.

Criterion 6. G f is enforced to break by the 2D fermionic
iTOs with ν = 16k + 8, if a quantity O4 = O4[λ, ν, n1, n2]
is a nontrivial cocycle in H4(G, U(1)), for all n1 that make
O3 = λ ∪ n1 a coboundary and for all n2 that satisfy O3 =
dn2. We conjecture that there is no other situation such that
G f is enforced to break for ν = 16k + 8.

Compared to the ν = 8k + 4 case, the difference lies in the
expression of O4. We will argue in Sec. IV E that a general
and complete expression of O4 can be obtained by stacking
fermionic SPTs and using the SPT formulas. Here, we give a
simpler version of the formula for the case that n1 = 0:

O4 = eiπ (λ∪λ+n2∪n2+n2∪λ). (46)

Note that if one sets ν = 16k + 8 in (45) and considers that
d̂λ = 0 (mod 2), then Eq. (44) reduces to Eq. (46).

The above special expression of O4 allows us to obtain a
general result for finite Abelian G. We show that for finite
Abelian group G, ESB will never occur at ν = 8k, regardless
of λ. That is, if G f is determined by a finite Abelian group
G and an arbitrary λ ∈ H2(G,Z2), it will never be enforced
to break by the ν = 8k fermionic iTOs. (The case of ν = 16k
has been generally discussed at the beginning of Sec. III A.)
To see that, we first notice that the piece (−1)λ∪λ or (−1)n2∪n2

has appeared in the study of 2D fermionic SPT states [19].
It was known that this piece is always a trivial 4-cocycle for
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finite Abelian G [61]. One may use the topological invariants
in (54) to directly check this fact. Therefore O4 reduces to
(−1)n2∪λ. Then, we can choose n2 = 0 such that O4 is trivial.
That is, if n1 = n2 = 0, the obstruction functions O3 and O4

are both trivial, which gives rise to a valid symmetry-enriched
iTO.

Therefore, to look for ESB by ν = 16k + 8 fermionic
iTOs, we must go to non-Abelian G. It is usually not easy to
check if O4 is a trivial or nontrivial cocycle for non-Abelian
group G, even for the expression in (46). Fortunately, we will
argue in Sec. III D that SU f (8n) (n being any positive integer)
will be enforced to break by 2D fermionic iTOs with index
ν = 16k + 8, through a different argument. That argument
actually applies to iTOs with any even ν.

Finally, we remark that although ESB will never occur for
ν = 16k, there are still nontrivial obstruction functions. These
obstruction functions were obtained previously in the study of
SPT states [23–25].

C. Examples

In this section, we give a few examples of ESB by 2D
fermionic iTOs. For odd-ν iTOs, any G f with λ being a non-
trivial 2-cocycle is enforced to break. For ν = 16k + 8, we do
not have an example of finite groups. However, in Sec. III D,
we give an example of Lie group. So, we discuss the cases of
ν = 4k + 2 and ν = 8k + 4 below.

1. ν = 4k + 2

We will consider examples with G being Abelian and focus
on those ESB solely due to O3 obstructions for ν = 4k + 2.
We will discuss some general setup regarding group coho-
mology of finite Abelian groups and topological invariants
(quantities that are invariant under coboundary transforma-
tions). Then, we will specialize to G = Z2 × Z2 and Z2 × Z4.
Discussions on general Abelian G as well as some discussions
on O4 are given in Appendix C.

Recall that λ ∈ H2(G,Z2) can be generally parametrized
in Eq. (11) and the topological invariants {�i,�i j} in (14) are
complete for finite Abelian group G = ∏k

i=1 ZNi (we assume
Ni being even without loss of generality). We note that �i,�i j

are valued in {0, 1}, and �i j = � ji, �ii = 0. Also, a general
1-cocycle n1 ∈ H1(G,Z2) can be parametrized as

n1(a) =
∑

i

qivi(a) (47)

where qi = 0 or 1, vi(a) = ai (mod 2), and a = (a1, . . . , ak )
is an integer vector to denote group elements of G. The coho-
mology group H1(G,Z2) = 2k and different choices of {qi}
exhaust all cohomology classes of 1-cocycles.

We show in Appendix C that one can define a complete set
of topological invariants for 3-cocycles in H3(G,Z2). Given
u ∈ H3(G,Z2), the topological invariants can be defined
as follows. Let χa(b, c) = u(a, b, c) − u(b, a, c) + u(b, c, a),
then

�i j =
Nj−1∑
i=0

χei (e j, ne j ),

�i jk = χei (e j, ek ) − χei (ek, e j ), (48)

where ei is the ith generator of G and “modulo 2” is again
assumed. We remark that �i j and � ji are independent, while
�i jk is a fully antisymmetric tensor. For the special 3-cocycle
O3 = λ ∪ n1 + λ ∪1 λ, we show in Appendix C 2 that

�i j = qi� j + Nj

2
(q j − 1)�i j,

�i jk = qi� jk + q j�ki + qk�i j . (49)

Accordingly, for given {�i,�i j} (i.e., given λ), the corre-
sponding G f is enforced to break if there is no solution of
{qi} to the equations �i j = �i jk = 0. This result applies to an
arbitrary finite Abelian group. If there are solutions, then one
needs to further check the O4 obstruction.

Now we specialize to G = Z2 × Z2. In this case, Eq. (49)
becomes

� =

⎛⎜⎜⎝
q1�1

q2�2

q1�2 + (q2 − 1)�12

q2�1 + (q1 − 1)�12

⎞⎟⎟⎠, (50)

where � = (�11, �22, �12, �21)T . We ask if there is any
choice of �1, �2, and �12 such that there is no q1 and q2

making � = 0. It turns out that when �1 = �2 = �12 = 1,
there is indeed no solution. In this case, the fermionic sym-
metry group G f = Q8, the quaternion group with its center
identified as Z f

2 . Therefore G f = Q8 is enforced to break by
ν = 4k + 2 fermionic iTOs.

Similarly, for G = Z2 × Z4, Eq. (49) becomes

� =

⎛⎜⎜⎝
q1�1

q2�2

q1�2

q2�1 + (q1 − 1)�12

⎞⎟⎟⎠. (51)

It is not hard to check that there is ESB by ν = 4k + 2 iTOs
for two cases: (1) �1 = 0 and �2 = �12 = 1, and(2) �1 =
�2 = �12 = 1.

2. ν = 8k + 4

For ν = 8k + 4, we consider examples with G = (Z2)n.
Again, we use Eq. (11) to parametrize λ ∈ H2(G,Z2) and use
the topological invariants {�i,�i j} in (14) to characterize it.
We use (47) to parametrize n1 ∈ H1(G,Z2). In the current
case, evaluating the topological invariants in (48) for O3 =
λ ∪ n1 gives

�i j = qi� j + q j�i j,

�i jk = qi� jk + q j�ki + qk�i j . (52)

To limit the possible solutions {qi}, we will constrain our-
selves to the case that �i = 1 for all i. Then, we have �ii = qi.
The only solution to �ii = 0 is qi = 0 for all i, i.e., n1 = 0.
This makes the special expression of O4 in (44) applicable. In
this case dn2 = O3 = 0 is a cocycle in H2(G,Z2).

Therefore ESB will occur if O4 in (44) is nontrivial for all
possible n2. Like λ in (11), we will parametrize n2 as follows:

n2(a, b) =
∑

i

xiwi(a, b) +
∑
i> j

xi jwi j (a, b), (53)
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where xi and xi j can also take 0 or 1. Using these parametriza-
tion, O4 in (44) can be parametrized by the integers pi, pi j and
xi, xi j . It can be proven that for Abelian G, (−1)n2∪n2 is a trivial
U(1)-valued 4-cocycle. Therefore we only need to consider
the rest part of O4, which fortunately is linear in xi, xi j .

For Abelian group G = ∏
i ZNi , one efficient way to check

whether a 4-cocycle χ (a, b, c, d ) ∈ H4(G, U(1)) is nontrivial
or not is to evaluate the following set of topological invariants
[59]:

ei�i,l =
Ni∏

n=1

χel ,ei (ei, nei ),

ei�i j,l =
Ni j∏
n=1

χel ,ei (e j, ne j )χel ,e j (ei, nei ), (54)

ei�i jk,l = χel ,ei (ek, e j )

χel ,ei (e j, ek )
,

where χa,b(c, d ) is two-steps slant product of χ (a, b, c, d )
over a and b recursively and we denote the group element of G
as a = ∑

i niei with ei as the generator of subgroup ZNi . The
sufficient and necessary condition that χ (a, b, c, d ) is a trivial
4-cocycle is that all these topological invariants are equal to
one.

We consider two cases: G = Zn
2 with n = 3 and 4. We

will show that the former case does not lead to ESB but the
latter might do. First, we consider n = 3. For G = (Z2)3, there
are many different λ. Assisted by computer, we can show
that for none of these λ’s, O4 is nontrivial for all n2. Here,
we specifically focus on the case λ = ∑

i wi + ∑
i< j wi j , the

calculation of which helps for the n = 4 case. We need to
consider eight independent topological invariants—six ei�i,l

with i = l and two ei�i j,l with i = j = l . To look for ESB, it is
equivalent to ask whether there exists at least one set of xi and
xi j suc that

ei�i,l = 1,

ei�i j,l = 1, (55)

or equivalently

�i,l = 0 (mod 2π ),

�i j,l = 0 (mod 2π ). (56)

Recall that we can ignore n2 ∪ n2 in O4. So, these equa-
tions are a set of (modular) linear equations respect to xi and
xi j and can be solved straightforwardly. It turns out that there
exsit only two solutions, that is

(1) x1 = x2 = x3 = x12 = x13 = x23 = 0,

(2) x1 = x2 = x3 = x12 = x13 = x23 = 1.

Therefore there exists n2 such that all the invariants are trivial.
In other words, there is no ESB for G = (Z2)3 with λ =∑

i wi + ∑
i< j wi j .

Now we consider the case n = 4 and λ = ∑
i wi +∑

i< j wi j . Now there are in total 21 independent topological
invariants—twelve ei�i,l , eight ei�i j,l and one ei�i jk,l . First, we
find out the solution space of xi and xi j such that all the
20 topological invariants ei�i,l and ei�i j,l are equal to one.

Similar to the case n = 3, we find that there are only two such
solutions of xi, xi j :

(1) xi = xi j = 0,

(2) xi = xi j = 1

for all i and j. However, neither of the two solutions make the
last topological invariant ei�i jk,l to be 1. In other words, there
is no such n2 that all the 21 topological invariants are equal
to 1. Therefore we find an example of ESB by 2D fermionic
iTOs with ν = 8k + 4: G = Z4

2 with λ = ∑
i wi + ∑

i< j wi j .
The fermionic group G f is of order 32.

D. Gf = SU f (N)

In this section, we consider 2D fermionic iTOs with a con-
tinuous symmetry group SU f (N ) (N being even). The main
motivation is to look for examples of ESB by fermionic iTOs
with ν = 16k + 8. It turns out that this example is quite neat
and gives rise to ESB for all even ν’s, when N varies. Our
argument in this example does not follow other parts of this
work. It is a generalization of an argument given in Ref. [58]
for SU f (2).

Let us first explain some basic structures of SU f (N ). It is
the usual SU (N ) group, and the subscript “ f ” denotes that
the fermion parity group Z f

2 is embedded. To be concrete,
let us use a representation of N × N matrices. The group
SU f (N ) has a center Z f

N , represented by the diagonal matrices
ein2π/NI, with n = 0, 1, . . . , (N − 1) and I being the N × N
identity matrix. We consider even N , and Z f

2 is identified
to the group {I,−I}. An important fact that we will use is
that there exists a U f (1) subgroup and the center Z f

N is its
subgroup. Such a group is not unique. One of the choices is
U f (1) = {Uθ |0 � θ < 2π} and

Uθ =

⎛⎜⎜⎜⎝
eiθ 0 · · · 0
0 eiθ · · · 0
...

...
. . .

...

0 0 · · · ei(1−N )θ

⎞⎟⎟⎟⎠, (57)

where the last diagonal term is ei(1−N )θ and other diagonal
terms are eiθ . It is easy to check that U2π/N generates the center
and the fermion parity is Uπ . In short, we have Z f

2 ⊂ Z f
N ⊂

U f (1) ⊂ SU f (N ).
Now we consider an SU f (N )-enriched 2D fermionic iTO

with even ν. First, with respect to U f (1), we can define a Hall
conductance σH . It is known that, for fermionic iTOs with
even ν, we have

σH = ν

2
(mod 8). (58)

The “modulo 8” is due to the E8 state which does not con-
tribute to σH but changes the chiral central charge c− = ν/2
by 8. Next, we compute σH in two ways. On one hand, by
Laughlin’s argument, σH is equal to the charge Q2π accumu-
lated on an adiabatically inserted 2π flux. On the other hand,
we may also adiabatically insert N copies of 2π/N fluxes. Let
us denote the defect corresponding to a 2π/N flux as v, and
Qv is the U f (1) charge carried by v. The total charge carried
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by the v defects should be equal to Q2π . Then, we have

σH = NQv. (59)

In general, Qv is fractional, because v is a defect instead of a
local excitation.

We argue that in the presence of SU f (N ), the charge Qv

must be an integer. Let us first give a simple argument and then
justify it more rigorously. Recall that U2π/N lies in the center
of SU f (N ). Accordingly, inserting a 2π/N flux (the v defect)
does not break SU f (N ). So, v must carry a projective repre-
sentation of SU f (N ). However, SU f (N ) is a connected and
simply connected compact Lie group, which does not support
nontrivial projective representations. Accordingly, v carries a
linear representation of SU f (N ), which is also a linear repre-
sentation of the subgroup U f (1). That means, v must carry an
integer charge of U f (1). The linear representation carried by
v is generally irreducible due to energy consideration.

Two clarifications are needed to make the above argument
justified. First, from our understanding of SETs, symme-
try fractionalization goes beyond projective representations.
Technically speaking, we need to replace H2(G, U(1)) which
classifies projective representations with H2(G,A), where
A is an Abelian group formed by Abelian anyons under
fusion. However, for G = SU f (N ), it can be shown math-
ematically that both H2(G, U(1)) and H2(G,A) are trivial.
Since v is a defect, not an anyon, readers may still not be
convinced. There is another way to see this: one can gauge
the Z f

N center and turn the fermionic iTO into a bosonic
topological order enriched by the quotient group PSU (N ) =
SU f (N )/Z f

N . In this way, v becomes a true anyon. Symmetry
fractionalization on v is classified by H2(PSU (N ),A), whre
A is the fusion group associated with the bosonic topological
order whose structure depends on σH . Using the universal
coefficient theorem, one can show that H2(PSU (N ),A) =
Tor{H2(PSU (N ), U(1)),A}, where Tor is a cohomological
operation and H2(PSU (N ), U(1)) = ZN . Regardless of what
group Tor{H2(PSU (N ), U(1)),A} is, what is important to
us is the physical meaning: Tor picks out those projective
representations of PSU (N ) that are compatible with the fu-
sion group A. This interpretation has been widely used for
SO(3), which is equal to SU f (2)/Z f

2 (see, e.g., Ref. [17]).
We believe it is applicable generally. Accordingly, symmetry
fractionalization on v can all be characterized by projective
representations of PSU (N ), before considering the compati-
bility to fusion rules. Finally, it is well known that projective
representations of PSU (N ) are simply linear representations
of SU f (N ). So, it goes back to our argument above.

Second, the irreducible linear representation of SU f (N )
carried by v in the fermionic picture is usually multi-
dimensional. Then, when we insert multiple 2π/N fluxes,
they may stay in different states inside the irreducible linear
representation, as these states are energetically degenerate.
However, U f (1) charges carried by different states in an irre-
ducible representation of SU f (N ) can only differ by a multiple
of N . This is again because Z f

N ⊂ U f (1) is the center of
SU f (N ), so that all states in an irreducible representation of
SU f (N ) must carry the same Z f

N charge. This is equivalent
to say that U f (1) charges can only differ by a multiple of
N . Accordingly, even if this subtlety is taken into account,

Eq. (59) is relaxed to

σH = 0 (mod N ), (60)

which is enough for our purpose.
With these clarifications, we now combine (58) and (60).

We immediately have
ν

2
= n gcd(N, 8), (61)

where n is any integer and “gcd” stands for greatest common
divisor. Equation (61) must be satisfied by all symmetry-
enriched fermionic iTOs. If it cannot be satisfied, that means
the symmetry group SU f (N ) is enforced to break by the iTO.
More explicitly, we have

(1) SU f (2l ) is enforced to break by 2D fermionic iTOs
with ν = 4k + 2;

(2) SU f (4l ) is enforced to break by 2D fermionic iTOs
with ν = 8k + 4;

(3) SU f (8l ) is enforced to break by 2D fermionic iTOs
with ν = 16k + 8;
where k, l are any positive integers. For ν = 16k, (61) is
always satisfied, which is consistent to the 16-fold periodicity
of ESB physics argued above.

IV. DERIVATION OF 2D ESB CRITERIA

In this section, we give alternative derivations of O2 and
O3 obstructions, and derive the O4 obstruction and 2D ESB
criteria. Compared to Sec. III A where we define n1 and n2

using defects in the fermionic language, the main strategy here
is to gauge the fermion parity group Z f

2 and turn the fermionic
iTO into a bosonic topological order. The gauging method
was first introduced to SPT and SET studies by Ref. [26]
and readers may consult that work for the explicit gauging
procedure.

Let us denote the resulting bosonic topological order after
gauging Z f

2 as Cν for the fermionic iTO of index ν. Detailed
properties of Cν can be found in Ref. [60]. When ν is odd, Cν

contains three anyons:

Cν = {1, f , σ },
where f corresponds to the original fermion and σ is a non-
Abelian fermion-parity flux of quantum dimension dσ = √

2.
When ν is even, Cν contains four anyons:

Cν = {1, f , v, v f },
where v and v f are two Abelian fermion-parity fluxes sat-
isfying the fusion rule v × f = v f . The even-ν cases can
be further distinguished by the fusion rule of fermion-parity
fluxes,

v × v =
{

f , if ν = 4k + 2
1, if ν = 4k

, (62)

where k is an integer. In all cases, the topological spin of a
fermion parity flux is θσ = eiνπ/8 or θv = θv f = eiνπ/8, and
the mutual statistics between f and fluxes is M f ,σ = −1 or
M f ,v = −1. Hence, there is a 16-fold periodicity in ν.

With Z f
2 gauged, there remains a global symmetry group

G. Hence, we obtain an SET state of topological order Cν and
symmetry group G. In the fermionic language in Sec. III A,
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the quantities n1 and n2 characterize Majorana zero modes
and fermion parity conservation on symmetry defects, re-
spectively. In the bosonic language, we will see that n1

describes permutation of the fermion parity fluxes for even ν

by symmetries in G, while n2 describes certain symmetry frac-
tionalization pattern on the fermion parity fluxes. The bosonic
SET carries a condition from the original fermionic system:
symmetry fractionalization on f is fixed by the 2-cocycle
λ ∈ H2(G,Z2). Studying such a conditional SET leads to
new consistency relations that do not exist in unconditional
SETs. These conditional consistency relations, which we call
conditional anomalies, give rise to the O2 and O3 obstructions
which otherwise do not exist. (There is also an Õ3 obstruction
in general bosonic SETs, but O3 is different from, although
related to, Õ3.) Together with an O4 obstruction of bosonic
SETs, they can be used to derive the ESB criteria associated
with the original fermionic iTOs.

A. Basics of SETs

Before studying our specific SETs, we review the basics
of the general theory of bosonic SET states. For more details,
one can refer to Ref. [47]. The description of SETs involves
several layers of data which we briefly explain below one by
one.

First, a bosonic topological order C contains anyons
1, a, b, . . . , where 1 is the trivial anyon. Mathematically, C
is described by a unitary modular tensor category (UMTC).
[60] Physically, anyons are characterized by their fusion and
braiding properties. They follow a set of fusion rules a × b =∑

c Nc
abc, where the fusion coefficient Nc

ab is a non-negative
integer. There exists a unique anyon ā, namely, the antiparticle
of a, such that N1

aā = 1. Two important quantities of each
anyon a are the quantum dimension da and topological spin
θa. For Abelian anyons, da = 1 and θa is its self-statistics.
Associated with each Nc

ab = 0 there is a vector space V ab
c ,

called the fusion or splitting space, whose dimension is Nc
ab. A

key quantity that relates different fusion spaces is the so-called
F symbol, which is an isomorphism between fusion spaces
of three anyons (F abc

d )e f :
⊕

e V ab
e ⊗ V ec

d → ⊕
f V a f

d ⊗ V bc
f .

If one exchanges two anyons, it corresponds to another iso-
morphism, the R symbol, Rab

c : V ab
c → V ba

c .
Every C processes a set of topological symmetries, which

form a group denoted as Aut(C). We only consider those that
are unitary and orientation-preserving. A topological symme-
try is an invertible map from C to itself. It contains two parts:
(i) a permutation of anyons

a → a′ ≡ ϕ(a) (63)

and (ii) an action on the fusion space V ab
c

ϕ(|a, b; c〉) = ua′b′
c′ |a′, b′; c′〉, (64)

where ua′b′
c′ is a phase factor and |a, b; c〉 ∈ V ab

c . For simplicity,
we have assumed Nc

ab = 0 or 1, as all our cases satisfy this
assumption. Topological symmetries keep all the data of C
invariant, e.g.,

Nc
ab = Nc′

a′b′ ,

θa = θa′ ,

[
F abc

d

]
e f = ua′b′

e′ ue′c′
d ′

[
F a′b′c′

d ′
]

e′ f ′
[
ua′ f ′

d ′
]∗[

ub′c′
f ′

]∗
,

Rab
c = ub′a′

c′ Ra′b′
c′

[
ua′b′

c′
]∗

. (65)

One can see that if uab
c is multiplied by γaγb/γc, equations (65)

remain unchanged. Such a transformation is called a natural
isomorphism. It is regarded as an equivalence relation be-
tween different sets of {uab

c }. Group multiplication of Aut(C)
in the aspect of uab

c is upto natural isomorphisms. It is believed
that {uab

c } is fixed up to natural isomorphisms once anyon
permutation in (63) is given, which is indeed the case in our
examples.

Second, consider a system with the microscopic symme-
tries forming a group G. If it is unbroken at low energy,
G must be mapped into Aut(C). This is characterized by a
group homomorphism ρ : G → Aut(C). That is, every g ∈ G
is associated with a topological symmetry, denoted as ρg. We
denote the anyon permutation ρg(a) = ga for short. For anyon
permutations, ρ is an exact group homomorphism. On the
other hand, the action on states in fusion space is upto natural
isomorphisms:

ρgh = κg,h ◦ ρg ◦ ρh, (66)

where κg,h is a natural isomorphism. Let ug(a, b, c) be the
phase factor associated with ρg’s action on fusion spaces.
Then, the explicit expression of κg,h is

κg,h(a, b, c) = ugh(a, b, c)

ug(a, b, c)uh(ḡa, ḡb, ḡc)
, (67)

where ḡ is a short-hand notation for g−1. Since κg,h is a natural
isomorphism, we can decompose it as

κg,h(a, b, c) = βa(g, h)βb(g, h)

βc(g, h)
. (68)

The quantity βa(g, h) is subject to two kinds of am-
biguities: (i) the decomposition (68) is not unique and
a shift βa(g, h) → νa(g, h)βa(g, h) is also valid as long
as νa(g, h)νb(g, h) = νc(g, h) if Nc

ab = 0; and (ii) a natu-
ral isomorphism in ug(a, b, c) induces a shift βa(g, h) →
βa(g, h)γa(gh)/γa(g)γḡa(h).

With βa(g, h), we define an important quantity

�a(g, h, k) = βḡa(h, k)βa(g, hk)

βa(g, h)βa(gh, k)
. (69)

By definition, �a is a coboundary in H3
ρ (G, U(1)) for ev-

ery a. Also, associativity of ρg can be used to show that
�a(g, h, k)�b(g, h, k) = �c(g, h, k) if Nc

ab = 0. The latter
implies that

�a(g, h, k) = M∗
a,Õ3(g,h,k), (70)

where Õ3(g, h, k) is an Abelian anyon in C and Ma,b is the
mutual statistical phase between a and an Abelian anyon b.
Moreover, Õ3(g, h, k) is a 3-cocycle in H3

ρ (G,A), where A
denotes the group of Abelian anyons in C. However, it is im-
portant to note that Õ3(g, h, k) might be a nontrivial cocycle.
The ambiguities in βa(g, h) induce coboundary transforma-
tions in Õ3(g, h, k). Accordingly, only the cohomology class
[Õ3] in H3

ρ (G,A) matters.
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Third, other than topological actions, symmetries in G also
act on local degrees of freedom around each anyon. Consider
a state that contains a set of anyons {ai}, which are spatially
well-separated. The overall action of g ∈ G is a combination
of local and topological actions:

Rg =
∏

i

U(i)
g ρg, (71)

where U(i)
g is a local unitary operator, supported in the neigh-

borhood of anyon ai, and ρg is the topological action in the
fusion space of {ai} which can be decomposed into those in
(64). The local operators form a projective representation

U(i)
g

gU(i)
h = ηai (g, h)U(i)

gh, (72)

where gU (i)
h = ρgU(i)

h ρ−1
g , and ηa(g, h) is a 2-cocycle in

H2
ρ (G, U(1)) for every a. The local unitary operator U(i)

g has
a phase ambiguity. At the same time, ρg also has a phase
ambiguity due to natural isomorphisms. The two ambiguities
shall be correlated such that RgRh = Rgh. It was shown in
Ref. [47] that a nice quantity to look at is the ratio

ωa(g, h) = βa(g, h)

ηa(g, h)
, (73)

which satisfies ωa(g, h)ωb(g, h) = ωc(g, h) if Nc
ab = 0. That

means, we have

ωa(g, h) = M∗
a,w(g,h), (74)

where w(g, h) is an Abelian anyon in A ⊂ C. It is equivalent
to say that

ηa(g, h)ηb(g, h)

ηc(g, h)
= βa(g, h)βb(g, h)

βc(g, h)
, (75)

whenever Nc
ab = 0. Accordingly, gauge transformations of

ηa(g, h) and βa(g, h) shall be correlated such that (75) always
holds. Combining (69), (70), (73), (74) and that ηa(g, h) is
2-cocycle, one can show that

Õ3(g, h, k) = dw(g, h, k)

= ρg[w(h, k)]w(gh, k)w(g, hk)w(g, h), (76)

where x̄ stands for the antiparticle of anyon x. This implies
that Õ3(g, h, k) should be a 3-coboundary in H3

ρ (G,A) to
give rise to a valid w(g, h). If Õ3(g, h, k), obtained from its
definitions (69) and (70), is a nontrivial 3-cocycle, Eq. (76)
can never have a solution for w(g, h), implying that the form
of symmetry action in (71) does not hold. Then, it is said
that the topological action ρ has a symmetry localization
obstruction.

When the obstruction Õ3(g, h, k) is trivial, one then look
for w(g, h) that satisfies (76). It is not hard to see that given
w(g, h) a solution, w(g, h)t (g, h) is also a valid solution if
t (g, h) ∈ H2

ρ (G,A). At the same time, w(g, h) is subject to

an ambiguity w(g, h) → w(g, h)ρg[ζ (h)]ζ (g)ζ (gh), where
ζ (g) is an arbitrary Abelian anyon in A. This ambiguity is due
to an independent phase shift that we can perform on U(i)

g or
equivalently on ηa(g, h) for a fixed βa(g, h). Then, different
solution classes [w] to (76) are said to describe different
symmetry fractionalization classes. They are related to each
other by a cohomology class [t] ∈ H2

ρ (G,A). Once w(g, h)

and βa(g, h) are given, the projective phase factor ηa(g, h) is
determined by (73) and (74).

Fourth, for a given symmetry action ρ ∈ Aut(C) and a
symmetry fractionalization class described by w(g, h), there
are additional consistency conditions to satisfy. For an SET
to be valid, one shall be able to insert symmetry defects
(i.e., couple to a background gauge field) and these defects
shall form a fusion category. It was shown in Ref. [32] that
given ρ and ω, one can construct a quantity Õ4 out of them.
It is a 4-cocycle in H4(G, U(1)) and subject to coboundary
transformations. For the defects to form a consistent fusion
theory, it is required the cohomology class [Õ4] is trivial. If it
is nontrivial, we say there is an Õ4 obstruction. The general
expression Õ4 is complicated. A simple one with a trivial ρ is
given by

Õ4(g, h, k, l) = Rw(k,l),w(g,h)
Fw(h,k),w(g,hk),w(ghk,l)

Fw(h,k),w(hk,l),w(g,hkl)

× Fw(g,h),w(k,l),w(gh,kl)

Fw(g,h),w(gh,k),w(ghk,l)

Fw(k,l),w(h,kl),w(g,hkl)

Fw(k,l),w(g,h),w(gh,kl)
,

(77)

where the R and F symbols are associated with Abelian
anyons in C. If [Õ4] is trivial, one can study the fusion theory
of defects, which involves additional F symbols among the
defects. It was shown that different defect theories can be ob-
tained by twisting the defect F symbols with a 3-cocycle α3 ∈
H3(G, U(1)). Physically, it corresponds to stack an SET with
a 2D SPT state which is indeed classified by H3(G, U(1)). In
this work, we will not explore the data α3 as it is irrelevant to
the phenomenon of enforced symmetry breaking.

To summarize, there are two obstruction classes: (i) exis-
tence of a valid symmetry fractionalization class [w] requires
[Õ3] to be trivial and (ii) a consistent defect theory further
requires [Õ4] to be trivial. A valid bosonic SET state requires
both obstruction classes to be trivial.

B. O2 and symmetry fractionalization condition

We now apply the above general theory to our case, the
topological order Cν enriched by symmetry group G. In this
section, we consider the case of odd ν. In this case, there
is no nontrivial topological symmetry, i.e., Aut(Cν ) = Z1.
Then, no symmetries in G permute anyons. It is known that
the Õ3 obstruction is always trivial without anyon permuta-
tions. We can take the gauge uab

c = 1, βa(g, h) = 1, such that
Õ3(g, h, k) = 1.

We make some important comments here before proceed-
ing. The fermion f is a local excitation in the original iTO,
so the fusion space V f f

1 is not topological but instead local.
Then, one should impose the condition that u f f

1 = 1 after
Z f

2 is gauged. This condition was previously discussed in
Ref. [62]. It is a necessary condition for establishing an in-
verse mapping from the bosonic SET back to the fermionic
iTO. With this condition imposed, natural isomorphisms on
f can only be γ f = ±1. Then, the quantity β f (g, h) in the
decomposition (68) shall also take a value +1 or −1. Un-
der an appropriate gauge choice, we find that we can set
β f (g, h) = 1 for all Cν’s (the cases of even ν’s are discussed in
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Appendix B). In fact, we postulate that the most general case
is β f (g, h) = γ f (gh)/[γ f (g)γ f (h)], and a shift β f (g, h) →
β f (g, h)ν f (g, h) is not allowed in general (see a discussion
below). The O2 and O3 obstructions in Sec. III A are correctly
recovered only under this assumption. We believe that it is due
to the locality of f in the original fermionic systems, such that
(78) below describes the absolute symmetry fractionalization
on f and disallows a shift β f (g, h) → β f (g, h)ν f (g, h). We
will take β f (g, h) = γ f (gh)/[γ f (g)γ f (h)] as an assumption in
this work, and we refer the readers to recent works [63,64] on
general fermionic SET states for more systematic discussions.

Symmetry fractionalization is characterized by an Abelian
anyon w(g, h) ∈ A ⊂ Cν . Again, it is special in our SET as
it originates from a fermionic theory with symmetry group
G f determined by G and a 2-cocycle λ ∈ H2(G,Z2). From
our study of 0D iTOs (Sec. II D), we know that the fermion
f obeys a projective representation of G, with the projective
factor being (−1)λ(g,h). Accordingly, when Z f

2 is gauged, the
local action of G on f shall be associated with a projective
phase factor

η f (g, h) = (−1)λ(g,h). (78)

It is an important condition, constraining the possible symme-
try fractionalization classes [w]. In fact, for odd ν, we show
below that the condition (78) is so strong that it is actually not
compatible with any symmetry fractionalization pattern when
λ is a nontrivial cocycle in H2(G,Z2). We remark that due
to (75) and the condition that natural isomorphism γ f = ±1,
gauge transformations on η f (g, h) are also constrained with
values ±1. This makes sense, as the right-hand side of Eq. (78)
only has a ±1 ambiguity from coboundary transformations of
λ(g, h). We also remark that the condition (78) implies that
we interpret g ∈ G as g0 ∈ G f . Generally speaking, g ∈ G
corresponds to the coset {g0, g1} in the quotient group G f /Z

f
2 .

We now show that Cν with an odd ν is incompatible with
(78) when λ is a nontrivial cocycle. Combining Eqs. (73),
(74), and (78), we obtain

M∗
f ,w(g,h) = β f (g, h)(−1)λ(g,h). (79)

As w(g, h) = 1 or f , the left-hand side must be equal to 1.
Under the assumption that β f (g, h) = γ f (gh)/[γ f (g)γ f (h)],
the right-hand side can be equal to 1 if and only if λ(g, h)
is a trivial cocycle in H2(G,Z2). That is, Eq. (79) has no
solution w(g, h), if λ is a nontrivial 2-cocycle in H2(G,Z2).
Instead, for even ν, the fermion-parity fluxes are Abelian
so that w(g, h) has choices other than 1 and f , making
solutions of Eq. (79) to exist even if λ is a nontrivial cocy-
cle (see Sec. IV C). Accordingly, we recover the obstruction
O2(g, h) = νλ(g, h), first discussed in Sec. III A. We remark
that if we allow β f (g, h) = ν f (g, h)γ f (gh)/[γ f (g)γ f (h)],
with {νa(g, h)} respecting anyon fusion, the O2 obstruction
becomes ν[λ(g, h) + ν f (g, h)]. Since ν f (g, h) may be a non-
trivial 2-cocycle in general, it is inconsistent with the result
from Sec. III A. This justifies the assumption on β f (g, h).

We note that O2 does not exist in usual SETs. It exists
in our SETs due to the condition (78). We will call it a
conditional obstruction or anomaly. The obstruction O2 alone
is enough to establish criterion 3, which is complete for the
ESB physics in all odd-ν iTOs. So, we will move on to the

even-ν cases below. However, it does not mean that there is
no other obstructions for the odd-ν cases. The Õ4 obstruction
of bosonic SETs will generally be there even if λ is trivial.

C. O3 and O4 for ν = 4k + 2

We now consider even ν, by starting with ν = 4k + 2.
Different from the odd-ν case, the group of topological sym-
metries Aut(Cν ) = Z2 for even ν.5 The nontrivial one is
associated with the permutation v ↔ v f . The symmetry ac-
tion on Cν is given by a group homomorphism

n1 : G → Z2. (80)

Equivalently, n1 ∈ H1(G,Z2). If n1(g) = 1, the symmetry g
permutes v and v f ; if n1(g) = 0, it does not. In other words,
the anyon permutation is given by

ρg(v) = v f n1(g), ρg( f ) = f . (81)

For n1 to be valid, it requires the Õ3 obstruction to be trivial.
We verify this explicitly in Appendix B that Õ3 is indeed
trivial for even ν. In fact, we show in Appendix B that
Õ3(g, h, k) = 1 under certain gauge choice.

The quantity n1 in (80) is the same n1 defined in Sec. III A
that characterizes the Majorana zero mode on the g0 and
g1 defects (for even ν, if g0 carries MZM, so is g1). This
correspondence has already been known before in the context
of fermionic SPT phases [19]. To see that, imagine inserting
a g defect in the bosonic SET and winding a v anyon around
defect. If n1(g) = 1, v becomes v f after winding around the
g defect, implying that an anyon v f × v̄ = f is absorbed into
the defect. That is, a g defect has the ability to absorb f and
it must carry a Majorana zero mode in the original fermionic
iTO.

After the topological symmetry action is specified by
n1, we now discuss the local symmetry action characterized
by the symmetry fractionalization w(g, h) ∈ A = Cν . Again,
w(g, h) is subject to the condition (79). However, differ-
ent from the odd-ν case, w(g, h) can now be any anyon
in Cν = {1, f , v, v f }. For convenience, we take β f (g, h) = 1
and make a comment on general β f (g, h) later. Then, for (79)
to be satisfied, w(g, h) must take the following form

w(g, h) = vλ(g,h) f n2(g,h), (82)

where n2(g, h) = 0, 1 is any 2-cochain in C2(G,Z2). This
makes η f (g, h) = (−1)λ(g,h). Note that (82) is already a re-
stricted form of w(g, h), since λ(g, h) is required to be a
cocycle due to the original fermionic iTO. We claim that the
quantity n2(g, h) is the same n2 that we define in the fermionic
language. Intuitively, n2(g, h) = 0 or 1 represents whether f
appear in the symmetry fractionalization anyon w(g, h). More
importantly, we show below that it satisfies the same condition
dn2 = O3 as the one in Sec. III A.

5For ν = 8, there exist other topological symmetries that permute f
with the fermion-parity vortices. However, our SETs originate from
fermionic iTOs so that f should be unpermuted. We only consider
those topological symmetries that keep f unpermutated.
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Recall that v × v = f and f × f = 1 for ν = 4k + 2.
More generally, the fusion rules are given by

va1 f b1 × va2 f b2 = v[a1+a2] f [b1+b2]+a1a2 , (83)

where ai, bi = 0, 1 and [x] = x (mod 2). With the form
of w(g, h) in (82), the anyon permutation (81) and the
gauge choice Õ3(g, h, k) = 1, the obstruction condition (76)
becomes:

1 = vλ(h,k) f n1(g)λ(h,k) f n2(h,k) · v̄λ(gh,k) f n2(gh,k)

· vλ(g,hk) f n2(g,hk) · v̄λ(g,h) f n2(g,h)

= v[λ(h,k)+λ(g,hk)] f λ(h,k)λ(g,hk) · v̄[λ(g,h)+λ(gh,k)]

· f λ(g,h)λ(gh,k) f n1(g)λ(h,k) f dn2(g,h,k)

= f dn2(g,h,k) f {n1∪λ+λ∪1λ}(g,h,k). (84)

From the second to the third line, we have used the relation
[λ(h, k) + λ(g, hk)] = [λ(g, h) + λ(gh, k)] as λ(g, h) is a 2-
cocycle, making the fusion product of the terms associated
with v to be 1. Let us define

O3(g, h, k) = {n1 ∪ λ + λ ∪1 λ}(g, h, k). (85)

which is always 3-cocycle in H3(G,Z2) according to general
properties of the cup products ∪ and ∪1 (see a review in
Appendix A). Then, Eq. (84) imposes

O3(g, h, k) = dn2(g, h, k). (86)

This indicates a new level of obstruction: given n1 and λ,
if O3(g, h, k) is a nontrivial 3-cocycle in H3(G,Z2), then
there is no solution n2(g, h) to Eq. (86). That is, there is no
valid symmetry fractionalization in the form (82). Further-
more, if Eq. (86) has no solution for all possible n1, ESB
occurs in fermionic iTOs with ν = 4k + 2. This is the first
half of criterion 4. Hence, we recover our result on O3 in the
fermionic theory in Sec. III A. We note that n1 ∪ λ and λ ∪ n1

are equivalent cocycles in H3(G,Z2) when λ is a 2-cocycle.
A few remarks on gauge transformations are in order. First,

w(g, h) is defined up to an ambiguous anyon dζ (g, h) =
ρg[ζ (h)]ζ (g)ζ (gh). In general, ζ (g) = va(g) f b(g), with ar-
bitrary a(g), b(g) = 0, 1. However, to make a one-to-one
correspondence between bosonic SETs and fermionic iTOs,
we need to put some restrictions on ζ (g). Recall that ζ (g)
originates from an extra phase ambiguity of the local operator
U (i)

g near anyon ai after (75) is satisfied. When a(g) = 1, we
will have U(i)

g → −U(i)
g if the anyon ai = f . This means, it

switches g0 and g1 in the fermionic language. We shall not al-
low such a transformation as g0 and g1 are distinct symmetries
in G f , as discussed in Sec. II A. In other words, we do not al-
low coboundary transformation on λ(g, h) and g ∈ G has been
taken to be g0 ∈ G f . The remaining ambiguity, ζ (g) = f b(g),
brings a coboundary transformation n2(g, h) → n2(g, h) +
db(g, h). Accordingly, distinct solutions n2(g, h) to Eq. (86)
are defined up to a coboundary db(g, h) in B2(G,Z2). Then,
given n2(g, h) being a solution, n2(g, h) + t (g, h) is a dis-
tinct solution if t (g, h) is a nontrivial cocycle in H2(G,Z2).
Second, we have taken the gauge β f (g, h) = 1 and Õ3 = 1.
Under other gauges, one may expect Õ3 to be any possible
anyons in A = {1, f , v, v f }. However, this contradicts with
the fact that the right-hand side of (84) can only be 1 or f .

Here, we show that Õ3 can only be 1 or f . In general, we
have β f (g, h) = γ f (gh)/[γ f (g)γ f (h)] with γ f (g) = ±1. Let
γ f (g) = (−1)σ (g). Then, inserting this into the definition (69)
of �a(g, h, k) and taking a = f , we find

� f (g, h, k) = (−1)d2σ (g,h,k) = 1. (87)

Then, Õ3(g, h, k) must be 1 or f according to the definition
(70). It is not hard to check that gauge transformations on
βv (g, h) result in a shift in n2(g, h), which is general any
way. So, O3 in (85) is the general form. Third, it is straight-
forward to show that a coboundary transformation on λ does
not change the cohomology class of O3 = n1 ∪ λ + λ ∪1 λ. It
is expected because coboundary transformations on λ corre-
spond to isomorphisms of G f and O3 obstructions should be
the same for isomorphic G f ’s.

For certain choices of n1, the obstruction O3 may be trivial,
allowing a valid n2 and thereby a valid symmetry fraction-
alization. In these cases, we need to further consider the Õ4

obstruction. As discussed in Sec. IV A, the general expression
of Õ4 obstruction in bosonic SETs with nontrivial anyon per-
mutations is complicated. In principle, for the current specific
topological order Cν that is simple enough, one may try to
solve the consistency equations of defects to obtain the gen-
eral Õ4. Here, we avoid this calculation and instead derive Õ4

for the case where λ ∪1 λ is a trivial coboundary, using the
stacking trick to be discussed in Sec. IV D. From now on, we
will drop the “ ˜ ” on O4 to imply that it is specific for the
topological order Cν . To use the stacking trick, we will need
two parts, OA

4 and OB
4 . Here we give OA

4 .
Consider the case that there is no anyon permutation under

G, i.e., n1(g) = 0 for every g. Assuming that O3 = λ ∪1 λ is
trivial, there exists n2(g, h) that satisfies O3 = λ ∪1 λ = dn2.
The symmetry fractionalization is then given by the anyon
w(g, h) in (82). Since there is no anyon permutation, the
formula (77) of Õ4 is applicable. We still need the F and R
symbols of Cν . It is known that F and R symbols of general
Abelian topological orders can be parametrized as follows
[33]:

Fx,y,z = ei
∑

i �ixi(yi+zi−[yi+zi]),

Rx,y = ei
∑

i �ixiyi+i
∑

i< j Ki j xiy j
, (88)

where an integer vector x = (x1, x2, . . . ) with xi =
0, 1, . . . , Ni − 1 denotes an Abelian anyon, �i is the
self-statistical phase of the ith generating anyon, Ki j is the
mutual statistical phase between the ith and jth generating
anyons, and [xi + yi] = xi + yi (mod Ni ). The anyons form
a group A = ∏

i ZNi under fusion. For ν = 4k + 2, we
have A = Z4 and �1 = νπ/8 and K11 = νπ/4. Under this
notation, the symmetry fractionalization anyon w(g, h) in
(82) becomes ω(g, h) = λ(g, h) + 2n2(g, h). Inserting it into
the formula (77) of Õ4, we obtain

OA
4 (g, h, k, l) = eiν π

8 [λ∪λ+d̂λ∪1λ](g,h,k,l)(−1)n2∪n2(g,h,k,l)

× ei πν
4 [λ∪n2+n2∪λ+d̂n2∪1λ+d̂λ∪1n2](g,h,k,l)

= eiν π
8 [λ∪λ+d̂λ∪1λ+4n2∪n2+4λ∪n2](g,h,k,l), (89)

where we have added a superscript “A” to imply that it holds
only for n1 = 0 and trivial λ ∪1 λ.
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A more general case with n1 = 0 (but still with a trivial
λ ∪1 λ) can be obtained using the stacking trick in Sec. IV D.
As explained there, O4 is given by adding the OA

4 in Eq. (89),
and the OB

4 [n1, n2] in Eq. (90). For the most general case that
even λ ∪1 λ is nontrivial (but with a trivial O3 = n1 ∪ λ +
λ ∪1 λ), it requires a formula of OA

4 that works for nonzero
n1, which unfortunately we do not have yet.

D. Stacking trick

We now describe the stacking trick. Given ν, the obstruc-
tion O4 for cases with arbitrary choices of n1 and n2 can be
computed using the following stacking trick. First, we need
the formula for O4 for a special choice of n1 = nA

1 and n2 =
nA

2 . This is denoted by OA
4 , or OA

4 [ν] to indicate its dependence
on ν. In this work, such special choice is always constructed
with nA

1 = 0 to avoid the complication of anyon permutation,
and such OA

4 is given in Eqs. (89), (97) and (100), for cases of
ν = 4k + 2, 8k + 4 and 16k + 8, respectively. In the case of
ν = 4k + 2, nA

2 is one of the solutions to dn2 = O3 = λ ∪1 λ.
(That means, if λ ∪1 λ is nontrivial, we will not have nA

2 so
that we cannot use the stacking trick.) The latter two cases will
be discussed in Sec. IV E. Ungauging the fermion parity, this
SET state corresponds to a particular anomalous 2D fermionic
iTO state A, with chiral central charge ν/2 and an anomaly
indicated by OA

4 . It lives on the boundary of a 3D SPT bulk
[65].

Next, to obtain all possible fermionic iTO states with index
ν and generic choices of n1 and n2, we stack the above chiral
iTO state with a generic nonchiral fermionic SPT state B,
which may also be anomalous with another OB

4 obstruction.
The state B is characterized by a 1-cocycle n1 ∈ H1(G,Z2)
and a 2-cochain n2 ∈ C2(G,Z2), satisfying dn2 = λ ∪ n1. Its
anomaly is given by [25]

OB
4 [n1, n2]

= (−1){λ∪n2+n2∪n2+n2∪1d̂n2}(g,h,k,l)+λ(g,hk)d̂n2(h,k,l)

× (−1)d̂n2(g,h,kl)d̂n2(gh,k,l)(−i)d̂n2(g,h,k)[1−d̂n2(g,h,kl)](mod 2).

(90)

We will also denote n1 = nB
1 and n2 = nB

2 , but both can vary.
Stacking the two anomalous states together, their O4 ob-

structions also add up. This is because the two states A and
B can be realized on the surface of 3D bulk states that are
bosonic SPT states characterized by cocycles OA

4 and OB
4 ,

respectively [32]. When we stack A and B, the stacked SPT
state can then be realized on the surface of the bulk state
obtained by stacking the two bulk states, which carries the
bosonic SPT state OA

4 × OB
4 . Therefore the resulting SPT state

has obstruction OA
4 × OB

4 . The 2D fermionic iTOs with ν has
ESB if and only if O4 = OA

4 [ν] × OB
4 [n1, n2] is a nontrivial

cocycle for all possible combinations of n1 and n2.
We notice that the 2-cochain n2 describing the stacked

anomalous cocycle may not be nA
2 + nB

2 , as stacking two SPT
states with nontrivial nB

1 produces a twist on the total n2.
However, such twists are irrelevant to our goal of finding all
possible iTOs for a given ν. For fixed nA

1 and nA
2 , by varying

nB
1 and nB

2 , we shall be able to exhaust all possible valid
symmetry-enriched iTOs. Relations of quantities before and
after stacking are summarized in Table V.

E. O3 and O4 for ν = 4k

We now consider the O3 and O4 obstructions for ν = 4k
and derive ESB criteria 5 and 6. The discussion is in parallel
to the above section, so we will be brief in places that are not
very different.

In this case, the topological order is again denoted as
Cν = {1, f , v, v f } but with a different fusion rule v × v = 1.
To begin, we define the quantity n1 : G → Z2, which deter-
mines the same permutation as in (81). Again, it has the
physical meaning of whether g0 and g1 defects carry Majorana
zero modes in the original fermionic iTOs. Similarly to the
ν = 4k + 2 case, we show in Appendix B that the symmetry
localization anomaly Õ3 is trivial, regardless of the choice
of n1. Moreover, there exists a gauge that β f (g, h) = 1 and
Õ3 = 1.

Next, symmetry fractionalization w(g, h) is again given in
the form (82) in the gauge β f (g, h) = 1, so that the conditions
(78) and (79) are satisfied. The general fusion rules for ν = 4k
are

va1 f b1 × va2 f b2 = v[a1+a2] f [b1+b2], (91)

which is different from (83). With the form of w(g, h) in (82),
the anyon permutation (81) and the gauge Õ3(g, h, k) = 1,
the obstruction condition (76) becomes:

1 = vλ(h,k) f n1(g)λ(h,k) f n2(h,k) · vλ(gh,k) f n2(gh,k)

· vλ(g,hk) f n2(g,hk) · vλ(g,h) f n2(g,h)

= f dn2(g,h,k) f n1∪λ(g,h,k). (92)

Accordingly, we define O3 for ν = 4k as

O3(g, h, k) = {n1 ∪ λ}(g, h, k). (93)

General properties of the cup product guarantee O3 to be a
cocycle in H3(G,Z2). Then, Eq. (92) becomes

O3(g, h, k) = dn2(g, h, k). (94)

TABLE V. Relations of quantities in the stacking trick. F [nA
2 , nB

2 , n1, ν] is some functional that depends on nA
2 , nB

2 , n1 and ν To use the
stacking trick, we necessarily require OA

3 to be a trivial cocycle, so that we have a special solution of nA
2 , which together with λ determines OA

4 .

Physical quantities n1 ∈ H1(G,Z2) n2 ∈ C2(G,Z2) O3 ∈ H3(G,Z2) O4 ∈ H 4(G, U(1))

A : ν (chiral) nA
1 = 0 nA

2 : dnA
2 = OA

3 OA
3 = ν

2 λ ∪1 λ OA
4 [ν]

B : ν = 0 (nonchiral) nB
1 nB

2 : dnB
2 = OB

3 OB
3 = λ ∪ nB

1 OB
4 [nB

1 , nB
2 ]

A � B : ν (chiral) n1 = nB
1 n2 = F [nA

2 , nB
2 , n1, ν] : dn2 = O3 O3 = OA

3 + OB
3 O4 = OA

4 × OB
4
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Then, if O3 is a nontrivial cocycle, there is no solution n2(g, h)
to Eq. (94). Nevertheless, the obstruction O3 alone cannot
guarantee ESB to occur: the case that n1 = 0 makes O3 = 1,
which always allows a solution n2(g, h). So, we will need to
move on to O4 to look for ESB physics. Gauge transforma-
tions on w(g, h) and Õ3 are similar to the ν = 4k + 2 case.
That is, gauge transformations on w(g, h) make the solutions
n2(g, h) to Eq. (94) distinct up to a coboundary db(g, h) in
B2(G,Z2), and Õ3 can only be 1 or f in general. Hence, the
O3 obstruction in Sec. III A is recovered.

We now use the stacking trick in Sec. IV D to derive O4.
The obstruction OB

4 is already given in (90), so we only need
OA

4 here. First, we notice that since n1 = 0 always makes O3

vanish, we can choose nA
1 = 0 and nA

2 = 0 for the special state
A. This greatly simplifies our problem. Below we describe OA

4
for different ν’s.

For ν = 8k + 4, explicit parametrizations of the F and R
symbols are given by (88) where now x = (x1, x2) labels Z2 ×
Z2 anyons, and similarly for y, z. The self-statistics �i and the
mutual statistics Ki j of the generating anyons are

� =
(νπ

8
, π

)
, K =

(
π π

π 0

)
, (95)

where we take v and f as the first and second generators of
Z2 × Z2. More explicitly, by inserting the values of � and K
and Eq. (88) into the expression (77), we have

O4(g, h, k, l) = ei πν
8 λ(g,h)λ(k,l)

× eiπ[n2(g,h)n2(k,l)+n2(g,h)λ(k,l)]

× ei πν
8 λ(h,k)[λ(g,hk)+λ(ghk,l)−λ(hk,l)−λ(g,hkl)]

× ei πν
8 λ(g,h)[λ(k,l)+λ(gh,kl)−λ(gh,k)−λ(ghk,l)]

× ei πν
8 λ(k,l)[λ(h,kl)+λ(g,hkl)−λ(g,h)−λ(gh,kl)]

= ei πν
8 [λ∪λ+d̂λ∪1λ+2n2∪(n2+λ)](g,h,k,l). (96)

For our special choice of nA
2 = 0, we further have

OA
4 (g, h, k, l) = ei πν

8 [λ∪λ+d̂λ∪1λ](g,h,k,l) (97)

where a ∪ b and a ∪1 b are the (higher) cup product of two
cochains.

For ν = 16k + 8, the difference lies in the F and R sym-
bols. They are given by the parameters:

� = (π, π ), K =
(

0 π

π 0

)
. (98)

Plugging � and K into (77), we have

O4(g, h, k, l) = (−1)[λ∪λ+n2∪n2+n2∪λ](g,h,k,l). (99)

Then, for our special choice of nA
1 = nA

2 = 0, we have

OA
4 (g, h, k, l) = (−1)[λ∪λ](g,h,k,l). (100)

To summarize, we can write the expressions of O4 with
n1 = 0 compactly as

O4 = ei νπ
8 (λ∪λ+d̂λ∪1λ)+iπn2∪(n2+λ). (101)

This expression applies to all ν’s. One can check that it is the
same as (89), (96), and (99) for the cases discussed above.

Finally, the result of OA
4 [ν] from Eqs. (97) and (100) are

combined with OB
4 [n1, n2] in Eq. (90) to obtain the most gen-

eral O4[n1, n2] = OA
4 [ν] + OB

4 [n1, n2] that appears in criteria
5 and 6.

V. DISCUSSIONS

To summarize, we have studied the phenomenon of en-
forced symmetry breaking (ESB) by 0D, 1D and 2D fermionic
invertible topological orders (iTOs). We have obtained a set of
criteria for asserting the existence or nonexistence of ESB for
finite groups, and illustrated the ESB physics with examples
in all cases. We give both fermionic and bosonic descriptions
(via gauging fermion parity) of symmetry-enriched fermionic
iTOs.

It is very interesting to generalize the current study to ESB
by general 2D fermionic topological orders, i.e., those with
anyon excitations. For example, our dimensional reduction
argument in Sec. III B 1 can be easily used to show that
G f from a nontrivial cocycle λ(g, h) ∈ H2(G,Z2) is incom-
patible with those fermionic topological orders that support
both Majorana and non-Majorana vortices after gauging the
fermion parity (e.g., the SO(3)3 fermionic topological order).
Also, it is interesting to study enforced breaking of antiunitary
symmetries, such as time reversal. In this work, we only study
2D fermionic iTOs which are chiral, so that enforced breaking
of time-reversal is obvious. However, for nonchiral fermionic
topological orders, it is a challenging problem. Moreover,
ESB might also exist for 3D fermionic topological order, and
it would be very interesting to explore such examples.

For ESB phenomenon to occur, it is required that, by defini-
tion, the symmetries should have some nontrivial action in the
Hilbert space, such as nontrivial extension by fermion parity
or time-reversal symmetry. In other words, there are condi-
tions imposed at the very beginning. It has been clearly seen in
our exploration of bosonic SETs that the obstruction functions
O2 and O3 are due to the imposed conditions. We have named
them conditional anomalies. The conditions on the bosonic
SETs in our study follow from the conditions in the original
fermionic iTOs. However, generally speaking, conditions on
properties (such as symmetry fractionalization) of topological
orders may be imposed by other reasons. For example, in
the study of spin liquids, the spinon should always carry a
half-integer spin in systems with an odd number of spin- 1

2 s
per unit cell [66], and this indeed causes ESB phenomenon
for certain topological orders [67]. Therefore a general study
on conditional anomalies or conditional obstructions are very
important and helpful. Finally, we conjecture that the novel
concept of ESB can also be defined for gapless systems and
might have important implications in fundamental physics,
such as CP violation problem in Standard model. We will
leave these potential directions for future study.

Note added. Some preliminary results, regarding 0D and
1D ESB physics and 2D ESB physics from O2 and O3

obstructions, were previously reported in the Workshop on
Strongly Correlated Systems held in January 2020 in Shen-
zhen, China, by one of the authors (C.W.). While we are
preparing for the manuscript, we become aware of the work
Ref. [68] which studies 2D symmetry-enriched fermionic
iTOs and derives the general classification, including the
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most general form of the O4 obstruction function. How-
ever, Ref. [68] does not study the phenomenon of enforced
symmetry breaking. We also become aware of the works
Refs. [63,64,69] which study the general theory of fermionic
SET phases.
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APPENDIX A: GROUP COHOMOLOGY

In this Appendix, we review some basic knowledge of
group cohomology, including the cup products and Pontryagin
square.

1. Definition

Consider a finite group G and a G-module M. A G-module
M is an Abelian group equipped with a G action a → g · a,
where a, g · a ∈ M and g ∈ G. The action is compatible with
the multiplication in M,

g · (a + b) = g · a + g · b, (A1)

where we have used additive notation for the multiplication
of Abelian group. Note that g · 0 = 0, where 0 is the group
identity of M. Simple examples of M include U(1) = R/Z =
{α|α ∈ [0, 2π )} and Zn = {0, 1, 2, . . . , n − 1} with a trivial
action g · a = a. In the presence of antiunitary symmetries in
G and for M = U(1), the group action is given by g · α =
s(g)α (mod 2π ), where s(g) = 1 for unitary g and s(g) = −1
for antiunitary g.

A function wn : Gn → M, i.e., wn(g1, g2, . . . , gn) with
gi ∈ G, is called an n-cochain. All n-cochains form
an Abelian group Cn(G, M ) under the function mul-
tiplication wn(g1, g2, . . . , gn) = w′

n(g1, g2, . . . , gn) + w′′
n (g1,

g2, . . . , gn), which inherits from the multiplication of M. The
differential map d : Cn(G, M ) → Cn+1(G, M ) is defined as
follows:

dwn(g1, g2, . . . , gn+1)

= g1 · wn(g2, g3, . . . , gn+1) + (−1)n+1wn(g1, g2, . . . , gn)

+
n∑

i=1

(−1)iwn(g1, . . . , gi−1, gigi+1, gi+2, . . . , gn+1).

(A2)

One can check that the differential operator satisfies the nice
property d2 = 1.

With the differential map, one can define two special types
of cochains: an n-coboundary is defined as wn that satisfies

wn = dwn−1 for some wn−1, and an n-cocycle is defined as
wn that satisfies dwn = 0. The n-coboundaries form the group
Bn(G, M ) and the n-cocycles form the group Zn(G, M ). The
property d2 = 1 implies that any coboundary is also a cocycle.
Therefore Bn(G, M ) ⊂ Zn(G, M ) ⊂ Cn(G, M ). Two cocycles
wn and w′

n are said to be equivalent, or belonging to the same
cohomology class, if wn = w′

n + dwn−1. Then, inequivalent
cocycles are classified by the quotient group

Hn(G, M ) = Zn(G, M )

Bn(G, M )
, (A3)

which is called the n-th cohomology group of G over M.

2. Cup product

It is useful to define maps between different cochain groups
Cn(G, M ), beyond the differential map d. In the main text, we
have used the cup products and Pontryagin square to simplify
some expressions. Here, we give a brief review on the two
maps and refer to Ref. [70] for more general discussions.

The cup product is a map

∪ : Cn(G, M1) × Cm(G, M2) → Cn+m(G, M3). (A4)

To define it, we need a bilinear map B : M1 × M2 →
M3 such that B(a + a′, b) = B(a, b) + B(a′, b) and B(a, b +
b′) = B(a, b) + B(a, b′). We will give a specific example of
B below. Given B and two cochains wn ∈ Cn(G, M1) and
wm ∈ Cm(G, M2), the cup product is defined as

wn ∪ wm(g1, . . . , gn+m)

= B[wn(g1, . . . , gn),wm(gn+1, . . . , gn+m)]. (A5)

Under the differential map, it satisfies

d(wn ∪ wm) = dwn ∪ wm + (−1)nwn ∪ dwm. (A6)

This is a very nice property, which implies that if wn and wm

are both cocycles, so is wn ∪ wm. Moreover, one can show
that if either wn or wm is a coboundary and the other is a
cocycle, then wn ∪ wm is a coboundary. Therefore the cup
product can actually be understood as a cohomological map
∪ : Hn(G, M1) × Hm(G, M2) → Hn+m(G, M3).

One can generalize it to higher cup products. For this work,
only the cup-1 product will be used. It is a map of degree −1,
namely,

∪1 : Cn(G, M1) × Cm(G, M2) → Cn+m−1(G, M3). (A7)

Given a bilinear map B, the product ∪1 is defined by

wn ∪1 wm(g1, . . . , gn+m−1)

=
n−1∑
i=0

(−1)(n−i)(m+1)B[wn(g1, . . . , gi,

×
m∏

j=1

gi+ j, gm+i+1 . . . , gn+m−1),wm(gi+1, . . . , gi+m )].

(A8)

Under the differential map, it satisfies

wn ∪ wm − (−1)nmwm ∪ wn = (−1)n+mdwn ∪1 wm

+ (−1)mwn ∪1 dwm − (−1)n+md(wn ∪1 wm). (A9)
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Different from the cup product, we see that even if wn and
wm are cocycles, wn ∪1 wm might not be a cocycle. Neverthe-
less, for equivalence classes of cocycles, this relation implies
the super-commutative relation [wn] ∪ [wm] = (−1)nm[wm] ∪
[wn].

In this work, we mostly consider the case M1 = M2 =
M3 = ZN with a trivial G action. Let ZN = {0, 1, . . . , N − 1}
and the group multiplication is the usual addition modulo N .
We take the bilinear map B to be

B(a, b) = ab (mod N ), (A10)

where ab is the usual multiplication. Then, wn ∪ wm = wnwm

and wn ∪1 wm becomes

wn ∪1 wm(g1, . . . , gn+m−1)

=
n−1∑
i=0

(−1)(n−i)(m+1)wm(gi+1, . . . , gi+m)

× wn(g1, . . . , gi,

m∏
j=1

gi+ j, gm+i+1, . . . , gn+m−1).

(A11)

For 2-cochains w2 and v2, we have

w2 ∪1 v2(g1, g2, g3) = v2(g1, g2)w2(g1g2, g3)

− v2(g2, g3)w2(g1, g2g3), (A12)

where “modulo N” is assumed on the right-hand side.

3. Pontryagin square

Another cohomological operation used in the main text is
the Pontryagin square, denoted as P . It is a map

P : H2m(G,Z2N ) → H4m(G,Z4N ). (A13)

To define P , consider a cocycle w2m ∈ Z2m(G,Z2N ). It
can be viewed as a cochain in C2m(G,Z4N ) by embed-
ding Z2N = {0, 1, . . . , 2N − 1} into Z4N = {0, 1, . . . , 4N −
1}. For clarity, let us denote w2m as ŵ2m when it is lifted to a
cochain in C2m(G,Z4N ). We have ŵ2m = w2m (mod 2N) and
dŵ2m = 2Nc2m+1, where c2m+1 ∈ C2m+1(G,Z4N ). The Pon-
tryagin square of w2m is defined as

P (w2m) = ŵ2m ∪ ŵ2m + ŵ2m ∪1 dŵ2m. (A14)

According to Eqs. (A6) and (A9), we have

dP (w2m) = 2ŵ2m ∪ dŵ2m + dŵ2m ∪1 dŵ2m

= 4Nŵ2mc2m+1 + 4N2c2m+1 ∪1 c2m+1

= 0 (mod 4N ). (A15)

Accordingly, P (w2m) is a cocycle in Z4m(G,Z4N ). In ad-
dition, it can be checked that the cohomology class of
P (w2m) does not change under the coboundary transforma-
tion w2m → w2m + dc2m−1, or equivalently ŵ2m → ŵ2m +
d̂c2m−1 + 2Nc2m, where d̂c2m−1 ∈ B2m(G,Z4N ) is the lift of
dc2m−1 ∈ B2m(G,Z2N ). Therefore P is a well-defined coho-
mological map from H2m(G,Z2N ) to H4m(G,Z4N ).

APPENDIX B: ABSENCE OF SYMMETRY
LOCALIZATION ANOMALY

In this Appendix, we show that the Õ3 obstruction (sym-
metry localization anomaly) is always trivial for those bosonic
SETs obtained by gauging fermion parity of the symmetry-
enriched fermionic iTOs with even ν (i.e., integer chiral
central charge c− = ν/2). As discussed in the main text, the
topological order Cν from gauging fermion parity is Abelian
when ν is even. We will discuss the cases ν = 4k + 2 and
ν = 4k separately. In both cases, Õ3 obstruction is trivial and
actually we obtain Õ3 = 1 under our gauge choice.

1. ν = 4k + 2

For ν = 4k + 2, the topological order Cν contains four
Abelian anyons: 1, v, f and v f . They form a Z4 group un-
der fusion, with fusion rules v × v = f and v × f = v f . In
this Appendix, we will use alternative labels 0,1,2,3 to de-
note 1, v, f , v f respectively. Then, the fusion rules are given
by x × y = [x + y], where x, y = 0, 1, 2, 3 and [. . . ] takes
modulo 4. From the expressions (88), we have the F and R
symbols given by

Fx,y,z = ei πν
8 x(y+z−[y+z]), (B1)

Rx,y = ei πν
8 xy. (B2)

Now we consider the topological symmetries of Cν , which
form the group Aut(Cν ). Recall from Sec. IV A that a topolog-
ical symmetry contains two pieces of data: (1) a permutation
of anyons x → x′ = ϕ(x) and (2) an action in the fusion space
ϕ(|x, y; z〉) = ux′y′

z′ |x′, y′; z′〉. For the current Cν , there is one
and only one nontrivial permutation: φ(1) = 1, φ(v) = v f ,
φ( f ) = f and φ(v f ) = v. Equivalently,

φ(x) = 4�(x) − x = x̄, (B3)

where �(x) = 0 if x = 0, �(x) = 1 if x = 1, 2, 3, and x̄ is the
antiparticle of anyon x. Together with the trivial topological
symmetry, we have Aut(Cν ) = Z2 = {1, φ}.

We still need to specify the action of the nontrivial per-
mutation φ in fusion spaces, i.e., to specify the phase factor
uxy

z . Since z is uniquely determined by x and y in Abelian
topological orders, let us denote the action as

φ(|x, y; z〉) = u(x′, y′)|x′, y′; z′〉 (B4)

where x′ = φ(x). The condition that F symbol is invariant
under φ action [see Eq. (65) in the main text] leads to

δu(x, y, z) ≡ u(x, y)u([x + y], z)

u(y, z)u(x, [y + z])
= Fx̄,ȳ,z̄

Fx,y,z
, (B5)

where we have used φ(x) = x̄. Plugging the F symbol above
into the last piece, we have

Fx̄,ȳ,z̄

Fx,y,z
= ei πν

8 [x̄(ȳ+z̄−[ȳ+z̄])−x(y+z−[y+z])]. (B6)

By inserting (B3), we can simplify this expressions to

Fx̄,ȳ,z̄

Fx,y,z
= ei πν

2 x{�(y)+�(z)−�([y+z])}. (B7)
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Introducing the function f (x, y) = ei πν
2 x�(y), we have

δ f (x, y, z) ≡ f (x, y) f ([x + y], z)

f (y, z) f (x, [y + z])

= ei πν
2 {x�(y)+[x+y]�(z)−y�(z)−x�([y+z])}

= ei πν
2 x{�(y)+�(z)−�([y+z])}, (B8)

where in the second equality, we have used the fact that [x +
y] − y = x (mod 2). Comparing (B5) and (B8), we find that
one choice of u(x, y) is

u(x, y) = f (x, y) = ei πν
2 x�(y). (B9)

A general solution u(x, y) that satisfies (B5) can be expressed
as u(x, y) = f (x, y)w(x, y), where w(x, y) satisfies δw = 1,
i.e., it is a 2-cocycle in Z2(Z4, U(1)). However, H2(Z4, U(1))
is trivial, so w(x, y) is always a coboundary. That is, w(x, y) =
δv(x, y) = v(x)v(y)

v([x+y]) . Therefore a phase factor u(x, y) always
differs from f (x, y) by a natural isomorphism. Accordingly,
we will set w(x, y) = 1 and take u(x, y) = f (x, y) below.

Next, we consider a group homomorphism from G to
Aut(Cν ), namely,

ρ : G → Aut(Cν ) = Z2. (B10)

If ρg is nontrivial in Aut(Cν ), the symmetry g ∈ G acts as φ in
(B4), with u(x, y) fixed in (B9); otherwise it acts as a natural
isomorphism, which we fix to be uxy

z = 1 for any x, y, z. More
specifically, for a state |x, y; z〉, we have

ρg(|x, y; z〉) = Ug(gx, gy)|gx, gy; gz〉, (B11)

where gx := ρg(x) denotes the anyon permutation and
Ug(x, y) can be unified as

Ug(x, y) = ei πν
2 n1(g)x�(y), (B12)

where n1(g) = 0 or 1, for ρg being trivial or nontrivial in
Aut(Cν ), respectively. Since ρ is a group homomorphism, we
have

dn1(g, h) = n1(g) + n1(h) − n1(gh) = 0, (mod 2). (B13)

Recall from Sec. IV A that ρgh = κg,h ◦ ρg ◦ ρh. Applying this
relation to the current case, we obtain

κg,h(x, y) = Ugh(x, y)

Ug(x, y)Uh(ḡx, ḡy)

= ei πν
2 dn1(g,h)x�(y)

= 1, (B14)

where we used the property that x�(y) = ḡx�(ḡy) (mod 2)
holds for any g. Accordingly, the phase factor βx(g, h) defined
in (68) can be set to 1, making the Õ3 obstruction defined in
(69) and (70) to be 1. This concludes the ν = 4k + 2 case.

2. ν = 4k

For ν = 4k, the four anyons in Cν form a Z2 × Z2 fu-
sion group. The fusion rules are v × v = 1, f × f = 1,
and v × f = v f . Alternatively, we label the anyons by a
two-component vector x = (x1, x2) with x1, x2 = 0, 1. For
convenience and different to the main text, we take 1 = (0, 0),
v = (1, 0), v f = (0, 1) and f = (1, 1). As such, the fusion

rules are given by x × y = ([x1 + y1], [x2 + y2]), where [. . . ]
takes modulo 2 in this section. From the expressions (88), we
have the F and R symbols given by

Fx,y,z = ei πν
8

∑
μ=1,2 xμ(yμ+zμ−[yμ+zμ]), (B15)

Rx,y = ei πν
8

∑
μ=1,2 xμyμ+iπKx1y2 , (B16)

where K = 1 + ν/4 (mod 2).
Let us consider topological symmetries in Cν . There is

a nontrivial topological symmetry, again denoted as φ, that
gives the permutation φ(1) = 1, φ(v) = v f , φ(v f ) = v, and
φ( f ) = f . Equivalently, the permutation is given by

φ((x1, x2)) = (x2, x1). (B17)

In the case that ν = 8, there exist other topological symme-
tries that permute f with the fermion-parity vortices. How-
ever, we are only concerning those SETs of Cν that keep f un-
permuted. Accordingly, for our purpose, we only need to con-
sider the autoequivalences {1, φ}, denoted as Aut(Cν ) = Z2.

Similar to the above section, the action of φ in the fusion
space is given by (B4), and the phase factor u(x, y) satisfies

δu(x, y, z) = Fx′,y′,z′

Fx,y,z
, (B18)

where x′ = φ(x) = (x2, x1). Plugging the above expression of
the F symbol, we have

Fx′,y′,z′

Fx,y,z
= ei πν

4

∑
μ=1,2 xμ(yμ+zμ−[yμ+zμ]) = 1, (B19)

when ν = 4k. Therefore δu(x, y, z) = 1, making u(x, y) a
2-cocycle in Z2(Z2 × Z2, U(1)). At the same time, the in-
variance of R symbol imposes the following condition [see
Eq. (65) in the main text]:

u(y, x)

u(x, y)
= Rx′,y′

Rx,y
= eiπK (x1y2−x2y1 ). (B20)

Any 2-cocycle u(x, y) ∈ Z2(Z2 × Z2, U(1)) that satisfies this
condition can be written as

u(x, y) = eiπKx1y2δv(x, y), (B21)

where δv(x, y) = v(x)v(y)
v(xy) is a coboundary. Multiplying

δv(x, y) only gives a natural isomorphism on u(x, y), so we
will set δv(x, y) = 1 below.

Next, we introduce a group homomorphism

ρ : G → Aut(Cν ) = Z2. (B22)

Similar to (B11), let Ug(gx, gy) be the phase factor for the
action of ρg on the sate |x, y; z〉. Using u(x, y) obtained above,
we have the following expression Ug(x, y) can be unified as

Ug(x, y) = eiπKn1(g)x1y2 , (B23)

where n1(g) = 0 or 1, for ρg being trivial or nontrivial in
Aut(Cν ), respectively. Using the condition dn1(g, h) = 0, we
have

κg,h(x, y) = Ugh(x, y)

Ug(x, y)Uh(ḡx, ḡy)

= eiπKdn1(g,h)x1y2+iπKn1(h)n1(g)(x1y2+x2y1 )

= eiπKn1(h)n1(g)(x1y2+x2y1 ), (B24)
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where we have used ḡx1
ḡy2 = x1y2 + n1(g)(x1y2 +

x2y1) (mod 2). Then, βx(g, h) can be chosen as

βx(g, h) = eiπKn1(g)n1(h)(x1+1)x2 , (B25)

such that κg,h(x, y) = βx(g, h)βy(g, h)/βxy(g, h). Inserting
βx(g, h) into (69), we have

�x(g, h, k) = βḡx(h, k)βx(g, hk)

βx(g, h)βx(gh, k)

= eiπK (x1+1)x2[n1(h)n1(k)+n1(g)n1(hk)]

eiπK (x1+1)x2[n1(g)n1(h)+n1(gh)n1(k)]

= 1, (B26)

where we have used dn1(g, h) = 0 (mod 2) to obtain the last
line. Therefore, according to (70), we can set Õ3(g, h, k) = 1.
We comment that Eq. (B25) is set such that β f (g, h) = 1 for
any g and h.

APPENDIX C: EVALUATING OBSTRUCTIONS
FOR ABELIAN G

Here we present some calculations related to the O3 and
O4 obstructions for Abelian group G = ∏

i ZNi . Without loss
of generality, we take Ni = 2ki , i = 1, 2, . . . , K . We also col-
lect the topological invariants of H2(G,Z2),H3(G,Z2) for
Abelian group G, which are very useful for the calculations in
different parts of the paper.

1. Topological invariants

Let us discuss some general aspects of cohomology groups
Hn(G,Z2) (n = 1, 2, 3) and H4(G, U(1)). In particular, we
discuss the so-called topological invariants, which are certain
combinations of cocycles that are invariant under coboundary
transformations. Many of them are discussed in the main text
and we summarize them here. For a cochain ω ∈ Cn(G,Z2),
we find it useful to define the differential operator d̂, which
has the same expression as d but without taking modulo 2.
Accordingly,

dω = d̂ω (mod 2). (C1)

We will use a = (a1, a2, . . . , aK ) to denote the group elements
of G, with ai = 0, 1, . . . , Ni − 1. We will also use [ai] to
denote “ai (mod Ni )” for short.

First, the cohomology group H1(G,Z2) = ∏
i Z2. There

are K root cocycles

vi(a) = [ai] (mod 2), (C2)

where i = 1, 2, . . . , K . A general cocycle can be constructed
from these root cocycles

v(a) =
∑

i

qivi(a), (C3)

where an overall “modulo 2” is assumed, and qi = 0, 1 are
the parameters for the general 1-cocycle. Equation (C3) gives
a complete parametrization of 1-cocycles in H2(G,Z2).

Next, the second cohomology group H2(G,Z2) =∏
i Z2

∏
i< j Z2. A general 2-cocycle can be generated by root

cocycles, which are

wi(a, b) = 1

Ni
([ai] + [bi] − [ai + bi]) = d̂vi(a, b)

Ni
,

wi j (a, b) = [ai][b j] = vi ∪ v j (a, b), (C4)

where again an overall “modulo 2” is assumed. Note that wi j

and w ji are equivalent cocycles. A general cocycle is given by

w(a, b) =
∑

i

piwi(a, b) +
∑

i j

pi jwi j (a, b), (C5)

where pi, pi j = 0, 1. One can define the following complete
set of topological invariants:

�i =
Ni−1∑
n=0

w(ei, nei ),

�i j = w(ei, e j ) − w(e j, ei ), (C6)

where ei = (0, . . . , 0, 1, 0, . . . , 0) with only the ith entry be-
ing 1 and others being 0. One can straightforwardly check that
�i and �i j are invariant under coboundary transformations.
We remark that �i j = −� ji, so only one of them is indepen-
dent. For the cocycle in (C5), we have

�i = pi + Ni(Ni − 1)pii

2
, �i j = pi j − p ji. (C7)

We observe that the possible values that {�i,�i j} can take
saturate |H2(G,Z2)|, so this is a complete set of topological
invariants. By computing the topological invariants of a gen-
eral cocycle [not necessarily parametrized as in (C5)], one can
easily assert its cohomology class.

The third cohomology group H3(G,Z2) =∏
i j Z2

∏
i< j<k Z2. A general cocycle can be generated

by the following root cocycles:

ui j (a, b, c) = [ai]

Nj
([b j] + [c j] − [b j + c j])

= vi ∪ w j (a, b, c),

ũi j (a, b, c) = ([ai] + [bi] − [ai + bi])
[c j]

Ni

= wi ∪ v j (a, b, c),

ui jk (a, b, c) = [ai][b j][ck]

= vi ∪ v j ∪ vk (a, b, c). (C8)

This set of root cocycles is over-complete. In particular, ui j

and ũ ji are equivalent cocycles. We list them here for later
convenience. With these generators, a general cocycle is given
by

u =
∑

i j

(ti jui j + t̃i j ũi j ) +
∑
i jk

ti jkui jk, (C9)

where ti j, t̃i j, ti jk = 0, 1 are the parameters. One can
define the following topological invariants: let χa(b, c) =
u(a, b, c) − u(b, a, c) + u(b, c, a) and define

�i j =
Nj−1∑
i=0

χei (e j, ne j ),

�i jk = χei (e j, ek ) − χei (ek, e j ), (C10)
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where again “modulo 2” is assumed. One can check that
they are invariant under coboundary transformations. For the
cocycle in (C9), we obtain

�i j = ti j + t̃ ji + Nj (Nj − 1)

2
(ti j j − t ji j + t j ji ),

�i jk = ti jk − tik j + t jki − t jik + tki j − tk ji. (C11)

By varying the parameters, one can see that the possible val-
ues that {�i j, �i jk} can take saturate H3(G,Z2), so this is a
complete set of topological invariants. Note that �i j and
� ji are independent and �i jk is a fully antisymmetric ten-
sor. Using topological invariants, it is sufficient to assert the
cohomology class that a general 3-cocycle belongs to. In par-
ticular, if all these topological invariants are zero, it is a trivial
cocycle.

2. Evaluation of O3

Here we apply the above topological invariants to study the
O3 obstruction for ν = 4k + 2, where O3 = n1 ∪ λ + λ ∪1 λ.
We will also discuss O3 for ν = 4k, which is O3 = n1 ∪ λ. We
will give the sufficient and necessary conditions on when O3

obstruction vanishes for Abelian G and show the condition on
λ ∈ H2(G,Z2) for ESB to occur for some examples.

First, we give an explicit parametrization of the 1-cocycle
n1 and 2-cocycle λ. According to Eqs. (C3) and (C5), we take
the following choices:

n1 =
∑

i

qivi, λ =
∑

i

piwi +
∑

i j

pi jwi j, (C12)

where vi, wi, and wi j are the root cocycles in (C2) and (C4).
Note that the parametrization of λ is overcomplete. The same
parametrization is used in the main text.

Secondly, we make a simplification on the expression of
O3 such that it can be expressed in terms of the root cocycles
given in (C8). For a cocycle λ ∈ H2(G,Z2), one can show this
very helpful relation:

λ ∪1 λ = 1
2 d̂λ. (C13)

(Recall that d̂ is defined without taking modulo 2.) At the same
time, one can check that d̂wi = 0, and

1

2
d̂wi j = 1

2
(d̂vi ∪ v j + vi ∪ d̂v j )

= Nj

2
vi ∪ w j + Ni

2
wi ∪ v j . (C14)

Accordingly, we have

O3 = n1 ∪ λ + λ ∪1 λ

=
∑

i j

(
qi p jvi ∪ w j + pi j

Nj

2
vi ∪ w j + pi j

Ni

2
wi ∪ v j

)
+

∑
i jk

qi p jkvi ∪ w jk

=
∑

i j

[(
qi p j + pi j

Nj

2

)
ui j + pi j

Ni

2
ũi j

]
+

∑
i jk

qi p jkui jk . (C15)

Comparing to (C9) and using (C11), we immediately have

�i j = qi p j + (pi j + p ji )
Nj

2

+ Nj (Nj − 1)

2
(qi p j j − q j pi j + q j p ji )

�i jk = qi(p jk − p jk ) + q j (pki − pik ) + qk (pi j − p ji ).
(C16)

Making use of the expressions of �i and �i j in (C7), we have

�i j = qi� j + Nj

2
(q j − 1)�i j,

�i jk = qi� jk + q j�ki + qk�i j, (C17)

where “(mod 2)” is assumed and Ni = 2ki is used. For O3 =
λ ∪ n1 at ν = 4k, the result is very similar: �i jk is the same,
while �i j becomes

�i j = qi� j + Nj

2
q j�i j . (C18)

Equations (C17) and (C18) are the main results of the calcu-
lations in this section.

We can now assert that O3 is trivial if and only if �i j =
�i jk = 0 for all i, j, k. Recall that �i,�i j (i.e., λ) are given
in our problem to generate the fermionic symmetry group G f .
For given {�i,�i j}, the condition �i j = �i jk = 0 is a set of
equations with {qi} being the unknowns. Then, G f is enforced
to break if these equations have no solutions. That is, ESB of
G f occurs if O3 is nontrivial regardless of n1.

For ν = 4k, there is always a solution to �i j = �i jk = 0:
qi = 0 for all i, i.e., a trivial n1. So, O3 obstruction alone
cannot lead to ESB. For ν = 4k + 2, we do have situations
that ESB can occur. With straightforward analysis on equa-
tions in (C17), we find a few examples of ESB, which are
summarized in Table VI. Two general properties of (C17) are:
(1) If �i j = 0 for all i and j and �i is nonzero for at least
one i, say �I = 0 of a fixed I , the requirement �iI = 0 gives
qi = 0 for all i. That is, there is one and only one solution
n1 = 0. (2) If Nj = 0 (mod 4) for all j, then n1 = 0 is always
a solution.

3. A result for ν = 4k + 2

We have only considered O3 obstruction above. In this sec-
tion, we consider O4 in a special case. We show the following
corollary for finite Abelian groups.

Corollary 1. For 2D fermionic iTOs with ν = 4k + 2 and
a finite Abelian group G, ESB can not occur if λ is a type-I
2-cocycle in H2(G,Z2).

Recall that we have defined type-I 2-cocycles in H2(G,Z2)
as those with �i j = 0 for all i, j. If �i = 0 for all i, i.e., λ = 0,
then ESB can never occur. If at least one �i is nonzero, then,
according to the result at the end of Appendix C 2, we must
have qi = 0 for all i to have a vanishing O3. To show that
ESB does not occur, it remains to check if O4 vanishes when
n1 = 0 and λ is type-I.

In that case, the O4 obstruction formula in (89) is applica-
ble. For type-I λ, we can write it as λ = ∑

i pid̂vi/Ni. It leads
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TABLE VI. Examples of enforced symmetry breaking due to O3 obstruction, for ν = 4k + 2, obtained by solving conditions �i j =�i jk =0.
We have used the topological invariants {�i,�i j} to label λ ∈ H2(G,Z2). If a topological invariant is not shown, its value is arbitrary.

G ESB occurs if the topological invariants of λ satisfy:
Z2 × Z2 �1 = �2 = �12 = 1
Z2 × Z4 �2 = �12 = 1
Z2 × Z2 × Z2 (1) �1 = �2 = �3 = 1 and any �i j = 1; or

(2) �1 = �2 = 1, �3 = 0, and �12 = 1; or
(3) �1 = �2 = 1, �3 = 0, �12 = 0 and �13 = �23; or
(4) �1 = 1, �2 = �3 = 0, �23 = 1 and �12 = 0; or
(5) �1 = �2 = �3 = 0, and �12 = �23 = �13 = 1; or
(6) permutations of indices 1, 2 and 3 of the above cases

Z2 × Z2 × Z4 (1) �3 = 1 and (�12 − 1)(�13 − 1) = 0; or
(2) �3 = 0 and �1 = �2 = �12 = 1; or
(3) �3 = 0, �1 = 1, �2�12 = 0 and �13�2 + (�12 − 1)�23 = 1; or
(4) permutations of indices 1 and 2 of the above cases

Z2 × Z4 × Z4 (�2 − 1)(�3 − 1) = 0 and (�12 − 1)(�13 − 1) = 0

to two consequences: d̂λ = 0 and

λ ∪ λ =
∑

i j

pi p j d̂

(
vi ∪ d̂v j

NiNj

)
, (C19)

which means the piece eiνπλ∪λ/8 is a U(1)-valued 4-
coboundary. Then, one can easily check that n2 = 0 makes the
O4 in (89) a U(1)-valued 4-coboundary. Accordingly, we find
a solution that n1 = n2 = 0 such that both O3 and O4 vanish.
Hence, there is no ESB and the corollary is proven.
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