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Quantum walks underlie an important class of quantum computing algorithms, and represent promising ap-
proaches in various simulations and practical applications. Here we design stroboscopically monitored quantum
walks and their subsequent graphs that can naturally boost target searches. We show how to construct walks
with the property that all the eigenvalues of the non-Hermitian survival operator, describing the mixed effects of
unitary dynamics and the back-action of measurement, coalesce to zero, corresponding to an exceptional point
whose degree is the size of the system. Generally, the resulting search is guaranteed to succeed in a bounded time
for any initial condition, which is faster than classical random walks or quantum walks on typical graphs. We
then show how this efficient quantum search is related to a quantized topological winding number and further
discuss the connection of the problem to an effective massless Dirac particle.
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I. INTRODUCTION

Quantum walks [1,2], the quantum analog of the well-
known classical random walks, have attracted increasing
attention due to their importance both in fundamental physics
and applications for quantum information processing [3].
Taking advantage of coherent superposition and interfer-
ence, the quantum walk in many respects is superior to its
classical counterpart and finds applications in quantum algo-
rithms [4,5], universal quantum computation [6,7], quantum
simulation [2,8], and biochemical processes [9,10]. One main
challenge of the quantum walk is to maximize the detection
probability on a predetermined target state |ψd〉 given some
initial state |ψ0〉 [11,12]. With unitary evolution, nearly per-
fect quantum search with detection probability approaching
unity was found in several graphs for some special initial
states at some particular time t , including a glued binary
tree [12], a hypercube, and high-dimensional lattices [11],
while typical systems fall far from this limit. In a broad
sense, the transfer of a known initial state to another state is
called quantum state transfer [13–15]. For instance, Kostak
et al. designed permutation operations that propagate the
system from one specific node of the graph to another at a
predetermined time t [16], obtaining perfect state transfer.
However, if one does not know what the initial condition
is, as is typical in many search problems, we cannot fully
rely on the quantum state transfer or one-shot measurement
quantum walks. Therefore, we herein design special graphs
and measurement protocols, with the aim to achieve what we
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call a guaranteed search. Namely, the quantum walker should
be successfully detected in a bounded time for any initial
condition. We describe how to construct such quantum graphs
and corresponding measurement strategies. We further inves-
tigate whether these measurements, that destroy the unitary
evolution, are either harmful or useful for the search, and in
what sense.

Our work is motivated by the state-of-the-art technology
advances in experiments [17] that allow clever engineering of
Hamiltonians with superconducting circuits [18], waveguide
arrays [19–24], trapped ions [25,26], and arrays of neu-
tral atoms generated either in an optical cavity [27] or via
optical tweezers [28]. For instance, using photons carrying
information between atomic spins, programmable nonlocal
interactions in an array of atomic ensembles are realized in
an optical cavity [27]. These advances allow us to consider
the option of constructing a device with nontrivial matrix
elements of the Hamiltonian and thus design special types of
graphs to speed up the quantum search.

We find that the designed quantum graphs (see Fig. 1), to-
gether with the stroboscopic search protocol, have remarkable
search capabilities, either with or without control of the initial
state. The ability to search an unknown initial state, i.e., a
black-box initial state, is a significant step forward, in contrast
to previous works that considered quantum walks that start
from a uniform or specific localized initial state. Physically,
one of the features of efficient quantum search we find here is
that it is intimately related to the study of exceptional points.
The latter are degenerate eigenvalues of the non-Hermitian
operators that are studied, for example, in optics and laser
physics [29–32], and topological phases [33–36], and are fun-
damentally related to parity-time symmetry breaking [37–39].
Here, we design graphs and a search protocol with an ex-
ceptional point of unusually high degeneracy, namely, the
size of the entire Hilbert space, which can be made as large
as we wish. We highlight the idea that exceptional search
is found when all the eigenvalues of the survival operator,
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FIG. 1. Designed quantum graphs. Schematic presentation of the
crawl graph (a) and funnel model (b). Here N = 20. The thickness
of the connecting line represents the strength of the matrix element
connecting two nodes [(a) and (b)]. The colors represent the phases
of the hopping rates (a). In (b) we utilize colors to represent the
magnitude of the onsite energies, whose matrix elements are real (see
details in Appendix C). The search on both graphs is guaranteed to
succeed within a bounded time, for any initial condition.

defined below, coalesce to zero, creating a large degeneracy.
We then explore the topology of the model at the exceptional
point and show that efficient quantum search is related to the
quantization of certain topological winding numbers. Towards
the end of the paper, we show how the search problem and the
corresponding degeneracy of the exceptional points and the
topological property are related to an effective massless Dirac
particle, though all along we use Schrödinger dynamics. We
also show how our search strategies are related to quantum
state transfer.

II. STROBOSCOPIC SEARCH PROTOCOL
AND Nth-ORDER EXCEPTIONAL POINT

To perform efficient quantum walks, we use the strategy
of stroboscopic measurements, which as we show later can
be made into an efficient tool. In the stroboscopic protocol,
the quantum walker starts from an unknown initial state |ψ0〉
and evolves unitarily according to the graph Hamiltonian H .
We projectively measure the system at times τ, 2τ, . . . , at
each measurement asking if the system is found at its target,
namely, at |ψd〉. The search target can be a localized node
on the graph; however, in general this is not a requirement.
This yields a string of n − 1 successive “No’s” followed by a
“Yes” from the nth measurement. Once we record a Yes, the
system is at the target state |ψd〉 and, in that sense, we have a
successful quantum search. The time nτ is the search time of
the target state |ψd〉, which is clearly a random variable whose
statistical properties ultimately depend on the initial state of
the system |ψ0〉, the unitary evolution between measurements,
and the choice of τ .

Let Fn be the probability of detecting the system in state
|ψd〉 for the first time at nτ . Then the total search proba-
bility of finding the quantum walker on the target state is
Pdet = ∑∞

n=1 Fn. If Pdet = 1 the mean search time is 〈t〉 =
τ

∑∞
n=1 nFn. The search probability Fn is given in terms

of the amplitudes φn of first detection, namely, Fn = |φn|2
with [40–45]

φn = 〈ψd|U (τ )Sn−1(τ )|ψin〉, (1)

where the survival operator is S (τ ) = (1 − |ψd〉〈ψd|)U (τ ),
with U (τ ) = exp(−iHτ ) and h̄ = 1. Here the back-action of
the first n − 1 repeated measurements is to repeatedly project
out the amplitude of the target state |ψd〉. In Eq. (1) we have
used the basic postulates of quantum theory with the projec-
tion 1 − |ψd〉〈ψd|.

As usual with these types of problems, the eigenvalues of
the non-Hermitian operator S (τ ) are essential for the charac-
terization of the process. The eigenvalues of S (τ ), denoted ξ ,
are all on or inside the unit circle |ξ | � 1, and the eigenvalues
with |ξ | = 1 correspond to dark states [44,46,47]. Our goal is
to find U (τ ) and the corresponding H so that all the eigenval-
ues of S (τ ) are equal to zero. Intuitively, if all the eigenvalues
are very small, the decay of Fn is expected to be fast and the
quantum search time will be minimized. It is also clear that if
we find such H , with all the eigenvalues ξ coalescing to the
value ξ = 0, then we have engineered a method that yields a
survival operator with a N th-order exceptional point, N being
the size of the system.

The eigenvalues ξ are given implicitly by

det|ξ − S (τ )| = ξ det|ξ − U (τ )|〈ψd| 1

ξ − U (τ )
|ψd〉 = 0,

(2)
where we have used the matrix determinant lemma (see
Appendix A). Clearly, the system always has at least one
solution ξ = 0. Let H |Ek〉 = Ek|Ek〉 where k = 0, . . . , N − 1
and as usual we may expand |ψd〉 = ∑N−1

k=0 〈Ek|ψd〉|Ek〉, and
then

〈ψd| 1

ξ − U (τ )
|ψd〉 =

N−1∑
k=0

pk

ξ − exp(−iEkτ )
(3)

with det|ξ − U (τ )| = ∏N−1
k=0 [ξ − exp(−iEkτ )]. Here pk =

|〈Ek|ψd〉|2 is the square of the overlap between the energy
state |Ek〉 and the detected state. Our first requirement is
that the system is such that pk �= 0 for all the energy states
|Ek〉, and that there is no degeneracy, i.e., exp(−iEkτ ) �=
exp(−iEmτ ) for any choice of m �= k. Physically this demand
means that we exclude dark states so that |ξ | < 1 and hence
the eigenvalues satisfy det|ξ − U (τ )| �= 0. Using Eqs. (2)
and (3) it is not difficult to show that the eigenvalue problem
reduces to finding the solution of

ξ

N−1∑
k=0

pk

ξ − exp(−iEkτ )
= 0. (4)

We now engineer the system in such a way that the only
solution is the degenerate solution with ξ = 0. As we will
shortly show, the following requirement is sufficient:

pk = 1

N
and Ekτ = 2πk

N
. (5)

We see that the energy levels are equally spaced, which in-
tuitively is expected as this causes the periodicities in the
dynamics to resonate at specific times, enhancing construc-
tive interference. Such an equally spaced energy spectrum is
also found for the generation of perfect state transfer [16].
More specifically, we will soon choose Ek = γ k where γ

has units of energy, and then τ = 2π/�E where �E =
Emax − Emin is the energy gap between the ground and largest
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energy in the spectrum. We note here that a relativistic mass-
less free particle, with energy E =

√
m2C4 + c2 p2, and m =

0, has a dispersion Ek ∝ p ∝ k, instead of the well-known
Schrödinger dispersion of a free particle Ek ∼ k2. Hence, the
energy spectrum we find in Eq. (5) is essentially relativistic;
the consequence of this for search will be discussed later. We
also see that the overlaps pk are k independent. To verify
these requirements, insert Eq. (5) in Eq. (4) and then with
summation formulas (see Appendix D) we have

ξ

N

N−1∑
k=0

1

ξ − exp(−i2πk/N )
= − ξN

1 − ξN
= 0 (6)

and the only possible solution is ξ = 0. We see that for a
quantum system satisfying Eq. (5), the survival operator has a
N-fold degenerate eigenvalues at ξ = 0, as we aimed for. The
order of the exceptional point is equal to the size of the Hilbert
space N , namely,

ξ = 0, N th-order exceptional point. (7)

It can also be shown that Eq. (5) is in fact a necessary con-
dition for a degree N exceptional point (see Appendix E).
Further, all the right and left eigenvectors also coalesce with
|ξR〉 = U (τ )−1|ψd〉 = U (−τ )|ψd〉 and 〈ξL| = 〈ψd|. Before
constructing the graph that yields this result, we study its
general consequences for search.

III. EFFICIENT QUANTUM SEARCH AND QUANTIZED
TOPOLOGICAL WINDING NUMBER

We denote Hs, Us and Ss the Hamiltonian, unitary, and
survival operator for a system that satisfies the efficient search
conditions (5) and in this notation we omit the dependence on
τ . We define the states |Qk〉 = (Us)k|ψd〉 with k = 0, . . . , N −
1. The operators Us and Ss acting on these states give

Us|QN−1〉 = |ψd〉, Us|Qk〉 = |Qk+1〉 if k �= N − 1,

Ss|QN−1〉 = 0, Ss|Qk〉 = |Qk+1〉 if k �= N − 1. (8)

These formulas are mathematically straightforward, for ex-
ample, Us|QN−1〉 = (Us)N |ψd〉 = ∑N−1

k=0 (Us)N 〈Ek|ψd〉|Ek〉 =∑N−1
k=0 exp(−iEkτN )〈Ek|ψd〉|Ek〉 = |ψd〉 = |Q0〉 where we

used Eq. (5) and hence exp(−iEkτN ) = 1. We see that both
Ss and Us are shift operators, their difference being the action
on the boundary term |QN−1〉. We can also show that the states
|Qk〉 are orthonormal 〈Ql |Qm〉 = δlm (see Appendix F) and
they form a complete set spanning any initial condition in the
Hilbert space. From here we reach the following conclusions.
First, consider an initial condition which is a |Qk〉 state, then
following Eq. (1) we consider the operation (Ss)n|Qk〉 and
using Eq. (8) we obtain

φn =
{

1 if n = N − k,

0 otherwise. (9)

This means that we detect the target with probability one at
time (N − k)τ , hence, the detection process is deterministic
as the fluctuations of the detection time vanish. Then when
|ψ0〉 = |Qk〉, we have

Pdet = 1, 〈t〉 = t = τ (N − k), Var(t ) = 0. (10)

For a more general initial condition, exploiting the fact that the
states |Qk〉 form a complete set and the linearity of Eq. (1) with
respect to the initial condition, the probability of first detection
Fn = |φn|2 is

Fn =
{|〈QN−n|ψin〉|2 for n = 1, . . . , N,

0 otherwise.
(11)

This implies a guaranteed search since even in the absence of
knowledge about the initial condition, the search will find the
target with at most N operations. From here it also follows
that we have an upper bound on the search time for any
initial state

t � τN = 2πk

Ek
= 2π

γ
. (12)

This upper bound is N independent, so the maximum search
time does not increase with the system size. The upper limit
is found when the initial condition is the target state |ψin〉 =
|ψd〉. To conclude, for a quantum walker starting from an
unknown initial state, i.e., a black-box problem, our strategy
will find this walker at the target state within a fixed time with
probability one.

We next explore the topological properties of the efficient
quantum search. In spatially periodic systems, such as the
topological materials, their topologies are revealed by the
Chern number or winding number of the Bloch Hamiltonian
in the band-theory framework [48]. For our model, the period-
icity originates from the stroboscopic measurements. Hence,
instead of a Brillouin zone in k space, here we investigate the
topology of the system in the Laplace domain [42]. Using the
Z transform, the generating function of the search amplitude
φn reads as


̂(θ ) =
∞∑

n=1

einθφn = 〈ψd|Û (θ )|ψ0〉
1 + 〈ψd|Û (θ )|ψd〉

, (13)

where Û (θ ) = ∑∞
n=1 einθU (nτ ) = eiθU (τ )/[1 − eiθU (τ )] is

the generating function of U (nτ ) [43]. The statistics of
the search process can be calculated in terms of the gen-
erating function. For example, the total search probability
Pdet = 1/(2π )

∫ 2π

0 dθ |
̂(θ )|2 and the mean search time 〈t〉 =
τ/(2π i)

∫ 2π

0 dθ [
̂(θ )]∗[∂θ 
̂(θ )], where ∗ is the complex con-
jugate of the generating function [42].

With Eq. (13), we calculate the winding number when the
quantum system meets the conditions in Eq. (5), correspond-
ing to an N th-order exceptional point. The winding number is
quantized and characterized by the choice of the initial state.
When |ψ0〉 = |Qk〉, the winding number  reads as

 = 1

2π i

∫ 2π

0
dθ ∂θ ln[
̂(θ )] = N − k. (14)

Using Eq. (11), this quantized winding number equals the
number of measurement attempts needed to detect the walker
with probability unity. It is in this sense that the search process
is related to the topology of the model in Laplace space and
the search times for states |Qk〉 are given in terms of τ multi-
plied by the number of windings, i.e., t = τ . We plot 
̂(θ ) in
Fig. 2 for N = 3. Note here we use the crawl Hamiltonian later
derived in Eq. (16) for illustration. As shown in the figure, the
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(a) (b) (c)

FIG. 2. Topological winding. Plot of the generating function 
̂(θ ) versus θ for N = 3. Here we choose the crawl Hamiltonian in Eq. (16)
and the generating function is given by Eq. (13). The initial states are the three |Qk〉s which span the full Hilbert space. Due to the topology of
the model, generating function forms a closed circle in the Laplace domain, hence the winding number is quantized as predicted in Eq. (14).
As shown in the figure, for the winding number of initial state |Q0〉, we have  = 3 (a). The winding number of |Q1〉 is 2 (b) and the winding
number for |Q2〉 is 1 (c). These windings give the number of the measurements for the successful search.


̂(θ ) forms closed circles and the number of times it rotates
around the center is equal to .

IV. EXAMPLES OF DESIGNED QUANTUM GRAPHS:
CRAWL AND FUNNEL MODELS

What are the tight-binding Hamiltonians of size N × N ,
that yield a guaranteed search? The condition in Eq. (5) admits
many types of solutions, and here we present two that have
certain advantages. We will also discuss the connection to
perfect state transfer [16].

A. Crawl model

First, we present an approach where the nodes of the
graph are the states |Qk〉. This is clearly useful since this
means that we can start the process with the wave packet
on one node of the graph and find the walker with proba-
bility one after a fixed time at any other node, which we
call deterministic search, as the fluctuations vanish. We use
H = ∑

k Ek|Ek〉〈Ek| and for the equally spaced energies we
set E0 = 0, E1 = γ , . . . , EN−1 = (N − 1)γ and Eq. (5) gives
τ = 2π/Nγ . More generally τ = 2π/Nγ + 2 jπ/γ and j is
a non-negative integer. In this system the states |x〉 with x =
0, 1, . . . , N − 1 are the nodes of the graph (see Fig. 1). To
perform this trick let

|Ek〉 = {
1, eiθk , ei2θk , . . . , ei(N−1)θk

}T
/
√

N, (15)

where θk = 2πk/N . This eigenstate is a discrete Fourier
wave, which is related to the “relativistic” linear dispersion in
Eq. (5), and Dirac physics as discussed below. Clearly Eq. (15)
gives pk = 1/N and hence

Hcrawl

= γ

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1
1−eiθ1

1
1−eiθ2

· · · 1
1−eiθN−1

1
1−e−iθ1

0 1
1−eiθ1

· · · 1
1−eiθN−2

1
1−e−iθ2

1
1−e−iθ1

0 · · · 1
1−eiθN−3

...
...

...
. . .

...
1

1−e−iθN−1

1
1−e−iθN−2

1
1−e−iθN−3

· · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(16)

which we call the crawl Hamiltonian [see a schematic diagram
in Fig. 1(a)]. This system, as discussed below, breaks time-
reversal symmetry. Namely, the unidirectional movement of
the packet can be reversed by changing Hcrawl to its complex
H∗

crawl, which is a feature of time reversal. In Fig. 3(a) we
plot Fn for a system with N = 50 and where the target state
is |ψd〉 = |0〉. We choose local initial conditions such that
|ψin〉 = |x〉, hence, we are considering a transition from x to 0
and in the plot we choose x = 0, 1, . . . , 49. We see that Fn is
sharply peaked and is equal to unity when n = x [Fig. 3(a)].
This type of deterministic search is not found for classical
random walks, and relies on the fact that the quantum wave
packet can, at specific times of the evolution, be localized
on a single node, while at prior measurement times the wave
packet vanishes on the node. This HCrawl is very much related
to unitary state transfer in the absence of measurements, as
discussed below.

Connection to perfect state transfer

Previously, Kostak et al. [16] considered the problem of
perfect state transfer using the permutation matrix Ppst. The
basic idea there is to find a class of Hamiltonians, whose
unitary evolution in the time interval τ equals a permutation
matrix which transfers the first entry of the graph to the last
one, i.e., e−iHτ = Ppst. The condition for the permutation ma-
trix is that the last term in the first column of Ppst is one, which
transfers the wave packet on the first node to the last node,
achieving the perfect quantum state transfer between them.
As an example, for a system with four states,

Ppst =

⎡
⎢⎢⎣

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤
⎥⎥⎦. (17)

Clearly, this transforms the initial state |1000〉 (i.e., the en-
trance node) to the final state |0001〉 (i.e., the target node) and
hence one gets the perfect state transfer between them.

In contrast, we investigate the effects of repeated measure-
ments on the search for an unknown initial state by designing
special graphs, using the conditions that generate an excep-
tional point of the highest possible order. In special cases, the
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FIG. 3. Guaranteed and fast quantum search. Detection probability Fn versus n for the crawl (a) and funnel (b) models. Here the graph has
N = 50 nodes and we present results with initial states localized on one of the nodes |ψin〉 = |x〉, x = 0, 1, . . . and |ψd〉 = |0〉 (Appendix B).
For the crawl search we find a deterministic outcome of the process, where Fn = 1 when n = x (for x = 0, F50 = 1). For the funnel model
(b) notice the sharp cutoff of Fn for n > N = 50. For any initial condition, the detection of the state is guaranteed with probability one, within
at most N measurements, which we call guaranteed search. In (b) notice the peak of height one for n = 50, when the initial condition is the
same as the detected state. The upper bound for the search time is tmax = τN = 2π .

design we propose here is the same as the one found in [16],
even if the protocol of measurement is not the same. To see
this special case, consider a walker that starts from the entry
node (i.e., the first node) of the crawl graph, in other words, we
now assume the complete knowledge of the initial state, which
is a special localized state. As mentioned, using the crawl
model the unitary U (τ ) is the shift operator, which shifts the
particle from one node to the other (see Fig. 6). In other words,
the evolution propagator for the crawl model is a specialized
permutation matrix [16]. Using Eq. (16), as an example we
choose N = 4, then the evolution propagator reads as

e−iHcrawlτ =

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎤
⎥⎥⎦ = Pcrawl. (18)

In the paper, Kostak et al. denote such matrices as the
one-cycle permutation matrix [16], in the sense that all the
elements in the matrix rotate in a single permutation cy-
cle. Actually, the one-cycle permutation matrix can achieve
perfect state transfer between any nodes in the system by
repeatedly utilizing the permutation matrix, for any localized
initial condition, namely, |1000〉, |0100〉, |0010〉, and |0001〉.
Since in this example the measurements do not destroy the
unitarity until the final measurement, the crawl Hamiltonian
is equivalent to quantum state transfer with unitary dynamics.
The difference is that we must apply the permutation matrix
at most four times to detect the particle from an arbitrary
initial condition. In perfect state transfer, on the other hand,
one needs to apply either Ppst or Pcrawl only once, due to the
specified initial condition.

However, not all permutation matrices can perform the
guaranteed quantum search even with repeated measurements.
Actually, all many-cycle permutation matrices [for example,
Eq. (17) has two cycles] have a subspace that cannot be trans-
ported to the search target. For instance, using the permutation
matrix Ppst given in Eq. (17), only the amplitudes on the first
and last nodes can be searched in the target state (node four),
while the amplitudes on the second and third nodes never
reach the search target. This makes the Pdet < 1 even after an

infinite number of measurements, which would be a fatal flaw
in the search problem considered in this work.

On the other hand, most of the Hamiltonians that are given
by conditions in Eq. (5) do not correspond to a permutation
matrix. This is easy to understand since our approach is based
on the high-order exceptional point and non-Hermitian pro-
cess generated by repeated measurements. As we will soon
show, in the next model, called the funnel model Hfunnel, we
have

e−iHfunnelτ = 1

2

⎡
⎢⎢⎢⎢⎢⎣

0 2√
3

1−3i√
6

− 1+i√
2

2√
3

4
3 − 1

3 −i√
2

1+i√
6

1−3i√
6

− 1
3 −i√

2
− 1

3 − i 1+i√
3

− 1+i√
2

1+i√
6

1+i√
3

−1 + i

⎤
⎥⎥⎥⎥⎥⎦

. (19)

Clearly, the evolution propagator is not a permutation matrix.
The state |1000〉 is not transferred to |0001〉, in one operation.
Each measurement has a finite probability to record the target
state, hence, these measurements randomly collapse the target
state in the search process. In other words, the combined effect
of measurements and unitaries plays a crucial role here. As
mentioned, the crawl model breaks time-reversal symmetry,
while the funnel model does not, a fact that could have impli-
cations in the laboratory when constructing these systems.

B. Funnel model

An alternative approach that uses onsite energies to di-
rect the search to a specific node denoted |ψd〉 = |0〉 is now
considered. Here the process does not break time-reversal
symmetry. As before, the spatial nodes of the graph are de-
noted |xi〉, and i = 0, 1, . . . , N − 1. We still have condition
to fulfill in Eq. (5) and we start with the normalized state
|E0〉 = {1/

√
N,−√

N − 1/
√

N, 0, . . . }T in agreement with
the second condition in Eq. (5). The next energy state is
constructed such that it is normalized and orthogonal to the
first one and has an overlap 1/N with the detected state |E1〉 =
{1/

√
N, 1/

√
N (N − 1),−√

N − 2/
√

N − 1.0, 0, . . . }T . The
process of constructing these states is then continued (Ap-
pendix G), and exploiting the demand that energy levels be
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equispaced, Eq. (5), we find

Hfunnel = γ

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

N − 1
√

N − 1 · · ·
√

2
N

√
N − 1 1 · · ·

√
2

N2−N

...
...

. . .
...√

2
N

√
2

N2−N · · · 2N − 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(20)

with matrix elements H0,m=√
(N−m)(N −m+1)/N (m �=0)

and Hj,m = √
(N − m)(N − m + 1)/[(N − j + 1)(N − j)]

( j �= 0, m). We call this approach the funnel model. This
type of system is schematically shown in Fig. 1(b) while
in Fig. 3(b) we present the detection probabilities for
localized initial conditions. Figure 3(b) illustrates a sharp
cutoff, namely, Fn = 0 for any n > N and thus the search is
guaranteed to succeed in a finite time, a feature completely
absent in classical random walks or quantum walks on
nonspecialized graphs. Interestingly, if the initial state is the
same as the detected one, corresponding to what is known as
the return problem [40], F50 = 1, otherwise it is zero. This
means the system is detected exactly after N attempts, and
this feature is universal, namely, for any search Hs, satisfying
Eq. (5), and for |ψd〉 = |ψ0〉, FN = 1 and Fn �=N = 0. We will
discuss this surprising effect in more detail in the discussion.

V. COMPARISON TO THE OTHER GRAPHS, INFLUENCE
OF NOISE, AND CONNECTIONS TO DIRAC PHYSICS

As a comparison, we calculate the search time for find-
ing the quantum walker on a full randomly connected
Sherrington-Kirkpatrick (SK) model [49] with 50 nodes, in
the sense that the designed coupling in our model is replaced
by the random connections. As we have shown, for our de-
signed graphs with 50 nodes, the walker will be detected
within 50 measurement attempts and the upper bound of the
search time is 2π/γ . As shown in Fig. 4, on the SK model,
the mean number of the measurement to find the walker
is much larger than our designed graphs (〈n〉 ∼ 103 
 50)
and fluctuates strongly for different choices of τ . When τ is
small, the detection times diverge due to the quantum Zeno
effect [45,50–52].

We also plot the cases when there is noise on τ in Fig. 5.
Here we choose the funnel model with N = 50 and the initial
state is |ψ0〉 = |49〉. For each sampling interval τ , we use the
designed τ [Eq. (5)] with the noise generated from a uniform
distribution (see Appendix B). We plot the detection proba-
bility versus measurements for different noise strengths. The
model shows robustness to the effects of the noise, where the
search is still guaranteed to succeed, namely,

∑50
n=1 Fn ∼ 1.

The detection probability is close to zero for n > 50 as shown
in Fig. 5. As a more realistic test of the guaranteed search, we
calculate the search probability Pdet within 50 measurements
for 1000 realizations. We find Pdet ∼ 0.98 even under 10%
noise, hence, the approach is robust.

In comparison with other previous results [53–55], our
strategy improves the search process in the following ways:
(1) Our search is efficient for any initial state. Previous results
have shown that the search is efficient on the graphs like

FIG. 4. Comparison with typical graph. We plot the mean mea-
surement numbers for a full randomly connected SK graph for
different choices of τ with stroboscopic search protocol. Here we
choose N = 50 and for the designed graph the upper bound of the
measurement number is 50 with time t � 2π/γ for τ = 2π/�E .
The search on the typical graph is much slower than that. As shown
in the figure, the lower bound of the SK graph is much bigger that
the upper bound of our models. It is clear the designed graphs boost
the quantum search process.

glued trees [53] or hypercubes [55], while this only works
for particular initial states. For example, in glued trees, the
initial state is one root of the tree and the target is another
root of the tree and, in hypercubes, the initial states and target
states are opposite corners. For other initial states, the search

FIG. 5. Noise robustness. We plot the search probability Fn of the
50-site funnel model with the initial state being a node of the graph.
We introduce random noise to τ with different magnitudes from
0.1% (green dots) to 10% (blue hexagrams). As shown in the figure,
the Fn is robust to the noise and the search probability is nearly zero
for n > 50. We calculate the total search probability Pdet within the
first 50 measurements for 1000 realizations. The guaranteed search
reminds even for comparable large noise, where the Pdet ∼ 98% with
noise 10%.
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FIG. 6. Nonmonitored quantum walk and perfect quantum state
transfer (see also [16]). The time evolution of the wave packet on the
crawl (a) and funnel (b) graphs for nonmonitored quantum walks.
The color code gives the probability of finding the walker on a
node. For the crawl graph, the wave function is fully localized one
node after the other at times τ, 2τ, . . . , a feature which is vital
for state transfer to any node in the system. Both quantum walks
exhibit revival, namely, the wave function returns to its initial state, at
time Nτ .

time can be infinite [54,56]. As a comparison, the search on
our designed graph is optimal for any initial states. (2) Our
search is guaranteed to succeed even if the size of the system
is very large. Previous results have shown that the search
probability is high for some measuring times, while in general,
the search probability is smaller than one, especially for large
systems [53]. In our model, however, the search is guaranteed
to succeed with a probability equal to one in a bounded time
for any initial states and for any finite size of the system.

The efficient quantum walks we found here are reminiscent
of the physics of a massless Dirac particle in dimension one.
First, the energy is linear in k [Eq. (5)]. Second, in the crawl
model the energy states are discrete free waves and, finally,
due to time-reversal breaking, the wave packet can travel
either clockwise or anticlockwise, somewhat similar to a par-
ticle and antiparticle. But why do we find this relation between
our problem and these relativistic effects? We started this
work with the demand that the eigenvalues of S are real and
all coalesce to zero to speed up the search process. We then
added rotational invariance of the searching process, such that
all nodes of the graph are identical, namely, no matter what
the detected state, pk = 1/N on every node of the specially
designed graph. We then naturally find the ideal search for a
quasiparticle with no dispersion, at least at the measurement
times. Namely, a wave packet that is widening will create a
less efficient search, in the sense that it renders impossible
the absolute detection of the particles in a single measurement
made at a node, a feature that is also revealed by the quantized
winding number in the Laplace domain. Similarly inspired by
a massless Dirac particle, consider the trivial wave equation in
continuous space and time in dimension one, ∂xψ (x, t ) =

∂tψ (x, t ), the solution is ψ (x, t ) = ∫
g(k) exp[i(kx − wkt )]

and g(k) is the initial packet in momentum space. For a
localized initial condition and using w = k, we get a delta
traveling wave, in close analogy with what we find in discrete
space. Of course, the underlying dynamics in our case is
controlled by the Schrödinger equation, but the Hamiltonian
under study yields effective motion in which space and time
are treated on the same footing. Finally, Dirac’s wave function
in dimension one has two components. Similarly, we have a
particle traveling clockwise and anticlockwise, in fact, at least
in principle, we can switch between these modes, if in the
middle of the experiment we replace the Hermitian crawl H
with its complex conjugate.

VI. DISCUSSION

We have designed a survival operator S (τ ), with an ex-
ceptional point whose degeneracy is the size of the Hilbert
space. Such an exceptional point reaches the highest order
of degeneracy possible in the model and can be designed
as large as possible. This is certainly an advance in excep-
tional physics compared to previous results [36] considering
second- or third-order exceptional points. In general, for an
N-dimensional system, to find the highest-order exceptional
point, one needs to solve an N th-order characteristic polyno-
mial [57,58], which, in principle, is difficult when the system
is large. Here we show that the high-order exceptional point
can be designed by exploiting the symmetry of the model,
which leads to the two conditions we discussed in Eq. (5).
At the exceptional point, the vector space is severely skewed,
as all the eigenstates of S (τ ) coincide. Obviously, this means
that the single eigenstate of S (τ ) cannot be used to construct
a full basis. So can we find a new basis that spans the Hilbert
space, which should also be connected to the exceptional
properties of the model? This challenge is solved by the states
|Qk〉 we proposed, which form a full basis that can be used
to expand any initial state of the walker, and is determined
by the system parameters at the exceptional point. In this
new basis, the survival operator S (τ ) becomes a shift opera-
tor (8). Roughly speaking, this new basis can be considered
to play the role of the energy eigenbasis found for unitary
dynamics. The new basis |Qk〉 is an efficient tool for studying
the quantum search process. We find a full basis using the
exceptional point, which is related to the fact that the degree
of the exceptional point here is the size of the Hilbert space,
while if the degree of the exceptional point is less than that,
the effect would not have been found.

Remarkably, the search probability is sharply peaked, i.e.,
Fn=N = 1, for the case |ψd〉 = |ψin〉, as shown in Fig. 3(b).
Since the initial state here is the same as the target one, this
is called in the literature the return problem [40]. This is a
generic property for all the designed graphs and describes the
special recurrence property in repeatedly monitored quantum
walks. To see this note that choosing k = 0, |Q0〉 = |ψd〉, and
then use Eq. (15). Physically, this shows the wave function al-
ways has destructive interference on the search target at times
nτ with n = 1, . . . , N − 1 and fully constructive interference,
which collects all the amplitude of wave function, at time
Nτ at |ψd〉. In connection with previous results, Grünbaum
et al. have shown that the mean search time for the return
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problem is quantized and equals the effective dimension of
the system [40,59], which is related to the topology of the
Schur functions. This result in our case means that the average
〈n〉 = N for the return problem. However, as shown in our
work, for purposely designed graphs, we have Fn = 0 for
n > N for the guaranteed search. These two results together
mean that in our case we must have FN = 1 for the return
problem. The result is therefore the sharp peak seen in Fig. 3.
This means that in general for the return problem Var(n) �= 0,
while we have Var(n) = 0, namely, no fluctuations at all of
the return time. This indicates a specialized recurrence on our
designed graphs, which is absent in previous results.

The resulting special purpose family of Hamiltonians al-
lows for guaranteed search. The main condition in Eq. (5) still
allows for further freedom in the design of the search process.
For specialized states |Qi〉, which are used to expand the
Hilbert space as we discussed, the monitored search process
is deterministic as the fluctuations in the detection attempt
vanish. Our work shows a connection between guaranteed
search and the topology (see Fig. 2). Very generally, starting
with state |Qi〉 the generating function winds, the number of
windings gives the number of measurements until detection.
Hence, the search time can also be expressed in terms of the
winding number times τ , i.e., t = τ . For a random unknown
initial state, the quantum walks we designed here are guar-
anteed to succeed in a bounded time. Usually, topology is
related to some protected physical reality that is insensitive
to sources of noise. Also in our case, the topology is related
to a physically robust result, i.e., protecting the search in the
sense that it is secured to be detected, up until a fixed time, no
matter what is the initial state.

For the crawl model, the search is effectively unidirec-
tional in a system that conserves energy. The Hamiltonian
is independent of the choice of the target state, and in that
sense, the system exhibits universal search. The Hcrawl breaks
time-reversal symmetry, and is related to the Dirac equation.
In contrast, the funnel model does not break time-reversal
symmetry, but the target state is unique.

To conclude, our search is globally optimal with respect
to any other search algorithm, in the sense that the success
probability is unity within a finite time even for large systems
and for all initial conditions.
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APPENDIX A: MATRIX DETERMINANT LEMMA

We provide details on the derivation of Eq. (2) using the
matrix determinant lemma. Suppose A is an invertible square
matrix and u, v are column vectors, then the matrix determi-
nant lemma states

det|A + uvT | = (1 + vT A−1u)det|A|, (A1)

where uvT is the outer product of the vectors u and v. We are
interested in the eigenvalues of the survival operator det|ξ −

S (τ )| = 0 with S (τ ) = (1 − |ψd〉〈ψd|)U (τ ) as defined in the
main text. Substituting S into the matrix determinant, we have

det|ξ − S (τ )| = det|ξ − U (τ ) + |ψd〉〈ψd|U (τ )|. (A2)

As discussed in the main text, to prevent the appearance of
dark states, which are not optimal for the quantum search, we
have conditioned det|ξ − U (τ )| �= 0. Hence ξ − U (τ ) is an
invertible square matrix. If we denote ξ − U (τ ) as the matrix
A, it fits the condition for the matrix determinant lemma. We
then let u = |ψd〉, and vT = 〈ψd|U (τ ). Using Eq. (A1), we
get Eq. (2) used in the main text.

APPENDIX B: NUMERICAL SIMULATION APPROACH

To prepare the plots, we simulate the search process
directly based on Eq. (1). We first construct the search Hamil-
tonians for the crawl graph and funnel graph using Eqs. (16)
and (20). In the simulation, we set N = 50 (for preparation
of Fig. 3). The initial state of the system is usually a node of
the graph, namely, |ψin〉 = |x〉. We represent it by a vector of
dimension N . For example, if the system is initially localized
on node 0, we set the first entry of the vector to be one and
all the rest remains zero. With the initial state and funnel
and crawl Hamiltonians, we numerically calculate φ1, which
is the overlap between the wave function at time τ and the
search target |ψd〉, namely, φ1 = 〈ψd|U (τ )|ψin〉. The square
of |φ1| is the probability that we detect the particle in the first
measurement at time t = τ , which is recorded for plotting
Fig. 3. We then turn to the calculation of F2. In the first
step, the failed measurement (at time τ ) projects out the state
on |ψd〉. This is done by setting the state that overlaps with
|ψd〉 to zero, in other words, we mimic the back-action of
projection (1 − |ψd〉〈ψd|). For example, let |ψd〉 = |0〉, then
after the measurement, the state of the system on node 0
is zero. The measured state is the new initial state for the
calculation of F2. Similar to the calculation of F1, we let
the system evolve for time τ by U (τ ), then calculate the
overlap between the state of the system and search target,
which is φ2. The search probability F2 = |φ2|2. Such pro-
cedure is repeated: We numerically calculate F3, F4, . . . , Fn.
The results are plotted for the crawl in Fig. 3(a) and funnel
in 3(b) models. In Fig. 4, we utilize the same process for the
calculation of Fn and use the random SK Hamiltonian. The
mean measurement times are given by 〈n〉 = ∑M

n=1 nFn. In the
numerical simulation we choose M = 100 000. In Fig. 5, the
time interval between two measurements is random, depend-
ing on the magnitude of the noises. For each τ , we choose τ =
(2π/N ){1 + a ∗ uniform[−0.5, 0.5]} with a being the magni-
tude of the noise. For the calculation of the search probability,
we use the simulated Fn and sum the first 50 measurements,
i.e., Pdet = ∑n=N=50

n=1 Fn. For each magnitude of the noise, Pdet

is averaged over 1000 realizations.

APPENDIX C: FIGURE PREPARATION

We now provide further details of the figures.
(i) Figure 1(a). Schematic plot of the crawl graph Hamil-

tonian in Eq. (16) of size 20 × 20. Here we set γ = 1 and
subsequently. In Eq. (16), we have a typical matrix element
1/[1 − exp(iθ )], which can be formally written as 1/[1 −
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exp(iθ )] = R exp(i
). The R represents the coupling strength
between the nodes, in the figure we utilize the thickness of
the connecting line to represent its magnitude. The R de-
creases as the distance between the nodes becomes longer.
For example, R0,1 = R0,19 > R0,2 = R0,18 > R0,3 = R0,17 >

· · · > R0,10. The colors represent the phases 
, where the
phases π > 
 > π/2. The onsite energies of the nodes are
equal to zero, hence, all of them are plotted in gray. Geomet-
rically, the system is rotationally invariant.

(ii) Figure 1(b). Schematic plot of the funnel Hamiltonian
in Eq. (20) of size 20 × 20. The matrix elements are real,
and again we unitize the thickness of the line connecting the
nodes to represent the hopping rate magnitude. Now the onsite
energies are not identical, and we present this variation by the
colors. The detection node is specialized for this model, and
we mark this node in the graph. The onsite energies increase
linearly for the nodes from 1 to N − 1, and for the search node,
the onsite energy is approximately N/2.

(iii) Figure 3(a). Search probability Fn versus measure-
ment steps n for the crawl graph. Here the graph has 50
nodes. We choose the initial states to be the nodes of the
graph, namely, |ψin〉 = |0〉, |1〉, . . . , |49〉. As we discussed in
the main text, the search state can be any node of the graph,
but here for demonstration, we choose |ψd〉 = |0〉. We nu-
merically simulate the search process with the method we
discussed above. As shown in the figure, the search is deter-
ministic, namely, we detect the walker with probability one at
some specified times, as described in the text.

(iv) Figure 3(b). Search probability Fn versus measure-
ment steps n for the funnel model. Here we set N = 50 and the
search target is |ψd〉 = |0〉. Again, we choose the initial state
to be a node of the graph and x goes from 0 to 49. We then
apply the simulation approach discussed above, which gives
the statistics of Fn as shown in the figure. For any initial state,
the detection of the state is guaranteed with probability one
within N measurements. There is a clear cutoff for Fn when
n > N , which drops to zero, namely, Fn>N = 0. The upper
bound of the search time is found when |ψin〉 = |0〉 = |ψd〉,
where F50 = 1 and Fn �=50 = 0, and in this case the detection
time is 2π .

(v) Figure 6 describes the unitary evolution without mea-
surements (nonmonitored quantum walks) for the crawl
Hamiltonian [Fig. 6(a)] and funnel model [Fig. 6(b)]. We plot
the probability of finding the walker on node x, |〈ψ (t )|x〉|2
versus x, and for continuous time t (in the unit τ/10). Here,
for both graphs, we choose N = 20 and the initial state is |0〉.
We record |〈ψ (t )|x〉|2 for all the nodes with sampling time
interval τ/10. As shown in the figure, the wave function of
the crawl graph is localized at specific nodes of the graph at
times τ, 2τ, 3τ, . . . . In the funnel mode [Fig. 6(b)], starting
for a localized state |0〉, the wave function first spreads to the
whole graph. Then it returns to the localized state |0〉. The
system is recurrent, which is rooted in the periodicity of the
energy spectrum we design.

APPENDIX D: DETAILS ON THE DERIVATION OF EQ. (6)

We present the derivation of Eq. (6). As discussed in the
main text, the eigenfunction of the survival operator S (τ )
can be written as ξ

∑N−1
k=0 pk/[ξ − exp(−iEkτ )] = 0. Here,

we denote the summation as I . With Eq. (5), we have

I = ξ

N

N−1∑
k=0

1

ξ − exp(−i2πk/N )

= − ξ

N

N−1∑
k=0

exp(i2πk/N )

1 − ξ exp(i2πk/N )
, (D1)

where we multiply both the numerator and denominator by
exp(−i2πk/N ) for each term in the summation. We first Tay-
lor expand 1/[1 − ξ exp(i2πk/N )] and get

I = − ξ

N

N−1∑
k=0

exp(i2πk/N )
∞∑
j=0

[ξ exp(i2πk/N )] j

= − ξ

N

N−1∑
k=0

∞∑
j=0

ξ j exp[i2πk( j + 1)/N]. (D2)

We then calculate I by changing the order of the summations.
Namely, we first perform the summation over k, which is a ge-
ometric progression with common ratio exp[i2π ( j + 1)/N].
By calculating the geometric progression, we have

I = − ξ

N

∞∑
j=0

ξ j
N−1∑
k=0

exp[i2πk( j + 1)/N]

= ξ

N

∞∑
j=0

ξ j 1 − exp(i2π j)

1 − exp[i2π ( j + 1)/N]
. (D3)

Since j is an integer, the numerator 1 − exp(i2π j) always
equals to zero. The whole fraction is nonzero only when
the denominator 1 − exp[i2π ( j + 1)/N] also equals to zero.
That is possible and happens when exp[i2π ( j + 1)/N] = 1,
namely, j = nN − 1, where n is an integer and goes from 1
to infinity (if n starts from 0, j = −1, which goes beyond the
regime of j). We replace the summation index j with n, where
n goes from 1 to infinity. Then for the summation I , we have

I = ξ

N

∑
j=nN−1

ξ jN = ξ

N

∞∑
n=1

ξ nN−1N =
∞∑

n=1

ξ nN = − ξN

1 − ξN
.

(D4)
These are the details of the derivation of Eq. (6) in the main
text.

APPENDIX E: NECESSARY CONDITION FOR
THE Nth-ORDER EXCEPTIONAL POINT

In this Appendix, we will show Eq. (5) derived in the main
text is a necessary condition for the N th-order exceptional
point. For following Eq. (3) in the main text, the eigenvalue
function for ξ reads as

F (ξ ) = 〈ψd| 1

ξ − U (τ )
|ψd〉 =

N−1∑
k=0

pk

ξ − e−iEkτ
= 0. (E1)

We now prove Eq. (5) in the main text is the only solution
to have a degeneracy of N − 1 for ξ0 = 0. Namely, this equa-
tion is a necessary condition for the high-order exceptional
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point we derived. Mathematically, when ξ0 = 0 is N − 1 de-
generate, we have

F (ξ0) = 0, F ′(ξ0) = 0, F ′′(ξ0) = 0,

F (3)(ξ0) = 0, . . . , F (N−2)(ξ0) = 0, (E2)

where the indices ′, ′′, and (3) denote the first-, second-,
and third-order derivatives. These conditions lead to N − 1
equations for the pk , Ek , and τ . Since pk = |〈Ek|ψd〉|2, we
also have the conditions for the form of the pk , where

∑
pk = 1, ∀ k, pk is real and positive. (E3)

Equations (E2) and (E3) ensure Eq. (5) derived in the main
text is a necessary condition for the exceptional point. To
see that, let us start with the simple case when N = 2. Using

Eqs. (E2) and (E3), the function for the p1 and p2 is

p1eiE1τ + (1 − p1)eiE2τ = 0 −→ p1

= eiE2τ

eiE2τ − eiE1τ
= ei�21

ei�21 − 1
,

p2 = 1 − p1. (E4)

Here we define the energy difference times τ as �21, i.e.,
(E2 − E1)τ = �21. Since p1 is real and finite [Eq. (E3)],
we have ei�21 = −1 in the complex plane. This gives the
conditions for the energy spectrum, i.e., �21 = (E2 − E1)τ =
π + 2kπ, k ∈ Z . Namely, the phase between E2τ and E1τ

is π , as given in Eq. (5). Put the energy spectrum back into
Eq. (E4), we have p1 = 1

2 and p2 = 1
2 , the equal magnitude

as we presented in the main text. So for the N = 2 case, the
only solution for the degenerate exceptional point is when
p1 = p2 = 1

2 and (E2 − E1)τ = π + 2kπ .
Similarly, for N = 3, we have

{
p1eiE1τ + p2eiE2τ + (1 − p1 − p2)eiE3τ = 0,

p1e2iE1τ + p2e2iE2τ + (1 − p1 − p2)e2iE3τ = 0
→ p1 = ei(�21+�31 )

(−1 + ei�21 )(−1 + ei�31 )
, p2 = ei�31

(ei�21 − 1)(ei�31 − ei�21 )
.

(E5)

Here �21 = (E2 − E1)τ and �31 = (E3 − E1)τ . Using the
conditions in Eq. (E3), we have

�21 = 2π

3
+ 2k1π, �31 = 4π

3
+ 2k2π, k1, k2 ∈ Z.

(E6)
This is the energy spectrum condition we have in the main
text. For the magnitude of the p, substituting Eq. (E6) back
into Eq. (E5), we have p1 = p2 = p3 = 1

3 .
So in general, for the N-dimensional system, using

Eqs. (E2) and (E3), we have

p1 = ei
∑N

i=2 �i1

�N
i=2(ei�i1−1)

,

p2 = ei
∑N

i=3 �i1

(ei�21 − 1)�N
i=3(ei�i1−ei�31 )

, . . . ,

pk = ei
∑N

i=2,i �=k �i1

(ei�k1 − 1)�N
i=2,i �=k (ei�i1−ei�k1 )

. (E7)

Since these pk should be real and possible, we have the condi-
tions for the �i1. This process leads to the energy spectrum
conditions as presented in Eq. (5). Substituting the energy
level conditions back into Eq. (E7). The corresponding mag-
nitude of the pk are all equal, i.e., pk = 1/N . To conclude,
Eq. (5) is a necessary condition for achieving an N th-order
exceptional point.

APPENDIX F: PROOF OF THE ORTHOGONAL
OF STATES |Qk〉

We present the proof that the states |Q0〉, |Q1〉, |Q2〉, . . . ,
|QN−1〉 are orthogonal with each other, namely, 〈Ql |Qm〉 =
δlm. The state |Qk〉 is defined by the unitary evolution oper-
ator Us to the power k times the search target |ψd〉, where
Us = exp(−iHsτ ) and Hs are search Hamiltonian. To show

the orthogonality, we first expanded |ψd〉 in the energy basis,
which leads to

|Qm〉 = (Us)m|ψd〉 =
N−1∑
k=0

(Us)m〈Ek|ψd〉|Ek〉

=
N−1∑
k=0

exp(−imEkτ )〈Ek|ψd〉|Ek〉

=
N−1∑
k=0

exp(−i2πkm/N )〈Ek|ψd〉|Ek〉.

(F1)

Here we have used the fact Ekτ = 2πk/N . Similarly, we can
find the representation of the state |Ql〉 in the energy basis. We
then calculate the overlap between the states |Qm〉 and |Ql〉.
We have

〈Ql |Qm〉 =
N−1∑
k=0

N−1∑
k′=0

〈Ek|〈ψd|Ek〉

× exp[i2π (kl − k′m)/N]〈Ek′ |ψd〉|Ek′ 〉

=
N−1∑
k=0

|〈ψd|Ek〉|2 exp[i2πk(l − m)/N]. (F2)

The square of the overlap between the detected state |ψd〉 and
the energy state |Ek〉 is denoted as pk in the main text, namely,
pk = |〈ψd|Ek〉|2. Equation (5) states this value is a dependent
of k for the search Hamiltonian Hs, where pk = 1/N . So
for Eq. (F2), we only need to calculate the summation of
exp[i2πk(l − m)/N] from k = 0 to N − 1. This has been done
also in Eq. (D3), where ( j + 1) in Eq. (D3) is replaced by
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(l − m) here. We then have

〈Ql |Qm〉 = 1

N

N−1∑
k=0

exp[i2πk(l − m)/N]

= 1

N

exp[i2π (l − m)] − 1

exp[i2π (l − m)/N] − 1
. (F3)

〈Ql |Qm〉 is nonzero only when l − m = 0, N, 2N, . . . . Here
N − 1 � l � 0 and N − 1 � m � 0. Hence, only when l =
m we have 〈Ql |Qm〉 = 1, otherwise 〈Ql |Qm〉 = 0. Namely,
〈Ql |Qm〉 = δlm. This is the conclusion we used in the main
text. Another thing to notice is that, since the |Qk〉 are gen-
erated by the unitary operators, it is naturally normalized.
Hence, the states {|Q0〉, |Q1〉, |Q2〉, . . . , |QN−1〉} forms a com-
plete and normalized space.

APPENDIX G: FUNNEL MODEL HAMILTONIAN

We provide details on the funnel Hamiltonian and its
explicit presentation. In this model, the search target
|ψd〉 = |0〉. As before, the spatial nodes of the graph are
denoted |xi〉, and i = 0, 1, . . . , N − 1. We start with the
energy state |E0〉 = {1/

√
N,−√

(N − 1)/N, 0, 0, . . . }, where
1/

√
N fulfills the first condition in Eq. (5) and −√

(N − 1)/N
stands for normalization. We then construct the energy
state |E1〉. It should be orthogonal with |E0〉 and in
agreement with the condition in Eq. (5). We find |E1〉 =
{1/

√
N, 1 /

√
N (N − 1), −√

(N − 2)/(N − 1), 0, 0, . . . }.
Again, the first term in |E1〉 leads to |〈E1|0〉|2 = 1/N . The
second entry guarantees 〈E0|E1〉 = 0, and the third entry is
for normalization. Following the construction procedure, we
have |E2〉 = {1/

√
N, 1/

√
N (N − 1), 1/

√
(N − 2)(N − 1),

−√
(N − 3)/(N − 2), 0, 0, . . . }, and in general |Ei �=N−1〉 =

{1/
√

N, 1/
√

N (N − 1), . . . , 1/
√

(N + 2 − k)(N + 1 − k),

. . . ,−√
(N − 1 − i)/(N − i), 0, 0, . . . }, where k is the index

for the kth entry and 2 � k � i. This general representation
|Ei〉 can help us construct the states |E0〉, |E1〉, . . . , |EN−2〉,
but not |EN−1〉. Let us explain this and then show
how to construct |EN−1〉. When i = N − 2, we have
|EN−2〉 = {1/

√
N, 1/

√
N (N − 1), . . . , 1/

√
6,−1/

√
2}. Now

we cannot utilize the procedure we did before to construct
|EN−1〉 since, roughly speaking, there is no additional
space for the normalization. So how to construct the last
energy state? We notice the last term in |EN−2〉 is −1/

√
2,

which is special. Let us consider a state where the first
N − 1 terms are the same as those in |EN−2〉, and the only
different one is the last term, where we change the −1/

√
2

to 1/
√

2. We can see such a state is orthogonal with |EN−2〉
and also normalized. This is the last energy state, i.e.,
|EN−1〉 = {1/

√
N, 1/

√
N (N − 1), . . . , 1/

√
6, 1/

√
2}. It is

also easy to show that this state is orthogonal with respect
to the other state, |EN−3〉, |EN−4〉, . . . , |E0〉. We then have
N orthogonal and normalized states fulfill the conditions in
Eq. (5).

For the equal distance energies, we set E0 = 0, E1 =
γ , E2 = 2γ , . . . , EN−1 = (N − 1)γ , the resulting Hamilto-
nian is

H = γ

2

⎡
⎢⎢⎢⎢⎣

N − 1 H0,1 H0,2 · · · H0,N−1

H0,1 1 H1,2 · · · H1,N−1

H0,2 H1,2 3 · · · H2,N−1
...

...
...

. . .
...

H0,N−1 H1,N−1 H2,N−1 · · · 2N − 3

⎤
⎥⎥⎥⎥⎦,

(G1)
where H0,m = √

(N − m)(N − m + 1)/N (m �= 0) and
Hj,m = √

(N − m)(N − m + 1)/[(N − j + 1)(N − j)]
( j �= 0, m). We call this approach the funnel model.
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