
PHYSICAL REVIEW RESEARCH 5, 023139 (2023)

Temperature dependence of spin-model parameters in antiferromagnets
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The temperature dependence of mesoscopic spin-model parameters is derived in two-sublattice antiferromag-
netically aligned systems based on Green’s function theory. It is found that transversal spin correlations decrease
the anisotropy terms while increasing the Heisenberg and Dzyaloshinsky–Moriya exchange interactions and the
latter’s contribution to the anisotropy. The obtained temperature dependences show quantitative agreement with
the results for ferromagnets, and they also agree well with numerical atomistic simulations which treat the spin
correlations without approximations. Possible applications of the results in multiscale modeling are discussed.

DOI: 10.1103/PhysRevResearch.5.023139

I. INTRODUCTION

The most widely studied class of antiferromagnets con-
tains two sublattices on which the magnetic moments point
oppositely to each other. Materials where the magnitude of the
moments on the sublattices is different are known as ferrimag-
nets. Both antiferromagnets [1–4] and ferrimagnets [5,6] have
attracted much attention recently as a material platform for
spintronics. Their dynamics is typically orders of magnitude
faster than that of ferromagnets, including higher spin-wave
frequencies [1]; relativistic domain wall motion [7,8]; en-
hanced magnetization switching rates induced by current [9],
thermal excitations [10,11] or ultrashort laser pulses [12–14];
and increased demagnetization speeds [15]. Antiferromagnets
may transform into a phase where the sublattice magneti-
zations have a weak parallel or ferromagnetic component.
This transformation can be achieved by applying an ex-
ternal field [16], increasing the temperature [17], or even
in the ground state in the presence of the Dzyaloshinsky–
Moriya interaction [18,19]. Due to the different temperature
dependences of the sublattice magnetizations and angular
momenta, they can become compensated in certain ferrimag-
nets, influencing the velocity and the movement direction of
domain walls and skyrmions driven by spin-polarized cur-
rents or thermal gradients [20–22]. At the angular momentum
compensation point, ferrimagnets combine the advantages of
both ferromagnets and antiferromagnets: easy control and
detection of their net magnetization by an external field, an-
tiferromagneticlike ultrafast dynamics, and the potential for
high-density devices.
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These phenomena can often be successfully modeled by
theoretical approaches agnostic to the underlying atomic
structure, such as finite-temperature macrospin models like
the Landau–Lifshitz–Bloch equation [23] or continuum theo-
ries. In these models, the on-site anisotropy contributions and
the pairwise interactions, such as exchange or Dzyaloshinsky–
Moriya terms, are intrinsically temperature dependent due to
averaging over the fluctuations and correlations of atomic
spins in a finite volume. Computer simulations using atom-
istic spin models [24] can naturally describe the equilibrium
thermodynamics and nonequilibrium dynamics of antiferro-
magnets and ferrimagnets, but they are considerably more
resource intensive. The price paid for the reduced com-
putational cost of the mesoscopic methods is that the
temperature-dependent effective parameters of these mod-
els are difficult to determine. While first-principles methods
have proven successful in calculating atomistic [25–27] or
zero-temperature continuum [28,29] spin-model parameters,
their application to finite-temperature mesoscopic models
remains limited. The temperature dependence of the mag-
netocrystalline anisotropy energy has been calculated based
on a disordered local moment scheme [30–32]. However,
this method treats spin fluctuations on a mean-field level,
since modeling correlations in density-functional theory is
inherently challenging. Methods for calculating exchange
interactions at finite temperature have been proposed in
Refs. [33,34], but the degree of spin disorder was determined
from atomistic simulations in these cases. Therefore, obtain-
ing the effective parameter values for the models require
fitting to experimental data obtained in a wide temperature
range which are not always available, or to the results of atom-
istic spin-model simulations which counteracts the reduced
computational cost of the mesoscopic models.

This difficulty can be circumvented by applying analyt-
ical methods which treat correlations accurately and can
approximate these temperature-dependent parameters at low
computational costs. Such methods are often based on Green’s
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functions, where the difficulty arises in choosing the decou-
pling scheme, i.e., the procedure for truncating the infinite
series of correlation functions of increasing order. Nonlin-
ear spin-wave theory is based on conventional diagrammatic
perturbation methods developed for bosonic and fermionic
systems, and is widely used for describing quantum fluctua-
tions [35,36] at low temperatures. These methods are often
inaccurate for spin models at elevated temperatures; for ex-
ample, they predict a finite jump in the magnetization at the
critical temperature in simple ferromagnets [37,38]. For ac-
curately modeling the temperature-induced phase transitions,
semiempirical decoupling schemes for spin Green’s functions
have been developed by Tyablikov [39], known as the random-
phase approximation, and by Callen [40], which have proven
to be especially accurate for low and high spin values, re-
spectively. The method has been generalized to two-sublattice
antiferromagnets by Anderson and Callen [41]. The appli-
cations of these methods to two-dimensional ferromagnetic
and antiferromagnetic quantum spin systems is summarized in
Ref. [42], and antiferromagnets with Dzyaloshinsky–Moriya
interactions have been treated within the random-phase ap-
proximation in Refs. [43,44]. These works primarily focused
on the calculation of the magnetizations, the correlation func-
tions, and the magnon frequencies at finite temperatures,
which can be used to describe phase transitions, but not on
the connection between the atomistic and mesoscopic models.
The latter topic has been investigated for ferromagnets in the
classical limit of infinite spin in Refs. [45–47], but the cor-
responding investigations for antiferromagnetically aligned
systems seem to be lacking.

Here, we derive the temperature dependence of the ef-
fective interaction parameters in mesoscopic models of
two-sublattice antiferromagnets and ferrimagnets. We extend
the Green’s function theory in Ref. [41] by including all terms
preserving rotational symmetry around the axis of the mag-
netizations, namely, Heisenberg and Dzyaloshinsky–Moriya
exchange interactions as well as single-ion and two-ion
anisotropy terms, and discuss both the classical and quantum
cases. A comparison with atomistic Monte Carlo simulations
demonstrates the accuracy of the method in treating spin
correlations at a fraction of the computational cost of the
numerical simulations.

The paper is organized as follows. In Sec. II A, we present
the self-consistency equations of Green’s function theory,
which we apply to derive the correspondence between the
atomistic and mesoscopic models in Sec. II B. We discuss
the scaling exponents of the effective parameters in Sec. II C.
We apply the method to a square lattice in Sec. III and com-
pare the predictions with atomistic simulations.

II. THEORY

A. Green’s function theory

We consider a two-sublattice magnet described by the
atomistic spin Hamiltonian

H = − 1

2

∑
i, j,r,s

(
Jrs

i j SirS js + �Jrs
i j Sz

irSz
js + Drs

i j (Sir×S js)
)

−
∑
i,r

Kr
(
Sz

ir

)2 −
∑
i,r

μrBzSz
ir . (1)

Here r, s ∈ {A, B} denote the two sublattices, Jrs
i j is the Heisen-

berg exchange interaction between atoms at sites i and j,
Drs

i j is the Dzyaloshinsky–Moriya vector, �Jrs
i j is the two-ion

anisotropy, Kr is the single-ion magnetocrystalline anisotropy,
μr is the magnetic moment, and Bz is the external magnetic
field. We note that this model describes an antiferromagnet
when μA = μB and a ferrimagnet when μA �= μB. Sir stands
for the spin vectors; for most considerations, they will be
treated as classical unit vectors |Sir | = 1, since atomistic spin-
model simulations used for comparison are easier to perform
in the classical limit. However, at certain points the quantum-
mechanical case with spin operators will be discussed. The
number of unit cells in the lattice will be denoted by Nc,
corresponding to the number of atoms in both the A and
B sublattices. Note that fully analytical results in the limit
Nc → ∞ are only available when the types of interactions are
more restricted; therefore, in most cases we will rely on semi-
analytical techniques where lattice sums over a finite number
of lattice sites must be performed. It will be assumed that in
the classical ground state, spins on sublattice A are oriented
along the +z direction, while spins on sublattice B point along
the −z direction. To stabilize the antiferromagnetic alignment,
it will be assumed that the antiferromagnetic intersublattice
coupling JAB

i j < 0 is dominant compared to the intrasublattice
coupling and the Dzyaloshinsky–Moriya interaction, while
the anisotropy prefers spin alignment along the z axis.

The equation of motion generated by the Hamiltonian H
reads

∂t Sir = −γ Sir×Beff
ir (2)

in the classical limit, where γ is the gyromagnetic ratio.
Equation (2) describes the precession of the spins around
the effective magnetic field Beff

ir = −μ−1
r ∂H/∂Sir . We intro-

duce a local coordinate system where all spins are oriented
along the +z direction in the classical ground state, with
S̃iA = SiA, S̃z

iB = −Sz
iB and S̃±

iB = −S∓
iB, where S±

iB = Sx
iB ± iSy

iB
denotes the ladder operators. In linear spin-wave theory, the
dynamical equation is linearized around the classical ground
state in the quantities S̃±

ir . We introduce the shorter nota-
tions S̃(1)

ir ∈ {S̃+
iA, S̃−

iB} and S̃(2)
ir ∈ {S̃−

iA, S̃+
iB} since this linearized

equation couples the + and − indices between the A and
B sublattices. After performing spatial and temporal Fourier
transformation ∂t → −iω, we will use the notations

S̃qr = 1√
Nc

∑
Ri

e−iq(Ri−R j )S̃ir, (3)

Jrs
q =

∑
Ri−R j

e−iq(Ri−R j )
(
Jrs

i j + �Jrs
i j + 2Krδrs

)
, (4)

J′rs
q =

∑
Ri−R j

e−iq(Ri−R j )
(
Jrs

i j + iDz,rs
i j

)
. (5)

Here, Ri − R j denotes the vector connecting the lattice sites
i and j, where Ri = (xi, yi, zi ) stands for the position of the
spin i in the lattice. Note that only the z component of the
Dzyaloshinsky–Moriya vectors appears in these expressions.
In these variables, the linearized equation of motion reads

ωS̃
(2)
q = γμ−1H̃

SW,q
S̃

(2)
q , (6)
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where single and double underlines denote vectors and ma-
trices in sublattice indices r, s. Here μ = diag(μ) and the

spin-wave Hamiltonian is

H̃
SW,q

= diag(J
0
σ + μBz ) − J

′
q
σ z, (7)

with σ = [1,−1]T and σ z = diag(σ ) a Pauli matrix, which
appear due to the antiparallel alignment of the sublattices.

Note that the (1) and (2) components of the spins are
decoupled in the linearized equation of motion, because the
Hamiltonian in Eq. (1) contains all possible single-spin and
two-spin terms that are rotationally invariant around the z di-
rection. This simplification may be justified in systems with at
least a threefold rotational symmetry around the Néel vector,
such as the trigonal antiferromagnet α-Fe2O3 [17], hexagonal
ferrimagnets like GdCo5 [48], and cubic ferrimagnets includ-
ing Mn2RuxGa [49]. Even if the rotational symmetry is lower,
such as in atomically thin antiferromagnetic Mn layers on

Nb(110) [50], this model should provide a useful approxima-
tion if the anisotropy terms are considerably weaker than the
exchange interactions.

The eigenvalues of Eq. (6) correspond to the magnon
frequencies. The thermal occupation of the magnon modes
enables the calculation of the sublattice magnetizations and
the two-spin correlation functions at low temperatures [51]. At
elevated temperatures, a higher number of magnons becomes
excited, leading to a temperature-dependent renormalization
of the frequencies. A self-consistent procedure for treating
this renormalization based on Green’s functions was intro-
duced in Refs. [40,41], which we apply to the present system
here. Details of the derivation are given in the Appendix. In
this method, the single-particle excitation spectrum is given
by the eigenvalues of the matrix γμ−1	̃

q
, where the matrix

	̃
q

replacing the spin-wave Hamiltonian H̃
SW,q

in Eq. (7)

reads

	̃
q

= diag

([
J

0
〈S̃z〉 + 2α0

∑
q′

(〈S̃z〉J′
q
〈S̃z〉) ◦ 


q′

]
σ + μBz

)
−

[
〈S̃z〉J′

q
+ 2α0

∑
q′

(〈S̃z〉J
q−q′ 〈S̃

z〉) ◦ 
T
q′

]
σ z, (8)

where 〈S̃z〉 = diag(〈S̃z〉) and ◦ denotes elementwise multi-
plication. The coefficient α0 is a phenomenological constant
required for the decoupling of the Green’s functions (see
Appendix); here it will be set to α0 = 1/2 in the classical
limit of the decoupling scheme proposed by Callen and An-
derson [40,41]. The 


q
matrix is related to the transversal spin

correlation functions via

〈S̃(1)
q (S̃

(2)
q )T 〉 = 2〈S̃z〉


q
. (9)

The magnon frequencies are expressed as

ω±
q = 1

2

(
γ

μA
	̃AA

q + γ

μB
	̃BB

q

)
± 1

2

(
γ

μA
	̃AA

q − γ

μB
	̃BB

q

)
νq,

(10)

νq =
√√√√1 +

4 γ

μA
	̃AB

q
γ

μB
	̃BA

q(
γ

μA
	̃AA

q − γ

μB
	̃BB

q

)2 . (11)

Note that ω+
q � 0 and ω−

q � 0 if the antiferromagnetic
alignment of the sublattices is stable. For example, in the
antiferromagnetic limit with identical sublattices and no ex-
ternal field, one obtains γμ−1

A 	̃AA
q = −γμ−1

B 	̃BB
q , yielding

ω−
q = −ω+

q . The opposite signs of the frequencies describe
that the modes have opposite circular polarizations, which
has also been demonstrated experimentally in a ferrimagnet
recently [52].

Equation (8) is made self-consistent by determining the
correlation functions from the spectral theorem [42]



q

= lim
ε→0+

− Im
∫ ∞

−∞

1

πNc
σ z(ω + iε − γμ−1	̃

q
)−1γμ−1n(ω)dω.

(12)

This integral is evaluated in the Appendix. The function
n(ω) = kBT/ω corresponds to the occupation number of the
magnon mode with frequency ω in the classical limit in units
of action. Substituting this function simplifies Eq. (12) to



q

= 1

Nc
kBT σ z

(
	̃

−1

q

)T
. (13)

The sublattice magnetizations are given by the Langevin func-
tion 〈

S̃z
r

〉 = coth 
−1
r − 
r, (14)

where 
r = ∑
q 
rr

q may be interpreted as the total spin car-
ried by the magnons on sublattice r. At zero temperature,

r = 0 holds as can be seen from Eq. (13), and the sublattice
magnetizations are saturated 〈S̃z

r〉 = 1.
It is worth noting that 〈S̃z

r〉 = 1 does not hold in the quan-
tum case even for T = 0, as is already known from linear spin-
wave theory [51]. Using spin operators in the quantum case,
Eqs. (8) and (12) remain valid, but the function nquantum(ω) =
h̄(eh̄ω/(kBT ) − 1)−1 now gives the Bose–Einstein occupation
number for ω > 0. The magnetic moments μr have to be
replaced by gμB, where g is the spin gyromagnetic factor of
the electron and μB is the Bohr magneton, leading to γ /μr =
h̄−1, since the magnitude of the moments is described by the
spin quantum number S in this case. Due to this different
normalization, the decoupling coefficient reads α0 = 1/(2S2)
for quantum spins. On the left-hand side of Eq. (9), the prod-
uct of the spin components 〈S̃(1)

−qr S̃(2)
qs 〉 has to be replaced by

the anticommutator 1
2 〈[S̃(1)

−qr, S̃(2)
qs ]+〉. The expectation values

of the sublattice magnetizations can be calculated from the
Brillouin function as〈

S̃z
r

〉quantum = SBS (SXr ), (15)

with Xr = 2 arcoth(2
r ) using the definition of 
r given
above. Although the notations are different, it can be shown
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that the system of equations presented here is equivalent
to Ref. [41] when the Dzyaloshinsky–Moriya and two-ion
anisotropy terms are set to zero. For T = 0, one obtains

r > 0 and 〈S̃z

r〉 < S, indicating that the classical ground state
is not the correct quantum ground state. Note that although
the Brillouin function and in the classical limit the Langevin
function also define the magnetization in mean-field theory,
the argument of the functions differs from the mean-field
model in Green’s function theory; see Ref. [53] for a detailed
discussion.

The main result of the Green’s function formalism is the
calculation of the frequencies of the two magnon modes
ω+

q and −ω−
q in Eq. (10) and of the sublattice magnetiza-

tions in Eq. (14). These expressions allow us to calculate
the temperature-dependent mesoscopic parameters via direct
comparison to the excitation frequencies of the continuum
model. Our theory is numerically validated in Sec. III, where
the proposed analytical expressions are compared to numeri-
cal Monte Carlo simulations for a specific spin model, where
the excitation frequencies can be given in a simpler form.

B. Effective temperature-dependent parameters

In the long-wavelength limit, the Hamiltonian in Eq. (1) can be approximated by the free-energy functional

F =
∫

1

2

∑
r,s

( ∑
α,β,γ

J rs,αβ
m ∂αmγ

r ∂βmγ
s +

∑
α,β

Drs,αβ
m Lrs,αβ

)
−

∑
r,s

Krs
m mz

rmz
s −

∑
r

MrBzmz
r − J AB

m0 mAmBdd r (16)

in d spatial dimensions. Here, the magnetization fields mr are required to be of unit length, being defined as Mrmz
r = μr〈S̃z

r〉/Vc,
where Vc is the volume of the unit cell and Mr is the saturation magnetization of the sublattice. The m subscript denotes
effective mesoscopic parameters, while α, β, and γ are Cartesian indices. The first sum of Eq. (16) describes energy con-
tributions from a spatially inhomogeneous magnetization. In the Dzyaloshinsky–Moriya term, the Lifshitz invariant Lrs,αβ =
1/2

∑
γ ,δ εαγ δ (mγ

r ∂βmδ
s − mδ

r∂βmγ
s ) depends on the considered symmetry class [54]. The other three terms in Eq. (16) remain

finite for homogeneous sublattice magnetizations, describing the energy contribution depending on the global orientation of the
magnetization vectors with respect to the easy axis, to the external field, and to each other in the two sublattices.

The equation of motion in the continuum model reads

∂t mr = −γ mr×
(

− 1

Mr

δF
δmr

)
, (17)

which transforms into a form analogous to Eq. (6) in the local coordinate system and in Fourier space. Requiring that the
excitation frequencies of the continuum model coincide with Eq. (10) of the atomistic model in the long-wavelength limit, the
following temperature dependence is obtained for the parameters:

J rs,αβ
m = 1

2Vc

∑
j

[
Jrs

i j + α0
(
Jrs

i j + �Jrs
i j

)
Re

〈
S̃(1)

js S̃(2)
ir

〉]
Rα

i jR
β
i j

〈
S̃z

r

〉〈
S̃z

s

〉
, (18)

Drs,zβ
m = − 1

Vc

∑
j

[
Dz,rs

i j + α0
(
Jrs

i j + �Jrs
i j

)
Im

〈
S̃(1)

js S̃(2)
ir

〉]
Rβ

i j

〈
S̃z

r

〉〈
S̃z

s

〉
, (19)

Krs
m = 1

Vc

[
Krδrs

(
1 − α0

〈
S̃(1)

ir S̃(2)
ir

〉) + 1

2

∑
j

�Jrs
i j

(
1 − α0Re

〈
S̃(1)

js S̃(2)
ir

〉) + α0Dz,rs
i j Im

〈
S̃(1)

js S̃(2)
ir

〉]〈
S̃z

r

〉〈
S̃z

s

〉
, (20)

J AB
m0 = 1

Vc

∑
j

(
JAB

i j + α0
(
JAB

i j + �JAB
i j

)
Re

〈
S̃(1)

jB S̃(2)
iA

〉)〈
S̃z

A

〉〈
S̃z

B

〉
, (21)

where Ri j = Ri − R j . The comparison based on the magnon
spectrum only provides information on the z component of
the Dzyaloshinsky–Moriya interaction; the other components
may be obtained by comparing the atomistic and continuum
models for ground states oriented along different directions.

The parameters Eqs. (18)–(21) show similar trends to what
has been calculated in single-sublattice ferromagnetic systems
in Refs. [45–47]. The main contribution to the temperature
dependence of all the parameters comes from 〈S̃z

r〉〈S̃z
s〉, which

corresponds to the mean-field or random-phase approxima-
tions. By considering a decoupling scheme different from
the random-phase approximation, i.e., α0 �= 0, the tempera-
ture dependence of the micromagnetic parameters is corrected
by taking spin-correlation effects into account. The correla-

tion corrections proportional to α0 have a positive sign for
the isotropic exchange and the Dzyaloshinsky–Moriya terms,
which makes these terms decrease slower in magnitude with
the temperature. Note that for only nearest-neighbor interac-
tions, the relative corrections to the isotropic exchange and
Dzyaloshinsky–Moriya interactions turn out to be precisely
the same, similar to what was observed in a single-sublattice
ferromagnet in Ref. [46]. In contrast, the correlation correc-
tions are negative for the anisotropy terms, indicating a faster
decrease. In ferromagnets, this is known to correspond to
the Callen–Callen law K ∼ 〈Sz〉3 for the temperature depen-
dence of the uniaxial anisotropy [55] based on the first term
in Eq. (20), and to a scaling exponent K ∼ 〈Sz〉2+ε slightly
larger than 2 for the two-ion anisotropy [47] in the second
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term. The last term in Eq. (20) gives a positive contribution
to the anisotropy, meaning that the Dzyaloshinsky–Moriya
interaction stabilizes collinear order in the presence of thermal
fluctuations [46].

Equation (18) defines different mesoscopic exchange stiff-
ness parameters for the intrasublattice coupling J AA

m ,J BB
m and

for the intersublattice coupling J AB
m ,J BA

m . Together with the
anisotropy, the value of these exchange stiffness parameters
are relevant for the estimation of domain-wall width δw(T ) ∝√
K(T )/J (T ). Equation (19) describes the temperature de-

pendence of the mesoscopic intrasublattice and intersublattice
Dzyaloshinsky-Moriya parameters, which are necessary for
the estimation of the skyrmion radius [56,57]. The compe-
tition between the different contributions to the anisotropy
term in Eq. (20) gives rise to fluctuation-driven spin reori-
entation transitions induced by the Dzyaloshinsky–Moriya
interaction [58] and unusual exponents in the temperature de-
pendence of the anisotropy parameter [47], similarly to what
has been observed before in ferromagnetic systems.

As mentioned in Sec. II A, in the quantum case S̃(1)
js S̃(2)

ir

has to be replaced by the anticommutator 1/2[S̃(1)
js , S̃(2)

ir ]+. For
S = 1/2, this choice enforces the coefficient of the single-ion
anisotropy Kr to vanish (α0 = 1/(2S2) and 1/2[S̃(1)

ir , S̃(2)
ir ]+ =

1/4), which is consistent with the fact that the single-ion
anisotropy just acts as a constant energy term. Indeed, this
condition was one of the motivations behind choosing the
value of the decoupling coefficient α0 in Ref. [41].

C. Scaling exponents

To obtain a simpler formula for the temperature depen-
dence of the parameters in the continuum model, we only keep
the Heisenberg interactions which are typically the largest in
magnitude, and calculate the expressions

J rs
m0 = 1

Vc

∑
j

(
Jrs

i j + α0
(
Jrs

i j + �Jrs
i j

)
Re

〈
S̃(1)

js S̃(2)
ir

〉)〈
S̃z

r

〉〈
S̃z

s

〉
,

(22)

which are connected to Eqs. (18) and (21). The correlation
functions are real in the absence of the Dzyaloshinsky–Moriya
interaction, and we substitute them into Eq. (22) from Eq. (9)
using Eq. (13), and approximate 	̃

q
with the spin-wave Hamil-

tonian H̃
SW,q

from Eq. (7) in the low-temperature limit. This

results in

J
m0

= 1

Vc

(
J

0
+ 2α0kBT

Nc

∑
q

J
0
◦ [

σ z
(
H̃

−1

SW,q

)T ])

◦ [〈S̃z〉〈(S̃z
)T 〉]. (23)

As mentioned above, the temperature dependence of the
parameters of the continuum model is often expressed in
terms of a power law of the magnetization. This is common
practice partially because it is easier to implement numer-
ically in a micromagnetic framework and partially because
in nonequilibrium situations the value of the magnetization
better represents the thermodynamic state of the system than
the temperature of the heat bath. Both antiferromagnetic and
ferrimagnetic systems may be characterized by the sublat-
tice magnetizations 〈S̃z

A〉, 〈S̃z
B〉. As shown in Eqs. (18)–(23),

the sublattice magnetizations are a more natural choice for
expressing the effective parameters than the combinations
μA〈S̃z

A〉 ± μB〈S̃z
B〉 resulting in the total and staggered mag-

netizations, respectively. The temperature T in Eq. (23) may
also be expressed by either sublattice magnetization using the
low-temperature expansion of Eq. (14):

1 − 〈
S̃z

r

〉 ≈ 
r ≈ kBT

Nc

∑
q

[
σ z

(
H̃

−1

SW,q

)T ]rr
. (24)

Equation (24) connects the two sublattice magnetizations to
each other as well, meaning that either one can be used to
express the effective parameters. To simplify the expressions
further, we go to the classical limit, assume that all intrasub-
lattice interaction terms are the same, and there is no external
magnetic field. In this case, it can be shown based on the
definition Eq. (14) that 〈S̃z

A〉 = 〈S̃z
B〉, meaning that the temper-

ature dependence of all magnetizations is precisely the same
if they are normalized to their zero-temperature value. This is
the case for antiferromagnets with identical sublattices, but is
also a good approximation for ferrimagnets with μA �= μB if
the intrasublattice interactions are negligible compared to the
intersublattice ones. This follows from the fact that the self-
consistency Eqs. (8), (13), and (14) do not depend explicitly
on the magnetic moments. In the following, we restrict our
attention to this limit and leave the case of different sublattice
magnetizations observable in, e.g., ferrimagnets with a com-
pensation point or in the quantum limit, to later studies.

As a specific example, we consider nearest-neighbor anti-
ferromagnetic exchange JAB

0 = JBA
0 = −(1 − λ)J0 and JAA

0 =
JBB

0 = λJ0, where J0 determines the absolute strength of the
interactions and λ ∈ [0, 1] is a scaling parameter. Changing λ

transforms from a nearest-neighbor antiferromagnetic model
to two decoupled ferromagnetic sublattices, while keeping
the mean-field critical temperature kB� = (JAA

0 − JAB
0 )/3 =

J0/3 constant. Substituting Eq. (24) into Eq. (23) and using
Callen’s decoupling with 2α0 = 1 yields

J rs
m0 ∝ 〈S̃z〉2[1 + εrs(1 − 〈S̃z〉)] ≈ 〈S̃z〉2−εrs

, (25)

where 〈S̃z〉 is the magnetization on either sublattice and the
correction to the intersublattice (AB, BA) and intrasublattice
(AA, BB) exponents read

εAB = εBA = εinter =
1

Nc

∑
q

(1−λ)(γ inter
q )2

(1−λγ intra
q )2−(1−λ)2(γ inter

q )2

1
Nc

∑
q

1−λγ intra
q

(1−λγ intra
q )2−(1−λ)2(γ inter

q )2

, (26)

εAA = εBB = εintra =
1

Nc

∑
q

γ intra
q (1−λγ intra

q )
(1−λγ intra

q )2−(1−λ)2(γ inter
q )2

1
Nc

∑
q

1−λγ intra
q

(1−λγ intra
q )2−(1−λ)2(γ inter

q )2

, (27)

with the geometrical factors

γ rs
q

∑
Ri−R j

Jrs
i j =

∑
Ri−R j

e−iq(Ri−R j )Jrs
i j . (28)

The ε values from Eqs. (26) and (27) are shown in
Fig. 1 for the rock-salt structure, where the antiferromag-
netically coupled sublattices together form a simple cubic
lattice and each sublattice is an fcc lattice. For λ = 1
(ferromagnet), we numerically obtain an exponent close to
the analytical value εintra = 0.255, which was reported for
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FIG. 1. Corrections to the scaling exponents in the rock-salt
structure based on Eqs. (26) and (27). The inter- and intersublattice
Heisenberg interactions are scaled from only antiferromagnetic cou-
pling between the sublattices λ = 0 to two decoupled ferromagnetic
sublattices λ = 1.

the ferromagnetic fcc lattice in Ref. [59]. The intersublat-
tice correction to the exponent vanishes in this limit, as
can be seen from Eq. (26), meaning that for weak inter-
sublattice coupling parameters, the corresponding effective
parameter closely follows a mean-field scaling. In the λ =
0 case (antiferromagnet), the intersublattice exponent also
converges to the analytical value for a simple cubic lattice
εsc = 0.341, although the coupling between the sublattices is
antiferromagnetic instead of ferromagnetic, as in Ref. [59].
The correction to the intrasublattice exponent remains finite
in this case, meaning that the influence of spin correlations
on the temperature dependence of intrasublattice coupling
can be observed even in this limit. Increasing λ leads to a
decrease in both the intersublattice and intrasublattice ε values
at first because distributing the exchange interactions between
nearest and next-nearest neighbors brings the system closer
to a mean-field behavior. It was similarly found in Ref. [59]
that the ε value is lower for ferromagnetic FePt where inter-
actions with several neighbors were taken into account than
for any nearest-neighbor cubic lattice. However, the scaling
performed here demonstrates that this decreasing trend is re-
versed for λ values close to 1 in the intrasublattice term, while
the intersublattice ε value vanishes as discussed above.

The agreement for the exponent corrections between the
ferromagnetic and antiferromagnetic cases mentioned for
λ = 0 in the simple cubic lattice is a general property of the
model. If it is assumed that the antiferromagnetic alignment
of the spins is realized in a system where all atoms together
form a Bravais lattice, then one obtains γ AB

q+Q = −γ AB
q with Q

the wave vector of the antiferromagnetic ordering, making it
possible to rewrite Eq. (26) for λ = 0 as

εinter =
1

2Nc

∑
q,FM

γ inter
q

1−γ inter
q

1
2Nc

∑
q,FM

1
1−γ inter

q

, (29)

where the summation now runs over the atomic or fer-
romagnetic Brillouin zone which is twice the size of the

antiferromagnetic one. For infinite lattices where the sum-
mations can be replaced by integrals, the correction to the
exponent is εsc

inter = 0.341 for the simple cubic and εbcc
inter =

0.282 for the body-centered cubic lattice [59], both of which
can accommodate a two-sublattice ordering. Even for sys-
tems where all atoms together do not form a Bravais lattice
(e.g., the honeycomb lattice), it can be derived that the
expectation values and the correlation functions in the antifer-
romagnetically aligned model precisely coincide with those
of the ferromagnetic model where the sign of all intersub-
lattice coupling terms is reversed. Consequently, Eqs. (26)
and (27) may also be used for ferromagnets containing both
nearest-neighbor and next-nearest-neighbor interactions. The
agreement between the ferromagnetic and antiferromagnetic
cases essentially relies on the fact that in the classical limit,
the self-consistency Eqs. (8), (13), and (14) do not depend
on the magnon frequencies in Eq. (10), which are different
between the ferromagnetic and antiferromagnetic alignment.
This is different in the quantum case, where Eq. (12) does
depend on the frequencies as shown in the Appendix.

For weak Dzyaloshinsky–Moriya interaction, the same cor-
rection ε to the scaling exponent can be used. For two-site
anisotropy between the same pairs of atoms as the exchange,
the exponent is 2 + ε owing to the opposite sign of the corre-
lation correction between Eqs. (18) and (19) and the second
term in Eq. (20), respectively. For the on-site anisotropy term,
the exponent is close to 3 as in the ferromagnetic case [55]
since the on-site correlations are stronger than the two-site
terms.

In two-dimensional systems, the sums in Eqs. (26) and (27)
diverge for infinite lattice sizes, as is known from, e.g., the
proof of the Mermin–Wagner theorem [60]. This implies that
the exponents may only be calculated if a finite anisotropy is
taken into account, in which case they have to be evaluated
numerically. Since the correlation corrections are expected to
be enhanced in low-dimensional systems, this procedure is
carried out and compared to numerical simulations in Sec. III.

III. SIMULATIONS

To probe the accuracy of the analytical method described
in Sec. II, its predictions will be compared to the numerical
simulations based on the Hamiltonian Eq. (1). While the mag-
netization and the static correlation functions may be directly
determined from averaging over spin configurations from the
different simulation steps, the frequencies required for deter-
mining the temperature dependence of the parameters in the
continuum model are more difficult to access. Equations (9)–
(13) establish the relations between the expectation values and
the frequencies. They may be reformulated as

〈S+
−qAS−

qA〉〈S+
−qBS−

qB〉 − 〈S+
−qBS−

qA〉〈S+
−qAS−

qB〉

= 4
〈
Sz

A

〉〈
Sz

B

〉 1

N2
c

γ

μA

γ

μB

(kBT )2

ω+
q ω−

q
, (30)

〈S+
−qAS−

qA〉
2γμ−1

A

〈
Sz

A

〉 + 〈S+
−qBS−

qB〉
2γμ−1

B

〈
Sz

B

〉 = 1

Nc

kBT (ω+
q + ω−

q )

ω+
q ω−

q
. (31)

The product of the frequencies ωprod = ω+
q ω−

q is given by
Eq. (30), which also yields the sum ωsum = ω+

q + ω−
q from
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FIG. 2. Sketch of the system used for the simulations. The spin
directions illustrate a spin wave propagating along the x direction
on an antiferromagnetic background along the z direction. KA =
KB = K stand for the uniaxial anisotropy constants, −JAB = J the
intersublattice antiferromagnetic exchange parameter and DAB = D
the Dzyaloshinsky–Moriya interaction parameter.

Eq. (31). The individual frequencies may be calculated as

ω±
q = 1

2

[
ωsum ±

√
ω2

sum − 4ωprod
]
. (32)

Note that in Eqs. (30) and (31), the correlation functions
are given in the global coordinate system for easier imple-
mentation in the simulations. Since these equations establish
a connection between the eigenfrequencies, the correlation
functions and the temperature, they may be considered as
a form of the equipartition theorem. Although Eqs. (30)
and (31) were determined from the Green’s function formal-
ism, they do not depend on the explicit form of the decoupling
α0, only on the assumption that the spectral density is concen-
trated in single-particle excitations. Therefore, substituting the
expectation values obtained from the simulations into Eq. (30)
and (31) enables the calculation of the frequencies of the sim-
ulated system. Furthermore, this method allows for determin-
ing the frequencies based on Monte Carlo simulations, which
accurately describe thermal equilibrium properties but do not
provide direct access to the real-time dynamics of the system.

The simulated model system is illustrated in Fig. 2. It con-
sists of a square lattice with equivalent sublattices μA = μB =
μS, only considering nearest-neighbor intersublattice Heisen-
berg exchange −JAB = J > 0 and Dzyaloshinsky–Moriya
interactions of magnitude DAB = D, with the Dzyaloshinsky–

FIG. 3. Temperature dependence of the staggered magnetiza-
tion. Results of the numerical simulations (symbols) are compared
to Green’s function theory calculations from Eq. (14) (lines). The
atomistic model parameters are D = 0.2J for the blue curves and
D = 0.0J for the orange curves, and the anisotropy is K = 0.1J .

Moriya vectors being perpendicular to the lattice vectors
connecting the neighbors following a C4v symmetry. The easy
axis KA = KB = K is assumed to lie along one of the nearest-
neighbor directions, which enables the investigation of the
Dzyaloshinsky–Moriya vectors parallel to the z direction on
the spin-wave spectrum. The external magnetic field was set to
zero. We performed Monte Carlo simulations on a 64×64 lat-
tice using the single-spin Metropolis algorithm where the trial
spin direction is chosen uniformly on the surface of the unit
sphere. The lattice was equilibrated for 2×105 Monte Carlo
steps at each temperature, then the expectation values were
calculated from data obtained over 108 Monte Carlo steps.
To further improve the accuracy, 50 independent simulations
were averaged in the end.

Due to the symmetry of the sublattices, we obtain 〈S̃z
A〉 =

〈S̃z
B〉 = 〈Sz〉, which also coincides with the dimensionless

staggered magnetization n. The simulated and calculated
values of n are compared in Fig. 3, demonstrating good
agreement. Including the Dzyaloshinsky–Moriya interaction
decreases the staggered magnetization at a fixed temperature.
The critical temperature of the system is around kBTc ≈ 0.84J
from Green’s function theory. Note that 〈Sz〉 is not possible to
calculate accurately at temperatures close to Tc, since due to
the relatively small system size and the long simulation length
the system starts to switch between the +z and −z directions.

The spin-wave spectrum at finite temperature was calcu-
lated based on Eq. (30), since the symmetry of the sublattices
implies ω+

q = −ω−
q , and both sides of Eq. (31) vanish. For

the considered system, the two branches of the spin-wave
dispersion relation are given by

ω+
q = 〈Sz〉−1

√
(4J + 2K)2 − (2J [cos (qxa) + cos (qza)] − 2D sin (qxa))2, (33)

− ω−
−q = 〈Sz〉−1

√
(4J + 2K)2 − (2J [cos (qxa) + cos (qza)] + 2D sin (qxa))2. (34)
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FIG. 4. Spin-wave spectrum for D = 0.2J and K = 0.1J . Results
of the numerical simulations from Eq. (30) (symbols) are compared
to Green’s function theory calculations from Eqs. (33) and (34)
(lines) at two different temperatures.

The spectrum is illustrated in Fig. 4. The Dzyaloshinsky–
Moriya interaction lifts the degeneracy of the two branches
and shifts the minimum of the spectrum away from qx = 0.
The anisotropy opens a gap in the spectrum, which is ex-
change enhanced compared to the ferromagnetic case: for
K � J , ω0,AFM ≈ √

2(4J )(2K) � 2K = ω0,FM. The theo-
retical curves are given by Eqs. (33) and (34), where the
parameters J ,D = |Di j |, and K are defined as

J = [
J + α0JRe

〈
S̃(1)

jB S̃(2)
iA

〉]〈S̃z〉2, (35)

Di j = [
Di j − α0JIm

〈
S̃(1)

jB S̃(2)
iA

〉]〈S̃z〉2, (36)

K =
[

K
(
1 − α0

〈
S̃(1)

iA S̃(2)
iA

〉) − 1

2

∑
j

α0Di jIm
〈
S̃(1)

jB S̃(2)
iA

〉]〈S̃z〉2,

(37)

based on Eqs. (18)–(20) in an atomistic description. Note that
the sign changes in Eqs. (36) and (37) compared to Eqs. (19)
and (20) appear due to the sign change in J and the antiferro-
magnetic alignment of the sublattices, respectively. Figure 4
supports the high accuracy of the Green’s function formalism
up to intermediate temperature values of kBT = 0.40J .

The scaling of the parameters in the magnon spectrum
with the staggered magnetization n is shown in Fig. 5, dis-
playing a power-law behavior as discussed in Secs. II B
and II C. The explicit temperature dependence is illustrated
in Fig. 6 for comparison. These results confirm the reliability
of the Green’s function method in predicting the simulation
results. The Dzyaloshinsky–Moriya interaction D decreases
slower in temperature than the anisotropy K, as discussed
in Sec. II B for the general case. The temperature depen-
dence of the Heisenberg term J is identical to that of the
Dzyaloshinsky–Moriya interaction in Green’s function the-
ory and agrees with it in the simulations within error bars;
therefore, it is omitted from the figure. Based on a fit to
the simulation data, the scaling exponent is 1.58 for the

FIG. 5. Dependence of the effective interaction parameters on
the staggered magnetization n, equal to the sublattice magnetization
〈Sz〉 in this system. All quantities are normalized to their zero-
temperature value. Results of the numerical simulations (symbols)
are compared to Green’s function theory calculations (lines). Simu-
lation data were obtained by fitting the functions in Eq. (33) and (34)
to the simulated frequencies; error bars denote the error of this fit.
Dashed lines show a low-temperature power-law fit to the simulation
data. The atomistic model parameters are K = 0.1J and D = 0.2J
for the blue and orange curves, D = 0.0J for the yellow curves.

Dzyaloshinsky–Moriya interaction, decreased by the correc-
tion εinter = 0.42 compared to the uncorrelated value. The
scaling exponent agrees with the value of 1.54−1.57 obtained
for the ferromagnetic case in Ref. [46]. For the anisotropy,
an exponent of 3.03 is obtained without the Dzyaloshinsky–

FIG. 6. Dependence of the effective interaction parameters on
the temperature. All quantities are normalized to their zero-
temperature value. Results of the numerical simulations (symbols)
are compared to Green’s function theory calculations (lines). Simula-
tion data were obtained by fitting the functions in Eqs. (33) and (34)
to the simulated frequencies; error bars denote the error of this fit.
The atomistic model parameters are K = 0.1J and D = 0.2J for the
blue and orange curves, D = 0.0J for the yellow curves.
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FIG. 7. Correlation correction to the effective interaction pa-
rameters as a function of the staggered magnetization n. Data and
notations are identical to Fig. 5, apart from subtracting n2 from the
normalized parameters as indicated in the legend.

Moriya interaction, rather close to the well-known power
law predicting an exponent of 3 [55]. In the presence of the
Dzyaloshinsky–Moriya interaction, the exponent is slightly
reduced to 2.92, i.e., there is an additional positive contribu-
tion to the temperature dependence of the uniaxial anisotropy
due to the Dzyaloshinsky–Moriya interaction.

The accuracy of the decoupling scheme may be better vi-
sualized after subtracting n2 from the normalized parameters,
leaving only the correlation corrections shown in Fig. 7. Note
that in the random-phase approximation obtained for α0 = 0,
the curves would be zero as indicated by the dashed line in the
figure. Comparing Figs. 5 and 7, it is clear that the correlation
corrections are not negligible, contributing around 10% of
the total value of the Dzyaloshinsky–Moriya interaction and
around 50% of the total anisotropy at the highest simulated
temperatures. As mentioned earlier, for D = 0 the correction
to the anisotropy will be n3 − n2, i.e., it results in the Callen–
Callen power law [55]. The corrections are positive for the
exchange and negative for the anisotropy terms as mentioned
above, leading to increased and decreased effective exponents,
respectively. While in this plot the deviations between Green’s
function theory and the simulations become apparent, even
for the anisotropy terms the analytical description reproduces
about 2/3 of the corrections observed in the simulations. The
accuracy appears to be higher for the Dzyaloshinsky–Moriya
interaction itself and its correction to the anisotropy (differ-
ence of the orange and yellow lines).

IV. CONCLUSION

We applied Green’s function theory to calculate the
magnon frequencies in two-sublattice antiferromagnetically
aligned systems and to determine the temperature depen-
dence of the interaction parameters in the magnon spectrum.
We found that transversal spin correlations stabilize the
Heisenberg and Dzyaloshinsky–Moriya exchange interactions
against thermal fluctuations, but induce a faster decay of the

anisotropy terms with the temperature. The Dzyaloshinsky–
Moriya interaction also contributes to the uniaxial anisotropy
term via the spin correlations, increasing its value at finite
temperature in contrast to the typical decrease. We obtained
good agreement between the predictions of the theory and
Monte Carlo simulations performed on a square lattice, where
the correlations play a pronounced role due to the reduced
dimensionality.

Remarkably, these observations do not simply qualitatively
agree with previous calculations for ferromagnets [45–47], but
a mathematical correspondence can also be established. The
self-consistency equations may be exactly transformed into
each other in the classical limit when reversing the magne-
tization direction on one sublattice simultaneously with the
sign of all intersublattice coupling terms. If the intrasublattice
interactions are identical, the sublattice magnetizations and
consequently the total and staggered magnetizations show
precisely the same temperature dependence, even if the mag-
netic moments on the sublattices are different. Therefore,
the scaling relations of the inter- and intrasublattice coupling
terms discussed here can also be applied to ferromagnets with
nearest-neighbor and next-nearest-neighbor interactions.

The calculated temperature dependence of the parameters
are fundamental for the development of multiscale models
connecting first-principles spin-model parameters to finite-
temperature mesoscopic computational approaches, such as
micromagnetism or the Landau–Lifshitz–Bloch equation.
Most of the multiscale approaches proposed so far rely on an
intermediate step based on classical spin-model simulations,
which could be replaced by the considerably more efficient
semianalytical expression presented here. Multiscale methods
would be able to access the dynamics of and the phase transi-
tions in antiferromagnetically aligned systems, for example,
for a realistic and computationally efficient description of
all-optical ultrafast switching processes in ferrimagnets [61]
or of magnetic domain-wall motion in antiferromagnets [62].

Deviations in the equilibrium parameters from single-
sublattice ferromagnets are expected to be observed in
systems where the intrasublattice terms are not equivalent,
such as ferrimagnets with a compensation point, or particu-
larly when quantum effects are taken into account. Validating
the predictions of Green’s function theory in the quantum
limit would require comparisons with classical spin-model
simulations augmented by a semiquantum thermostat [63]
or with renormalized heat-bath temperatures [64], or to
quantum spin-model simulations based on quantum Monte
Carlo [65] or tensor-product states [66]. The multiscale quan-
tum approach would be completed by using the calculated
temperature-dependent parameters in the quantum version of
the Landau-Lishitz-Bloch equation [67].
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APPENDIX: DERIVATION OF THE
SELF-CONSISTENCY EQUATIONS

The dynamics of the spin system is generated by the
Poisson brackets

{
Sα

ir, Sβ
js

} = − γ

μr
εαβγ δi jδrsS

γ

ir (A1)

in the classical limit, where i, j are lattice indices; r, s are
sublattice indices; and α, β, γ are Cartesian indices as in the
main text. In the quantum case, the Poisson brackets {Sα

ir, Sβ
js}

have to be replaced by the commutators as −ih̄−1[Sα
ir, Sβ

js], and

γ /μr has to be replaced by h̄−1 in Eq. (A1) and the following
expressions. Note that in the quantum limit, we introduced
a sign change compared to the conventional commutation
relations, since the Sα

ir operators represent the dimensionless
magnetic moments of electrons which are antiparallel to the
angular momenta.

The time-dependent Green’s function is defined as

Grα;sβ
i; j (t ; u) = θ (t )

〈{
Sα

ir (t ), euSz
js (0)Sβ

js(0)
}〉

, (A2)

where θ (t ) is the Heaviside function, 〈〉 denotes averaging in
thermal equilibrium, and u is a real parameter. Here, α and
β will primarily denote the ladder operator indices + and −,
but unless they are explicitly specified the expressions are also
valid for the Cartesian indices. The Green’s function satisfies
the equation of motion

∂t G
rα;sβ
i; j = δ(t )

〈{
Sα

ir, euSz
js Sβ

js

}〉
+ θ (t )

〈{{
Sα

ir (t ), H
}
, euSz

js (0)Sβ
js(0)

}〉
. (A3)

The second term on the right-hand side of Eq. (A3)
introduces higher-order Green’s functions, which will be de-
coupled using

Gr−sz;tα
i j;k ≈ 〈

Sz
js

〉
Gr−;tα

i;k − αs+r−〈
S+

jsS
−
ir

〉
Gs−;tα

j;k . (A4)

Here we took advantage of the rotational symmetry of the
system: only such expectation values are considered in the
decoupling which are rotationally invariant around the z axis,
namely, 〈Sz

ir〉 ≡ 〈Sz
r〉, which is the same at all sites in the

sublattice due to the translational invariance of the ground
state, and 〈S+

jsS
−
ir 〉 that is replaced by half the anticommutator

in the quantum limit. The decoupling coefficients are chosen
as αs+r− = 〈Sz

r〉αsr
0 , with αsr

0 = 1/2 in the classical and αsr
0 =

1/(2SrSs) in the quantum case. This choice of the decoupling
parameters will be motivated later.

We introduce the transformed coordinate system with the
sublattice spins pointing along the local z direction as dis-
cussed in the main text, and perform temporal and spatial

Fourier transformation via ∂t → −iω and

G̃rα;sβ
q = 1

Nc

∑
Ri−R j

e−iq(Ri−R j )G̃rα;sβ
i j , (A5)

〈
S̃α

−qr S̃β
qs

〉 = 1

Nc

∑
Ri−R j

e−iq(Ri−R j )〈S̃α
jr S̃β

is

〉
. (A6)

Following the decoupling and the Fourier transformation,
Eq. (A3) reads

ωG̃r(2);tα
q = 1

2πNc

γ

μr
δrt�̃

r(2);tα +
∑

s

γ

μr
	̃rs

q G̃s(2);tα
q , (A7)

which is related to the linearized equation of motion in Eq. (6).
The additional inhomogeneous term contains

�̃rβ;tα = i
μr

γ

〈{
S̃β

ir, euS̃z
ir S̃α

ir

}〉
, (A8)

and the 	̃rs
q coefficients are introduced in Eq. (8) in the main

text, with the components given by

	̃AA
q = JAA

0 + μABz − JAB
0 − J′AA

q − 2α0

×
∑

q′

[(
JAA

q−q′ − J′AA
q′

)

AA

q′
〈
S̃z

A

〉 + J′AB
q′ 
AB

q′
〈
S̃z

B

〉]
, (A9)

	̃AB
q = J′AB

q + 2α0

∑
q′

JAB
q−q′


BA
q′

〈
S̃z

A

〉
, (A10)

	̃BA
q = − J′BA

q − 2α0

∑
q′

JBA
q−q′


AB
q′

〈
S̃z

B

〉
, (A11)

	̃BB
q = − JBB

0 + μBBz + JBA
0 + J′BB

q + 2α0

×
∑

q′

[(
JBB

q−q′ − J′BB
q′

)

BB

q′
〈
S̃z

B

〉 + J′BA
q′ 
BA

q′
〈
S̃z

A

〉]
.

(A12)

We again used the short-hand notation S̃(2)
qr ∈ {S̃−

qA, S̃+
qB}.

As in linear spin-wave theory in Eq. (6), the corresponding
equations for the S̃(1)

qr ∈ {S̃+
qA, S̃−

qB} spin components decouple
from Eq. (A7). The equations for S̃(1)

qr yield the other branch
of the spin-wave dispersion relation shown in Fig. 4, but they
need not be solved separately since they are connected to the
ω±

q frequencies by particle-hole symmetry. Equation (A7) is
solved as

G̃r(2);tα
q =

(
ω − γ

μr
	̃rs

q

)−1 1

2πNc

γ

μs
δst�̃

s(2);tα, (A13)

where the inverse matrix has poles at the real frequencies ω±
q

given in Eq. (10). These poles may be used to evaluate the
correlation functions via the spectral theorem [cf. Eq. (12)],

〈
euS̃z

js (0)S̃β
js(0)S̃α

ir (t )
〉

= lim
ε→0

∫
−2Im

(
G̃rα;sβ

i; j (ω + iε; u)
)
n(ω)e−iωt dω, (A14)
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where n(ω) is the function introduced in the main text, cor-
responding to the occupation number in units of action for
ω > 0. Equation (A14) results in


AA
q = γ

μA

1

2Nc

(
1

νq
[n(ω+

q ) − n(ω−
q )] + n(ω+

q ) − n(−ω−
q )

)
,

(A15)

AB

q = γ

μA

γ

μB

1

Nc

1

ω+
q − ω−

q
	̃BA

q (n(ω+
q ) − n(ω−

q )), (A16)


BA
q = − γ

μA

γ

μB

1

Nc

1

ω+
q − ω−

q
	̃AB

q (n(ω+
q ) − n(ω−

q )), (A17)


BB
q = γ

μB

1

2Nc

(
1

νq
[n(ω+

q ) − n(ω−
q )] − n(ω+

q ) + n(−ω−
q )

)
(A18)

for u = 0. Here Eq. (9) was used to introduce the 
rs
q

quantities, and �̃A−;A+(u = 0) = 2〈Sz
A〉 and �̃B+;B−(u = 0) =

−2〈Sz
B〉 were substituted based on the Poisson brackets. In the

classical limit, these equations simplify to


AA
q = 1

Nc

kBT

det 	̃q
	̃BB

q , (A19)


AB
q = − 1

Nc

kBT

det 	̃q
	̃BA

q , (A20)


BA
q = 1

Nc

kBT

det 	̃q
	̃AB

q , (A21)


BB
q = − 1

Nc

kBT

det 	̃q
	̃AA

q , (A22)

with det 	̃q = 	̃AA
q 	̃BB

q − 	̃AB
q 	̃BA

q . These equations are sum-
marized in Eq. (13). Note that 
rs

q is symmetrized by the
anticommutator in the quantum case in the convention used
here, and the components are given by Eqs. (A15)–(A18). The
sublattice-diagonal part of Eq. (A14) also yields a differential
equation in u, which is of the same form as the one described
in Ref. [40] in the quantum case and in Ref. [46] in the clas-
sical limit; the solution of this equation with the appropriate
boundary conditions gives the final Eq. (14) or (15) required
for self-consistency.

The intersublattice terms have to satisfy 
AB
q =

〈S̃+
−qAS̃+

qB〉 = 〈S̃−
−(−q)BS̃−

−qA〉∗ = 
BA∗
−q . When reintroducing

the general decoupling coefficients αs+r− from Eq. (A4)
in Eqs. (A16) and (A17), this leads to the constraint
〈S̃z

B〉αB−A− = 〈S̃z
A〉αA+B+, as discussed in Ref. [41]. This

constraint is satisfied by the choice used in the main text
and described after Eq. (A4). However, it also allows for
using different decoupling schemes for the intrasublattice and
intersublattice terms.
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Effects of frustration and Dzyaloshinskii-Moriya interaction on
the spin-1/2 anisotropic Heisenberg antiferromagnet with the
application to La2CuO4, Phys. Status Solidi B 258, 2000508
(2021).

[45] R. Bastardis, U. Atxitia, O. Chubykalo-Fesenko, and H.
Kachkachi, Unified decoupling scheme for exchange and
anisotropy contributions and temperature-dependent spectral
properties of anisotropic spin systems, Phys. Rev. B 86, 094415
(2012).

[46] L. Rózsa, U. Atxitia, and U. Nowak, Temperature scaling of the
Dzyaloshinsky-Moriya interaction in the spin wave spectrum,
Phys. Rev. B 96, 094436 (2017).

[47] R. F. L. Evans, L. Rózsa, S. Jenkins, and U. Atxitia, Tempera-
ture scaling of two-ion anisotropy in pure and mixed anisotropy
systems, Phys. Rev. B 102, 020412(R) (2020).

[48] K. Nassau, L. Cherry, and W. Wallace, Intermetallic compounds
between lanthanons and transition metals of the first long pe-
riod: II–Ferrimagnetism of AB5 cobalt compounds, J. Phys.
Chem. Solids 16, 131 (1960).

[49] H. Kurt, K. Rode, P. Stamenov, M. Venkatesan, Y.-C. Lau, E.
Fonda, and J. M. D. Coey, Cubic Mn2Ga Thin Films: Crossing
the Spin Gap with Ruthenium, Phys. Rev. Lett. 112, 027201
(2014).

[50] R. Lo Conte, M. Bazarnik, K. Palotás, L. Rózsa, L. Szunyogh,
A. Kubetzka, K. von Bergmann, and R. Wiesendanger, Co-
existence of antiferromagnetism and superconductivity in
Mn/Nb(110), Phys. Rev. B 105, L100406 (2022).

[51] P. W. Anderson, An approximate quantum theory of the antifer-
romagnetic ground state, Phys. Rev. 86, 694 (1952).

[52] Y. Nambu, J. Barker, Y. Okino, T. Kikkawa, Y. Shiomi,
M. Enderle, T. Weber, B. Winn, M. Graves-Brook, J. M.
Tranquada, T. Ziman, M. Fujita, G. E. W. Bauer, E. Saitoh, and
K. Kakurai, Observation of Magnon Polarization, Phys. Rev.
Lett. 125, 027201 (2020).

023139-12

https://doi.org/10.1038/s41565-018-0255-3
https://doi.org/10.1038/s41565-018-0345-2
https://doi.org/10.1103/PhysRevResearch.2.013293
https://doi.org/10.1088/1361-6463/50/3/033003
https://doi.org/10.1016/0304-8853(87)90721-9
https://doi.org/10.1103/PhysRevB.68.104436
https://doi.org/10.1103/PhysRevB.84.224429
https://doi.org/10.1103/PhysRevB.78.140403
https://doi.org/10.1088/0953-8984/26/10/104202
https://doi.org/10.1103/PhysRevLett.93.257204
https://doi.org/10.1103/PhysRevB.89.224401
https://doi.org/10.1103/PhysRevLett.120.097202
https://doi.org/10.1016/j.jmmm.2011.08.053
https://doi.org/10.1103/PhysRevLett.111.127204
https://doi.org/10.1103/PhysRev.117.117
https://doi.org/10.1103/RevModPhys.85.219
https://doi.org/10.1103/PhysRevLett.9.286
https://doi.org/10.1103/PhysRevB.60.1082
https://doi.org/10.1103/PhysRev.130.890
https://doi.org/10.1103/PhysRev.136.A1068
https://doi.org/10.1016/j.physrep.2006.07.002
https://doi.org/10.1103/PhysRevB.71.214418
https://doi.org/10.1002/pssb.202000508
https://doi.org/10.1103/PhysRevB.86.094415
https://doi.org/10.1103/PhysRevB.96.094436
https://doi.org/10.1103/PhysRevB.102.020412
https://doi.org/10.1016/0022-3697(60)90083-4
https://doi.org/10.1103/PhysRevLett.112.027201
https://doi.org/10.1103/PhysRevB.105.L100406
https://doi.org/10.1103/PhysRev.86.694
https://doi.org/10.1103/PhysRevLett.125.027201


TEMPERATURE DEPENDENCE OF SPIN-MODEL … PHYSICAL REVIEW RESEARCH 5, 023139 (2023)

[53] H. Callen and S. Shtrikman, A probability density common to
molecular field and collective excitation theories of ferromag-
netism, Solid State Commun. 3, 5 (1965).

[54] B. Schweflinghaus, B. Zimmermann, M. Heide, G. Bihlmayer,
and S. Blügel, Role of Dzyaloshinskii-Moriya interaction
for magnetism in transition-metal chains at Pt step edges,
Phys. Rev. B 94, 024403 (2016).

[55] H. Callen and E. Callen, The present status of the temperature
dependence of magnetocrystalline anisotropy, and the l(l+1)2
power law, J. Phys. Chem. Solids 27, 1271 (1966).

[56] J. Barker and O. A. Tretiakov, Static and Dynamical Properties
of Antiferromagnetic Skyrmions in the Presence of Applied
Current and Temperature, Phys. Rev. Lett. 116, 147203 (2016).

[57] R. Tomasello, K. Y. Guslienko, M. Ricci, A. Giordano,
J. Barker, M. Carpentieri, O. Chubykalo-Fesenko, and G.
Finocchio, Origin of temperature and field dependence of mag-
netic skyrmion size in ultrathin nanodots, Phys. Rev. B 97,
060402(R) (2018).

[58] B. Nagyfalusi, L. Udvardi, L. Szunyogh, and L. Rózsa, Spin
reorientation transition in an ultrathin Fe film on W(110) in-
duced by Dzyaloshinsky-Moriya interactions, Phys. Rev. B 102,
134413 (2020).

[59] U. Atxitia, D. Hinzke, O. Chubykalo-Fesenko, U. Nowak, H.
Kachkachi, O. N. Mryasov, R. F. Evans, and R. W. Chantrell,
Multiscale modeling of magnetic materials: Temperature de-
pendence of the exchange stiffness, Phys. Rev. B 82, 134440
(2010).

[60] N. D. Mermin and H. Wagner, Absence of Ferromagnetism
or Antiferromagnetism in One- or Two-Dimensional Isotropic
Heisenberg Models, Phys. Rev. Lett. 17, 1133 (1966).

[61] V. Raposo, F. García-Sánchez, U. Atxitia, and E. Martínez,
Realistic micromagnetic description of all-optical ultrafast
switching processes in ferrimagnetic alloys, Phys. Rev. B 105,
104432 (2022).

[62] J. Hirst, U. Atxitia, S. Ruta, J. Jackson, L. Petit, and T. Ostler,
Temperature-dependent micromagnetic model of the antifer-
romagnet Mn2Au: A multiscale approach, Phys. Rev. B 106,
094402 (2022).

[63] J. Barker and G. E. W. Bauer, Semiquantum thermodynam-
ics of complex ferrimagnets, Phys. Rev. B 100, 140401(R)
(2019).

[64] R. F. L. Evans, U. Atxitia, and R. W. Chantrell, Quantitative
simulation of temperature-dependent magnetization dynam-
ics and equilibrium properties of elemental ferromagnets,
Phys. Rev. B 91, 144425 (2015).

[65] A. W. Sandvik and K. S. D. Beach, Monte Carlo simula-
tions of quantum spin systems in the valence bond basis,
arXiv:0704.1469.

[66] J. I. Cirac and F. Verstraete, Renormalization and Tensor Prod-
uct States in Spin Chains and Lattices, J. Phys. A: Math. Theor.
42, 504004 (2009).

[67] P. Nieves, D. Serantes, U. Atxitia, and O. Chubykalo-Fesenko,
Quantum Landau-Lifshitz-Bloch equation and its comparison
with the classical case, Phys. Rev. B 90, 104428 (2014).

023139-13

https://doi.org/10.1016/0038-1098(65)90158-4
https://doi.org/10.1103/PhysRevB.94.024403
https://doi.org/10.1016/0022-3697(66)90012-6
https://doi.org/10.1103/PhysRevLett.116.147203
https://doi.org/10.1103/PhysRevB.97.060402
https://doi.org/10.1103/PhysRevB.102.134413
https://doi.org/10.1103/PhysRevB.82.134440
https://doi.org/10.1103/PhysRevLett.17.1133
https://doi.org/10.1103/PhysRevB.105.104432
https://doi.org/10.1103/PhysRevB.106.094402
https://doi.org/10.1103/PhysRevB.100.140401
https://doi.org/10.1103/PhysRevB.91.144425
http://arxiv.org/abs/arXiv:0704.1469
https://doi.org/10.1088/1751-8113/42/50/504004
https://doi.org/10.1103/PhysRevB.90.104428

