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The quantum approximate optimization algorithm (QAOA) is a promising method for solving certain classical
combinatorial optimization problems on near-term quantum devices. When employing the QAOA to 3-SAT and
Max-3-SAT problems, the quantum cost exhibits an easy-hard-easy or easy-hard pattern, respectively, as the
clause density is changed. The quantum resources needed in the hard-region problems are out of reach for
current noisy intermediate-scale quantum (NISQ) devices. We show by numerical simulations with up to 14
variables and analytical arguments that the adaptive-bias QAOA (ab-QAOA) greatly improves performance in
the hard region of the 3-SAT problems and hard region of the Max-3-SAT problems. For similar accuracy, on
average, ab-QAOA needs 3 levels for 10-variable 3-SAT problems as compared to 22 for QAOA. For 10-variable
Max-3-SAT problems, the numbers are 7 levels and 62 levels. The improvement comes from a more targeted
and more limited generation of entanglement during the evolution. We demonstrate that classical optimization is
not strictly necessary in the ab-QAOA since local fields are used to guide the evolution. This leads us to propose
an optimization-free ab-QAOA that can solve the hard-region 3-SAT and Max-3-SAT problems effectively with
significantly fewer quantum gates as compared to the original ab-QAOA. Our work paves the way for realizing
quantum advantages for optimization problems on NISQ devices.
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I. INTRODUCTION

We are in the noisy intermediate-scale quantum (NISQ) era
for quantum computing [1]. NISQ devices such as Sycamore
[2] and Zuchongzhi [3] have demonstrated a quantum advan-
tage on the random circuit sampling problem, but this problem
is far from practical applications. Quantum optimization al-
gorithms, such as the quantum adiabatic algorithm (QAA)
[4–8] and the quantum approximate optimization algorithm
(QAOA) [9,10], or the variational quantum algorithm (VQA)
[11–16] would have much wider impact, if they could also
demonstrate some quantum advantage. There is hope for this
in cases where one has a VQA, in which an outer classical
optimizer is employed to train a sequence of parametrized
quantum circuits. If each such circuit has relatively low depth,
then noise may be minimized.

The QAOA aims to solve combinatorial optimization prob-
lems and even the lowest depth version has the potential to
establish quantum advantages [17]. The QAOA is a general-
ization of the QAA [9], in which the schedule of adiabatic
evolution can be modified to produce optimal results. For
the standard QAOA, it has been experimentally implemented
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[18–21]. There are encouraging results of the QAOA on the
MaxCut problems [9,10,18,22–25]. Simulations of the QAOA
give solutions for MaxCut problems on sizes up to 20 vertices
[10] with the standard method and up to 54 qubits with a neu-
ral network based method [25]. There have been experimental
demonstrations in superconducting systems [18] for 23-qubit
graph MaxCut problems. The QAOA seems to be effective for
MaxCut problems in the sense of greatly improving on naive
adiabatic algorithms. However, there is no evidence to date of
a speedup over classical algorithms. In this paper we do not
attempt to give such evidence. Rather, we seek to improve the
QAOA to make it more competitive.

For the MaxCut problem we have shown a computational
speedup over the QAOA when adaptive-bias fields are in-
troduced, a modification called the ab-QAOA [26]. In this
paper we pinpoint a problem where QAOA appears to have
difficulties, and show that the ab-QAOA greatly outperforms
the QAOA. We use the resulting numerical data to pinpoint
the strengths of the ab-QAOA.

Specifically, the QAOA encounters difficulties when ap-
plied to random 3-SAT problems [27] and random Max-
3-SAT problems [28]. These problems have been intensely
studied in the framework of classical algorithms [29–34].
Much is known about their complexity. A SAT problem or its
optimization version Max-SAT problem is defined in terms of
n Boolean variables and m clauses. In the classical computing
context, the cost for a given accuracy varies with the clause
density α = m/n. As α increases, there is an easy-hard-easy
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pattern in the random 3-SAT problems and an easy-hard pat-
tern in the random Max-3-SAT problems [30–32]. Even for
the 10-variable 3-SAT problems [27] and 6-variable Max-3-
SAT problems [28], the same pattern is evident in the QAOA:
in the hard regions, a very large number of levels are required
to obtain an accurate ground state. This means that such prob-
lems are out of reach of the QAOA on current NISQ devices
[18], and prospects are dim for the near future. It is intriguing
that the same easy-hard patterns are evident in both the QAOA
and the classical algorithms, and that, as we will show, the
patterns are nearly absent in the ab-QAOA.

In the hard-region Max-3-SAT problems, this lack of con-
vergence in the QAOA is known as the reachability deficits
[28,35]. In physics terms, one can track this back to a large
amount of frustration in the Ising variables. This happens
locally when a triangle of spins has antiferromagnetic in-
teractions and similar problems repeat on multivariable sets
[36]. The overwhelming overhead of QAOA in the hard-
region Max-3-SAT problems, i.e., the reachability deficits,
is not strictly related to barren plateaus [37–44], defined to
be when the variance of the gradients vanishes exponentially
with the system size n, making the cost function hard to train.
Reachability deficits can occur even in the absence of the
barren plateaus, e.g., for large clause density α with a fixed
n. Nevertheless, the hard-region SAT problems do seem to
exhibit a small variance of the energy gradients [27].

There is intense research activity to further improve the
performance of QAOA. This includes heuristic initialization
strategies [10,45], modifications of the mixing Hamiltonian
[26,46,47], adjusting the cost function [48,49], the warm-start
strategy [50], utilizing adiabaticity [51,52], and using machine
learning [53]. However, little is known about their perfor-
mances on the easy-hard-easy or easy-hard transitions on the
relevant SAT problems.

In the ab-QAOA, longitudinal adaptive-bias fields are in-
corporated into the mixing Hamiltonian, which are updated
based on the expectation values of the Pauli Z operators [26].
The ab-QAOA is a generalization of the QAOA and, as stated
above, a substantial and scalable speedup over the QAOA on
the MaxCut problem has been observed. Furthermore, unlike
most other adaptive QAOA variants [47,54], the ab-QAOA
requires no more measurements than the QAOA.

The three main outcomes of this paper are as follows.
(1) We show that the ab-QAOA improves over the QAOA

for certain SAT problems with easy-hard-easy or easy-hard
patterns where QAOA does not perform well. Our strategy
is to first demonstrate the speedup of the ab-QAOA over the
QAOA for the relevant SAT problems.

(2) We analyze the characteristics of the results and in-
crease our understanding of the reasons for the improved
performance of the ab-QAOA.

(3) We propose an optimization-free ab-QAOA to reduce
the overhead of gradient calculations and show that the easy-
hard-easy and easy-hard transitions are not evident in this
optimization-free version.

The fact that the ab-QAOA is less subject to the well-
known easy-hard-easy or easy-hard transitions is the evidence
that it is qualitatively superior to the QAOA. Taken together,
these features mean that the ab-QAOA is a considerable
step forward. Nonetheless, these improvements on the QAOA

do not imply by themselves that our algorithm produces a
speedup of classical algorithms for SAT problems. Estab-
lishing quantum advantages in this context would require a
separate analysis, which lies beyond the scope of this work.

The paper is organized as follows. In Sec. II, we will give
a detailed description of the QAOA and ab-QAOA, including
some modifications of the ab-QAOA relative to the version
in Ref. [26]. In Sec. III, a discussion of the relevant details
of the special version of 3-SAT or Max-3-SAT problems
considered in this work, the 1-3-SAT+ or Max-1-3-SAT+

problems and the easy-hard-easy or easy-hard patterns can
be found. In Sec. IV, the relative performances of QAOA
and ab-QAOA on the 1-3-SAT+ and Max-1-3-SAT+ prob-
lems are given. In Sec. V we analyze the advantages of
the ab-QAOA: its targeted nature of the entanglement in the
evolution, which is related to many-body localization and
the increased adiabaticity in the discrete time evolution. In
Sec. VI, we demonstrate that an optimization-free version of
the ab-QAOA can solve the hard-region 1-3-SAT+ or Max-
1-3-SAT+ problems effectively and with much fewer quantum
resources. Our conclusions are summarized in Sec. VII.

II. ADAPTIVE-BIAS QUANTUM APPROXIMATE
OPTIMIZATION ALGORITHM

The standard QAOA is a quantum-classical hybrid algo-
rithm to solve the combinatorial problems [9]. The problem is
encoded in the n-qubit cost Hamiltonian HC, whose ground
state is the desired solution. In the cases investigated to
date, HC is a classical Ising model that only contains Pauli
Z operators [55]. The quantum part of the standard QAOA
starts from |ψ s

0〉, the ground state of the mixing Hamiltonian
H s

M = ∑
j Xj , where Xj is the Pauli X operator acting on jth

qubit. The unitary operators exp(−iβkH s
M) and exp(−iγkHC)

are alternately applied to |ψ s
0〉 p times, where p is the level.

The output state of the QAOA is

∣∣ψ s
f (�γ , �β )

〉 =
p∏

k=1

e−iβk H s
M e−iγk HC

∣∣ψ s
0

〉
. (1)

Here we use the vector expression �γ , �β to represent a set of
parameters {γ1, . . . , γp} and {β1, . . . , βp}. The operators with
subscript k are always on the left of those with k − 1. The
classical part of the QAOA is the iterative optimization of �γ
and �β according to the measurement of 〈HC〉, the expectation
value of HC in |ψ s

f (�γ , �β )〉. Note that whether |ψ s
0〉 is taken to

be |−〉⊗n or |+〉⊗n has no effect on the classical optimization
procedure since (�γ , �β ) with |−〉⊗n yields the same 〈HC〉 as
(�γ ,−�β ) with |+〉⊗n [26].

The recently proposed ab-QAOA is a generalization
of the QAOA [26]. Local longitudinal bias fields �h =
{h1, h2, . . . , hn} are incorporated into the mixing Hamiltonian,
giving

H ab
M (�h) =

∑
j

Xj − h jZ j√
1 + h2

j

, (2)

where Zj is the Pauli Z operator acting on the jth qubit. The
choice of the h j is discussed below. The starting state |ψab

0 〉 is
always reinitialized to be the ground state of H ab

M . This is the
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FIG. 1. A schematic of the optimization procedure of the adaptive-bias quantum approximate optimization algorithms (ab-QAOA) in level
p. The optimization of R samples can be done in parallel and the lowest energy among R optimized results and the corresponding state |ψab

f 〉
are the outputs in this level. For a single sample r, in each optimization iteration, the updates of �γ and �β are different from �h. To determine the
direction of γk or βk in next iteration, additional preparations and measurements of |ψ ab

f 〉 with slightly moved γk or βk are needed. However,
this overhead is not necessary for hj , whose direction is determined by 〈Zj〉. This schematic also applies to the QAOA if we set hj = 0 and
� = 0.

key feature of the ab-QAOA that gives its advantages over the
QAOA, as will be discussed in Sec. V. Thus, the output state
of the ab-QAOA is

∣∣ψab
f (�γ , �β, �h)

〉 =
p∏

k=1

e−iβkH ab
M (�h)e−iγk HC

∣∣ψab
0 (�h)

〉
. (3)

The n extra bias-field parameters �h are not optimized,
but rather updated according to the prescription hj → h j −
�(h j − 〈ψab

f |Zj |ψab
f 〉) in each iteration. � is the learning rate

and we take to be � = 0.4 in this paper. �γ and �β are op-
timized in the usual way based on 〈HC〉. Since the energy
measurement is in the Z basis, 〈ψab

f |Zj |ψab
f 〉 can be obtained

without any additional overhead. When hj → 0 and � → 0,
the ab-QAOA is equivalent to the QAOA. A schematic the of
ab-QAOA algorithm is shown in Fig. 1.

In Eq. (2), the Schmidt norm of the operator on the jth
qubit is normalized to identity (it squares to the identity op-
erator). This has the advantage that each βk can be restricted
to the interval [0, π ], unlike in Ref. [26]. On the jth qubit, we
define the rotation angle d j with the relationships

cos d j = 1√
1 + h2

j

, sin d j = h j√
1 + h2

j

, (4)

and the rotation operator around the ŷ axis is R j
y (d j ) =

exp(−id jYj/2), where Yj is the Pauli Y operator on qubit j.
Equation (2) can then be rewritten as

H ab
M (�h) =

∑
j

R j
y (d j )XjR

j†
y (d j )

= R̃y( �d )H s
MR̃†

y ( �d ), (5)

where R̃y( �d ) = ⊗
j R j

y (d j ). The [0, π ] period of βk [9] is not
affected by the update of the bias fields. The eigenvalues of HC

are integers for the models considered in this paper. Hence, γk

can be restricted to [0, 2π ]. The ab-QAOA starting state |ψab
0 〉

can be obtained by rotating |0〉⊗n around the ŷ axis in contrast
with applying Hadamard gates to |0〉⊗n for |ψ s

0〉 in the QAOA.
Aside from the initial state preparation, no additional quantum
gates are needed to prepare a p level |ψab

f 〉 compared with |ψ s
f 〉

[26], so again there is no additional overhead.
The energy landscapes of the ab-QAOA at high levels

are generally complicated. A good initial guess of (�γ , �β, �h)
can help to reduce the searching space and speed up the
convergence of the classical optimization. Several heuristic
initialization strategies have been proposed for the QAOA
[10,45]. In this paper we modify the Trotterized quantum an-
nealing (TQA) initialization strategy [45] as discussed below
and in Algorithm 1 and the Fourier strategy [10] as discussed
in Appendix A to make them more efficient. These methods
are then used for both the QAOA and ab-QAOA in order to
compare them on an equal basis.

Combining the ideas of the TQA method in [45] and the
Fourier strategy in [10], we propose a modified TQA method.
In level p, the optimization starts from R points in parallel.
Among R optimized results, the lowest energy with the corre-
sponding optimal state is taken to be the outputs in this level
as shown in Fig. 1. In the R initial points, the components of
all the bias-field parameters {�hr} are randomly chosen from
{1,−1}. The first set (�γ 1, �β1) is initialized with the original
TQA method and the other sets differ from (�γ 1, �β1) by a ran-
dom amount according to the scheme shown in Algorithm 1.
This modified TQA is applied to the ab-QAOA and the QAOA
(where the bias fields and the learning rate � are initialized
to be 0). The source codes of this modified TQA method are
available in [56].

In Algorithm I, the superscript r runs from 1 to R and
labels the different points of the initialization and the sub-
script k means the kth component in the vector. The random

023147-3



YU, CAO, WANG, SHANNON, AND JOYNT PHYSICAL REVIEW RESEARCH 5, 023147 (2023)

Algorithm 1. Modified TQA method for ab-QAOA.

Input: level p, total number of samples R
Output: R initial points for optimization
for r = 1 to R do

Randomly generate bias-field parameters �hr with
each component to be 1 or −1.

if r is 1 then
Initialize the components of �γ r and �βr

according to a linear schedule,
γ r

k = k−1
p δt,

(6)
βr

k = (1 − k−1
p )δt .

else
Add some random numbers to the components

of �γ 1 and �β1,
γ r

k = γ 1
k + Ran(γ 1

k ),
(7)

βr
k = β1

k + Ran(β1
k ),

end
end
Return: R initial points {(�γ r, �βr, �hr )}.

number Ran(u) is a normally distributed number multiplied
by a rescaled factor ξ , Ran(u) = ξ Norm(0, u2), where 0 is
the mean value and u2 is the variance. In our calculations,
δt = ξ = 0.6 and R = 10.

III. SAT PROBLEMS

A satisfiability (SAT) problem is defined in terms
of n Boolean variables {x j}n

j=1 taking values from
{0 (False), 1 (True)} and m clauses {Ca}m

a=1 [29]. The negation
of variable x j is x j = 1 − x j . A literal y j is either a variable or
its negation x j , i.e., y j ∈ {x j, x j}. A clause Ca can be written
as some literals connected by logical OR (∨), for example,
C1 = y1 ∨ y2 ∨ y3. In the usual SAT problem a clause Ca is
satisfied if and only if at least one literal takes value 1. A SAT
problem can be represented by the combination of m clauses
connected by logical AND (∧),

F = C1 ∧ C2 ∧ · · · ∧ Cm, (8)

which is called conjunctive normal form (CNF). The conjunc-
tive normal form F is satisfied if and only if all clauses {Ca}m

a=1
are satisfied.

The SAT problem is a decision problem, whose goal is
to answer the question whether there exits an assignment
of {x j}n

j=1 such that the formula F is satisfied (SAT) or
not (UNSAT). The corresponding optimization version is the
Max-SAT problem which aims to find the assignment that
violates the smallest number of clauses. Generally, in the
Max-SAT problem, each clause can be assigned a weight and
the aim of such weighted Max-SAT problem is to find the
assignment that minimizes the sum of all the weights in the
unsatisfied clauses [34]. We consider a modified version of
3-SAT called the 1-3-SAT+ problem, in which each clause
contains exactly three positive literals, where the positive lit-
eral means a literature y j only represents the positive variable
x j , and a satisfied clause contains exactly one true literal.
This problem is NP complete in general while its optimization

version Max-1-3-SAT+ and weighted Max-1-3-SAT+ are NP
hard [33,34].

Penalty terms are introduced to convert the 1-3-SAT+

problem or Max-1-3-SAT+ problem to an Ising cost Hamil-
tonian [55,57]. Finding the solution for the original problem
is equivalent to finding the ground energy or the ground state
of an Ising-type Hamiltonian. Note that the QAOA and ab-
QAOA are able to solve both Max-1-3-SAT+ and 1-3-SAT+

problems. In the former problem, we need to find the exact
ground state, while in the latter problem, we just need to know
whether the ground energy is smaller than a threshold Eth

(SAT) or not (UNSAT) [27], where the threshold Eth is 0.5
in this paper. The penalty terms for 1-3-SAT+ problems are
[27,55,57]

HC =
m∑

a=1

(ya1 + ya2 + ya3 − 1)2, (9)

where ya j is the jth positive literal in the ath clause Ca. A
satisfied clause with only one true literal contributes 0 in the
penalty terms in Eq. (9) and an unsatisfied clause contributes
1 or 4. The values 1 and 4 have little effect in the process of
finding solutions since whether the problem is SAT or UNSAT
is only determined by whether HC = 0 is satisfied or not.

If we replace each ya j appearing in Eq. (9) with (1 −
Za j )/2, then the penalty terms in Eq. (9) can be rewritten as
an Ising Hamiltonian

HC = 1

4

m∑
a=1

(Za1 + Za2 + Za3 − 1)2, (10)

where the solution for the 1-3-SAT+ problem is encoded in
the ground energy of Eq. (10). This means the variables taking
value 0 (False) and 1 (True) are represented by the eigenstates
|0〉 (eigenvalue 1) and |1〉 (eigenvalue −1) of Za j , respectively.
The eigenvalues of Eq. (10) are always integers, so γk can be
restricted to the interval [0, 2π ] for both the QAOA and the
ab-QAOA. We will refer to HC as the cost Hamiltonian in the
following.

The ground state of Eq. (10) is not necessarily the exact
solution to the corresponding Max-1-3-SAT+ problem. When
α is small, it is an exact one in contrast to an approximate
one when α is large. As analyzed in Ref. [27] and shown
in Fig. 2, the approximation error [number of the violated
clauses in the ground state of Eq. (10) minus that in the real
solution] is within 1, so the Ising Hamiltonian in Eq. (10)
can be used as a good approximation to the Max-1-3-SAT+

problem Hamiltonian.
An accurate mapping to the Ising Hamiltonian can be

obtained by reducing the 3-SAT problem with m clauses
to a maximal-independent set (MIS) problem on the graph
with O(m) vertices [55]. However, when m is large, this
is obviously out of reach for NISQ devices. In fact,
the ground state of Eq. (10) encodes the solution for
a weighted Max-1-3-SAT+ problem with literal-dependent
weights {wa(ya1, ya2, ya3)}. When the literals ya1, ya2, ya3 in
the clause Ca are all true, wa = 4 and wa = 1 otherwise. We
emphasize that the Hamiltonian in Eq. (10) can be regarded
as either an approximation to the Max-1-3-SAT+ problem,
similar to Ref. [27], or an exact description of the weighted
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FIG. 2. The approximation error [number of violated clauses in
the ground state of Eq. (10) minus that in the real solution] as a
function of clause density α for different n. Each point is the average
over 100 different realizations.

Max-1-3-SAT+ problem. We do not distinguish them and call
Eq. (10) the Hamiltonians of the Max-1-3-SAT+ problems
henceforth.

Let there be NSAT SAT instances among N problem in-
stances. The SAT probability in the SAT problems is defined
as

PSAT = NSAT

N
. (11)

The key parameter in the 3-SAT problems we consider is the
clause density α [29–32]. This is defined as α = m/n. There is
a SAT-UNSAT phase transition from PSAT = 1 to PSAT = 0 in
the random 3-SAT problems, across a critical clause density
αc. The critical clause density αc of the 1-3-SAT+ problems
is the region αc ∈ (0.546, 0.644) [58]. The classical computa-
tional cost suffers from an easy-hard-easy pattern, where the
problems near αc are known to be the hardest [29,32]. It was
found in [27] that the QAOA also follows an easy-hard-easy
pattern in the same region.

For the Max-3-SAT problems, there is an easy-hard pattern
in both classical cost [32] and quantum cost (QAOA levels)
[28]. The Max-3-SAT problems in the hard region solved
by QAOA exhibit the reachability-deficit phenomenon [28],
which means that a large number of levels are required to
obtain the ground state. A detailed theoretical analysis of this
region does not yet exist, but barren plateaus appear in the
hard region [27].

IV. NUMERICAL SIMULATIONS

In this section we compare numerically the performance of
QAOA and ab-QAOA when applied to the 1-3-SAT+ prob-
lems and Max-1-3-SAT+ problems. The problem instances
are randomly generated 1-3-SAT+ or Max-1-3-SAT+ prob-
lems with 6∼14 variables [6∼14 qubits for Eq. (10)] and
different clause densities. The raw data of the problem def-
inition can be found in [56]. 6∼14 variables are not a large
number but the necessity of doing many realizations of the
disorder for each value of α and p limits the size of the system.

FIG. 3. Comparison of the success probability between the
QAOA (solid lines) and the ab-QAOA (dashed lines) for solving
10-variable 1-3-SAT+ problems as a function of the clause density
α, where the increment of α is 0.1 from α = 0.3 to 1 and is 0.2 from
α = 1 to 1.4. Each point is an average over 100 random instances
and the system size is n = 10. The vertical lines represent the critical
clause density αc = 0.6. The QAOA cannot solve the NP-complete
1-3-SAT+ problems even at level 24. The ab-QAOA, obtains virtu-
ally all the right answers at level 4.

The QAOA or ab-QAOA is initialized according to the modi-
fied TQA method mentioned in Sec. II. The level needed for a
fixed accuracy of QAOA and ab-QAOA is used as a criterion
for the quantum cost since the number of quantum gates in a
single level is the same for both QAOA and ab-QAOA [26].
For the 10-variable 1-3-SAT+ problem, we take αc ≈ 0.6.

A. Success probability

For the decision 1-3-SAT+ problems, the success proba-
bility is used for comparing the relative performances of the
QAOA and ab-QAOA. For a given problem instance solved by
the QAOA or ab-QAOA, if it is actually SAT and the QAOA
or ab-QAOA gives the answer SAT or if it is actually UNSAT
and the QAOA or ab-QAOA gives the answer UNSAT, this is
called a QAOA (or ab-QAOA) successful instance. We define
the success probability as

Psucc = Nsucc

N
, (12)

where Nsucc is the number of successful instances.
For the QAOA there is indeed an easy-hard-easy pattern

in the quantum cost, as seen in Fig. 3, where 10 variables
are considered. The problems near the SAT-UNSAT transition
point are the hardest to solve. In sharp contrast, the ab-QAOA
can solve these problems with near-perfect success probability
in only level 4. The easy-hard-easy pattern of the quantum
cost is less evident in ab-QAOA.

B. Residual energy and infidelity

For the Max-1-3-SAT+ problems, we use the residual
energy δE and the infidelity IF as functions of the clause
density α for the QAOA and the ab-QAOA for benchmarking

023147-5



YU, CAO, WANG, SHANNON, AND JOYNT PHYSICAL REVIEW RESEARCH 5, 023147 (2023)

FIG. 4. Comparison of the residual energy (a) and infidelity
(b) of QAOA (solid lines) to that of the ab-QAOA (dashed lines) for
the 10-variable Max-1-3-SAT+ problem. Results are given for levels
p = 4, 8, 16, 24 as a function of the clause density α. Each point
is an average over 100 random instances and n = 10. The modified
Trotterized quantum annealing method is applied to the QAOA and
ab-QAOA. The classical optimizer is Adam [59], which has been
used in conjunction with a real device [19]. The performance of the
ab-QAOA in level 4 is superior to that of the QAOA in level 24. The
reachability deficits are much less evident in level 8 for the ab-QAOA
than for the QAOA in level 24.

purposes. The residual energy is defined as

δE = 〈HC〉 − Eg, (13)

where 〈HC〉 is the expectation value of the cost Hamiltonian
output from the QAOA or the ab-QAOA and Eg is the ground
energy of HC. The infidelity is defined as

IF = 1 −
∑

l

∣∣〈ψf

∣∣ψ l
g

〉∣∣2
, (14)

where |ψf〉 is the output state of the QAOA (|ψ s
f 〉) or the ab-

QAOA(|ψab
f 〉) and |ψ l

g〉 is the product ground state of HC with
l labeling the degeneracy. The results of 10-variable problem
instances are shown in Fig. 4.

For both algorithms, increasing the level p reduces both
error measures. However, the QAOA can not solve the high
clause density problems effectively even at level 24, which is

of course far beyond the capabilities of current NISQ devices
[18]. As for the ab-QAOA, even a level-4 ab-QAOA is better
than the QAOA with level 24, which implies that the reach-
ability deficits [28] pose fewer problems for the ab-QAOA
than for the QAOA. In level 8, an accurate state can be found
by ab-QAOA with small residual energy and infidelity. For
different system sizes n, the residual energy and infidelity are
also presented in Appendix B. The maximal clause density of
the 10-variable problems considered in this work is 11, and the
numerical results beyond α = 3 are presented in Appendix B,
where the reachability deficits are still much less evident in
the ab-QAOA.

The main point here concerns the easy-hard transition. It is
remarkable how poorly the QAOA does at high α. At p = 4
and α = 3, the infidelity is approaching unity, its maximum
value. At p = 24, IF still exceeds 0.5. In contrast, the ab-
QAOA result at p = 4 is less than 0.2 and at p = 24 it is less
than 0.02.

C. Quantum cost

In Fig. 5, we plot the level p required to solve, exactly or
approximately, the Max-1-3-SAT+ problems and 1-3-SAT+

problems as functions of α. For the Max-1-3-SAT+ problem
instance, we calculate the infidelity from level 1 to level 8
with an increment of 1 and from level 8 to level 64 with an
increment of 8 for the QAOA and record the level at which
the inequality IF � 0.1 is first satisfied, so that an approximate
solution has been achieved. Since p = 64 is the highest level
we calculate, in those instances that IF is still larger than 0.1
in level 64, we record the final level as 64. For the 1-3-SAT+

problems, record the level where the QAOA is successful.
For the ab-QAOA, levels smaller than 8 are enough to solve

the problems above and an exact p can be easily obtained. For
the QAOA, when α is small (α = 0.3), 8 levels are enough to
give the solutions. However, when α is large, due to the ex-
istence of reachability deficits [28] for some Max-1-3-SAT+

problems, the needed p value increases rapidly and at α > 2.0
the value is so large (p > 64) that we were not able to deter-
mine it. For simplicity, we approximate it as 64.

In Fig. 5, it is clear that the quantum cost of the QAOA
exhibits an easy-hard pattern for the Max-1-3-SAT+ problems
and an easy-hard-easy pattern for the 1-3-SAT+ problems,
while these patterns are far less evident in the ab-QAOA,
where again the levels are taken from 1 to 8 with an increment
of 1 and from 8 to 24 with an increment of 8. As seen in
Fig. 5, the problem hardness increases with the system size,
thus more levels are needed to achieve a given accuracy,
which is also consistent with Fig. 12 in Appendix B, where
both the residual energy and infidelity increase with n. The
convergence at level 64 in Fig. 5(b) for different n implies
level 64 is not enough to solve the problems for the QAOA.

For the QAOA results of n = 6 and α = 3 in Fig. 5(b),
the levels needed for solving the problems here are smaller
compared with other α in n = 6, which means the problems
are easier. This is because the maximal clause density for
n = 6 is 10

3 , when α achieves its maximal value, the cost
Hamiltonian tends to the identity matrix, for which it is easy
to find the ground state. We also checked the gap between the
ground state and the first excited state and found that the gap is
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FIG. 5. Levels needed to solve 1-3-SAT+ problems (a) and
Max-1-3-SAT+ problems (b) for QAOA(solid lines) and ab-
QAOA(dashed lines), by the criterion IF � 0.1. If the problem is
not solved at level 64, then 64 is recorded. Hence the point in the
upper right corner of (b) means that the QAOA did not solve the case
α = 3.0. Different colors represent the different system sizes from
n = 6 to 12. Each point is the average over 100 problem instances
except for n = 12 where only 50 problem instances are calculated.
The clause densities here cover the hard-region problems described
in the main text.

amplified when α is close to the maximal value. This leads to
the improved performance of the QAOA [26]. This analysis
can also be applied to the results of n = 10 and α = 11 in
Fig. 12.

The level p is related to the quantum cost as follows. The
number of quantum gates needed to achieve a given accuracy
in QAOA or ab-QAOA is proportional to p2, as shown in detail
in Ref. [26]. This dependence follows from the observations
that at level p there are 2p + 1 gradients to be computed for
each component of the QAOA variational parameters, and 2p
operators to be applied for each gradient calculation. Thus,
we may write the number of gates as O(Ncon p2), where Ncon

is the number of iterations needed for a specified accuracy.
In the numerical simulations of n = 10, we found that Ncon

is around 30 in the QAOA and about 25 in the ab-QAOA.
For the hard-region 1-3-SAT+ problems, α = 0.6, 0.7, 0.8,
the levels needed in QAOA are 17,22,20 compared with 3

FIG. 6. Comparison of the residual energy (a) and the corre-
sponding infidelity (b) between the QAOA (solid lines) and the
ab-QAOA (dashed lines) as a function of the sample parameter R.
The optimization begins from the modified TQA method with level
p = 8. Both the residual energy and infidelity are relatively insen-
sitive to R in the QAOA. Each point is an average over 50 random
Max-1-3-SAT+ problem instances with clause density α = 3.

in the ab-QAOA. By using Ncon p2 as the measure of compu-
tation time, we conclude that a 50-fold speedup is achieved
for ab-QAOA over QAOA. As for the hard-region Max-
1-3-SAT+ problems, α = 0.9, 1.2, 2, 3, the QAOA levels are
about 41,46,55,63 while the ab-QAOA levels are 5,5,6,7,
so the ab-QAOA can achieve roughly a 90-fold speedup on
average.

D. R dependence

In the implementation of the ab-QAOA, the optimiza-
tion starts from R initial points in parallel, as defined in
Algorithm 1 and Fig. 1. Following the optimization the point
with the lowest energy is selected out. A larger R means more
points are covered in the energy landscape and this leads to
a smaller residual energy. It will ultimately be necessary to
understand exactly how large R should be to demonstrate the
advantages of the ab-QAOA. It is also important that R scales
favorably with the problem size n since there is a danger if the
quantity R grows fast with n. To investigate this issue, we have
computed how the residual energy δE and the corresponding
infidelity IF vary with different R. The details of δE and IF
as a function of R are shown in Fig. 6. If the relative changes
in the lowest residual energy or the lowest infidelity are less
than 10−2 when increasing R, the current R is recorded as the
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FIG. 7. Comparison of the convergence of the residual energy
(green curves) and the corresponding infidelity (blue curves) in the
QAOA (solid lines) and the ab-QAOA (dashed lines) as a function
of n, the number of variables. The ab-QAOA needs 20∼25 samples
while the QAOA needs 5∼10 samples. The problem instances are the
same as those in Fig. 6.

convergent value, which is shown in Fig. 7. One sees that
δE and IF in the QAOA converge quickly starting from
R = 5.

It is observed that even with R = 5, the ab-QAOA still
outperforms the QAOA in Fig. 6. It is observed in Fig. 7 for
all the system sizes considered here, the values of R from
which the convergence starts do not change significantly with
n. These two observations imply that a very accurate guess
of the ground state is not necessary when encoding the bias
fields at the initial stage of the optimization. Based on this, the
convergent values of R should not change dramatically with
the system size in other cases.

V. COMPARATIVE ANALYSIS OF QAOA AND ab-QAOA

A. Introduction

The QAOA is a fairly general algorithm in that it derives
from the QAA [9,10]. The motivation and performance guar-
antees for the latter come from the adiabatic theorem, which
applies to all final states. Hence, the QAOA can overall be
expected to apply to any problem Hamiltonian, with the usual
caveats about small gaps [10]. This raises the possibility that if
the problem Hamiltonian is known to have a special structure,
one could modify the QAOA to take advantage. This is the
case for the Ising-model problem Hamiltonians. The ground
states are very special: the computational basis states. The
ab-QAOA is an algorithm that is targeted towards just these
states, and this explains its superiority to the QAOA for this
class of problems. As already noted, the limitation to Ising
model Hamiltonians is surprisingly unrestrictive, at least in
the context of classical combinatorial optimization.

To understand the targeted character of the ab-QAOA,
consider the typical initial state |ψ s

0〉 = |−〉⊗n and the general
Ising-model ground state |ψg〉 = |s1〉 ⊗ |s2〉 ⊗ |sn〉. Here s j =
0 or 1 and {s j}n

j=1 encodes the solution to the optimization

problem. The ab-QAOA wave function is reinitialized to

|ψab
0 (�h)〉 = R̃y( �d )|−〉⊗n,

=
⊗
j=1

[(
cos d j

2 + sin d j

2

)|0〉 j−
(

cos d j

2 − sin d j

2

)|1〉 j√
2

]
.

When a quite accurate approximation of |s j〉 with h j is ob-
tained (this means h j > 0 or equivalently d j > 0 if s j = 0 and
h j < 0 or d j < 0 if s j = 1), then the overlap between |s j〉 and
the ab-QAOA initialized state on qubit j is

√
(1 + | sin d j |)/2,

which means the probability amplitude of the solution state
is amplified in the reinitialization procedure. This is in stark
contrast to the QAOA, where the initial state is fixed. This
procedure is only practical because of the absence of entan-
glement in the solution state. The evolution operator itself
evolves, not only the wave function and the operator schedule.

The question is then whether this leads only to a small
incremental improvement in computational power or whether
there is a deeper advantage for the ab-QAOA. One may
conjecture from the above discussion that the reinitialization
will have the consequence that the ab-QAOA wave function
remains in a part of the Hilbert space with relatively low
entanglement compared to the QAOA. For Ising problems this
can be an advantage since both the initial and final states are
product states.

Furthermore, we know that if the wave function explores
all of Hilbert space in a uniform fashion, then the barren
plateau phenomenon will reduce the effectiveness of the algo-
rithm [37]. From the results on the SAT problems in Sec. IV
we know that the gap between the QAOA and the ab-QAOA is
greatest when the barren plateaus are most evident. Similarly,
there is numerical evidence that the scaling behavior with
system size of the accuracy is better in the ab-QAOA than
in the QAOA [26], it will be interesting to investigate the
barren plateau phenomenon with ab-QAOA. We leave this for
the future work. The remainder of this section is devoted to
investigating the conjecture that there is reduced entanglement
in the ab-QAOA and this is responsible for its power. We
compute the entanglement entropy, the participation ratio, and
the annealing entropy.

B. Entanglement entropy and participation ratio

We first establish the fact that the entanglement entropy
is much lower in the ab-QAOA evolution than in that of the
QAOA. Since entanglement is independent of the basis chosen
and we contend that the association with the computational
basis is paramount, we also compute the participation ratio to
show that the reduced entanglement comes from being close
to product states in this preferred basis. The latter is a form of
many-body localization [8].

We need to see how these quantities evolve as the system
moves from the initial state to the approximate ground state.
The natural “time” parameter in the evolution is the number of
times the unitary operators have been applied. More precisely,
when we prepare the final state |ψf〉, either |ψ s

f 〉 in Eq. (1) or
|ψab

f 〉 in Eq. (3), the system undergoes a p-step discrete time
evolution driven by the unitary operators

Uk = e−iβk HM e−iγk HC , (15)

023147-8



SOLUTION OF SAT PROBLEMS WITH THE … PHYSICAL REVIEW RESEARCH 5, 023147 (2023)

FIG. 8. The dynamical evolution of the entanglement entropy se(k) (a), (b) and the participation ratio (c), (d) in the 10-variable
Max-1-3-SAT+ problem for the QAOA (solid lines) and the ab-QAOA (dashed lines) at levels p = 8 (a), (c) and p = 24 (b), (d). The parameter
k is the “’time” elapsed in the quantum evolution, as defined through Eq. (16). The parameter η is the dynamical parameter in the optimization,
as defined in Eq. (17). The problem instances are the same as those with α = 3 in Fig. 4. The ab-QAOA is less entangled and more localized
because of the bias fields in the mixing Hamiltonian.

which are applied sequentially. Here Uk can represent both
QAOA U s

k and ab-QAOA U ab
k by setting HM = H s

M or HM =
H ab

M . When the superscripts are dropped, the corresponding
operators and states represent both QAOA and ab-QAOA. The
intermediate states |ψk〉 after k steps satisfy

|ψk〉 = Uk|ψk−1〉, (16)

where |ψ0〉 is the initial state of the QAOA or ab-QAOA. We
will use k to observe the course of the optimization process.

We can gain further information about the evolution by
investigating how quickly the optimization converges. For this
purpose, we define a parameter η as follows. Let Ncon be the
number of iterations needed for the convergence for a given
initial (�γ , �β, �h). Quantities such as the entanglement entropy
and the participation ratio at the N th step of the iteration can
then be indexed using a variable η,

η = N
Ncon

, 0 � η � 1. (17)

To compute the entanglement entropy, the total system
ρk = |ψk〉〈ψk| is divided into two parts, A and A, and the

entanglement entropy se(ρk,A) associated with this bipartition
is

se(ρk,A) = −Tr(ρk,A log2 ρk,A), (18)

where ρk,A is the reduced density matrix for ρk in part A.
We consider all the possible bipartitions, take an average over
them, and record the average entanglement entropy as se(k).
For the 10-qubit system in this paper, the average entropy
se(k) satisfies

0 � se(k) � 3.7769, (19)

where the lower bound (upper bound) is reached when sub-
system A is a product state (fully mixed state) in all possible
bipartitions.

In Figs. 8(a) and 8(b), the entanglement entropy of the
intermediate states se(k) is plotted. The dynamical behavior
of se(k) in the optimization with η ∈ {0.2, 0.4, 0.6, 0.8, 1} is
also shown. The results in Figs. 8(a) and 8(b) are for the
problem instances with α = 3, the same as those in Figs. 4.
Numerical results for α = 0.8 can be found in Appendix C.
The results clearly show that the bias fields �h cause the states
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in the evolution of the ab-QAOA to be much less entangled
than those of the QAOA. This enhances the speedup in finding
the ground state since the ground state can be represented
by localized product states. For the same reason, the opti-
mization process reduces the entanglement further. As for the
QAOA, it is interesting that there seems to be a critical k ≈ 5
when p = 8 and k ≈ 10 when p = 24 only beyond which can
the optimization reduce the entanglement. The critical k is
close to that in Sec. V C. In the big-p limit, as k increases,
the entanglement entropy se(k) must eventually decrease as
the optimization brings the QAOA output state closer to the
product ground state.

Entanglement itself is basis independent, so we need to
probe a little deeper to find the reason for the difference in
entanglement between the QAOA and ab-QAOA. For this we
compute the participation ratio defined as [8]

PR(k) =
[ ∑

φ

|〈φ|ψk〉|4
]−1

, (20)

where φ runs over the computational basis. This is a (nec-
essarily basis-dependent) measure of many-body localization.
If PR(k) = 1, |ψk〉 is completely localized in this basis, i.e.,
it is a computational basis state. It is maximally delocalized
when PR(k) = 210  1 in our 10-qubit system. As shown in
Figs. 8(c) and 8(d), combined with Figs. 8(a) and 8(b), the
ab-QAOA is more localized.

We conclude from these results that the states involved in
the ab-QAOA evolution cleave closely to the computational
basis states and are thus more localized. In this part of phase
space the energy optimization guides the state quickly to the
optimal one. In contrast, the QAOA evolution appears to wan-
der into a more delocalized region and thus converges far more
slowly.

C. Annealing entropy

We denote the k-dependent orthonormal basis in which the
unitary time-evolution operator Uk is diagonal by {|θk〉}:

Uk|θk〉 = e−iθk |θk〉. (21)

In an ideal adiabatic process a system that starts in the state
|θk〉 also finishes there. Following Ref. [60], we define the
annealing entropy sa(k) to describe the deviation from perfect
adiabaticity:

sa(k) = −
∑
θk

Fk (θk ) log2 Fk (θk ),

Fk (θk ) = |〈θk|ψk )〉|2,
(22)

where Fk (θk ) is non-negative. For ideal adiabaticity Fk (θk )
has only two values, 0 and 1, so the annealing entropy is 0.
The less the annealing entropy, the more adiabatic the discrete
evolution.

We calculate the intermediate sa(k) for the hard-region
Max-1-3-SAT+ problems with α = 3 and show the results in
Fig. 9 for p = 8 (a) and p = 24 (b). The dynamical parameter
η runs over the set {0.2, 0.4, 0.6, 0.8, 1}. It is evident that the
evolution of the ab-QAOA is much closer to the adiabatic
limit than the evolution of the QAOA. The modification of the

FIG. 9. The dynamical evolution of the annealing entropy sa (k)
of the QAOA (solid lines) and the ab-QAOA (dashed lines) at level
p = 8 (a) and level p = 24 (b) for the 10-variable Max-1-3-SAT+

problem. The problem instances are the same as those in Fig. 4 that
have α = 3. The much smaller annealing entropy of the ab-QAOA
shows that it is more adiabatic than the QAOA.

starting state in the ab-QAOA promotes this reduction. For
the QAOA, there is a critical intermediate level, only beyond
which can the optimization reduce the adiabaticity. The results
of calculations for the hard-region 1-3-SAT+ problems with
α = 0.8 are given in Fig. 14 in Appendix C and show similar
patterns.

VI. OPTIMIZATION-FREE ab-QAOA

As explained above and in Ref. [26], in the ab-QAOA the
true ground state can actually be generated by H ab

M itself if
the variational parameters �γ , �β and the bias-field parameters
�h are correctly chosen. This suggests the idea of only using �h
to construct a product “bias state” using the fact that hj = +1
leads to the state |0〉 j while h j = −1 leads to the state |1〉 j .
This leads to a kind of “greedy” version of the ab-QAOA
that is free of classical optimization. This “optimization-free
QAOA” is shown in detail in Algorithm 2. In our calculation,
R = 10 and δt = 0.6 with δt defined in Algorithm 2. The
source codes are available in [56].
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Algorithm 2. Optimization-free ab-QAOA.

Input: target level p, R randomly generated bias
fields {�h1r} with components to be 1 or −1.

Output: final energy Ep in level p and the
corresponding state.

for p′ = 1 to p do
Initialize �γ and �β according to

γk = k−1
p′ δt,

βk = (1 − k−1
p′ )δt .

for r = 1 to R do
1. Prepare the state |ψ ab

f 〉 with (�γ , �β, �hp′r ),
measure 〈Zj〉 for each qubit.

2. Update �hp′r according to
hp′r

j = hp′r
j − �(hp′r

j − 〈Zj〉).

3. Set �h(p′+1)r = �hp′r .
end

end
Construct the “bias state” of {�hpr}, calculate the
expectation value {Er

p} of HC.
Return: The lowest energy Ep in {Er

p} and the
corresponding bias state.

There are three major differences from the ab-QAOA:
(1) For the optimization-free ab-QAOA, the output state is

constructed from the bias fields �h in contrast to |ψab
f 〉 in the

ab-QAOA.
(2) At a fixed level, �γ , �β, and �h are updated until con-

vergence in the ab-QAOA. This update is not necessary for
the optimization-free ab-QAOA. What is done in level p′ is
to update the bias fields only once based on those from level
p′ − 1.

(3) For the ab-QAOA, we can directly go to level p, while
for the optimization-free ab-QAOA, we need to go through all
the levels smaller than p. These extra levels, labeled by p′ with
1 � p′ � p, are needed to train the bias fields �h.

This algorithm is clearly very fast in terms of both classical
and quantum resources. The optimization-free ab-QAOA is
also different from an iterative QAA procedure [6] since the
Trotter error can not be ignored in the small-level case and the
solution is obtained from the bias fields instead of the output
state.

As shown in Fig. 10, the optimization-free ab-QAOA can
also solve the 10-variable hard-region 1-3-SAT+ or Max-
1-3-SAT+ problems effectively and the easy-hard-easy or
easy-hard patterns, though present, are not prominent. In level
16, perfect solutions can be obtained. However, the result at
level 4 is not as good as the QAOA because only 4 updates are
executed. More levels are needed for training �h for an accurate
state. It seems that although the numerical results converge at
level 16, there is a small fraction of the problems that can
not be solved. Increasing R or adjusting δt can reduce this
fraction.

Although for the ab-QAOA, the residual energy δE and
infidelity IF are about 0 in level 8, achieving similar residual
energy requires 16 levels for the optimization-free ab-QAOA.
However, the latter is more efficient in both numerical
simulation and realistic experiments since there is no opti-

FIG. 10. The success probability (a) for 10-variable 1-3-SAT+,
the residual energy (b), and the infidelity (c) for 10-variable Max-
1-3-SAT+ produced by the optimization-free ab-QAOA at levels
4,8,16,24. The same problem instances as in Figs. 3 and 4 are cal-
culated. The more accurate states with smaller residual energy or
infidelity can be obtained with more levels. The numerical results
converge at level 16. Increasing R or adjusting δt can improve the
performance further.

mization of �γ and �β. Similar to the discussion in Sec. IV C,
O(p2/2) quantum gates are required in implementing a p-level
optimization-free ab-QAOA, as a result, it takes roughly 1

2
and 1

10 quantum gates of the original ab-QAOA to solve the
hard-region 1-3-SAT+ or Max-1-3-SAT+ problems.
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VII. CONCLUSION

The age of NISQ devices brings with it many opportunities,
but also a challenge, of finding a way to exploit quantum
advantage for real-world problems in a calculation running
for a short time, on a relatively small number of qubits. One
important class of problems are combinatorial optimizations
over classical variables, of which SAT problem is a canon-
ical example. Here, the quantum approximate optimization
algorithm (QAOA) shows great promise [9,10]. Nonetheless,
when the QAOA is applied to the 3-SAT or Max-3-SAT prob-
lem, the quantum cost exhibits an easy-hard-easy or easy-hard
pattern, respectively, as the clause density is changed, where
the hard-region overhead renders calculations on NISQ de-
vices impractical [27,28].

In this paper, we have explored the possibility of designing
a QAOA-like algorithm which is capable of solving the hard
combinatorial optimization problems on NISQ devices. We
did so in the context of the SAT problem, comparing the
performance of the QAOA with a recently introduced variant,
the adaptive-bias quantum approximate optimization algo-
rithm (ab-QAOA) [26]. As specific examples we considered
1-3-SAT+ or Max-1-3-SAT+ problems, for up to 14 variables.
We find that the easy-hard-easy or the easy-hard pattern in
the ab-QAOA is nearly absent and the ab-QAOA offers a
considerable reduction in the resources required to solve these
problems in the hard region. In particular, the ab-QAOA can
solve the 10-variable 1-3-SAT+ and Max-1-3-SAT+ problems
at much lower circuit depth, finding solutions with nearly
perfect fidelity in levels 4 and 8, respectively, while for the
QAOA, level 24 or sometimes even level 64 is far from
enough.

By estimating the levels that QAOA and ab-QAOA need
to achieve the same accuracy for the 10-variable 1-3-SAT+

or Max-1-3-SAT+ problems, we find that a 50-fold or, re-
spectively, a 90-fold speedup is realized in the ab-QAOA,
implying that the ab-QAOA greatly improves performance for
the hard-region 3-SAT problems and hard-region Max-3-SAT
problems. For the hard-region 14-variable problems, a level-8
ab-QAOA can obtain the solution with fidelity about 0.85 in
contrast to 0.1 in the level-8 QAOA. Both the reduction in
the circuit depth required to achieve a given accuracy, and
the nearly absent dramatic change in the resources required
as a function of clause density, suggest that ab-QAOA is more
likely than QAOA to demonstrate the quantum advantages for
this class of problems, on coming quantum devices.

By itself, this work does not give any direct evidence
for a quantum speedup over classical algorithms. Indeed, the
systems simulated in this paper are sufficiently small that
classical algorithms can very quickly solve the problems even
in the hard regions. However, this work does shed some light
on the type of problem where such a speedup might be found
in the future. We have found a set of problems with a hardness
parameter (clause density) which seems to be difficult for both
a nonadaptive quantum algorithm and all classical algorithms,
for a certain range of the parameter. In contrast, an adaptive
quantum algorithm does not have the same dependence on the
parameter.

The efficiency of the ab-QAOA is connected to the special
nature of the solutions of Ising-model optimization problems.

These solution states can be encoded into the mixing Hamilto-
nian by the use of bias fields. This leads to lower entanglement
and more localization during the evolution, greatly enhancing
the adiabaticity. And this speaks to a problem at the heart of
quantum computation in the NISQ era: it is entanglement that
makes the quantum computation different from its classical
counterpart, but too much entanglement in an algorithm in-
duces the barren plateau phenomenon [41–43].

From this point of view, the ab-QAOA appears to be in
the “Goldilocks zone” for entanglement, providing a concrete
algorithm which restricts entanglement in the course of the
optimization, without losing computational power. The bene-
fit of such an approach has already been discussed [42,43,54],
and the results in this paper strongly suggest that localizing
the state on the solution set, as directly measured by the
participation ratio, is a good way to achieve a compromise
between too much and too little entanglement. The ab-QAOA
shows that for a certain very important class of problems, this
can be achieved without increasing the computational cost.

A much simpler optimization-free ab-QAOA is also pro-
posed. Training the bias-field parameters within the ab-QAOA
in the increasing levels without any need of optimizing �γ and
�β can find the solutions of the 10-variable 1-3-SAT+ or Max-
1-3-SAT+ problems in about level 16. It appears to be more
powerful than the QAOA for these hard-problem instances
with only 1

2 or 1
10 quantum gates of the original ab-QAOA.

Algorithm 3. Modified Fourier strategy for level-p ab-QAOA.

Input: level list {p1, p2, . . . , pT } in increasing order
with pT = p, sample number R

Output: optimized energy list {Ept } from t = 1 to T .
for t = 1 to T do

Randomly generate R bias-field parameters {�htr}
with each component to be 1 or −1.

if t is 1 then
1. Randomly generate R points {(�γ 1r, �β1r )}.
2. Optimize over these R points in parallel and

find the optimal point (�γ 1B, �β1B, �h1B) with
the lowest energy Ep1 .

else
1. The R initial {(�γ tr, �βtr )} are generated

according to the recipe below,
if r is 1 then

The first pt−1components of �γ tr or �βtr are
exactly �γ (t−1)B or �β (t−1)B. The remaining
components are 0.

else
The first pt−1components of �γ tr or �βtr are

�γ (t−1)B or �β (t−1)B added with random
vectors Ran(�γ (t−1)B) or Ran(�β (t−1)B). The
remaining components are 0.

end
2. Optimize over these R points in parallel and

find the optimal point (�γ tB, �βtB, �htB) with the
lowest energy Ept .

end
end
Return: The optimized energy list {Ept }.
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FIG. 11. Comparison of the success probability (a), residual en-
ergy (b), or the infidelity (c) of QAOA (solid lines) to that of the
ab-QAOA (dashed lines) for level p = 4, 8, 16, 24. The same prob-
lem instances as Figs. 3 and 4 are calculated. Both the QAOA and
ab-QAOA are initialized through the modified Fourier strategy.

The ab-QAOA or the optimization-free ab-QAOA can bring a
quantum advantage closer in real-world applications.

An important open issue is the initialization of the bias-
field parameters �h, which we randomly generate in this work.
This was clearly sufficient to solve the instances we consid-
ered, which had a problem size n = 10. It is necessary to
understand how the accuracy of the initial guess of the �h scales
with n to obtain the same infidelity, but this is difficult without

FIG. 12. Comparison of the residual energy (a) and infidelity
(b) of QAOA (solid lines) to that of the ab-QAOA (dashed lines)
for the Max-1-3-SAT+ problems. Results are given for levels p = 8
as a function of the clause density α and n. Each point is an average
over 100 random instances.

very large computational resources. A nonrandom approach
would be to run a classical heuristic to get the initial value of �h.
This is similar to warm-start approaches to quantum optimiza-
tion [50,61]. For the purposes of this paper, this method would
obscure the pure effect of adding bias fields to the QAOA, but
could be a subject of future investigation.

The source code and the raw data of the problem definition
can be found in [56].

ACKNOWLEDGMENTS

Y.Y. and X.-B.W. acknowledge National Natural Science
Foundation of China Grants No. 11974204 and No. 12174215.
N.S. acknowledges the support of the Theory of Quantum
Matter Unit, Okinawa Institute of Science and Technology
Graduate University (OIST).

APPENDIX A: MODIFIED FOURIER STRATEGY

In Algorithm 3 and Fig. 11, we give details of our modi-
fication of the Fourier strategy of Ref. [10] as applied to the
Max-1-3-SAT+ problems. It was invented for the QAOA and
has been adapted for the ab-QAOA in Ref. [26]. Since the
QAOA is the h j → 0 and � → 0 limitation of the ab-QAOA,
it is sufficient to take the ab-QAOA as an example.

In the original Fourier strategy, for the state |ψab
f (�γ , �β, �h)〉

in fixed level p′, the Fourier transforms of �γ and �β are
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FIG. 13. Comparison of the residual energy (a) and infidelity
(b) of QAOA (solid lines) to that of the ab-QAOA (dashed lines)
for the 10-variable Max-1-3-SAT+ problems. Results are given for
levels p = 8, 16, 24 as a function of the clause density α, where the
increment of α is 1 from α = 4 to 11. Each point is an average over
100 random instances. The modified Trotterized quantum annealing
method is applied to the QAOA and ab-QAOA with δt = 0.2. The
ab-QAOA can solve the problems effectively at level 8.

optimized instead of �γ and �β themselves. R initial points are
optimized in parallel, and the optimized points with the best
energy are chosen as the output points and energies in this
level. How to choose the R initial points in level p′ + 1 de-
pends on the output point in level p′ starting from a randomly
initialized point in level 1.

As shown in [10,26], the Fourier strategy for MaxCut
avoids some points that are not favorable, perhaps correspond-
ing to local minima. In the SAT problems we found that this
strategy is not efficient at higher levels and in fact the straight-
forward optimization of �γ and �β was generally superior. So
we propose a modified Fourier strategy in Algorithm 3 to
circumvent these two issues. The main idea is that the R initial
points in level p′ can be constructed from the output point in
any level smaller than p′ instead of only p′ − 1. The codes are
available in [56].

In Algorithm 3, the superscript t means the t th level in the
level list, the superscript r means the rth sample in R samples,
and the superscript B means the best point with the lowest

FIG. 14. The dynamical evolution of the annealing entropy sa (k)
of the QAOA (solid lines) and the ab-QAOA (dashed lines) with level
p = 8 (a) and p = 24 (b). The problem instances are those with α =
0.8 in Fig. 4. The ab-QAOA is more adiabatic because of the much
smaller annealing entropy.

energy among R energies. The random vector Ran(�u), is the
same length as �u, and its kth component is a normally dis-
tributed number with mean 0 and variance u2

k multiplied by a
factor ξ . In our calculations, the level list is {1, 2, 4, 8, 16, 24}
and ξ = 0.6. Note that this modified strategy also applies to
the QAOA except that hj = 0 and � = 0.

In Fig. 11, the same problem instances as those in Sec. IV A
are calculated with only the initialization method different.
There is little difference compared with Figs. 3 and 4 except
that the modified Fourier strategy is better for the high-
level QAOA. The reachability deficits of the QAOA are only
slightly mitigated with the new initialization method but more
substantially mitigated in the ab-QAOA at level 8.

APPENDIX B: REACHABILITY DEFICITS
BEYOND α = 3 AND n = 10

In this Appendix, the results for the residual energy and
infidelity for n � 14 with selected α and for n = 10 with α �
4 are given in Figs. 12 and 13.

As shown in Fig. 12, as the problem hardness increasing
with increasing n, the residual energy and infidelity also in-
crease. This implies that more levels are needed to achieve
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FIG. 15. The dynamical evolution of the intermediate entanglement entropy se(k) (a), (b) and the intermediate inverse participation ratio
(c), (d) of the QAOA (solid lines) and the ab-QAOA (dashed lines) with level p = 8 (a), (c) and p = 24 (b), (d). The problem instances are
those with α = 0.8 in Fig. 4. The parameter η is the dynamical parameter in the optimization. The ab-QAOA is less entangled and more
localized because of the localized bias fields in the mixing Hamiltonian.

a given accuracy, which is consistent with Fig. 5. Note that
when α = 3 and n = 14, the infidelity of the QAOA is about
0.1 in contrast to 0.85 in the ab-QAOA, which shows the
superiority in the ab-QAOA.

For the 10-variable 1-3-SAT+ and Max-1-3-SAT+ prob-
lems, the maximal clause density is 12. The maximal clause
density in the calculation is α = 11. The reachability deficits
will be more evident with α approaching 11 where a small
number of the levels is not sufficient. So as shown in Fig. 13,
only the results in p = 8, 16, 24 are presented. The reacha-
bility deficits are still evident for the QAOA, while they are
less evident in the ab-QAOA even at level 8. As analyzed in
Sec. IV C, the cost Hamiltonian tends to the identity matrix

and the gap between the ground state and the first excited state
is amplified when α approaches 11, leading to the improved
performances of the QAOA.

APPENDIX C: ENTANGLEMENT ENTROPY,
PARTICIPATION RATIO, AND ANNEALING

ENTROPY FOR α = 0.8

In this Appendix, we give the additional numerical re-
sults for the hard-region 1-3-SAT+ problems with α =
0.8. The annealing entropy is shown in Fig. 14. The en-
tanglement entropy and participation ratio are shown in
Fig. 15.
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