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Polarization transport in optical fibers beyond Rytov’s law
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We consider the propagation of light in arbitrarily curved step-index optical fibers. Using a multiple-scales
approximation scheme, set up in Fermi normal coordinates, the full vectorial Maxwell equations are solved in a
perturbative manner. At leading order, this provides a rigorous derivation of Rytov’s law. At next order, we obtain
nontrivial dynamics of the electromagnetic field, characterized by two coupling constants, the phase and the
polarization curvature moments, which describe the curvature response of the light’s phase and its polarization
vector, respectively. The latter can be viewed as an inverse spin Hall effect of light, where the direction of
propagation is constrained along the optical fiber and the polarization evolves in a frequency-dependent way.
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I. INTRODUCTION

Optical fibers are widely used as waveguides for electro-
magnetic fields, providing a controlled way of transporting
light along a given path. They play a fundamental role in many
engineering applications, such as telecommunications [1] and
sensors [2]. Furthermore, optical fibers play a central role in
many areas of physics, such as metrology [3], photonics [4],
quantum information [5], and quantum computation [6–8],
and are planned to be used in future experiments that probe the
interplay of quantum optics and Einstein’s theory of gravity
[9–12].

The propagation of electromagnetic waves in optical
fibers is generally described by Maxwell’s equations. For
straight optical fibers with circular cross sections, Maxwell’s
equations can be solved explicitly using certain mode decom-
positions adapted to the symmetry of the problem [13–15].
However, in real-world applications, optical fibers are gener-
ally twisted and bent in various ways, leading to optical losses,
nontrivial polarization dynamics, and coupling between dif-
ferent modes. In this case, exact solutions to Maxwell’s
equations are no longer available, which makes it necessary
to use approximation schemes.

A geometrical-optics treatment of light rays following non-
planar curves was already given in 1938 by Rytov [16], and
later extended by Vladimirskii [17] (see Ref. [18] for a more
recent overview of these results). In these papers, the authors
derived a transport law for the polarization vector (defined as
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a unit vector pointing along the direction of the electric field)
along the nonplanar curve followed by light rays in inhomoge-
neous media. This is known as Rytov’s law, which states that
the polarization vector is Fermi-Walker transported along the
curve [19]. In optical fibers, Rytov’s law was experimentally
observed by Ross [20], followed by a similar experiment by
Tomita and Chiao [21] (see also Ref. [22]). A theoretical dis-
cussion describing the geometry of this polarization transport
law in optical fibers was given by Haldane in Refs. [23,24].
We give a simple illustration of Rytov’s law in Fig. 1, where
we consider a helical fiber, together with the Fermi-Walker
transport of two linear polarization vectors.

The standard derivation of Rytov’s law relies on the
geometrical optics approximation, which breaks down for
electromagnetic waves propagating in single-mode optical
fibers (SMFs) both because the wavelength is of the same
order of magnitude as the diameter of the fiber and because
of the rapid formation of caustics. An extension of Rytov’s
law for light propagating in SMFs was given by Berry [25],
where a term proportional to the wavelength was added to the
polarization transport law. Similar results were also obtained
by Lai et al. [26] using different methods.

However, Berry did not provide an explicit derivation of his
result from Maxwell’s equations, and the work of Lai et al.
does not consider the junction conditions of the electromag-
netic field at the core-cladding interface, which renders the
relation of their result to optical fibers unclear.

In this paper, we perturbatively solve for the full electro-
magnetic field in an arbitrarily bent step-index optical fiber
under the sole assumption that the radius of curvature of the
fiber is much larger than the wavelength of light propagat-
ing therein. To do so, we erect cylindrical Fermi coordinates
around the baseline of the optical fiber, such that the core-
cladding interface is at a constant radial coordinate and the
effects of bending are fully encoded in a single compo-
nent of the metric tensor. The assumption of weak bending
then allows setting up a perturbative scheme based on the

2643-1564/2023/5(2)/023140(12) 023140-1 Published by the American Physical Society

https://orcid.org/0000-0002-6905-0183
https://orcid.org/0000-0002-1242-4041
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.5.023140&domain=pdf&date_stamp=2023-05-31
https://doi.org/10.1103/PhysRevResearch.5.023140
https://creativecommons.org/licenses/by/4.0/


THOMAS B. MIELING AND MARIUS A. OANCEA PHYSICAL REVIEW RESEARCH 5, 023140 (2023)

FIG. 1. Illustration of Rytov’s law in an optical fiber. The two
vectors e1 (red) and e2 (green), orthogonal to the tangent vector
T = γ ′ (not shown), are Fermi-Walker transported along the curve
γ , and they can be viewed as linear polarization vectors aligned with
the electric field lines of an electromagnetic wave with horizontal or
vertical linear polarization. For example, a linearly polarized electro-
magnetic wave initially at the lower end of the fiber will experience a
counterclockwise rotation of its plane of polarization as it propagates
upwards along the helix.

multiple-scales method, where the perturbation parameter is
given by the ratio of the optical wavelength to the fiber’s
radius of curvature. We mainly focus on the single-mode
regime, but we shall also discuss briefly how our method can
be applied in certain multimode regimes.

At first order in this perturbative expansion, we recover Ry-
tov’s law, which means that the Jones vector is Fermi-Walker
transported along the fiber. At next order, we obtain correc-
tions to this transport law, describing nontrivial dynamics of
the electromagnetic phase and polarization due to the bending
of the fiber. This correction to the polarization dynamics can
be interpreted as an inverse spin Hall effect of light: Whereas
in the (direct) spin Hall effect of light [27–32] the polariza-
tion influences the trajectory of light, here the trajectory is
prescribed by the optical fiber, which then influences the light
polarization. Similar inverse spin Hall effects of light have
also been reported in other physical systems [33,34].

This paper is structured as follows. In Sec. II, we introduce
the Fermi coordinate system used in the subsequent calcula-
tion and describe the relation of the metric tensor components
(in this coordinate system) to the curvature and torsion of
the fiber. Section III describes the perturbative ansatz for
the electromagnetic potential (using an adapted orthonormal
frame along the fiber and the aforementioned multiple-scales
approach), and formulates the perturbative equations and their
solutions. The expressions that arise there require numeri-
cal quadrature. In Sec. IV we present numerical results for
the polarization moments, which describe the coupling of
the electromagnetic phase and polarization to the bending of
the fiber, and illustrate the polarization transport for the simple
case of a helical fiber. Finally, in Sec. V we compare with

previous results obtained by other techniques and provide an
outlook on potential future applications of our methods.

II. GEOMETRIC SETUP

Let γ be a curve in three-dimensional Euclidean space
representing the baseline of an SMF. In the vicinity of this
curve, one can erect a Fermi coordinate system (t, x, y, s),
where t is time, s is the arc length of γ , and x and y are
transverse coordinates. More details are given in Appendix A.
In this coordinate system, the Minkowski metric takes the
form

g = −c2dt2 + dx2 + dy2 + [1 − νx(s)x − νy(s)y]2ds2, (1)

where c is the speed of light in vacuum and ν i are the compo-
nents of the normal vector of the curve in the Fermi coordinate
system.

Henceforward, we assume that the fiber is only weakly bent
in the following sense. First, we require the radius of curvature
1/κ = 1/

√
ν2

x + ν2
y to be much larger than the SMF’s core

radius �, i.e., �κ � 1. In practice, this requirement is well
satisfied, since typical SMFs, bent on the scale of centimeters,
have �κ ∼ µm/cm = 10−4. Second, we require the normal
vector ν i to be not only small in norm (of order κ � 1/�),
but also to vary slowly when measured in units of the radius
�. This means that ν i can be expressed in the form

ν i(s) = ε�−1bi(ε�
−1s), (2)

where ε is a small parameter and bi are dimensionless func-
tions whose derivatives are at most of the same order of
magnitude as the functions themselves. In practice, since SMF
modes have wavelengths comparable to the core radius �, this
means that the normal vector is almost constant over an optical
wavelength and changes significantly only over a length scale
of 1/ε � 1 wavelengths.

To simplify the notation, all subsequent calculations will
be carried out in nondimensionalized cylindrical coordinates
(t̃, r, ϑ, σ ), defined by

t = �t̃/c, x = �r cos ϑ, y = �r sin ϑ, s = �σ. (3)

In this coordinate system, the Minkowski metric takes the
form

g = �2[−dt̃2 + dr2 + r2dϑ2 + (1 − 	 )2dσ 2], (4)

where

	 = εr√
2

[b+(ς )e+iϑ + b−(ς )e−iϑ ], (5)

with ς = εσ and b± being the complex bending functions

b± = 1√
2
(bx ∓ iby). (6)

These complex functions are related to the fiber’s curvature κ

and torsion τ by

εb± = �κ√
2

exp

[
∓i

(∫ s

0
τ (s′) ds′ + const.

)]
, (7)

where the arbitrary constant describes the freedom to ro-
tate the coordinate system rigidly around the r = 0 axis, cf.
Eq. (A19).
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III. MAXWELL’S EQUATIONS

The electromagnetic field in optical fibers satisfies the
source-free Maxwell equations

div B = 0, curl E + ∂ t B/c = 0, (8)

div D = 0, curl H − ∂ t D/c = 0, (9)

when using either Gaussian or Lorentz-Heaviside units. For
nonmagnetic materials, the constitutive relations are

D = n2E, H = B, (10)

with n denoting the refractive index. For step-index optical
fibers, n has the form

n(r) =
{

n1 0 < r < 1,

n2 1 < r,
(11)

where the refractive indices of the core and the cladding, n1

and n2, are constants satisfying n1 > n2 � 1. Here, the opera-
tors div and curl are those of flat Euclidean space, which are
to be expressed in non-Cartesian coordinates when working
with the curvilinear Fermi coordinate system.

A. Gauge-fixed field equations

Here, we work with the electromagnetic potentials φ and
A, such that

E = − grad φ − ∂ t A/c, B = curl A. (12)

Imposing an appropriate generalization of the Lorenz gauge
to linear isotropic dielectrics, as in Ref. [12], the field equa-
tions reduce to

n2∂2
t φ = c2�φ, n2∂2

t A = c2�A, (13)

wherever n is constant. Here, � denotes the Laplacian (more
precisely, the scalar Laplace-Beltrami operator when acting
on φ, for the vector Laplace-Beltrami operator when acting
on A) of Euclidean space, which we express in curvilinear
coordinates below.

Equation (13) can also be written in generally covariant
form. In regions of constant n, the electromagnetic four-
potential A = −cφdt + Aidxi satisfies the wave equation

g̃ab∇a∇bAc = 0, (14)

(in abstract index notation) where ∇a is the Levi-Civita deriva-
tive of the metric gab given in Eq. (4) and g̃ab is the inverse of
Gordon’s optical metric g̃ab [35], which here takes the form

g̃ = �2[−n−2dt̃2 + dr2 + r2dϑ2 + (1 − 	 )2dσ 2]. (15)

To decouple the wave equations as much as possible, we
use an adapted frame eμ and a coframe eμ:

e0 = ∂ t̃ , e‖ = 1

1 − 	
∂σ , e± = 1√

2

[
∂r ± i

r ∂ϑ

]
, (16)

e0 = dt̃ , e‖ = (1 − 	 )dσ, e± = 1√
2
[dr ∓ irdϑ], (17)

with respect to which the electromagnetic four-potential can
be decomposed as

A = Aμe
μ ≡ A0e

0 + A‖e‖ + A+e+ + A−e−. (18)

To express the junction conditions at the core-cladding inter-
face r = 1 (derived in Ref. [12]) in a form suitable for the
following calculations, define the column vector

�[A] = (
�A0� �A‖� �A+� �A−� �A′

‖� �A′
+ − A′

−� �n2(A′
0 − [Ȧ+ + Ȧ−]/

√
2)� �n2Ȧ0 − [A′

+ + A′
−]/

√
2�

)T
, (19)

where dots and primes denote partial differentiation with re-
spect to t̃ and r, respectively, and, for any function ϕ, the
expression �ϕ� denotes the discontinuity of ϕ at the interface

�ϕ� = (
lim
r↗1

ϕ
) − (

lim
r↘1

ϕ
)
. (20)

The junction conditions can then be expressed as �[A] = 0,
which means that all field expressions entering Eq. (19) must
be continuous.

B. Perturbative system

In the absence of bending, the fiber modes have constant
angular frequency ω and propagation constant β, for which
we define the dimensionless counterparts

β̃ = �β, ω̃ = �ω/c. (21)

To set up a perturbative scheme for Eq. (13) in the presence of
bending, we make the following ansatz. Seeking monochro-
matic waves of angular frequency ω and propagation constant

β, we write

Aμ = aμ(r, ϑ, ς )ei(β̃σ−ω̃t̃ ), (22)

where the field’s angular dependence is expanded in a Fourier
series:

aμ(r, ϑ, ς ) =
∑
m∈Z

a(m)
μ (r, ς )eimϑ , (23)

with the following perturbative expansion:

a(m)
μ (r, ς ) =

∞∑
k=||m|−1|

εka(m,k)
μ (r, ς ). (24)

Here, σ and ς = εσ are to be considered as “independent
variables” in the sense of the multiple-scales method [36].
The precise form of the last expansion is motivated as fol-
lows. In the unperturbed problem, SMFs allow for modes with
m = +1 and m = −1 only [13,14]. Hence, we start the series
expansion of these Fourier modes at order ε0. The bending
terms couple neighboring Fourier components, so the series
expansions of m = 0 and m = ±2 start at order ε1, while

023140-3



THOMAS B. MIELING AND MARIUS A. OANCEA PHYSICAL REVIEW RESEARCH 5, 023140 (2023)

Fourier modes with m = ±3 are at most of order ε2, and
so on.

We insert this ansatz into Eq. (13) and consider terms of
various powers of ε separately.

1. Unperturbed system

At order ε0, one obtains

H±1a(±1,0)
μ = 0, (25)

where the Helmholtz operator Hm acts on the fields

aμ = (a0, a‖, a+, a−)T (26)

as follows:

Hmaμ = (Hma0, Hma‖, Hm+1a+, Hm−1a−)T, (27)

with

Hm = ∂2

∂r2
+ 1

r

∂

∂r
− m2

r2
+ n2ω̃2 − β̃2. (28)

The solution which is regular on the axis r = 0 and decays for
r � 1 is given in terms of Bessel functions as

a(m,0)
0 = f (m,0)

(
q(m,0)

0,1 , q(m,0)
0,2 , r

)
, (29a)

a(m,0)
‖ = f (m,0)(q(m,0)

‖,1 , q(m,0)
‖,2 , r

)
, (29b)

a(m,0)
+ = f (m,+1)

(
q(m,0)

+,1 , q(m,0)
+,2 , r

)
, (29c)

a(m,0)
− = f (m,−1)

(
q(m,0)

−,1 , q(m,0)
−,2 , r

)
. (29d)

The coefficients q(m,k)
μ,l may depend on ς , and the functions

f (m) are defined in terms of Bessel functions of the first kind,
Jm, and modified Bessel functions of the second kind, Km, as

f (m,m′ )(q1, q2, r) =
⎧⎨
⎩

q1
Jm+m′ (Ur)

Jm (U ) r < 1,

q2
Km+m′ (W r)

Km (W ) r > 1,
(30)

with

U =
√

+n2
1ω̃

2 − β̃2, W =
√

−n2
2ω̃

2 + β̃2. (31)

For conciseness, we shall abbreviate Eq. (29) as

a(m,0)
μ = f (m)

μ (q(m,0)), (32)

where q(m,0) is a column vector containing all the parameters
q that occur in Eq. (29).

The matching conditions at the core-cladding interface r =
1 can then be written in matrix form

�
[
a(±1,0)

μ

] ≡ M±1 · q(±1,0) = 0, (33)

where Mm is a complex 8 × 8 matrix, given explicitly by
Eq. (58) in Ref. [12], the precise details of which are not
important for our present considerations.

For Eq. (33) to admit a nontrivial solution, the determinant
of M±1 must vanish (one can show that the two determinants
for m = +1 and m = −1 are proportional, so that they must
vanish simultaneously). This determines the standard disper-
sion relation between β, ω, � and the refractive indices n1, n2

[13,14].
If the dispersion relation is satisfied (SMFs admit only

a single solution for β in terms of ω), the matrices M±1

possess a one-dimensional kernel and co-kernel. Setting q̂±
to be any vector spanning the kernel of M±1 (we take q̂± to

be ς independent), the general solution to Eq. (33) can be
written as

q(±1,0) = J(0)
± (ς )q̂±, (34)

where J(0)
± can be interpreted as complex components of a

(ς -dependent) Jones vector, as the solution with m = +1
corresponds to right circular polarization, while m = −1 de-
scribes left circular polarization. Here, we choose the norms
and global phases of the vectors q̂± such that J(0)

± = 1/
√

2
corresponds to horizontal polarization and J(0)

± = ±i/
√

2 cor-
responds to vertical polarization; see Fig. 2. To determine the
dependence of J(0)

± on ς , we must consider the equations at
next order in the perturbative expansion.

2. First-order perturbations

At order ε1, one obtains differential equations of the form

H0 a (0,1)
μ = � (0,1)

μ , (35a)

H±1a(±1,1)
μ = �(±1,1)

μ , (35b)

H±2a(±2,1)
μ = �(±2,1)

μ , (35c)

where the inhomogeneities �(m,1)
μ , given explicitly in Ap-

pendix B, depend on the fields at order ε0, their first ς

derivatives, as well as on the bending functions b±.
These equations can be solved using Green’s functions for

the Helmholtz operator Hm [37]. Setting

Gmaμ = (Gma0, Gma‖, Gm+1a+, Gm−1a−)T, (36)

with

Gmϕ(r) =
{

G(1)
m ϕ(r) r < 1,

G(2)
m ϕ(r) r > 1,

(37)

G(1)
m ϕ(r) = π

2
Ym(Ur)

∫ r

0
Jm(Ur′)ϕ(r′)r′ dr′

(38)

+ π

2
Jm(Ur)

∫ 1

r
Ym(Ur′)ϕ(r′)r′ dr′,

G(2)
m ϕ(r) = −Im(W r)

∫ ∞

r
Km(W r′)ϕ(r′)r′ dr′

(39)

− Km(W r)
∫ r

1
Im(W r′)ϕ(r′)r′ dr′,

where Ym and Im denote Bessel functions of the second kind
and modified Bessel functions of the first kind, respectively,
the general solution can be written in the form

a (0,1)
μ = G0 � (0,1)

μ + f (0)
μ (q (0,1)), (40a)

a(±1,1)
μ = G±1�

(±1,1)
μ + f (±1)

μ (q(±1,1)), (40b)

a(±2,1)
μ = G±2�

(±2,1)
μ + f (±2)

μ (q(±2,1)). (40c)

The free parameters q(m,1) are needed to satisfy the junction
conditions at the core-cladding interface. As in the unper-
turbed case, these matching conditions can be written in
matrix form:

M0 · q (0,1) = −�
[
G0 � (0,1)

μ

]
, (41a)

M±1 · q(±1,1) = −�
[
G±1�

(±1,1)
μ

]
, (41b)

M±2 · q(±2,1) = −�
[
G±2�

(±2,1)
μ

]
. (41c)
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FIG. 2. Transverse electric field profiles of linearly polarized fiber modes (LP modes). Horizontal polarization corresponds to the Jones
vector J± = 1/

√
2 (left figure), while vertical polarization corresponds to J± = ±i/

√
2 (right figure). For illustration, we have set the refractive

indices to n1 = 1.46, n2 = 1, and the normalized frequency V = (�ω/c)
√

n2
1 − n2

2 to V = 2. The contours indicate the relative electric field
intensity.

Since the matrices M0 and M±2 are nonsingular, Eqs. (41a)
and (41c) can be solved uniquely for the coefficients q(0,1)

and q(±2,1). However, M±1 is singular due to the dispersion
relation. The condition that Eq. (41b) is solvable is equivalent
to the right-hand side of Eq. (41b) being in the image of the
matrix M±1. Denoting by ζ± any eight-component row vector
that spans the co-kernel of M±1, the solubility condition can
be expressed as

ζ± · �
[
G±1�

(±1,1)
μ

] = 0. (42)

Expanding all definitions, one obtains equations of the form

(const.)
d

dς
J(0)
± (ς ) = 0, (43)

where the multiplicative factor is expressible in terms of inte-
grals of Bessel functions. Numerically, we find this factor to
be nonzero, leading to

d

dς
J(0)
± (ς ) = 0. (44)

As will be explained in more detail below, this equation im-
plies that, to first order in the perturbative expansion, the Jones
vector of the SMF is Fermi-Walker transported along the fiber
(Rytov’s law). Nontrivial dynamics arise only at second order.

As Eq. (44) implies that Eq. (41b) reduces to
M±1 · q(±1,1) = 0, it follows that the vectors q(±1,1) are
proportional to the vectors q̂± spanning the kernel of M±1

where the proportionality coefficients may depend on ς .
Hence, we obtain

q(±1,1) = J(1)
± (ς )q̂±, (45)

where the dynamics of the coefficients J(1)
± is to be determined

at the next order.

3. Second-order perturbations

At order ε2, one obtains field equations of the form

H0 a (0,2)
μ = � (0,2)

μ , (46a)

H±1a(±1,2)
μ = �(±1,2)

μ , (46b)

H±2a(±2,2)
μ = �(±2,2)

μ , (46c)

H±3a(±3,2)
μ = �(±3,2)

μ , (46d)

where the inhomogeneities �(m,2)
μ , given explicitly in Ap-

pendix B, depend on the fields at order ε0 and ε1, their ς

derivatives, as well as on the bending functions and their
derivatives.

These equations can be solved using the Green’s operator
defined above:

a (0,2)
μ = G0 � (0,2)

μ + f (0)
μ (q (0,2)), (47a)

a(±1,2)
μ = G±1�

(±1,2)
μ + f (±1)

μ (q(±1,2)), (47b)

a(±2,2)
μ = G±2�

(±2,2)
μ + f (±2)

μ (q(±2,2)), (47c)

a(±3,2)
μ = G±3�

(±3,2)
μ + f (±3)

μ (q(±3,2)), (47d)

and the interface conditions take the abstract form

M0 · q (0,2) = −�
[
G0 � (0,2)

μ

]
, (48a)

M±1 · q(±1,2) = −�
[
G±1�

(±1,2)
μ

]
, (48b)

M±2 · q(±2,2) = −�
[
G±2�

(±2,2)
μ

]
, (48c)

M±3 · q(±3,2) = −�
[
G±3�

(±3,2)
μ

]
. (48d)

The structure is similar to Eq. (41). Eqs. (48a), (48c), and
(48d) can be solved uniquely for the coefficients q(0,2), q(±2,2),
and q(±3,2). However, as the matrices M±1 are singular, the
solubility of Eq. (48b) provides a nontrivial constraint, which
is equivalent to

ζ± · �
[
G±1�

(±1,2)
μ

] = 0. (49)
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Expanding the definitions, this leads to an equation of the form

d

dς

[
J(1)
+

J(1)
−

]
= iB̂(ς )

[
J(0)
+

J(0)
−

]
, (50)

where B̂ is a complex 2 × 2 matrix, which we find to be of the
general form

B̂ =
[

2η̃ b+b− ξ̃ b2
+

ξ̃ b2
− 2η̃ b+b−

]
, (51)

with ξ̃ and η̃ being dimensionless constants that depend on
the details of the SMF. (The factors of two on the diagonal
were inserted to simplify later calculations using 2b+b− =
�2κ2/ε2.) The matrix B̂ is Hermitian since the bending
functions b± are each other’s complex conjugates and the
parameters ξ̃ and η̃ are real (this was verified numerically, see
Sec. IV below).

C. Polarization transport

Combining J(0)
± and J(1)

± into one Jones vector

J± = J(0)
± + εJ(1)

± , (52)

Eqs. (44) and (50) lead to
d

ds
J = i�−1ε2 B̂ · J, (53)

where error terms of order ε3 have been neglected.
Transforming the complex components J± to Cartesian

components Jx and Jy according to

J± = 1√
2

(Jx ∓ iJy), (54)

the evolution equation for the Jones vector J can be written as

d

ds

[
Jx

Jy

]
= iξ

[
ν2

x − κ2/2 νxνy

νxνy ν2
y − κ2/2

][
Jx

Jy

]
+ iηκ2

[
Jx

Jy

]
,

(55)
where the polarization curvature moment ξ and the phase
curvature moment η are given by ξ = � ξ̃ and η = � η̃, respec-
tively. Both curvature moments have dimensions of length.
The phase curvature moment η contributes to the polarization
dynamics by an overall phase, while the polarization curvature
moment ξ determines the rate of change of the polarization
vector. This can be viewed as an inverse spin Hall effect of
light, where the evolution of the state of polarization depends
on the wavelength and on the bending of the optical fiber.

Extending the Jones vector J to a three-dimensional vector
by setting J‖ = 0, this result can be written in covariant vector
notation as

DsJ
k = iξ

(
νkν l − 1

2κ2δk
l

)
Jl + iηκ2Jk, (56)

where Ds is the spatial Fermi-Walker derivative along the
fiber’s baseline, defined explicitly in Eq. (A4) below.

IV. RESULTS

We have implemented the above calculations in WOLFRAM

MATHEMATICA [38] to numerically compute the phase cur-
vature moment η and the polarization curvature moment ξ

for various optical fibers and optical wavelengths. Here, we
discuss numerical results for telecommunication SMFs and

FIG. 3. Wavelength dependence of the phase curvature moment
η (upper figure) and the polarization curvature moment ξ (lower
figure) for typical step-index fibers with a core radius of � = 4.1 µm
and refractive indices n1 = 1.4712 and n2 = 1.4659 (Fiber I) as well
as n1 = 1.4715 and n2 = 1.4648 (Fiber II).

optical nanofibers, and also present an analytical solution to
the transport law (56) for helical optical fibers.

A. Wavelength dependence in single-mode fibers

Figure 3 shows the dependence of the phase curvature
moment η and the polarization curvature moment ξ on the
vacuum wavelength λ = 2πc/ω for two typical telecommu-
nication optical fibers with a core radius � = 4.1 µm and
refractive indices (I) n1 = 1.4712 and n2 = 1.4659 as well as
(II) n1 = 1.4715 and n2 = 1.4648.

In his 1987 paper [25], Berry predicted the polarization
curvature moment to be ξ ≈ 1/2β = λ/(4π n̄) for weakly
guiding fibers, where n̄ is the effective refractive index. De-
spite the fact that the fibers considered here are weakly
guiding (the relative index differences are �I = 0.36% and
�II = 0.45%, respectively), we find a deviation from this
prediction. Instead of ξ depending linearly on λ, the curves
closely follow an affine dependence on λ. The function ξ (λ)
thus has an isolated zero, at which Rytov’s law extends to
second order in perturbation theory. However, as the following
examples show, these curves are not affine throughout.
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FIG. 4. Core radius dependence of the phase curvature moment η
(upper figure) and the polarization curvature moment ξ (lower figure)
for nanofibers with n1 = 1.46 and n2 = 1, operated at a vacuum
wavelength of λ = 633 nm.

B. Radius dependence in nanofibers

In recent years, nanofibers, i.e., optical fibers with submi-
crometer diameters, have attracted much experimental interest
[39–41]. In this regime, the two curvature moments η and
ξ exhibit a behavior which differs significantly from that in
telecommunication SMFs described above. Figure 4 shows
the two curvature moments for nanofibers with n1 = 1.46
(fused silica) and n2 = 1 (vacuum), operated at an optical vac-
uum wavelength of λ = 633 nm, as was used experimentally
in Ref. [39].

As such fibers cease to be single-mode at � � 230 nm
(where modes with m = 0 appear) and even support multiple
modes with m = ±1 (labeled by their radial mode index),
this plot shows that the polarization curvature moments are
continuous functions at the cutoff frequencies of higher
modes.

C. Multimode regime

In the above calculations, we have mainly focused on
SMFs, as the single-mode condition guarantees that the matri-
ces Mm with m �= ±1 are nonsingular. However, we observe
numerically that these matrices are typically also nonsingular
for fibers which are not single-mode, thus allowing us to

FIG. 5. Dependence of the two polarization curvature moments
on the normalized frequency V for fibers with n1 = 1.46 and n2 = 1.
The vertical dashed lines indicate the cutoff frequencies of the higher
modes.

extend our calculations into the multimode regime. It should
be noted, however, that not all higher-order modes are linearly
polarized, in which case Eq. (56) continues to hold on a
formal level, but the physical interpretation of J becomes less
intuitive (since it merely describes the relative weights of the
solutions with m = +1 and m = −1, without a direct relation
to a polarization vector).

To investigate the behavior of the curvature moments
in the multimode regime, we consider optical fibers with
n1 = 1.46 and n2 = 1 (as in the preceding section) with the
normalized frequency V = �ωc−1

√
n2

1 − n2
2 up to V = 10,

where such fibers support five modes with azimuthal mode
index m = ±1 (they support further modes for different mode
indices, but they are not covered by the calculations pre-
sented above). As Fig. 5 shows, the curvature moments grow
steeply near the cutoff frequencies, which are marked by
vertical dashed lines. This indicates a limit on the range
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of validity of our perturbative scheme, as first-order pertur-
bations of the form εξ and εη cease to be small near the
cutoff.

D. Helical optical fibers

To illustrate the polarization dynamics derived above, we
consider the example of an optical fiber whose baseline forms
a helix. In this case, the Fermi-Walker transport for the or-
thonormal frame (A4), as well as the polarization transport
equation for the Jones vector (56), can be solved exactly.

We start by defining the curve γ , representing the baseline
of the optical fiber, as

γ (s) = [R cos(αs), R sin(αs), Hαs], (57)

where s is the arc length, R is the radius of the helix, 2πH is
the increase in height of the helix along the z axis after one
turn in the xy plane, and α = (R2 + H2)−1/2. The curve γ has
constant curvature and torsion

κ = Rα2, τ = Hα2, (58)

and the Fermi-Walker transported orthonormal frame
(T, e1, e2) can be constructed explicitly using Eq. (A5).
This frame is illustrated in Fig. 1.

At some reference point s = 0 on the fiber, the vectors e1

and e2 can be aligned with the initial orientation of transverse
electric field lines of the linearly polarized fiber modes given
in Fig. 2. Then, the Fermi-Walker transport of e1 and e2 along
γ describes the lowest-order frequency-independent transport
law for the polarization of the electromagnetic field along the
optical fiber. This is referred to as Rytov’s law, and has been
experimentally observed in Refs. [20,21].

After traveling along � complete loops of the helical fiber,
the plane of polarization of a linearly polarized electromag-
netic wave is rotated by the angle

θ (L) = 2π�Hα, � ∈ N. (59)

This is the angle between the vectors ei(s = 0) and ei(s =
2π�/α).

Our results also include higher-order frequency-dependent
corrections to the polarization dynamics given by Fermi-
Walker transport, which can be viewed as an inverse spin Hall
effect of light. All information about the polarization of the
electromagnetic wave traveling along the optical fiber, relative
to the Fermi-Walker transported frame, can be described by
the Jones vector J = (J+, J−)T. The dynamics of the Jones
vector is given by the transport equation Eq. (53), which, for
the helical fiber considered here, takes the form

d

ds
J = iκ2

[
η 1

2ξe−2iτ s

1
2ξe+2iτ s η

]
J. (60)

The transport equation can be solved exactly in this case, and
the general solution can be written as

J+ = e−i(k+k− )s(c1 + c2e2iks), (61a)

J− = −2e−i(k−k+ )s

κ2ξ
[c1(τ + k) + c2(τ − k)e2iks], (61b)

where

k = 1
2

√
4τ 2 + ξ 2κ4, k± = τ ± ηκ2, (62)

and c1 and c2 are integration constants depending on the initial
values J(0). Explicitly, one has[

J+(s)
J−(s)

]
= U (s)

[
J+(0)
J−(0)

]
, (63)

with the matrix U (s) being given by

U (s) = eiηκ2s

[
e−iτ s 0

0 e+iτ s

]

×
[

cos(ks) + iτ
k sin(ks) iξκ2

2k sin(ks)
iξκ2

2k sin(ks) cos(ks) + iτ
k sin(ks)

]
.

(64)

For illustration, consider an electromagnetic wave that is
initially right-hand circularly polarized, thus J(0) = (1, 0)T.
Then, using the exact solutions given above, one can calcu-
late the probability of observing a beam of opposite circular
polarization to be

P+−(s) =
(

1 − τ 2

k2

)
sin2(ks). (65)

This change of polarization represents an inverse spin Hall
effect of light, where the polarization dynamics is controlled
by the wavelength and by the bending of the optical fiber. For
typical fiber parameters such as R = 10 cm, H = 1 mm, and
ξ = 10 µm, the above transition probability oscillates with
an amplitude 1 − τ 2/k2 ≈ 2.5 × 10−5 and a period πk−1 ≈
31 m. Furthermore, note that k depends on the polarization
curvature moment ξ , which, for telecommunication fibers, is
an affine function of the optical wavelength λ (see Fig. 3), but
can have a more general behavior for nanofibers (Fig. 4) or for
higher-order modes (Fig. 5). As ξ controls the magnitude of
the inverse spin Hall effect of light, the results in Fig. 5 suggest
that this effect becomes large and potentially observable close
to the mode cutoff frequencies or for large values of the
normalized frequency V .

When the torsion τ is set to zero, the helix reduces to a cir-
cle of curvature κ = R−1, and the above transition probability
becomes

P+−(s)|τ=0 = sin2 (
1
2ξκ2s

)
. (66)

Thus, a circularly polarized electromagnetic wave can flip to
the opposite state of circular polarization after propagating
along a circular fiber. This occurs after the electromagnetic
wave has traveled a certain length s along the fiber, depending
on the geometry (through κ), the parameters of the fiber, and
the wave frequency (ξ depends on the refractive indices in
the core and cladding, on the radius of the core, and on wave
frequency). More precisely, we will have P+−(s)|τ=0 = 1 for
s = (2i + 1) π

ξκ2 , with i ∈ Z. A similar transition probability
was also obtained in Ref. [26]. However, our result is different
in the sense that ξ is an affine function (at least in the case of
the telecommunication fibers presented in Fig. 3) instead of a
linear function of λ, as was the case in Ref. [26]. Furthermore,
in our case ξ contains additional information about the optical
fiber parameters, such as the core radius � and the refractive
indices of the core and cladding.
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We can also calculate the transition probability from an
initially right-handed circularly polarized wave to a linearly
polarized wave:

P+x(s) = 1

2
+ ξκ2

4k2
[2τ sin2(ks) cos(2τ s)

− k sin(2ks) sin(2τ s)]. (67)

Note that while P+−(s) has a period of πk−1, P+x(s) involves
products of two sinusoidal functions with periods of πk−1 and
πτ−1, respectively. For the fiber parameters mentioned above,
we have k ≈ τ , with k − τ ≈ 1.2 × 10−6 m−1. In this case,
P+x(s) will oscillate on short-length scales with frequency k ≈
τ , and we can write

P+x(s) ≈ 1

2

[
1 − ξκ2

τ
sin2(τ s)

]
. (68)

In this approximation, the amplitude of the oscillations of
P+x(s) is controlled by the wave frequency and fiber parame-
ters (through ξ ) and by the geometry (through κ and τ ), while
the frequency of the oscillations of P+x(s) is solely controlled
by the geometry (through τ ). In particular, a transition from
circular to linear polarization is achieved when P+x(s) = 1,
although this would require some fine tuning of the geometry,
fiber parameters, and wave frequency.

In general, there will also be a long-scale modulation of
P+−(s) due to the small difference between the two frequen-
cies in Eq. (67). However, this additional modulation is only
significant on length scales of the order π (k − τ )−1 ≈ 2.5 ×
106 m and can thus be neglected.

V. DISCUSSION

We have derived an equation for the transport of the elec-
tromagnetic field’s polarization and phase in curved optical
fibers by perturbatively solving Maxwell’s equations, based
on a multiple-scales approximation scheme. The response of
the electromagnetic field to the bending was found to be
characterized by two coupling constants: The polarization
curvature moment ξ and the phase curvature moment η. We
showed how the polarization curvature moment ξ leads to an
inverse spin Hall effect of light, where the state of polarization
of the electromagnetic wave is controlled by the wavelength
and the bending of the optical fiber.

The equations for the polarization transport derived in
this paper are similar in structure to those derived by Berry
[25]. In both treatments, the leading-order transport law is
given by Fermi-Walker transport, while second-order correc-
tions depend on the fiber’s curvature. However, the details
of the second-order corrections differ: In Berry’s result,
second-order corrections depend linearly on frequency and
quadratically on curvature, but there is no explicit dependence
on fiber parameters (neither on the core radius nor on the re-
fractive indices). Furthermore, Berry’s paper does not contain
a detailed derivation (the publication of which was announced
in the paper, but we are not aware of any such article). By
contrast, our explicit derivation shows that second-order cor-
rections generally can have a more complicated frequency
dependence than predicted by Berry, as described by the phase
and polarization curvature moments (which depend on the
fiber parameters).

Similar results to Berry’s were also obtained in the related
paper by Lai et al. [26]. While our calculations model the elec-
tromagnetic field in both the fiber core and the fiber cladding
(with appropriate interface conditions), Lai et al. evaluated
the field equations only up to the fiber core radius (i.e., in
the core), which suggests that the field was approximated
to vanish in the cladding—an approximation which was not
necessary in the calculations presented in this paper and is not
satisfied in practice for nanofibers.

Moreover, our methods do not rely on the commonly used
weak-guidance approximation, nor do they make use of the
thin-layer method [26,42]. Instead, the methods presented
here implement a perturbative scheme for the full vectorial
Maxwell equations, based only on the assumption of weak
and slowly varying bending of the fiber (when compared with
the wavelength of the fields therein).

We expect the methods described here to be capable also
of providing detailed analyses of fiber mode perturbations
by other effects, such as variations in the refractive indices
due to stresses, variations in the fiber core radius, but also
gravitational effects.
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APPENDIX A: SPATIAL FERMI COORDINATE SYSTEM

This section summarizes the construction of Fermi normal
coordinates, based on Fermi-Walker transport. For an analo-
gous construction based on the Serret-Frenet frame, see, e.g.,
Refs. [26,43].

Let (M, g) be an oriented three-dimensional Riemannian
manifold with Levi-Civita connection ∇. Let s �→ γ (s) be
a curve parametrized by arc length, and denote by T = γ ′
its tangent vector [with g(T, T ) = 1] and by ν = ∇T T its
normal vector. In regions where the curvature κ = √

g(ν, ν)
is nonzero, one can introduce the orthonormal Serret-Frenet
frame (

T, N = ν

κ
, B = T × N

)
, (A1)

where N is the unit normal and B is the binormal. The torsion
of the curve γ is then defined as

τ = g(∇T N, B) = −g(∇T B, N ), (A2)

and the evolution of the Serret-Frenet frame along the curve is
given by the Serret-Frenet equations [44]

∇T T = κN, (A3a)

∇T N = −κT + τB, (A3b)

∇T B = −τN. (A3c)
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The Fermi-Walker derivative Ds is defined by its action on
any vector v as

Dsv = ∇T v + g(ν, v) T − g(T, v) ν. (A4)

One readily verifies that DsT = 0, DsN = τB, DsB = −τN ,
and Dsg = 0.

Now, let (T, e1, e2) be an orthonormal frame at any
“reference point” p = γ (0). Extending e1, e2 along γ by
Fermi-Walker transport, i.e., Dse1 = De2 = 0, one obtains an
orthonormal frame [T (s), e1(s), e2(s)] along the entire curve
γ . The Fermi-Walker transported vectors e1(s) and e2(s) can
be explicitly constructed along any curve γ with nonvanishing
curvature κ as(

e1(s)
e2(s)

)
=

(
cos θ (s) − sin θ (s)
sin θ (s) cos θ (s)

)(
N (s)
B(s)

)
, (A5)

where

θ (s) =
∫ s

0
τ (s′) ds′ + θ (0). (A6)

Next, define the function

ψ (x, y, s) = expγ (s)[xe1(s) + ye2(s)], (A7)

where exp : T M → M is the exponential map. The implicit
function theorem guarantees that the parameters (s, x, y) de-
fine a coordinate system in a neighborhood of the curve γ .

As (∂s, ∂x, ∂y) = [T (s), e1(s), e2(s)] is an orthonormal
frame along γ , one finds that along γ the metric tensor takes
the form

gi j = δi j . (A8)

The Christoffel symbols along γ can be determined using
the general formula

�i jk = g(∂i,∇∂ j ∂k ). (A9)

Using the definition of the Fermi-Walker transport, one finds⎛
⎝∇T T

∇T e1

∇T e2

⎞
⎠ =

⎛
⎝ 0 +g(ν, e1) +g(ν, e2)

−g(ν, e1) 0 0
−g(ν, e2) 0 0

⎞
⎠

⎛
⎝T

e1

e2

⎞
⎠,

(A10)

from which one can read �i js = �is j and �iss. It thus remains
to determine �i jk where the last indices are both distinct
from s. This is accomplished by considering the curve ξ �→
ψ (s, c1ξ, c2ξ ), where s, c1, and c2 are constant. By Eq. (A7),
this is a geodesic, which implies that c1∂x + c2∂y is autopar-
allel, which means

c2
1∇∂x ∂x + c2

2∇∂y∂y + 2c1c2∇∂x ∂y = 0. (A11)

Since the constants c1 and c2 are arbitrary, one finds that
all covariant derivatives entering this equation vanish, hence
�i jk vanishes whenever the last two indices are both distinct
from s.

In total, one thus finds that the only nonzero Christoffel
symbols (up to symmetry) along γ are

�xss = +νx, �yss = +νy, (A12a)

�ssx = −νx, �ssy = −νy, (A12b)

where ν i = (0, νx, νy ) are the components of the normal vec-
tor ν in the frame (T, e1, e2) (they are functions of s alone).
Using ∂ ig jk = � jki + �ki j , one finds that the only nonzero
derivatives of gi j along γ are

∂xgss = −2νx, ∂ygss = −2νy. (A13)

Expanding the metric along γ in a Taylor series in x and y,
one obtains

gi j = δi j − 2δs
i δ

s
j (νxx + νyy) + O(x2) + O(y2). (A14)

Up to error terms of order r2 = x2 + y2, one thus has

g = dx2 + dy2 + (1 − ν ix
i )2ds2 + O(r2). (A15)

While the calculations leading to Eq. (A15) were perturbative,
it turns out that the error terms vanish in flat Euclidean space.
This can be seen by noting that the metric of Eq. (A15)
without the error terms has vanishing Riemann curvature, and
that the xy plane is totally geodesic, so that straight coordinate
lines in the xy plane are exact solutions to the geodesic equa-
tion. Error terms thus arise only in the presence of curvature,
and are thus absent for the applications in this paper.

In cylindrical coordinates (s, r, ϑ ), one finds

g = dr2 + r2dϑ2 +
[

1 − r√
2

(
ν+e+iϑ − ν−e−iϑ

)]2

ds2,

(A16)
where

ν± = 1√
2

(νx ∓ iνy). (A17)

In terms of these functions, the curvature κ and the torsion τ

take the form

κ (s) =
√

2 ν+(s) ν−(s), τ = i

2

(
ν ′

+(s)

ν+(s)
− ν ′

−(s)

ν−(s)

)
.

(A18)

Conversely, one has

ν± = κ√
2

exp

[
∓i

(∫ s

0
τ (s′)ds′ + const.

)]
. (A19)

APPENDIX B: INHOMOGENEITIES

Here, we give explicit expressions for the inhomogeneities
�(m,k)

μ arising in Eqs. (35) and (46). To express them in a
concise way, we introduce some notation.

First, define the two operators

Lk
m = 1√

2

[
∂

∂r
+ m

r
+ kr2β̃

]
, (B1a)

B± = − irβ̃√
2

[
4b± + ∂b±

∂ς

]
. (B1b)

Then, denoting by aμ the column vector of field compo-
nents defined in Eq. (26), let A, B, and C be defined as follows:

A+
maμ =

⎛
⎜⎜⎜⎜⎝

L2
−ma0

L2
−ma‖

L2
−(m+1)a+

L2
−(m−1)a−

⎞
⎟⎟⎟⎟⎠ + 2iβ̃b+

⎛
⎜⎜⎝

0
+a+

0
−a‖

⎞
⎟⎟⎠, (B2a)
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A−
maμ =

⎛
⎜⎜⎜⎜⎝

L2
+ma0

L2
+ma‖

L2
+(m+1)a+

L2
+(m−1)a−

⎞
⎟⎟⎟⎟⎠ + 2iβ̃b−

⎛
⎜⎜⎝

0
+a−
−a‖

0

⎞
⎟⎟⎠, (B2b)

B+aμ = B+aμ + [2b+∂ς + (∂ςb+)]

⎛
⎜⎜⎜⎝

0
+a+

0
−a‖

⎞
⎟⎟⎟⎠, (B2c)

B−aμ = B−aμ + [2b−∂ς + (∂ςb−)]

⎛
⎜⎜⎜⎝

0

+a−
−a‖

0

⎞
⎟⎟⎟⎠, (B2d)

C0aμ =
√

2b+b−r

⎛
⎜⎜⎜⎜⎝

L3
0a0

L3
2a‖

L3
1a+

L3
1a−

⎞
⎟⎟⎟⎟⎠

+ 2
√

2irβ̃b+b−

⎛
⎜⎜⎝

0
a+ + a−

−a‖
−a‖

⎞
⎟⎟⎠, (B2e)

C+
maμ = rb2

+√
2

⎛
⎜⎜⎜⎝

L3
−ma0

L3
−ma‖

L3
−(m+1)a+

L3
−(m−1)a−

⎞
⎟⎟⎟⎠

+ 2
√

2irβ̃b2
+

⎛
⎜⎜⎝

0
a+
0

−a‖

⎞
⎟⎟⎠ + b2

+

⎛
⎜⎜⎝

0
0
0

a+

⎞
⎟⎟⎠, (B2f)

C−
maμ = rb2

−√
2

⎛
⎜⎜⎜⎜⎝

L3
+ma0

L3
+ma‖

L3
+(m+1)a+

L3
+(m−1)a−

⎞
⎟⎟⎟⎟⎠

+ 2
√

2irβ̃b2
−

⎛
⎜⎜⎝

0
+a−
−a‖

0

⎞
⎟⎟⎠ + b2

+

⎛
⎜⎜⎝

0
0

a−
0

⎞
⎟⎟⎠. (B2g)

With these definitions at hand, the inhomogeneities of the
first-order equations can be written as

� (0,1)
μ = A+

−1a(−1,0)
μ + A−

+1a(+1,0)
μ , (B3a)

�(±1,1)
μ = −2iβ̃∂ςa(±1,0)

μ , (B3b)

�(±2,1)
μ = A±

±1a(±1,0)
μ . (B3c)

Further, the inhomogeneities of the second-order equa-
tions are

� (0,2)
μ = −2iβ̃∂ςa(0,1)

μ

+ A+
−1a(−1,1)

μ + A−
+1a(+1,1)

μ

+ B+a(−1,0)
μ + B−a(+1,0)

μ , (B4a)

�(±1,2)
μ = −∂2

ςa(±1,0)
μ − 2iβ̃∂ςa(±1,1)

μ

+ A±
0 a(0,1)

μ + A∓
±2a(±2,1)

μ

+ C0a(±1,0)
μ + C±

∓1a(∓1,0)
μ , (B4b)

�(±2,2)
μ = −2iβ̃∂ςa(±2,1)

μ

+ A±
±1a(±1,1)

μ + B±a(±1,0)
μ , (B4c)

�(±3,2)
μ = A±

±2a(±2,1)
μ + C±

±1a(±1,0)
μ . (B4d)

These source terms do not couple the temporal field com-
ponent a0 with the spatial components a‖ and a±, which is
consistent with the decoupled system given in Eq. (13).
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