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The photon blockade effect is commonly exploited in the development of single-photon sources. While the
photon blockade effect could be used to prepare high-fidelity single-photon states in idealized regimes, practical
implementations in optomechanical systems suffer from an interplay of competing processes. Here we derive
a control scheme that exploits destructive interference of Fock state amplitudes of more than one photon. The
resulting preparation time for photon-blockaded quantum states is limited only by the optomechanical interaction
strength and can thus be orders of magnitude shorter than in existing schemes that achieve photon blockade in
the steady state.
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I. INTRODUCTION

Single-photon sources are important resources in many
fields, including quantum computation [1,2] and quantum
communication [3]. Therefore, the photon blockade effect [4]
has been a research topic of great interest because it can be
utilized to realize single-photon sources [5–7]. In analogy
with the Coulomb blockade of electrons, the photon block-
ade effect occurs if a single photon in a cavity provides
an energetic barrier for a second photon to enter the cav-
ity. This phenomenon has been predicted in several systems,
such as Kerr-type nonlinear cavity [8,9], cavity-quantum-
electrodynamics systems [5,10–12], superconducting circuits
[6,7,13], and optomechanical systems [14–16].

This paper specifically considers a generic optomechanical
system [17] consisting of an optical cavity and a mechanical
oscillator where the displacement of the mechanical oscil-
lator is linearly coupled to the intensity of the light field
inside the cavity. The system can be experimentally realized
in several different ways such as suspended mirror [18–20],
whispering-gallery-mode microresonators [21–25], levitated
particles [26–29], and clamped systems [30–32].

There is substantial literature on the photon blockade effect
in optomechanical systems [14–16,33–39]. However, existing
schemes achieve the photon blockade effect only in the steady
state, where pumping of the cavity and photon decay out of
the cavity reach equilibrium. The timescale required for the
preparation of a photon-blockaded state is thus at least as
long as the lifetime of a photon in the cavity. In particular, in
devices with a high-quality cavity, this poses a severe limita-
tion to the repetition rate at which photon-blockaded quantum
states can be prepared.
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In order to exploit the photon blockade on shorter
timescales, we explore the use of a suitably shaped bichro-
matic driving of the cavity. Rather than waiting for the
occupation of two-photon states (or states with more pho-
tons) to decay, as is typically the case in schemes based on
monochromatic driving, the dynamics resulting from bichro-
matic driving can lead to destructive interference of different
amplitudes of the two-photon state. We show that optimized
bichromatic driving profiles can be used to realize quantum
states with a value of the equal-time, second-order autocorre-
lation function that is three orders of magnitude smaller than
what can be achieved with monochromatic driving.

The paper is structured as follows. In Sec. II, the model
and background are introduced, and in Sec. III the theoretical
methods are summarized. Then, numerical results are shown
in Sec. IV. Throughout this section, we focus on the potential
and the flexibility provided by the bichromatic driving and
several numerical examples are provided to show possible
improvements in different aspects. In particular, the autocor-
relation function when a monochromatic driving function is
adopted is examined in Sec. IV A, where it is shown that
the monochromatic driving is insufficient for strong photon
blockade at timescales shorter than the dissipation timescale.
In Sec. IV B, monochromatic driving is then compared to
bichromatic driving with which strong photon blockade is pre-
dicted within the same amount of time. Crucially, in Sec. IV C
and Sec. IV D, it is shown that it is possible to increase the
duration in which the autocorrelation function stays around
its minimum value, as well as increasing the single-photon
occupation at the cost of weaker photon blockade. Finally,
limitations in the theory methods are discussed in Sec. V.

II. BACKGROUND

A. Optomechanical photon blockade

In this paper, we consider an optomechanical system driven
by an external coherent light source. The bare system can be
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modelled by the Hamiltonian

ĤOM = ωcâ†â + ωmb̂†b̂ − g0â†â(b̂† + b̂) , (1)

with the cavity (mechanical) resonance frequency ωc (ωm),
the annihilation and creation operators â (b̂) and â† (b̂†) for
the optical cavity field (the mechanical oscillator), and the
single-photon optomechanical coupling strength g0. The driv-
ing Hamiltonian reads

Ĥd = ξ ∗(t )â + ξ (t )â† , (2)

with a complex-valued driving function ξ (t ) describing the
pumping of the cavity through an external light source. The
temporal shape of the driving function ξ (t ) can be chosen
with regular pulse-shaping techniques, and the central goal
of this paper is the optimization of the function ξ (t ) for the
realization of single-photon states.

The spectrum of the full system Hamiltonian in Eq. (1) is
anharmonic because of the cubic interaction term (quadratic in
optical creation/annihilation operators and linear in mechan-
ical creation/annihilation operators). This spectrum is most
easily understood in the frame defined by the polaron trans-
formation [14]

Ûp = exp

(
g0

ωm
â†â(b̂† − b̂)

)
. (3)

In this frame, the undriven system Hamiltonian H̃OM =
Û †

p ĤOMÛp reads

H̃OM =
(

ωc − g2
0

ωm
â†â

)
â†â + ωmb̂†b̂ . (4)

Instead of the optomechanical interaction term, the Hamil-
tonian now contains a Kerr-type nonlinearity in the optical
subsystem. Since the eigenstates of the transformed Hamil-
tonian H̃OM are given by the direct product of photonic and
phononic Fock states, the spectrum of the transformed Hamil-
tonian H̃OM , and thus of the original Hamiltonian ĤOM is given
by

En,m = n

(
ωc − n

g2
0

ωm

)
+ mωm , (5)

where n and m denote the number of photons and phonons
respectively.

Crucially for the photon blockade, the optical part of the
spectrum is not evenly spaced. A photon entering an empty
cavity is thus resonant with the system if it has the frequency
ωc − g2

0/ωm, while a second photon entering the cavity that is
already occupied with one photon would need to have the fre-
quency ωc − 3g2

0/ωm to be on resonance. An optomechanical
system driven by a light field of frequency ωc − g2

0/ωm thus
allows a single photon to enter the cavity, but energetically
forbids a second photon from entering.

While this qualitative picture provides the correct intuition
for photon blockade, the exact mechanism is more involved.
In order to understand the workings in more detail, one also
has to appreciate that the polaron transformation not only
makes the undriven system noninteracting but also modifies
the nature of the driving. Although the driving in the labora-
tory frame [Eq. (2)] results in the excitation and de-excitation

of only photons, the driving Hamiltonian in the polaron frame

Û †
p Ĥd (t )Ûp = ξ ∗(t )â exp

(
g0

ωm
(b̂† − b̂)

)
+ H.c. (6)

is expressed in terms of photon creation and annihilation oper-
ators dressed with a displacement of the mechanical degree of
freedom. The drive can thus not only (de)excite the quantum
mechanical light field in the cavity, but it can also create
or annihilate phonons. The energetic violation in creating a
second photon that is at the core of the photon blockade can
thus be jeopardized by the possibility of depositing excess
energy into the mechanical degree of freedom.

The excitation or de-excitation of individual phonons dur-
ing the excitation of a cavity photon is only negligible if the
corresponding energetic violation is large as compared to the
driving amplitude, i.e., if |ωm − 2g2

0/ωm| � |ξ (t )|.
So far, the discussion has assumed an idealized cavity with

a perfectly sharp resonance frequency. However, since any
cavity has a finite linewidth κ , which can affect the sup-
pression of otherwise energetically forbidden processes, the
additional condition |ωm − 2g2

0/ωm| � κ is required for the
photon blockade effect.

The driving Hamiltonian in the polaron frame [Eq. (6)]
includes processes with the creation or annihilation of any
number of phonons, and any such process can be energetically
suppressed if conditions like the ones formulated above for
the creation or annihilation of a single phonon are satisfied. In
particular, to achieve a strong interaction between the cavity
field and the mechanical oscillator, an unrealistically large
number of such constraints needs to be satisfied. It is much
more practical to require a weak interaction, i.e., g0 � ωm, so
that processes including the creation or annihilation of more
than a single phonon in Eq. (6) are negligible.

The realization of photon blockade thus requires suffi-
ciently strong coupling g0 in order to realize an anharmonic
spectrum, but at the same time sufficiently weak coupling in
order to suppress the creation or annihilation of more than one
phonon.

Since the experimental realization of a system with a clear
separation of the relevant scales: (i) the mechanical resonance
frequency ωm, (ii) the Kerr-type nonlinearity g2

0/ωm, and (iii)
the cavity linewidth κ or the driving amplitude |ξ (t )|—is
extremely challenging, any practical driving scheme needs to
work also outside such an idealized regime. Existing schemes
relying on monochromatic driving can realize a sizable oc-
cupation of the single-photon Fock state and simultaneous
suppression of the two-photon Fock state only in the steady
state when the effect of external driving and system losses
have come to an equilibrium. The necessity to wait for such an
equilibration results in a slow process that limits the efficiency
of state preparation.

The goal of this paper is the design of bichromatic driving
schemes that help to realize photon-blockaded states of the
light field in short timescales. The use of bichromatic driving
allows us to exploit the interference of different absorption
processes. A suitably chosen driving function ξ (t ) can thus
lead to destructive interference of different paths towards the
population of the two-photon Fock state. This maximizes the
strength of photon blockade in an optomechanical system.
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B. Photon blockade and autocorrelation

It is helpful to identify a quantifier for the strength of
photon blockade. Quantum states of light can generally be
characterized in terms of correlation functions 〈Â(t + τ )B̂(t )〉
where τ denotes the time delay between the points in time at
which the observables Â and B̂ are measured. In the context of
the photon blockade, one is interested in the probability to find
a second photon, immediately after the first photon has been
detected. It is thus necessary to employ equal-time correlation
functions with τ = 0.

A suitable, and commonly used figure of merit is the equal-
time second-order autocorrelation function, which is given by

g(2)(t ) = 〈n̂2〉 − 〈n̂〉
〈n̂〉2

, (7)

with the photon-number operator n̂ = â†â and the expectation
operator 〈·〉 with respect to the system state ρ̂(t ). The autocor-
relation function g(2)(t ) vanishes exactly if there is at most a
single photon in the system at time t , and a low value of g(2)(t )
is thus a good indication of strong photon blockade.

Despite its simple form, the time evolution of the au-
tocorrelation function is not easy to analytically determine
for optomechanical systems. This is because the system dy-
namics cannot be solved exactly due to the cubic interaction
term. To address the problem, this paper considers the photon
blockade effect in a perturbative regime in which the occu-
pation probability of Fock states containing three or more
photons is negligible as compared to the single-photon and
two-photon occupations. When such higher-photon occupa-
tions are suppressed, the autocorrelation function in Eq. (7)
can be expressed as

g(2)(t ) ≈ 2p2(t )

(p1(t ) + 2p2(t ))2 := g̃(2)(t ) , (8)

in terms of the occupation probabilities p1(t ) and p2(t ) of the
single- and two-photon Fock state respectively. In the remain-
der, it is shown that the approximate autocorrelation function
g̃(2)(t ) can be analytically determined for optomechanical sys-
tems, and the photon blockade effect are then studied based
on the results. As we show in the upcoming sections, optimal
bichromatic driving schemes can help to prepare quantum
states with a value of the exact g(2) function as low as 10−4

and a timescale as short as five periods of mechanical motion.

C. Dissipative dynamics in optomechanical systems

All quantum systems are coupled to their environment,
which gives rise to dissipative processes. There has been im-
pressive progress in the reduction of mechanical dissipation
in many optomechanical experiments [22,32,40,41], but the
necessity to open the cavity to inject light implies a finite
rate of photon loss from the cavity. The following discussion
thus takes into account optical loss but neglects mechanical
dissipation. The effects of mechanical dissipation are explored
in Sec. V.

Optical loss for any state ρ̂ at rate κ can be modelled with
the Lindbladian L̂c satisfying the relation

L̂cρ̂ = κ

2
(2âρ̂â† − (â†âρ̂ + ρ̂â†â)). (9)

The complete master equation ˙̂ρ = L̂ρ̂ of the system (in the
original frame instead of the polaron frame) including drive
and dissipation is then given by the generator L̂ of the system
dynamics that satisfies the equation

L̂ρ̂ = −i[ĤOM + Ĥd , ρ̂] + L̂c(ρ̂) , (10)

with the system Hamiltonian ĤOM as defined in Eq. (1) and
the driving Hamiltonian Ĥd as defined in Eq. (2). This can be
taken as a starting point to solve for the time dependence of
the photon statistics in optomechanical systems.

III. SOLVING THE SYSTEM DYNAMICS

While steady-state properties can be inferred without solv-
ing the system dynamics, the goal of this paper requires an
explicit solution of the system’s equations of motion. The
dynamics of the undriven and dissipation-less system can be
solved exactly [42,43]. However, even though the dynamics
of some observables can be constructed exactly also in the
presence of drive [44,45] and dissipation [46], this is not the
case for the photon occupations of interest here. It is thus
necessary to construct these quantities perturbatively. Pertur-
bative solutions can then enable the identification of realizing
photon-blockaded states as quickly as possible, which is the
goal of this paper.

To solve the dynamics, it is convenient to note that the
generator L̂ in Eq. (10) can be separated into a photon-
number-conserving term L̂0 with

L̂0ρ̂ = −i[ĤOM , ρ̂] − κ

2
(â†âρ̂ + ρ̂â†â) , (11)

and a term L̂1 satisfying the equation

L̂1ρ̂ = −i[Ĥd , ρ̂] + κ âρ̂â† , (12)

which captures processes in which the photon number is not
conserved. In the interaction picture, the time-evolution of the
system can then be described by the following equation:

ρ̂(t ) = Ŝ0(t )Ŝ1(t )ρ̂0 , (13)

with the propagator Ŝ0 describing the dynamics induced by
the photon-conserving term L̂0, the propagator Ŝ1 describing
the photon-varying processes induced by the photon-varying
term L̂1 in the frame defined by Ŝ0, and ρ̂0 being the initial
state of the system.

The dynamics induced by the photon-conserving term L̂0

can be constructed exactly by solving the differential equation

d

dt
Ŝ0(t )ρ̂0 = L̂0Ŝ0(t )ρ̂0 , (14)

for any initial state ρ̂0 of the system. The full analytic expres-
sion of the propagator Ŝ0 is lengthy but interested readers can
find it together with its derivation in Appendix A 1.

The remainder of the dynamics must be solved perturba-
tively. The generator M̃ of the rest of the system dynamics in
the frame defined by Ŝ0 reads

M̃(t ) = Ŝ−1
0 (t )L̂1(t )Ŝ0(t ) . (15)

The propagator Ŝ1 induced by the generator M̃ can be con-
structed perturbatively in the driving strength |ξ (t )| and the
optical decay κ using the Neumann series [47], which read
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as Ŝ1 = ∑∞
k=0 Ŝ

(k)
1 . The zeroth-order term Ŝ (0)

1 (t ) = 1̂ is the
identity map, and the kth-order term Ŝ (k)

1 (t ) (for k > 0) reads

Ŝ (k)
1 (t ) =

∫
t (k)∈T

⎛
⎝ k∏

j=1

M̃(t j )

⎞
⎠dt (k) , (16)

where t (k) = (t1, . . . , tk ) is the vector of time-ordered time
variables t1 > . . . > tk and T is the hyperpyramidal domain
t > t1 > . . . > tk > 0.

Due to the time dependence of the propagator Ŝ0, it is
generally not possible to evaluate the integrals in Eq. (16) an-
alytically. However, in order to construct the time dependence
of the probabilities p1 and p2 with corrections up to their
leading order in |ξ |/ωm, only the terms Ŝ (k)

1 (t ) with k � 4 are
required. Furthermore, all terms in the Ŝ (k)

1 (t ) that are at least
quartic in g0/ωm can be neglected. In these approximations,
the probabilities p1 and p2 can indeed be constructed analyt-
ically for any driving function ξ (t ) that is given as a Fourier
series. This is discussed in more detail in Appendix A 3.

IV. RESULTS

We strive in the following for the identification of driving
patterns such that the system evolves towards a state with a
minimal value of the autocorrelation g(2) at a desired point
in time. This is achieved using the analytic dependence of
the approximate autocorrelation function g̃(2) on the driving
profile ξ (t ) derived in Sec. III,

Since most of the earlier works focused on monochromatic
driving

ξ1(t ) = εe−i(ωc+�)t , (17)

with driving strength ε and detuning � from the cavity res-
onance frequency, this situation is relevant for comparison.
The main focus of the subsequent discussion, however, is on
bichromatic driving

ξ2(t ) = ε1e−i(ωc+�1 )t + ε2eiψe−i(ωc+�2 )t , (18)

with two driving amplitudes ε j and corresponding detunings
� j as well as a phase difference ψ between the two driving
components.

The construction of the optimized driving patterns is based
on the system ground state ρ̂0 = |0〉〈0| ⊗ |0〉〈0| as the initial
state. Even though the approximate autocorrelation function
g̃(2) is given as an analytic function of all system parameters
including the Fourier components of the driving profile ξ , the
actual optimization of the drive cannot be performed analyti-
cally. In all the subsequent examples, numerical optimization
is performed with Mathematica [48].

The validity of all results obtained based on perturbative
treatments is verified through comparison with numerically
exact solutions. Numerical simulations are performed with
Qutip [49,50] in a Hilbert space truncated to include up to
six photons and 15 phonons.

Since the explicit shape of the driving patterns identified as
optimal is not necessarily insightful on its own, it is not spec-
ified directly in the subsequent discussion. For completeness,
however, the optimized numerical values of the parameters in
the driving functions ξ1 and ξ2 can be found in Appendix B.

FIG. 1. The value of the autocorrelation function g(2) as a func-
tion of the target time top in terms of mechanical periods (T =
2π/ωm) when the approximate autocorrelation function g̃(2)(top)
is minimized with respect to the driving detuning � at the con-
sidered time top. Different values of the optomechanical coupling
strength g0 = 0.3ωm (cross), g0 = 0.4ωm (circle), g0 = 0.5ωm (tri-
angle), and g0 = 0.6ωm (star) are considered. The driving strength
is ε = ωm/200 and cavity decay rate is κ = 0.02ωm. The minimized
autocorrelation function decreases when either the driving strength
or the evolution time increases, but strong photon blockade (g(2) ∼
10−4) cannot be observed within the range of parameters considered.

A. Photon blockade for monochromatic driving

For comparison with the results obtained with bichro-
matic driving discussed below in Sec. IV B, this section is
focused on the photon-blockaded states that can be realized
with monochromatic driving. In particular, it is can be found
that, within the perturbative regime [(g0/ωm)4, (ε/ωm)2 � 1],
monochromatic driving in Eq. (17) is insufficient for strong
photon blockade in the time limit t � 1/κ . Figure 1 plots
the values of the autocorrelation function g(2)(top) from the
full numerical simulation as a function of the target time top.
For each data point, the driving detuning � is optimized for
minimal approximate autocorrelation function g̃(2)(top) at the
target time top. In addition, a range of coupling strength (g0 =
0.3ωm, . . . , 0.6ωm) is also considered while other parameters
are kept constant (ε, κ ) = (ωm/200, ωm/50).

The strength of photon blockade depends on the optome-
chanical coupling strength g0. This can be confirmed by the
data points corresponding to different coupling strength g0

for each fixed target time top in Fig. 1. The minimized val-
ues of the autocorrelation function decrease as the coupling
strength g0 increases until it reaches the value g0 = 0.5ωm.
The main reason for the increase in the autocorrelation is
that the energy difference between different transitions in the
unequally spaced energy spectrum [Eq. (5)] is proportional to
the square of the coupling strength (i.e., En+1,m − En,m ∝ g2

0).
As the coupling strength increases further (e.g., g0 � 0.6ωm,
starred points in Fig. 1), the energy required to pump a single
photon into the cavity is eventually approached by the energy
required to pump a second photon and an extra phonon into
the cavity (i.e., E2,1 − E1,0 = E1,0 − E0,0), and thus the pho-
ton blockade effect vanishes [14]. This can be confirmed by
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FIG. 2. Single-photon occupation p1 (dashed), two-photon oc-
cupation p2 (dotted), and autocorrelation function g(2) (solid) as
functions of time for parameters that minimize the autocorrelation
function at fifth mechanical period when the parameters have the val-
ues ε = ωm/200, g0 = 0.3ωm, κ = 0.02ωm, and the driving detuning
and phases are optimized. (a) Corresponds to the dynamics when
the driving is bichromatic and strong photon blockade (g(2) ∼ 10−4)
can be observed at 5T . (b) Corresponds to the dynamics when the
driving is monochromatic and the lowest value of the autocorrelation
function only reaches 10−1.

the increase in the autocorrelation function for larger coupling
strength (g0 > 0.5ωm). The increase in the autocorrelation for
larger coupling strength is also consistent with the fact that
the assumption of small coupling strength [(g0/ωm)4 � 1] is
violated close to the value g0 = 0.5ωm, but the errors only
contribution to a small portion of the increase [51].

Furthermore, Fig. 1 also shows that monochromatic driving
is insufficient for strong photon blockade for any target time
within the first 15 mechanical periods. By looking at the data
points corresponding to different target time top for each fixed
coupling strength g0, it can be observed that the minimized
values of the autocorrelation function g(2)(top) decrease mono-
tonically as the target time top increases. However, the best
value (∼10−2) of the autocorrelation function that can be
obtained within the first 15 mechanical periods (T = 2π/ωm)
is still far from the value (g(2) � 10−4) that can be achieved
using a bichromatic drive.

B. Fast photon blockade for bichromatic driving

It is possible to induce a stronger fast photon blockade
given an optimized bichromatic drive. To compare a bichro-
matic drive with a monochromatic drive, the time-evolution of
the autocorrelation function g(2) is plotted in Fig. 2 as a func-
tion of time t . Figure 2(a) shows the autocorrelation g(2) for the
bichromatic drive, while Fig. 2(b) shows the autocorrelation
g(2) for a monochromatic drive. In addition to the autocorre-
lation g(2), the single- and two-photon occupation numbers p1

and p2 are plotted to demonstrate the difference in the time
evolution of the optical subsystem between the two cases.
The cavity decay rate is set to κ = ωm/50, as in Sec. IV A.
The coupling strength is fixed to g0 = 0.3ωm, which is less

than the optimal value (g0 ≈ 0.5ωm) in Fig. 1 [52]. The driv-
ing strength for each component is kept constant as ε1 = ε2 =
ωm/200. In both plots, the detunings take the optimized values
� = −0.040ωm, �1 = −0.019ωm, and �2 = −0.028ωm and
the relative phase of the bichromatic drive takes the optimized
value ψ = 2.8 so that the approximate autocorrelation g̃(2)

reaches its minimum around top = 5T . This target time was
chosen because it is close to the minimal time required to
achieve the autocorrelation value g(2)(top) � 10−4. The opti-
mized values can be found in Appendix B.

From Fig. 2, it can be seen that much lower values of
the autocorrelation g(2) can be achieved with the bichromatic
drive. The evolution plotted in Fig. 2(a) shows a second-order
autocorrelation of value g(2)(5T ) ≈ 5.8 × 10−5 at the end of
the fifth mechanical period, which is three orders of magni-
tude smaller than the best possible value for a monochromatic
driving (see Sec. IV A) g(2)(5T ) ≈ 8.9 × 10−2 shown in
Fig. 2(b). The significant enhancement in the strength of the
photon blockade effect demonstrates the benefit of adopting
an optimized bichromatic driving. Furthermore, it can be ob-
served that the single-photon occupation p1 also increases
monotonically in both subplots but the two-photon occupa-
tion only shows a rapid decrease near the fifth mechanical
period when a bichromatic driving is adopted. This supports
the argument in Sec. II that the entry of the second drive
induces strong destructive interference only between different
transition paths to the two-photon Fock state without affecting
the single-photon occupation. It is also worth noticing that the
low autocorrelation value g(2)(5T ) ≈ 5.8 × 10−5 is achieved
given a coupling strength g0 weaker than the optimal value
indicated by Fig. 1, which suggests a further advantage of
adopting a bichromatic driving.

It can also be noticed that in Fig. 2, the single-photon
population p1 for the two subplots are different. However, the
comparison of the intracavity photon numbers is not insight-
ful. This is because the compound driving strength |ξ2(t )| [see
Eq. (18)] of a bichromatic drive is dynamic in contrast to the
time-independent driving strength |ξ1(t )| = ε of a monochro-
matic drive. Therefore, the compound driving strength |ξ2(t )|
of a bichromatic drive can be much weaker than that of a
monochromatic drive even if the driving strengths of the com-
ponents are equal (i.e., ε1 = ε2 = ε). On the other hand, the
autocorrelation g(2) does not suffer from the same problem.
As long as the driving strengths for the two driving compo-
nents are equal and weak (i.e., ε1 = ε2 � ωm), the value of
the approximate autocorrelation function g̃(2) to leading order
becomes independent of the driving strength. Therefore, the
value of the exact autocorrelation function g(2) is independent
of the driving strength given the validity of the perturbative
method. Further discussion of this point can be found in
Sec. V C.

Although the driving function is the only degree of freedom
to be optimized, other system parameters also need to be
kept within a suitable range for the strong photon blockade to
occur. Especially, the cavity decay rate has a strong influence
on g(2). To explore the behavior of the g(2)-function as the
cavity decay κ increases, the minimized values of the autocor-
relation function g(2)(top) are plotted in Fig. 3. Two different
evolution time are considered, namely top = 5T (blue circles)
and top = 10T (yellow crosses). The optomechanical coupling
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FIG. 3. The minimal value of autocorrelation function against
the relative cavity decay rate κ/ωm when t = 5T (circle) and t =
10T (cross). The driving strength is ε = ωm/200 and optomechanical
coupling rate is g0 = 0.3ωm The minimal values of the autocorrela-
tion function increase as the cavity decay increases, but do not have
a monotonic dependence on the evolution time.

is kept at g0 = 0.3ωm and the driving is ε1 = ε2 = ωm/200 as
before. For each point, �1, �2, and ψ have been optimized
such that g(2) reaches its lowest value.

From studying Fig. 3, it is clear that the minimal value
of the autocorrelation function g(2) stays below 10−4 as long
as the cavity linewidth remains below κ ∼ 0.03ωm. However,
as κ becomes comparable to the optomechanical coupling
g0, the unequal spacings between different energy levels, as
shown in Eq. (5), are no longer distinguishable by the cavity,
and thus the photon blockade effect eventually vanishes for
large κ .

It is also noticeable from Fig. 3 that a longer evolution time
does not necessarily lead to a lower minimal g(2). This is in
sharp contrast with the monochromatic case, as seen in Fig. 2.
Such a feature can be explained by the fact that the occurrence
of the minimum of g(2) depends on the destructive interference
between the two driving fields and it is not guaranteed that
a longer evolution time enhances the destructive interference
between the two driving tones.

While it is generally important to minimize the autocor-
relation function, there are other aspects that can be further
improved. They are explored in the following sections.

C. Extending the lifetime of photon blockade

The results presented in the previous section show the
desired low values of the autocorrelation function g(2), which
indicate strong photon blockade. Besides strong photon block-
ade, it is also helpful to extend the duration for which the
photon-blockaded state can be accessed or equivalently, the
duration in which the autocorrelation function stays at its min-
imum value. In this section, it is shown that the maximization
of this duration can be achieved at the same time when the
strength of photon blockade is maximized.

FIG. 4. Single-photon occupation p1 (dashed), two-photon oc-
cupation p2 (dotted), and autocorrelation function g(2) (solid) as
functions of time for parameters that minimize the target function
Eq. (19) at fifth mechanical period when the parameters have the val-
ues ε = ωm/200, g0 = 0.3ωm, and κ = 0.02ωm. The autocorrelation
function stays around its minimum for approximately 0.2 mechanical
periods.

A broader minimum of the autocorrelation can be achieved
by minimizing the following target function:

η1 =
(

1 + wd
d

dt
+ ws

d2

dt2

)
g̃(2)(top) , (19)

with scalar weights wd and ws. The minimization of the first-
order derivative then guarantees that the local minimum of the
autocorrelation function is located in the vicinity of the given
time top. A minimal second-order derivative then assures that
the vanishing first-order derivative stays at a low value around
the given time top.

Figure 4 demonstrates that this choice of target function
produces the desired result. A bichromatic driving is
optimized for a flat minimum with fixed weights wd = 1 and
ws = 10 and the other system parameters are chosen to be
(ε1, ε2, g0, κ, top) = (ωm/200, ωm/200, 3ωm/10, ωm/50, 5T )
in accordance with Fig. 2. The weight ws for the second-order
derivative is chosen to be larger in order to prioritize the
maximization of the width of the minimum. As can be
noted from Fig. 4, the optimized driving in Fig. 4 makes the
autocorrelation stay within ±5% of its value at the target
time top = 5T for 0.38 mechanical periods as compared to
1.1 × 10−2 mechanical periods in Fig. 2. The improvement
is more than one order of magnitude, which suggests that the
target function η1 in Eq. (19) correctly predicts the desired
driving function that widens the minimum.

There are, however, drawbacks to the optimization for
broader minima. As a trade-off, the value of the autocor-
relation function g(2)(5T ) = 1.2 × 10−4 at is slightly higher
as compared to the result in Fig. 2 [g(2)(5T ) ≈ 5.8 × 10−5].
However, this still suggests strong photon blockade (i.e.,
g(2) ∼ 10−4). The trade-off also indicates that the increase in
the length of time in which the autocorrelation function stays
around its minimum is not unlimited, but rather depends on
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the threshold value of the autocorrelation function for strong
photon blockade.

D. Optimization for higher single-photon occupation

While it is important to maximize the strength of the
photon blockade effect by minimizing the g̃(2) function,
maximizing the single-photon population p1 at the same
time is also important if a single-photon source is tar-
geted. This can be done by minimizing the following target
function:

η2 =
(

1 + wd
d

dt
+ ws

d2

dt2

)
g̃(2)(top) + w1

p1(top)
, (20)

with scalar weight w1. The target function η2 in Eq. (20) is
the target function η1 in Eq. (19) plus a second term that
maximizes the single-photon population. Although the mul-
tiphoton populations are automatically minimized whenever
the single-photon population approaches unity, this is not the
case in the perturbative regime of weak driving. Therefore,
the autocorrelation function still requires minimization at the
same time when the single-photon population is maximized.
The target function η2 also assumes that the single-photon
population only varies slowly over the interval in which the
autocorrelation function stays near its minimum. This as-
sumption is justified by the weak driving strength.

For better comparison with the results presented in
Sec. IV C, it is helpful to assume the system param-
eters (κ, g0, top) = (ωm/50, 3ωm/10, 5T ) and the weights
(wd ,ws) = (1, 10). The weight w1 for the term that is in-
versely proportional to the single-photon population p1 is
taken to be the value w1 = ε2

1/10, which is proportional to the
square strength so that the term becomes unitless to leading
order. By minimizing the target function η2 with respect to
the driving strengths (ε1, ε2), the detunings (�1,�2) and the
phase ψ , the single-photon occupation at fifth mechanical
period increases to p1(5T ) ≈ 9.4 × 10−3 as compared to the
value p1(5T ) ≈ 6.6 × 10−3 in Fig. 4. As a trade-off, the value
of the autocorrelation function g(2)(5T ) also increases from
1.2 × 10−4 to 1.6 × 10−4 but both values are of the same
order of magnitude, which suggests strong photon blockade.
Similarly, the length of time at which the autocorrelation
function stays within ±5% of the latter value only slightly
reduces to 0.37 mechanical periods from 0.38 mechanical
periods. Within this interval, the change in the single-photon
population is also less than 5% of its value at the fifth me-
chanical period, which supports the slow-varying assumption
discussed earlier in the section.

The photon population in the cavity is ultimately bounded
by the maximal pumping power, and thus the single-photon
population can be further enhanced by increasing the driv-
ing strength in addition to minimizing the target function
Eq. (20). For example, with the optimized driving parameters,
the single-photon occupation can be enhanced to exceed the
vacuum occupation (i.e., p1 > 0.5) if the pumping power is
increased by 10 times. However, such modification can lead
to a decrease in the accuracy of the perturbative model as is
discussed in Sec. V C.

V. DISCUSSION

In this section, we discuss the assumptions made when
deriving the main result. For example, the interaction
between the mechanical oscillator and the environment
can be non-negligible and the perturbative assumptions in
the theory fail when the system is driven too strongly.
These differences are quantified by numerically comput-
ing the autocorrelation function and comparing it with
the analytic approximate function g̃(t ) shown in Eq. (8).
For consistency and unless otherwise specified, this sec-
tion adopts the system parameters (ε1, ε2, g0, κ, top) =
(ωm/200, ωm/200, 3ωm/10, ωm/50, 5T ) and the driving pa-
rameters as used in Fig. 4 for which the autocorrelation
function reaches the value g(2)(5T ) ≈ 1.2 × 10−4 at the end
of the fifth mechanical period and stays within ±5% of this
value for 0.38 mechanical periods. All numerical simulations
in Sec. V are also performed in a larger Hilbert space includ-
ing up to 10 photons and 25 phonons so that the increasing
excitation due to errors can be accurately calculated.

A. Thermal initial states

Thus far, the mechanical initial state has been assumed to
be the ground state. However, undesired thermal excitations in
the mechanical oscillator are common in many experiments.
It is therefore helpful to study a thermal initial state of the
mechanical oscillator, which reads

ρ̂ = 1

1 + n̄m

∞∑
n=0

(
n̄m

1 + n̄m

)n

|n〉〈n| , (21)

with n̄m being the average phonon number initially in the
mechanical mode. Therefore, in this section, the error of the
theoretical model is analyzed when the mechanical initial state
is cooled to a near-ground state instead of a perfect ground
state.

Through numerical simulation, it can be concluded that
when the initial state is cooled to a near-ground state with the
phonon number below the threshold n̄m < 0.1, the value of the
autocorrelation function at the end of the fifth mechanical pe-
riod remains at a low value g(2)(5T ) < 1.3 × 10−4. However,
for thermal states with higher phonon population n̄m = 10,
the autocorrelation function g(2)(5T ) increases by an order
of magnitude to 3.7 × 10−3, which suggests a significant de-
crease in the strength of the photon blockade. This decrease
can be explained by the larger uncertainty in the position of
the oscillator due to the nature of the thermal state. When this
uncertainty becomes comparable to the displacement of the
oscillator induced by the optical field, there is a nonvanishing
probability for another photon to enter the cavity and thus the
strength of the photon blockade effect is diminished.

Although it is not a trivial task to perform a near-ground-
state cooling, there are extensive research works [53–56] on
this topic with less-than-unity average phonon number n̄m.

B. Mechanical dissipation

In Sec. IV, we assumed that the interactions between the
mechanical oscillator and the environment are negligible. In
any realistic setting, however, mechanical noise is likely to

023148-7



LING, QVARFORT, AND MINTERT PHYSICAL REVIEW RESEARCH 5, 023148 (2023)

FIG. 5. The autocorrelation function g(2) as a function of the rel-
ative mechanical decay rate γ /ωm for average phonon number in the
heat bath being n̄b = 0 (cross), n̄b = 0.1 (circle), n̄b = 1 (triangle),
and n̄b = 10 (square). The dashed line specifies the value of the
autocorrelation function that is 10% larger than the value without
the mechanical loss (i.e., γ = 0). The assumptions of vanishing me-
chanical decay rate γ � ωm and environmental phonon occupation
n̄b ≈ 0 are required in order to achieve strong photon blockade.

play an important role. Here, we examine the impact of ther-
mal noise and dissipation on our results. For optomechanical
systems, mechanical dissipation at a rate γ in an environment
with mean thermal occupation n̄b can be modelled by the
Lindbladian L̂m + L̂p [57]. The term L̂m describes the ther-
malization of the mechanical mode in a frame displaced by
the optical field and reads

L̂m = γ (n̄b + 1)D̂
[

b̂ − g0

ωm
â†â

]
+ γ n̄bD̂

[
b̂† − g0

ωm
â†â

]
,

(22)

where the superoperator D̂[ô] satisfying the equation

D̂[ô]ρ̂ = ôρ̂ô† − 1
2 (ô†ôρ̂ + ρ̂ô†ô) (23)

is the Lindblad superoperator. Due to the optomechanical
coupling, there is also an extra optical dephasing term

L̂p = 4γ g2
0

ω2
m ln(1 + 1/n̄b)

D̂[â†â] (24)

induced by the mechanical dissipation.
To determine the effect of mechanical noise on the pho-

ton blockade, we plot the autocorrelation function g(2)(5T )
numerically for finite mechanical loss rate γ for different
values of the environmental thermal populations (i.e., n̄b =
0, 0.1, 1, 10). Figure 5 shows the change in the autocorrelation
function at the end of the fifth mechanical period as a function
of the mechanical decay γ /ωm in units rescaled by the me-
chanical frequency. The values of γ range from the negligible
value γ = 2 × 10−6ωm to γ = 2 × 10−2ωm, which equals to
the optical decay κ .

From Fig. 5, we see that a higher dissipation rate γ leads to
higher values of autocorrelation g(2), which implies a weaker
photon blockade. In a zero-temperature environment (i.e.,

n̄b = 0, indicated by the crosses), the autocorrelation function
appears robust to noise (i.e., it stays at the same order of
magnitude g(2) ∼ 10−4) even when γ becomes comparable
to the cavity decay κ = 2 × 10−2ωm. This suggests that, in
the zero-temperature environment, the standard of negligible
mechanical decay can be met by a variety of experimental
setups [17,20,25,41]. On the other hand, for environmental
thermal occupation larger than the value n̄b = 1, an extremely
low mechanical decay rate γ ≈ 10−6ωm is required for the
autocorrelation function to deviate by less than 10% from
its original value. Furthermore, the autocorrelation function
increases by more than one order of magnitude when the
mechanical decay rate γ becomes comparable to the optical
decay rate κ . Although an autocorrelation of value ∼10−3

does not meet the criterion of strong photon blockade used in
this paper, it is still more than one order of magnitude smaller
than the best value that can be achieved with a monochromatic
driving as in Sec. IV A.

The minimum value of the autocorrelation function g(2) has
a super-linear dependence on both the mean phonon occu-
pation n̄b in the heat bath and the mechanical decay rate γ .
The increasing dependence on the temperature and the cou-
pling rate of the thermal bath is expected because a strongly
coupled, hot bath can create excitations in the cavity through
optomechanical coupling, which dominates the system dy-
namics and renders the optimization invalid.

C. Validity of perturbative methods

The optimization performed on the approximate autocor-
relation function g̃(2) [Eq. (8)] is only valid as long as the
perturbative solutions presented in Sec. III hold. Their va-
lidity is based on the following two assumptions: the driving
strength remains small [i.e., (ε/ωm)2 � 1], and the coupling
strength remains small [i.e., (g0/ωm)4 � 1]. Here, we investi-
gate how the accuracy of g̃(2) changes as these two conditions
break down.

The points at which the two perturbative assumptions break
down can be found by studying the plot in Fig. 6 where
the values of the autocorrelation function g(2)(5T ) and the
approximate autocorrelation function g̃(2)(5T ) are plotted as
functions of the driving strength. The coupling strength g0

is kept fixed throughout [58]. The dashed and dotted lines
show g̃(2) when terms up to orders (g0/ωm)2 and (g0/ωm)6 are
included, respectively. The circular dots and the crosses show
numerical simulations of g(2) and g̃(2), respectively.

Firstly, it can be observed that the theoretical values for
g̃(2)(5T ) (dashed and dotted lines) stay constant in Fig. 6.
This can be explained by the following argument. Because the
approximate autocorrelation function g̃(2) omits the contribu-
tion from the three and more photon populations, and because
the two-photon population is negligible near its minimum,
the function g̃(2) is approximately proportional to the ratio
p2/p2

1. According to the Neumann series in Eq. (16), the
single-photon occupation is dominated by the second-order
term Ŝ (2)

1 , which is proportional to ε2. The two-photon oc-
cupation is dominated by the fourth-order term Ŝ (4)

1 , which is
proportional to ε4. Thus, to leading order, the approximate au-
tocorrelation function is independent of the driving strength.
As a result, the magnitude of ε does not influence g(2). In
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FIG. 6. The autocorrelation g(2) and g̃(2) as functions of the driv-
ing strength ε/ωm rescaled by the mechanical frequency. The circular
data points plot the exact autocorrelation values g(2)(5T ) obtained
from a full numerical simulation. The cross data points plot the ap-
proximate autocorrelation values g̃(2)(5T ) obtained from numerical
simulation. The dashed curve plots the case when the perturbative
expansion is truncated up to the order (g0/ωm )2 [i.e., (g0/ωm )4 � 1].
The dotted curve plots the case when the relevant perturbative ex-
pansion is truncated to a higher order, which imposes a less strict
condition [i.e., (g0/ωm )8 � 1] on the coupling strength. The inset
zooms into the results for small driving strengths. The figure shows
that a weak driving strength is necessary for obtaining the results in
this paper.

contrast, the three-photon occupation is included in the full
numerical calculation of the autocorrelation function g(2), and
thus its value changes as a function of the driving strength.

Next, the numerically obtained values for g(2) and g̃(2)

(circles and crosses) can be compared with the theoretical
values (lines). For a very small driving strength ε = ωm/1000
(Fig. 6 inset), the majority of the error around the minimum
can be attributed to the assumption of small coupling strength
[(g0/ωm)4 � 1] as there is a wider disagreement between the
results when the relevant perturbative expansion is truncated
to different orders (dashed and dotted lines) than between
the theoretical values and the numerical values (lines and
scattered data). However, the overall error of the theoretical
model is negligible (<0.01) even when the terms quartic in
the coupling strength are truncated. On the other hand, for
stronger driving in Fig. 6, the error is dominated by inac-
curacy due to the truncated Hilbert space in the theoretical
model. Both higher-order correction to the single-photon and
two-photon populations (i.e., p1 and p2) and the three-photon
population can explain the diversion of the exact autocorrela-
tion values (circular dots) from the theoretical values (lines).
However, the relatively minor difference between the exact
values of the autocorrelation function g(2) and the numerically
simulated values of the approximate autocorrelation function
g̃(2) suggests that the higher-order corrections to the single-
and two-photon populations are responsible for the majority
of the error. In the presence of these errors, the optimized
driving parameters may not lead to the true minimum of the
autocorrelation function, but still, lead to a fast decrease in the

value of the autocorrelation function near the specified time
t = 5T .

Overall, according to Fig. 6, it is safe to conclude that the
analytic approximations only start breaking down for values
larger than ε/ωm ≈ 0.005, which is the value used in Sec. IV.

VI. CONCLUSIONS AND OUTLOOK

While it is elusive to realize a strong photon blockade
effect without the clear separation of scales, the present
control scheme can substantially improve the fidelity of
photon-blockaded quantum states under imperfect conditions.
Furthermore, besides the minimization of autocorrelation
function, it is also possible to optimize the driving profile
with respect to other states. For example, this could include an
intermediate state that reaches the steady state at a faster rate,
or an entangled state, which generates single photons based
on conditional measurement.

Since the question of what can be practically achieved
with suitably shaped driving depends on the actual system
parameters, a brief overview over system parameters that have
been realized in existing optomechanical platforms is in order.
Table I shows the relevant parameters from a selection of
works, together with the calculated autocorrelation function.
The autocorrelation values are computed by minimizing the
target function g̃(2)(5T ) at target time top = 5T with respect to
the driving parameters shown for each case. For each of the
examples, two different temperatures (i.e., n̄b = 0, 1) of the
thermal bath surrounding the mechanical oscillator are shown.

While it is generally difficult to achieve strong photon
blockade, many experimental proposals are moving towards
the values assumed in this paper. Most difficulty orig-
inates from the requirement of strong coupling strength
g0 > κ . Especially for solid-state resonators, the best values
[22,32,40,41] of the coupling strength are still three orders
of magnitude smaller than the cavity linewidth. As shown
in Table I, the strength of photon blockade is negligible in
such a case. However, there are several theoretical propos-
als [16,59–62] for enhancing the optomechanical coupling
strength. One approach involves deriving an effective optome-
chanical Hamiltonian with strong coupling by introducing
an additional subsystem. For example, this can be achieved
through driving a weakly coupled quadratic optomechanical
system using a strong coherent light field [16], or by driving
a optomechanical system with a χ2 medium [62]. In par-
ticular, in [59], an effective optomechanical Hamiltonian is
obtained through plasmon-enhanced Raman scattering in a
hybrid metal-dielectric cavity. As listed in Table I, the effec-
tive optomechanical coupling strength and the cavity decay
rate in such a system are of the same order of magnitude as
considered in our paper. Thus, the hybrid system could poten-
tially be a good platform to realize the results in Sec. IV. Some
optomechanical systems with levitated particles [26–29] also
have strong values of coupling strength g0 as compared to
the mechanical frequency ωm. However, in such a system, it
is usually true that the inequality g0 > ωm holds, which is
not consistent with the approximations used in the present
approach.

Even though the present paper thus does not directly ap-
ply to systems with strong coupling strength (g0 > ωm), one
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TABLE I. System parameters in experiments in comparison with the parameters adopted in this paper and the strength of the resulting
photon blockade at the target time top = 5T . The coupling strength assumed in this paper is too large in comparison with experimental data
in the paper on nano-acoustic resonators. The parameters in the theoretical work [59] suggest that hybrid systems potentially constitute good
platforms for realizing photon blockade.

g0/ωm κ/ωm γ /ωm g0/κ g(2)(5T ) (n̄b = 0) g(2)(5T ) (n̄b = 1)

Nano-acoustic resonator [40] 1.4 × 10−4 2.3 × 10−1 4.2 × 10−11 6.3 × 10−4 1.0 1.0
Hybrid system (theory) [59] 4.0 × 10−1 4.6 × 10−2 1.0 × 10−2 8.7 1.5 × 10−3 1.5 × 10−2

Parameters used in this paper 3.0 × 10−1 2.0 × 10−2 0 15 5.8 × 10−5 5.8 × 10−5

would expect that suitably designed bichromatic (or polychro-
matic) driving offers increased capabilities for the preparation
of quantum mechanical states also in systems with stronger
optomechanical interactions. In particular, strong optome-
chanical interactions could be used for the preparation of
broader classes of quantum states, and the driving techniques
developed in this paper can be generalized straightforwardly
to any other quantum state with desirable properties. Stronger
phonon-photon coupling would certainly make it generally
more difficult to find driving patterns such that the system
evolves towards the desired states. However, the potential of
the non-Gaussian quantum states that might be realized in
such systems make such an endeavor a worthwhile goal.
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APPENDIX A: THEORY

In this Appendix, details on the solution to the master
equation in Eq. (10) are presented.

1. System dynamics

It is helpful to define the left-hand and the right-hand ladder
superoperators âL, b̂L and âR, b̂R that satisfy the equations

âL(ρ̂) = âρ̂, âR(ρ̂ ) = ρ̂â†, b̂L(ρ̂) = b̂ρ̂, b̂R(ρ̂ ) = ρ̂b̂† .

(A1)

In terms of the ladder superoperators, the photon-
conserving evolution operator Ŝ0 defined in Sec. III reads

Ŝ0(t ) = ŜF (t )ŜD(t )ŜI (t )ŜK (t ) (A2)

with

ŜF (t ) = exp(−iωc(â†
LâL − â†

RâR)t )

× exp(−iωm(b̂†
Lb̂L − b̂†

Rb̂R)t ),

ŜD(t ) = exp
(
−κ

2
(â†

LâL + â†
RâR)t

)
,

ŜI (t ) = exp( f1(t )(â†
LâLb̂†

L − â†
RâRb̂R) − H.c.),

ŜK (t ) = exp(i f2(t )((â†
LâL )2 − (â†

RâR)2)). (A3)

The propagators ŜF (t ), ŜD(t ), ŜI (t ), ŜK (t ) correspond to the
free evolution, the dephasing, the optomechanical interaction,
and the Kerr-type nonlinearity respectively and

f1(t ) = g0

ωm
(eiωmt − 1),

f2(t ) =
(

g0

ωm

)2

(ωmt − sin(ωmt )), (A4)

are real, time-dependent functions. In the coherent case with-
out driving and dissipation [i.e., κ = ξ (t ) = 0], this solution
coincides with results from earlier works [42,43].

The photon-varying part L̂1(t ) of the master equation in
the frame defined by the photon-conserving superoperator Ŝ0

then reads

M̃(t ) = Ŝ−1
0 (t )L̂1(t )Ŝ0(t )

= −i(ξ ∗ÂL − ξÂR + ξÂ†
L − ξ ∗Â†

R) + κÂLÂR,

(A5)

in which

ÂL = âLe−(κ/2+iωc )t ei f2(2â†
L âL−1)e f1b̂†

L− f ∗
1 b̂L ,

Â†
L = â†

Le(κ/2+iωc )t e−i f2(2â†
L âL+1)e f ∗

1 b̂L− f1b̂†
L ,

ÂR = âRe(−κ/2+iωc )t e−i f2(2â†
RâR−1)e f ∗

1 b̂†
R− f1b̂R ,

Â†
R = â†

Re(κ/2−iωc )t ei f2(2â†
RâR+1)e f1b̂R− f ∗

1 b̂†
R (A6)

are the creation and annihilation superoperators in the frame
defined by the superoperator Ŝ0. Given any initial state ρ̂i, the
final state ρ̂ f can thus be perturbatively expanded using the
Neumann series [Eq. (16)] into the form of the following sum
of integrals:

ρ̂ f =
∞∑

k=0

∫
t (k)∈T

⎛
⎝Ŝ0(t )

k∏
j=1

M̃(t j )ρ̂i

⎞
⎠dt (k) , (A7)

with M̃ defined in Eq. (A5) and the vector t (k) of time-ordered
variables tk < . . . < t1, and the hyperpyramidal domain T
being 0 < tk < . . . < t1 < t as defined in Eq. (16). This can
be taken as a starting point for the calculation of expectation
values.

2. Dynamics of the vacuum state

One natural choice of the initial state is the vacuum
state ρ̂i = |0〉〈0|c ⊗ |0〉〈0|m. Whenever the Neumann series
in Eq. (A7) is truncated to finite order, the final state of the
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system given a vacuum initial state is a finite superposition

ρ̂ f (t ) =
N∑

j=0

g j (t )ρ̂(nL, j, nR, j, βL, j, βR, j ) , (A8)

with N being a finite integer, gj being time-dependent, scalar
functions and the density matrices

ρ̂(nL, nR, βL, βR) = |nL〉〈nL|nRc ⊗ |βL〉〈βL|βRm , (A9)

with the optical components |nL〉〈nL|nRc in the Fock basis, and
the mechanical states |βL〉〈βL|βRm in the coherent basis. As a
result, the photon statistics of the final state can be extracted
from corresponding components that satisfy the relation nL =
nR.

To prove that the final state can be written as a finite sum of
matrices ρ̂(nL, nR, βL, βR), it suffices to show that any matrix
in the form ρ̂(nL, nR, βL, βR) is mapped to another matrix in
the same form when acted on by the superoperators Â(†)

L ,
Â(†)

R , and Ŝ0. This is because the expression Ŝ0(t )
∏

M̃(t j )
in each of the kth-order Neumann term [Eq. (A7)] is a finite
polynomial of the superoperators Â(†)

L , Â(†)
R , and Ŝ0.

The action of the superoperators on the matrix
ρ̂(nL, nR, βL, βR) reads

ÂLρ̂(nL, nR, βL, βR) = gLρ̂(nL − 1, nR, βL + f1, βR),

ÂRρ̂(nL, nR, βL, βR) = gRρ̂(nL, nR − 1, βL, βR + f ∗
1 ),

Ŝ0ρ̂(nL, nR, βL, βR) = gcρ̂(nL, nR, e−iωmt (βL + f1nL ),

eiωmt (βR + f ∗
1 nR)) (A10)

with

gL = √
nLe−(κ/2+iωc )t ei f2(2nL−1)e( f1β

∗
L− f ∗

1 βL )/2,

gR = √
nRe(−κ/2+iωc )t e−i f2 (2nR−1)e( f ∗

1 β∗
R− f1βR )/2,

gc = e−κ (nL+nR )t/2e−iωc (nL−nR )t enL ( f1β
∗
L−h.c.)/2

× enR ( f ∗
1 β∗

R−H.c.)/2e f2(n2
L−n2

R ) (A11)

being scalar, time-dependent functions, and thus Eq. (A8) is
proven. In the next section, the photon statistics obtained by
partial tracing out the mechanical degree of freedom of the
matrix elements satisfying the relation nL = nR is presented.

3. Photon occupation

Since the approximate autocorrelation g̃(2) in Eq. (8) is a
function of photon occupation p1 and p2 only, it is sufficient
to calculate only the corresponding matrix elements in the
density matrix in Eq. (A8).

In the regime of weak driving (|ξ |2 � ω2
m), the leading-

order single-photon occupation p1(t ) at time t appears in the
second order of the perturbative series in Eq. (A7) and reads

p1(t ) = 2�
∫ t

0

∫ t1

0
exp

(
g2

0

ω2
m

(eiωm (t1−t2 ) − 1) + i
g2

0

ωm
(t2 − t1)

− κt + κ

2
(t1 + t2)

)
ζ (t1)ζ ∗(t2)dt2dt1, (A12)

where � denotes the real part of the expression and ζ (t ) =
ξ (t ) exp(iωct ) being the driving function in the frame rotating
at the cavity resonance frequency.

The leading-order contribution to two-photon occupation
p2(t ) at time t appears in the fourth order of the series in
Eq. (A7) (i.e., ∝ |ξ |4) and can be written as

p2(t ) = 4�
∫

t (4)∈T
exp

(
−2g2

0

ω2
m

+ κ

2
(t1 + t2 + t3 + t4 − 4t )

)

×
3∑

j=1

h j (t, t (4))dt (4), (A13)

with the vector t (4) = (t1, t2, t3, t4) of time-ordered variables
and the domain T as defined in Eq. (16), and the time-
dependent functions h j (t, t (4)) defined as

h1(t, t (4)) = exp

(
g2

0

ω2
m

∑
1� j<k�4

s(1,1)
j,k exp

(
s(2,1)

j,k (t j − tk )
)

− s(1,1)
j,k s(2,1)

j,k (t j − tk )

)
ζ ∗(t1)ζ ∗(t2)ζ (t3)ζ (t4),

h2(t, t (4)) = exp

(
g2

0

ω2
m

∑
1� j<k�4

s(1,2)
j,k exp

(
s(2,2)

j,k (t j − tk )
)

− s(1,2)
j,k s(2,2)

j,k (t j − tk )

)
ζ ∗(t1)ζ (t2)ζ ∗(t3)ζ (t4),

h3(t, t (4)) = exp

(
g2

0

ω2
m

∑
1� j<k�4

s(1,3)
j,k exp

(
s(2,3)

j,k (t j − tk )
)

− s(1,3)
j,k s(2,3)

j,k (t j − tk )

)
ζ (t1)ζ ∗(t2)ζ ∗(t3)ζ (t4),

(A14)

and the expressions s(1,i)
j,k and s(2,i)

j,k are either positive or minus
sign as defined in Table II.

The integral in Eq. (A13) contains double exponentials in
the form of exp ( exp(ix)), which cannot be integrated into a
closed form and numerical tools are inefficient for multiple
integrals. However, given a small coupling strength that satis-
fies the inequality g4

0/ω
4
m � 1, the double exponential can be

TABLE II. The values of the sign variables s(l,i)
j,k in Eq. (A14).

�������( j, k)
(l, i)

(1,1) (1,2) (1,3) (2,1) (2,2) (2,3)

(1,2) – + + + – +
(1,3) + – + – + +
(1,4) + + – – + +
(2,3) + + – – – –
(2,4) + – + – – –
(3,4) – + + – – –
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TABLE III. Optimized parameters for Fig. 1.

top/T g0 � top/T g0 � top/T g0 � top/T g0 � top/T g0 �

3 0.3 0.055491 3 0.35 −0.01397 3 0.4 −0.09137 3 0.5 −0.22977 3 0.6 −0.41061
4 0.3 −0.00498 4 0.35 −0.07028 4 0.4 −0.1376 4 0.5 −0.22298 4 0.6 −0.38487
5 0.3 −0.03953 5 0.35 −0.09842 5 0.4 −0.0986 5 0.5 −0.24291 5 0.6 −0.37614
6 0.3 −0.06016 6 0.35 −0.06547 6 0.4 −0.1269 6 0.5 −0.23397 6 0.6 −0.38582
7 0.3 −0.06974 7 0.35 −0.08281 7 0.4 −0.14577 7 0.5 −0.24525 7 0.6 −0.37771
8 0.3 −0.04821 8 0.35 −0.09852 8 0.4 −0.13611 8 0.5 −0.23984 8 0.6 −0.36937
9 0.3 −0.05612 9 0.35 −0.10887 9 0.4 −0.14063 9 0.5 −0.24643 9 0.6 −0.36882
10 0.3 −0.06519 10 0.35 −0.10828 10 0.4 −0.15001 10 0.5 −0.24317 10 0.6 −0.37111
11 0.3 −0.07255 11 0.35 −0.10351 11 0.4 −0.15037 11 0.5 −0.24718 11 0.6 −0.36774
12 0.3 −0.07763 12 0.35 −0.10879 12 0.4 −0.14792 12 0.5 −0.24516 12 0.6 −0.36490
13 0.3 −0.07932 13 0.35 −0.11361 13 0.4 −0.15261 13 0.5 −0.24770 13 0.6 −0.36573
14 0.3 −0.07634 14 0.35 −0.11482 14 0.4 −0.15415 14 0.5 −0.24642 14 0.6 −0.36584
15 0.3 −0.07642 15 0.35 −0.11248 15 0.4 −0.15218 15 0.5 −0.24808 15 0.6 −0.36412

expanded into the following form:

exp

(
g2

0

ω2
m

eiωm (tp−tq )

)
≈ 1 + g2

0eiωm (tp−tq )

ω2
m

, (A15)

using the Taylor expansion. The right-hand side of Eq. (A15)
can be integrated exactly but the results are too long to be
presented in the text. Interested readers can find the full results
online [63].

APPENDIX B: PARAMETERS USED FOR FIGS.

In this section, the optimized parameters used for figures in
the main text are listed. All parameters are normalized in units
of the mechanical frequency (i.e., ωm = 1). For example, one
unit of time is one mechanical period, and one unit frequency
is the mechanical resonance frequency.

Figure 1 fixes the driving strength ε = 1/200, and the
cavity decay rate κ = 1/50. The evolution time at which
the autocorrelation function is minimized top, the coupling

strength g0 and the optimized driving detuning � are listed
in Table III.

Figure 2 fixes the driving strength ε = ε1 = ε2 = 1/200,
the cavity decay rate κ = 1/50, the coupling strength g0 = 0.3
and the evolution time at which the autocorrelation function is
minimized top = 5T . The optimized monochromatic detuning
reads � = −0.03953. The optimized bichromatic detunings
read �1 = −0.0192947, �2 = −0.0282437, and the phase
difference between the two driving fields reads ψ = 2.83667.

Figure 3 fixes the driving strength ε1 = ε2 = 1/200, the
coupling strength g0 = 0.3, the evolution time top = 5T . The
cavity decay κ , the optimized driving detunings �1, �2, and
the optimized phase difference between the two driving ψ are
listed in Table IV.

Figure 4 fixes the driving strength ε1 = ε2 = 1/200, the
cavity decay rate κ = 1/50, the coupling strength g0 = 0.3,
and the evolution time at which the autocorrelation function
is minimized top = 5. The optimized driving detunings are
�1 = 0.0165539 and �2 = −0.0364786, and the optimized
phase difference is ψ = 1.4571.

TABLE IV. Optimized parameters for Fig. 3.

top/T 5 5 5 5 5 5 5 5 5 5

κ 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
�1 −0.03492 −0.01929 −0.01616 −0.0092 −0.00843 −0.00877 −0.00756 −0.00822 −0.00804 −0.00752
�2 −0.02443 −0.02824 −0.01193 −0.00477 −0.00496 −0.00433 −0.00465 −0.00389 −0.00375 −0.00379
ψ 3.51878 2.83667 3.27736 3.27906 3.24947 3.27937 3.23194 3.27625 3.27532 3.25781

top/T 10 10 10 10 10 10 10 10 10 10

κ 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
�1 −0.04765 −0.11406 −0.03877 −0.04014 −0.04077 −0.04413 −0.04394 0.95322 −0.04514 −0.04499
�2 −0.05129 −0.11768 −0.04053 −0.04133 −0.04378 −0.04292 −0.04459 0.95523 −0.04852 −0.04600
ψ 2.89786 2.90915 3.032 3.06708 2.95241 3.21805 3.10049 3.26766 2.92939 3.0779
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