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The in-plane (thermal) Hall effect is an unconventional transverse response when the applied magnetic field
is in the (heat) current plane. In contrast to the normal Hall effect, the in-plane Hall effect requires the absence
of certain crystal symmetries, and possibly manifests a nontrivial topology of quantum materials. An accurate
estimation of the intrinsic in-plane (thermal) Hall conductivity is crucial to identify the underlying mechanisms
as in the case of the Kitaev spin-liquid candidate α-RuCl3. Here, we give the symmetry conditions for the
in-plane Hall effect and discuss the implications that may impede the experimental evaluation of the in-plane Hall
conductivity within the single-device measurement. First, the lack of symmetry in crystals can create merohedral
twin domains that cancel the total Hall signal. Second, even in a twin-free crystal, the intrinsic response is
potentially contaminated by the out-of-plane conduction in three-dimensional systems, which is systematically
unavoidable in the in-plane Hall systems. Third, even in a quasi-two-dimensional system, the conversion of
(thermal) resistivity ρ̂ (λ̂) to (thermal) conductivity σ̂ (κ̂) requires protocols beyond the widely-used simplified
formula σxy = ρyx/(ρ2

xx + ρ2
yx ) (κxy = λyx/(λ2

xx + λ2
yx )) due to the lack of in-plane-rotational symmetry. In princi-

ple, two independent sample devices are necessary to accurately estimate the σxy (κxy). As a case study, we discuss
the half-integer quantization of the in-plane thermal Hall effect in the spin-disordered state of α-RuCl3. For an
accurate measurement of the thermal Hall effect, it is necessary to avoid crystals with the merohedral twins
contributing oppositely to κxy, while the out-of-plane transport may have a negligible effect. To deal with the
field-induced rotational-symmetry breaking, we propose two symmetry-based protocols, improved single-device
and two-device methods. The considerations in the paper are generally applicable to a broad class of materials
and provide a useful starting point for understanding the unconventional aspects of the in-plane Hall effect.

DOI: 10.1103/PhysRevResearch.5.023138

I. INTRODUCTION

The conventional Hall effect occurs in metals and semicon-
ductors as a transverse electric field (Ey) in an electric current
along the x axis (Jx) when the magnetic field (B) is applied
along the z direction [Fig. 1(a)] [1]. This is due to the Lorentz
force on the conduction electrons and the Ey changes its sign
when the Bz is reversed [Ey(−Bz ) = −Ey(Bz )]. Two other
types of transverse responses are known, which are induced
when the magnetic field is applied in the xy plane. One of them
is the planar Hall effect, which occurs when B is rotated by an
angle θ from the x axis to the y axis [Fig. 1(b)] [2–4]. This is
actually not a true field-odd Hall effect, but rather a field-even
response resulting from the anisotropy of magnetoresistance
[5]. The other is the in-plane Hall effect, which is the main
interest of this study. The typical configuration is shown in
Fig. 1(c), where the applied Bx is parallel to Jx and the induced
Ey is reversed by the inversion of B, and thus is the field-odd
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response [6]. This effect has been reported experimentally in
cubic germanium as the B3-order effect [7,8], as well as in
trigonal bismuth [9,10], and in monoclinic binary semimetals
as the B-linear effect [11,12].

The in-plane Hall effect, or sometimes referred to as the
longitudinal Hall effect, was previously recognized as a con-
sequence of the multiband effect [8,12–17]. Independently
from these early studies, this effect has recently attracted
increasing interest in the context of a topological signature
of quantum materials. Theories consider the quantization
of the anomalous Hall effect by in-plane magnetization on
magnetic topological insulators [18–25], the effect of the spin-
orbit interaction [26,27], and the field-induced quantization
in two-dimensional electron gas [27–29]. The role of the
Berry curvature in the electron bands suggests an intrinsic
(dissipationless) nature of the in-plane Hall effect in topo-
logically nontrivial semimetals [27,30–32]. Experimentally,
the in-plane Hall conductivity is suggested to be a signa-
ture of unconventional topological transports as reported in
the nonmagnetic semimetal ZrTe5 [33], heterodimensional
superlattice of VS2−VS [34], and magnetic half-Heusler
DyPtBi [35]. For magnetic insulators, the in-plane thermal
Hall effect has been debated to be an evidence for the chiral
Majorana edge mode [36] in a Kitaev spin liquid candidate
α-RuCl3 [37–39].
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FIG. 1. Schematic configurations of (a) normal Hall effect,
(b) conventional planar Hall effect, and (c) field-odd in-plane Hall
effect (longitudinal Hall effect). Gray rectangle is a crystal. Blue,
red, and orange arrows represent the magnetic field B, current Jx

applied along the x axis, and the induced Hall electric field Ey along
the y axis, respectively. xyz is the Cartesian coordinate. Left and right
panels represent the Ey response to the B-field reversal.

Importantly, the in-plane Hall effect is a consequence of
the absence of certain crystal symmetries [40–42]. This is
different from the situation for the normal Hall effect, which
is always allowed by the time-reversal symmetry breaking
under the out-of-plane field. As a result, several factors need
to be carefully considered in order to discuss the in-plane
Hall effect. In the view of the growing importance of this
unconventional effect, we discuss the symmetry conditions
and appropriate experimental protocols for the in-plane Hall
effect, which provide a useful guide for the interpretation
of the observed signal to extract the intrinsic feature of this
phenomenon.

In this paper, we start by summarizing the symmetry re-
quirements for the in-plane (thermal) Hall effect. We derive
the absence conditions for the in-plane Hall effect by apply-
ing a pictorial approach [43], which is an extension of the
previous studies to arbitrary magnetic fields in nonmagnetic
and magnetic materials. It is applied to ZrTe5 to see if the
observation in Ref. [33] is allowed by symmetry.

The following three sections address the consequences of
the lack of symmetries in the in-plane Hall system. First,
we consider the effect of crystal twinning, which degrades
the observed in-plane Hall signal. Second, we discuss the
experimental protocol for estimating the in-plane Hall con-
ductivity by the conversion between the (thermal) resistivity
tensor ρ̂ (λ̂) and the conductivity tensor σ̂ (κ̂). We show that
the in-plane Hall resistivity in a (twin-free) three-dimensional
system is contaminated by the out-of-plane transport, and is
not directly proportional to the intrinsic in-plane Hall conduc-
tivity. Interestingly, this effect is unavoidable due to the lack
of symmetry for the in-plane Hall system. Third, we consider
the quasi-two-dimensional system, where the above effect is

negligible. Even in this case, the effect of the in-plane mag-
netic field breaks the xy-rotational symmetry, which restricts
the application of the conversion formula from ρ̂ (λ̂) to σ̂

(κ̂), and requires an approach beyond the conventional five-
electrode method using a single device.

Finally, as a case study, we consider the thermal Hall effect
in α-RuCl3 to see how the above factors affect the obser-
vations. We point out that the procedures used in previous
work to quantify the thermal Hall conductivity potentially
contain a systematic error. This is due to the breaking of the
xy-rotational symmetry by the in-plane field, which has not
been sufficiently verified in previous studies. We propose the
improvements of the experimental protocols in order to clarify
the half-integer quantization of κxy in the spin-disordered state
of α-RuCl3. The effect of twinning is also discussed.

As a note on the terminology, we emphasize that the in-
plane Hall effect differs from the conventional planar Hall
effect with respect to the response to the B-field reversal. In
this paper, to follow the convention [34] and to avoid confu-
sion, we use the term in-plane (thermal) Hall effect to refer
to the field-odd response and the planar Hall effect only for
the field-even response. However, a few papers use the term
“planar Hall effect” [28,30,39,44] to refer to the field-odd
in-plane (anomalous/thermal) Hall effect. We do not follow
this trend, as the term “planar Hall effect” has long been used
to evoke the field-even effect, although we do not say that this
wording is inappropriate [45].

II. THE SYMMETRY CONDITIONS OF THE IN-PLANE
HALL EFFECT

Previous studies provide symmetry conditions of the in-
plane Hall effect for nonmagnetic systems [41,46,47], for
magnetic systems [42] up to the B-linear term, and for the
Berry curvature terms in nonmagnetic systems [20,32]. There
is also a specific application to a honeycomb-lattice system
[48]. To more intuitively capture the importance of crystal
symmetry, we apply a pictorial approach [43] to obtain the
necessary conditions for the in-plane Hall effect. This is useful
for heuristically deriving the symmetry conditions of various
phenomena such as nonreciprocal phenomena and multifer-
roicity [49–51] in both magnetic and nonmagnetic systems

We consider the equation, Ey = ρyx(Bx, By, 0)Jx, which
relates the electric field along the y axis and the applied
current along the x axis under the in-plane magnetic field
B = (Bx, By, 0). We separate it into a field-even planar Hall
component, Ee

y ∝ ρe
yx and a field-odd component, Eo

y ∝ ρo
yx,

and consider only the latter, i.e., the in-plane Hall effect. We
note that the conditions for ρo

yx = 0 are equivalent to those
for σ o

xy = 0 because the form of the conductivity tensor is
identical to that of the resistivity. All of these arguments
hold regardless of the microscopic mechanism, and are even
applicable to the in-plane thermal Hall effect by replacing the
Ey with the temperature gradient −∇yT , and the current Jx

with the heat current.
For simplicity, we consider nonmagnetic systems in the

main text, and discuss the extension to magnetic materials
in Appendix A. We note that the in-plane Hall effect is
allowed when the magnetic field is applied in an arbitrary
direction with respect to the crystal axes [41], which reduces
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FIG. 2. Symmetry conditions for the absence of the in-plane Hall
effect. Gray rectangle is a crystal. Orange arrow represents a tentative
in-plane Hall electric field Eo

y proportional to ρo
yx (Bx, By, 0), which is

proved to be zero. The superscript o denotes the field-odd nature. The
rotation or mirror operation for each figure transforms the top panel
into the bottom panel. The symmetry operations for the zero-field
state are denoted as (a) a C2 axis along the x axis (C2x , black line),
(b) a vertical mirror in the yz plane (myz, black line), (c) an out-of-
plane C2 axis along the z axis (C2z, black ellipse), and (d) a horizontal
mirror in the xy plane (mxy, black L-shape symbol).

the crystal symmetry to the triclinic 1 and 1̄. We discuss rather
special cases where the magnetic field is applied within a
high-symmetry direction. The following four cases are the
symmetry conditions for the absence of the in-plane Hall
effect:

(1) ρo
yx(Bx, 0, 0) is zero if there is a C2 axis along the x axis

[Fig. 2(a)].
(2) ρo

yx(Bx, 0, 0) is zero if there is a vertical mirror sym-
metry m in the yz plane [Fig. 2(b)].

(3) ρo
yx(Bx, By, 0) is zero if there is a C2 axis along the z

axis [Fig. 2(c)].
(4) ρo

yx(Bx, By, 0) is zero if there is a horizontal mirror
symmetry m in the xy plane [Fig. 2(d)].

Figures 2 provide how these above conditions are vali-
dated. The top panel for each figure can be converted to the
bottom one through the symmetry operation, which proves
that ρo

yx. We consider the condition 1 as an example. Fig-
ure 2(a) considers that the sample has the C2 axis along the x
axis and current flows along the x axis under a magnetic field
parallel to x axis. We assume that the crystal has an intrinsic
symmetry C2 along the x axis in zero field, and the applied
field along x does not break the symmetry (e.g., field-induced
nematic/CDW/SDW transition involving the C2 symmetry
breaking). This last assumption is necessary to guarantee that
the crystal is identical when the C2 rotation is applied even in a
finite field. As shown in the top panel of Fig. 2(a), we assume
a transverse electric field along the y axis (Eo

y ) due to the in-
plane Hall effect. We note that the experimental configuration

is unchanged except for the direction of Eo
y , when we apply

the C2 rotation to the whole experimental setup including the
B and the applied J [see the lower panel in Fig. 2(a)]. This
leads to the conclusion that Eo

y = 0, i.e., ρo
yx = 0. In the same

way, we can prove the other conditions 2–4 in Appendix A.
Here, we apply the above symmetry conditions to selected

examples to see if the in-plane Hall effect is allowed. Inter-
esting contrast is obtained between the in-plane Hall effect in
VS2 − VS-superlattice [34] and in ZrTe5 [33]. As carefully
discussed in Ref. [34], monoclinic unit cell allows the in-
plane Hall effect, which is consistent with the experimental
results. In the case of an orthorhombic point group mmm,
however, it is indeed forbidden as long as the field is in one
of the mirror planes, i.e., ρo

xy(Bx, By, 0) = ρo
yz(0, By, Bz ) =

ρo
zx(Bx, 0, Bz ) = 0. Accordingly, the reported in-plane Hall

effect [ρzx(Bx, 0, Bz )] in ZrTe5 (space group: No. 63, Cmcm
at RT) [33] is forbidden by the ac mirror symmetry, where
the xyz axes correspond to the crystallographic abc axes. The
discrepancy between the symmetry condition and the exper-
iments suggests an unrecognized symmetry lowering in the
sample used, such as a monoclinic at low temperatures, or
an unexpectedly large sensitivity to external shear strain or
sample misalignment.

III. EFFECT OF LACK OF SYMMETRY 1: TWINS

As shown above, the in-plane Hall effect requires that the
crystals lack certain symmetries. In real materials, this fea-
ture potentially causes twinning to cancel the signal expected
in a monodomain. In practice, twinned crystals are avoided
for measurements, but sometimes careful inspection miss a
twin by merohedry [52], where its twin operation belongs
to the holohedry point group (higher-symmetry group of the
crystals). When the twin operation reverses the in-plane Hall
voltage, the twin domains, crystal 1 and 2, contribute oppo-
sitely to the signal. If v is the volume ratio of the crystal 1, the
total in-plane Hall signal is

ρo,tot
yx (Bx, 0, 0) = vρo,1

yx + (1 − v)ρo,2
yx = (2v − 1)ρo

yx, (1)

which vanishes at v = 0.5. Similar situation occurs due to a
twin by pseudo-merohedry [52] in a monoclinic crystal as
shown in Fig. 3(a). Twinning due to a lack of mirror symmetry
parallel to the xy plane results in the opposite contribution
from each domain.

Another case is for a layered rhombohedral crystal,
which potentially contains twinning by reticular merohedry
(obverse-reverse twinning) [52]. We consider the crystal be-
longing to the point group 3̄m [Fig. 3(b)]. As the C2 axis
is absent along the x axis, the crystal often twinned with
the domain associated with the C2 rotation along the x axis
[Fig. 3(c), top]. Each domain contributes oppositely to the
in-plane Hall signal along the y axis under Bx. This twinning
occurs for example when there is the stacking fault regarding
the inversion of ABC-stacked layers to CBA-stacked layers of
triangular lattices [Fig. 3(c), bottom]. To accurately evaluate
the magnitude of the intrinsic in-plane Hall effect, we need to
select de-twinned crystals, e.g., by checking crystallographic
morphology or the extinction rules of the diffraction patterns.
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FIG. 3. (a) Twinning by pseudo-merohedry in terms of mxy for
a 2/m crystal (the C2 symmetry is along the y axis). Gray paral-
lelograms are twin domains, where the in-plane Hall effect (∝ Eo

y )
is opposite. (b) Schematic top view of a trigonal crystal belonging
to 3̄m point group and symmetry elements. Red triangle: Threefold
rotation along the z axis, C3. Blue arrows: In-plane twofold rotations
C2, where one of them is along the y axis. There is no C2 axis along
the x axis. Orange lines: Vertical mirror planes mv, one of which
is parallel to the xz plane. Hexagonal axes ([100]h and [010]h), and
Cartesian coordinates, x, y, and z are also shown. (c) Two 3̄m crystals
with respect to the twinning by reticular merohedry (obverse-reverse
twins), where the C2 rotation along the x axis transforms one from
the other. The induced in-plane Hall electric field Eo

y is reversed.
The bottom panel shows a corresponding schematic rhombohedral
ABC and CBA-stacking of triangular lattices, where a unit cell is
emphasized by black lines.

IV. EFFECT OF LACK OF SYMMETRY 2: OUT-OF-PLANE
TRANSPORT

We consider a protocol for evaluating the intrinsic in-plane
Hall conductivity for a twin-free crystal. We start by con-
sidering the relationship between conductivity and resistivity.
A conductivity tensor (σ̂ ) is a 3 × 3 matrix connecting an
applied electric field (E) and an induced current (J),

J = σ̂E. (2)

Instead of measuring the conductivities directly, one usually
attempts to measure resistivities because it is much easier to
control the direction of the J in a sample than to manage the E.
The resistivity tensor ρ̂ connects the J and E inversely from
the σ̂ ,

E = ρ̂J. (3)

As the theories usually provide the predictions of the conduc-
tivity, the accurate conversion of the experimental observation
ρ̂ to the σ̂ is important to identify the underlying mechanisms
of the in-plane Hall effect.

C2
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Jx
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Eo
y

( ρ oyx)

Ee
z

( ρ ezx)

Jy
( σ oyz)

β x, a
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zc
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( σ oyx)

FIG. 4. Schematics of a 2/m crystal (gray parallelepiped) and
the in-plane Hall effect. Orange plane is the mirror (mxz) parallel to
the xz plane. Cyan arrow is the C2 axis along the y axis. xyz is the
Cartesian coordinate introduced as x ‖ a and y ‖ b, and β (>90◦)
is the angle between the a and c axes. The in-plane Hall effect
Ey (∝ ρo

yx , oblique orange arrow) is allowed under J ‖ B ‖ x. The
out-of-plane electric field Ez (vertical orange arrow) is induced by the
crystalline planar Hall coefficient (∝ ρe

zxJx). The out-of-plane current
is deflected towards y by the Lorentz force from the Bx to induce Jy

(∝ σ o
yzEz, red arrow on the right), which is added to the intrinsic Jy

(∝ σ o
yx , red arrow in the middle).

Here, we consider the following question. Suppose that we
observe a nonzero ρo

yx(Bx ), can we immediately conclude that
the signal is exclusively ascribed to the finite in-plane Hall
conductivity (σ o

xy)? It is, in fact, not the case because ρo
yx(Bx )

is contaminated with the effect of the out-of-plane transport in
the three-dimensional system.

We consider a monoclinic 2/m system (Fig. 4), which
provides a typical formula of our interest with respect to
the in-plane Hall conductivity. The conductivity tensor is as
follows:

σ̂2/m(Bx ) =

⎛
⎜⎝

σ e
xx σ o

xy σ e
xz

−σ o
xy σ e

yy σ o
yz

σ e
xz −σ o

yz σ e
zz

⎞
⎟⎠. (4)

Here, we set the C2 axis parallel to the y axis and the mirror
plane in the xz plane (Fig. 4). The z axis is defined as orthogo-
nal to the xy plane. The superscripts, e and o, are for field-even
and field-odd quantities, respectively. Since the tensor form of
ρ̂ is identical with that of σ̂ , we put

ρ̂2/m(Bx ) =

⎛
⎜⎝

ρe
xx −ρo

yx ρe
zx

ρo
yx ρe

yy −ρo
zy

ρe
zx ρo

zy ρe
zz

⎞
⎟⎠. (5)

By taking the inverse matrix, ρ̂ = σ̂−1, we obtain the for-
mula for ρo

yx,

ρo
yx = σ e

zz

	σ

(
σ o

xy + σ e
xzσ

o
yz/σ

e
zz

)
, (6)

where 	σ is the determinant of σ̂ (see Appendix B). We note
that the ρo

yx is not directly proportional to the in-plane Hall
conductivity σ o

xy, but is contaminated by the term σ e
xzσ

o
yz/σ

e
zz,

where σ o
yz corresponds to the Hall effect in the yz plane under

Bx. This term is finite if the field-even component σ e
xz is finite.

We refer σ e
xz (and ρe

zx) to the crystalline planar Hall effect (see
Appendix C).

The contamination of the cross term between the σ o
yz and

σ e
xz can be understood as shown in Fig. 4. The application of

the current Jx generates the out-of-plane electric field Ez due
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to ρe
zx, which leads to the out-of-plane conduction Jz. In the

presence of the Bx, the Jz is deflected in the yz plane to produce
the transverse Jy ∝ σ o

yz, which produces an Ey together with
the intrinsic in-plane Hall current (Jy ∝ σ o

yx) [53].
It is evident that in a monoclinic crystal the σ e

xz can be finite
even in zero field because β �= 90◦ does not guarantee the
diagonalized form of the conductivity tensor. As a matter of
fact, the effect due to σ e

xz is unavoidable for higher-symmetry
systems when we consider the in-plane Hall effect of a three-
dimensional system at finite field. We can prove that the
symmetry condition for the finite in-plane Hall effect σ o

xy is
equivalent to that for the σ e

xz (see Appendix C).
This contamination effect is serious if there is a significant

anomalous (Berry curvature) contribution in σ o
yz. We consider

that Hall conductivity can be divided into two terms, normal
(Lorentz force origin) and anomalous (Berry curvature origin)
components, i.e., σ o

xy = σ N
xy + σ A

xy and σ o
yz = σ N

yz + σ A
yz. The

anomalous in-plane Hall resistivity ρA
yx(Bx ) is, then, expressed

as follows:

ρA
yx = σzz

	σ

(
σ A

xy + σxzσ
A
yz/σzz

)
. (7)

Here, we omit the superscripts, e and o, for simplicity. Evi-
dently, we cannot directly connect the observation of the ρA

yx

with the presence of the σ A
xy, and need to exclude the effect

from σ A
yz.

For quasi-two-dimensional systems, the situation is ex-
pected to become simpler. We assume that σ A

yz is negligible.
The yz components is small because we can prove that σ N

yz ∝
μz, where μz is the out-of-plane carrier mobility. As the mag-
nitude of σ e

xz cannot exceeds
√

σ e
xxσ

e
zz (since 	σ > 0), we can

reasonably expect that the xz component is also restricted by
the low μz (∝ σ e

zz). These features can validate the assumption
for ignoring the effect of the out-of-plane transport in the
layered systems, and the approximation taking the resistivity
and conductivity tenors as 2 × 2 matrices. In the next section,
we consider the case of the quasi-two-dimensional system and
how the σ o

xy is measured.

V. EFFECT OF LACK OF SYMMETRY 3: ABSENCE OF xy
ROTATIONAL SYMMETRY

In this section, we ignore the xz and yz components in σ̂

and ρ̂ [Eqs. (4) and (5)] for the quasi-two-dimensional system.
Even in such a simplified situation, we have to consider the
absence of the xy-rotational symmetry.

To emphasize the distinction from the conventional normal
Hall effect, we first consider the measurement of the isotropic
system under a magnetic field along the z axis [Fig. 5(a)]. A
five-electrode measurement using a single-device is sufficient
to estimate σ o

xy, where two electrodes are connected to a cur-
rent source, and three are used to monitor longitudinal and
transverse voltage drops. We obtain ρe

xx(Bz ) (= Vx/Jx · wt/lx )
and ρo

yx(Bz ) (= Vy/Jx · wt/ly), where lx and ly are the elec-
trode distance for Vx and Vy, respectively. From the view-point
of symmetry and Onsager’s relation, we can put ρe

yy(Bz ) =
ρe

xx(Bz ) and ρo
xy(Bz ) = −ρo

yx(Bz ). We obtain the single-device
formula to estimate the normal Hall conductivity

σ o
xy(Bz ) = ρo

yx/
[(

ρe
xx

)2 + (
ρo

yx

)2]
. (8)

(a) Normal Hall effect, ρyx(Bz) (b) In-plane Hall effect, ρyx(Bx)

(c) In-plane Hall effect, ρxy(Bx)
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FIG. 5. Schematic five-electrode configurations for measure-
ments of (a) a normal Hall effect, and (b) an in-plane Hall effect.
The gray rectangle is a shaped sample with width w and thickness
t . White circles are electrodes, and black lines are wires to measure
longitudinal voltage drop Vx and transverse voltage difference Vy in
an applied current along the x axis Jx . The magnetic field is applied
(a) perpendicular to the xy plane Bz, and (b) along the x axis Bx . In
the setup of (b), we obtain ρxx (Bx ) and ρyx (Bx ). (c) Another setup
for the in-plane Hall effect with Jy providing ρyy(Bx ) and ρxy(Bx ).
(d) The setup with 90◦ rotation of the magnetic field from (b), giving
ρxx (−By ) and ρyx (−By ). A hexagon marker on each corner denotes
the in-plane orientation of the sample (see text).

In contrast to the above case, the σ o
xy in the in-plane Hall

system cannot be estimated within a single setup of the five-
electrode measurement [Fig. 5(b)]. The magnetoresistivity
tensor when the magnetic field is applied along the x axis is
given by

ρ̂2D(Bx ) =
(

ρe
xx −ρo

yx

ρo
yx ρe

yy

)
. (9)

Here, we assume that the symmetry of the system is high
enough to have the purely field-odd off-diagonal component,
i.e., no planar Hall effect (this is not true, for example, for
3 and 3̄ systems [41]). Importantly, the inequality ρe

yy(Bx ) �=
ρe

xx(Bx ) is unavoidable, in principle, because the in-plane mag-
netic field Bx always breaks the rotational symmetry around
the z axis even in the case of the high-symmetric system in
zero field (e.g., 3̄m, 3m, and 32). The origin of the anisotropy
can be easily understood because the longitudinal current (Jx ‖
Bx) is less affected by the Lorentz force than the transverse
current (Jy ⊥ Bx). We also note that, in fact, the inequality
ρe

xx �= ρe
yy often occurs in the in-plane Hall systems because

it is mainly allowed in low-symmetric systems such as mono-
clinic crystals [11,12,34].

The inverse matrix of the resistivity tensor gives the longi-
tudinal conductivity σ e

xx as follows:

σ e
xx(Bx ) = ρe

yy/
[
ρe

xxρ
e
yy + (

ρo
yx

)2]
∼ ρe

yy/
(
ρe

xxρ
e
yy

) ∼ 1/ρe
xx. (10)

Here, we assume in the last equality that the Hall angle
(ρo

yx/ρ
e
xx) is negligible. We find that the longitudinal con-
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ductivity can be estimated with sufficient accuracy within a
five-electrode measurement of the setup in Fig. 5(b). The Hall
conductivity (σ o

xy), on the other hand, is obtained in the exact
form by using all three independent quantities, ρe

xx, ρo
yx, and

ρe
yy (see Appendix B for the effect of three-dimensionality),

σ o,exact
xy (Bx ) = ρo

yx/
[
ρe

xxρ
e
yy + (

ρo
yx

)2] ∼ ρo
yx/

(
ρe

xxρ
e
yy

)
. (11)

To estimate ρe
yy(Bx ), we need to prepare another sample as

shown in Fig. 5(c) with a long edge along the y axis and
perform an experiment for Jy under Bx. We cannot measure
ρe

yy(Bx ) with the same sample for the Jx ‖ Bx [Fig. 5(b)]
because it has to be shaped into a thin rectangular par-
allelpiped with a long edge along the x axis to increase
the signal (∝ l/wt) as well as to suppress the geometrical
effect [5,54–56].

One might consider that we can measure ρe
xx(−By) without

changing the sample by rotating the magnetic field from Bx to
−By [Fig. 5(d)], which seems to be an alternative to ρe

yy(Bx )
in Eq. (9). This is in fact inapplicable because ρe

xx(−By) �=
ρe

yy(Bx ), which can be seen from the fact that a hexagon
symbol on the sample in Fig. 5(d) changes its orientation when
one tries to superimpose it on Fig. 5(c) by rotating the whole
setup by −90◦. The inequality ρe

xx(−By) �= ρe
yy(Bx ) arises

from the symmetry condition that forbids a C2z symmetry for
the nonzero in-plane Hall effect [see Fig. 2(c)], because this
rule forbids C4z symmetry at the same time. In other words, if
there is a symmetry that ensures ρe

xx(−By) = ρe
yy(Bx ), one can

prove ρo
yx(Bx ) = 0, which is not the situation considered here.

Since the ρe
yy(Bx ) cannot be obtained within the single-

device measurement using the setup in Fig. 5(b), the above
formula is often replaced by the following approximate form:

σ o,approx
xy (Bx ) = ρo

yx/
[(

ρe
xx

)2 + (
ρe

yx

)2] ∼ ρo
yx/

(
ρe

xx

)2
. (12)

This prescription resembles Eq. (8) for the normal Hall ef-
fect, but contains a leap of logic implicitly assuming that
ρe

xx(Bx ) = ρe
yy(Bx ), which is in general invalid for the in-plane

Hall system. Nevertheless, this approximate form of the Hall
conductivity has often been used in many related experiments
for orthorhombic/monoclinic compounds [34,57–59], tilted-
field configuration [37,60,61], xz-plane-transport of tetragonal
systems [62], as well as for the in-plane thermal Hall conduc-
tivity in magnetic insulators [38,39,44].

Although this does not bring a big problem in many cases
for the estimation of the order of magnitude, it is crucial
when the accurate value of the (thermal) Hall conductivity is
connected with the theoretical interpretation of the quantum
nature of the material. In principle, we need to prepare two
independent devices [Figs. 5(b) and 5(c)] and measure ρe

xx,
ρe

yy, and ρo
yx, to apply Eq. (11) with all three independent com-

ponents. In the next section, we discuss the in-plane thermal
Hall effect in α-RuCl3, where the quantitative evaluation of
the half-integer quantization has been concluded on the basis
of the approximate form of κo

xy.

VI. CASE OF THE HALF-INTEGER QUANTIZATION
OF THERMAL HALL EFFECT IN α-RuCl3

Evidently, all of the above arguments are applicable to the
in-plane thermal Hall effect in insulators. In particular, an

(a) Ru honeycomb lattice (c) Sample on xy-plane rotator

x (zigzag)

y
(armchair)

Ru3+

x, [100]h

y

z

[010]h

C3

C2

mv

(b) Idealized 31m monolayer crystal

Ru3+

Cl-

θx

y Bx

Tx
Ty

B120°

B-120°

Jx

FIG. 6. (a) Schematic honeycomb lattice of Ru3+ ions. Zigzag
(‖ x) and armchair (‖ y) axes are defined. (b) The idealized honey-
comb layer of α-RuCl3 belonging to the point group 3̄1m. Hexagonal
axes, Cartesian coordinates, x, y, and z, the unit cell (black rhombus),
and symmetry elements are also shown [see Fig. 3(b)]. (c) Schematic
improved single-device setup for the in-plane thermal Hall effect of
α-RuCl3 under the in-plane magnetic field along x axis (Bx), and di-
rections rotated by ±120◦ around the z axis (B±120◦ ). The electrodes
are for the measurement of longitudinal (	Tx) and transverse (	Ty)
temperature differences.

accurate evaluation of the thermal Hall conductivity is impor-
tant as argued in recent studies on the half-integer quantization
of κxy under an in-plane and a tilted magnetic field in a Kitaev
spin-liquid candidate α-RuCl3 [37,38,63–65].

The crystal structure of α-RuCl3 consists of a stacked
honeycomb-lattice of Ru3+ with magnetic moments (Fig. 6).
There are two orthogonal axes in the lattice plane, which
are called zigzag (x axis) and armchair (y axis) directions,
perpendicular and parallel to a Ru-Ru bond, respectively.
α-RuCl3 is antiferromagnetically ordered at below 7 K, and
an in-plane magnetic field of 7 T is required to suppress the
ordered state [37].

The half-integer quantization of the thermal Hall conduc-
tivity is observed in the field-induced spin-disordered state
when the heat current is applied along the zigzag direc-
tion (x axis) and the magnetic field is applied along the
same direction or tilted from the axis perpendicular to the
honeycomb-lattice plane (z axis) towards the x axis [37,38,63–
65]. The in-plane Hall effect in a honeycomb layer is allowed
by symmetry [48], and the absence of thermal Hall effect
in the magnetic field along the armchair direction (y axis)
[38] follows the symmetry condition of honeycomb-lattice
of edge-shared RuCl6 octahedra [48]. The κxy is normalized
to each honeycomb lattice with the layer separation by d:
κ2D

xy /T = κxy · d/T , which shows a quantization to the half
value of K0 = (π2k2

B/3h)T , implying the presence of the edge
current of Majorana fermions [36,66].

Indeed, the access to the spin-disordered state requires
the in-plane component of the magnetic field, which breaks
the xy-plane rotational symmetry regardless of the crystal
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TABLE I. Symmetry conditions for the nonzero in-plane Hall effect. The superscript o is omitted for simplicity. Point groups that allow
the anomalous Hall effect are marked with an asterisk.

Point group Symmetry axes Allowed in-plane Hall effect Leading term (∝ Bn)
Para- or diamagnetic materials

1, 1̄ arbitrary xyz setting ρyx (Bx, By, 0) ∝ B
2, m, 2/m C2 ‖ y or m ‖ xz ρyx (Bx ), ρyz(Bz ) ∝ B
4, 4̄, 4/m C4 or S4 ‖ z ρxz(Bx ), ρyz(By ) ∝ B
3, 3̄ C3 ‖ z ρxy(Bx, By, 0), ρxz(Bx ), ρyz(By ) ∝ B for ρxz/yz

∝ B3 for ρxy

32, 3m, 3̄m C3 ‖ z, C2 ‖ y or m ‖ xz ρxy(Bx ) ∝ B3

6, 6̄, 6/m C6 or S3 ‖ z ρxz(Bx ), ρyz(By ) ∝ B
23, m3̄ C3 ‖ [111] ‖ z ρxy(Bx, By, 0), ρxz(Bx ), ρyz(By ) ∝ B for ρxz/yz

∝ B3 for ρxy

432, 4̄3m, m3̄m C3 ‖ [111] ‖ z, C2 ‖ [11̄0] ‖ y or m ⊥ [11̄0] ρxy(Bx ) ∝ B3

Magnetic materials

1∗, 1̄∗, 1̄′ arbitrary xyz setting ρyx (Bx, By, 0) ∝ B
2∗, m∗, 2/m∗ C2 ‖ y or m ‖ xz ρyx (Bx ), ρyz(Bz ) ∝ B
2′∗, m′∗, 2′/m′∗ T C2 ‖ y or T m ‖ xz ρyx (Bx ), ρyz(Bz ) ∝ B
2/m′, 2′/m (T )C2 ‖ y or (T )m ‖ xz ρyx (Bx ), ρyz(Bz ) ∝ B
4∗, 4̄∗, 4/m∗ C4 or S4 ‖ z ρxz(Bx ), ρyz(By ) ∝ B
4′, 4̄′, 4′/m T C4 or T S4 ‖ z ρxz(Bx ), ρyz(By ) ∝ B
4/m′, 4′/m′ C4 or T S4 ‖ z ρxz(Bx ), ρyz(By ) ∝ B
3∗, 3̄∗, 3̄′ C3 ‖ z ρxy(Bx, By, 0), ρxz(Bx ), ρyz(By ) ∝ B for ρxz/yz

∝ B3 for ρxy

32, 3m, 3̄m C3 ‖ z, C2 ‖ y or m ‖ xz ρxy(Bx ) ∝ B3

32′∗, 3m′∗, 3̄m′∗ C3 ‖ z, T C2 ‖ y or T m ‖ xz ρxy(Bx ) ∝ B3

3̄′m′, 3̄′m C3 ‖ z, T C2 ‖ y or T m ‖ xz ρxy(Bx ) ∝ B3

6∗, 6̄∗, 6/m∗ C6 or S3 ‖ z ρxz(Bx ), ρyz(By ) ∝ B
6′, 6̄′, 6′/m′ T C6 or T S3 ‖ z ρxz(Bx ), ρyz(By ) ∝ B
6/m′, 6′/m C6 or T S3 ‖ z ρxz(Bx ), ρyz(By ) ∝ B
23, m3̄, m′3̄′ C3 ‖ [111] ‖ z ρxy(Bx, By, 0), ρxz(Bx ), ρyz(By ) ∝ B for ρxz/yz

∝ B3 for ρxy

432, 4̄3m, m3̄m C3 ‖ [111] ‖ z, C2 ‖ [11̄0] ‖ y or m ⊥ [11̄0] ρxy(Bx ) ∝ B3

4′32′, 4̄′3m′, m3̄m′ C3 ‖ [111] ‖ z, C2 ‖ [11̄0] ‖ y or T m ⊥ [11̄0] ρxy(Bx ) ∝ B3

m′3̄′m′, m′3̄′m T C3 ‖ [111] ‖ z, C2 ‖ [11̄0] ‖ y or T m ⊥ [11̄0] ρxy(Bx ) ∝ B3

structure at low temperature. The exact form of the in-plane
thermal Hall conductivity is expressed by

κo,exact
xy (Bx ) ∼ λo

yx/λ
e
xxλ

e
yy, (13)

and it requires all the three independent thermal resistivity
components, λe

xx(Bx ), λe
yy(Bx ), and λo

yx(Bx ) (we can reasonably
ignore the effect of the out-of-plane transport; see below). In
previous studies, however, the thermal Hall conductivity has
been estimated by the approximate form [37,39,64,65,67,68]

κo,approx
xy (Bx ) ∼ λo

yx/
(
λe

xx

)2
, (14)

where the equivalence λe
xx(Bx ) = λe

yy(Bx ) is implicitly as-
sumed.

To the best of our knowledge, the component λe
yy(Bx ) has

scarcely been reported, i.e., the thermal conductivity with heat
current along the armchair direction (y axis) under a field
along the zigzag direction (x axis), except for Ref. [69]. We
summarize the references that report the thermal transport
properties of α-RuCl3 and experimental conditions in Table II.
The thermal Hall experiment with Jy under Bx is missing.
As discussed in the above sections, we note that the λe

yy(Bx )
cannot be replaced by λe

xx(−By), which is realized by rotating

the in-plane field from Bx to By without changing the sample
setup for J ‖ x. It is also known from the experimental results
giving the different magnetic phase diagrams for Bx and By

[63,70]. Reference [69] reports both λe
xx(Bx ) and λe

yy(Bx ) [but
no λo

yx(Bx )] with different samples. They show similar Bx-field
dependence but their magnitudes are discernibly different, im-
plying the possible anisotropy between λe

xx(Bx ) and λe
yy(Bx ).

Although the significant κo
xy in α-RuCl3 has been repeat-

edly observed and the plateau feature has been reproduced
[37,63–65], there are still debates in terms of the accurate
value in the spin-disordered region [39,71], and microscopic
origins of the κo

xy [39,71–74]. As the theoretical predictions
are provided by the κo

xy, the accurate conversion process from
the experimentally measured thermal resistivity λ̂ to the ther-
mal conductivity κ̂ is important. The controversy is potentially
due to the estimation of κo

xy by the application of the approx-
imate form Eq. (14), which may be sensitive to the sample
dependence of anisotropy between λe

xx and λe
yy. For a more

quantitative verification of the half-integer quantization, an
experimental proof of the hypothesis λe

yy(Bx ) � λe
xx(Bx ) in the

spin-disordered field region has to be provided at least within
the precision of better than 10% comparable to that of the
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TABLE II. Experimental conditions of the thermal transport measurements for α-RuCl3. ⊥ z for the heat current direction indicates no
specification of the crystallographic axis. Accordingly, the measured thermal conductivity is denoted by κ⊥ instead of κxx or κyy. There are two
ways, exact and approximate, to experimentally estimate κxy according to Eqs. (13) and (14), respectively. Due to the lack of consensus on the
low-temperature crystal structure, we provisionally hypothesize the in-plane isotropy for the B ‖ z measurements (marked with an asterisk).

No. Heat current Magnetic field Measured components Form of κxy Growth method Ref.

1 ⊥ z NA κ⊥ NA Bridgman [98]
2 ⊥ z ⊥ z, ‖ J κ⊥ NA vacuum sublimation [99]

⊥ z ⊥ z, ⊥ J κ⊥ NA
3 ⊥ z ‖ z κ⊥, κxy exact* Bridgman [100]
4 ⊥ z ⊥ z, ⊥ J κ⊥ NA CVT [101]
5 ⊥ z ⊥ z, ⊥ J κ⊥ NA CVT/vacuum sublimation [89]

‖ z ⊥ z, ⊥ J κzz NA
6 ‖ x toward x from z by 60◦ and 45◦ κxx , κxy approximate Bridgman [37]
7 ⊥ z ‖ z κ⊥, κxy exact* CVT [102]
8. ⊥ z ⊥ z, ⊥ J κ⊥ NA CVT [103]
9 ‖ x toward x from z by 45◦ κxx , κxy approximate Bridgman [64]
10 ⊥ z ‖ x κ⊥, κxy approximate CVT [67]

⊥ z ‖ y κ⊥, κxy approximate
11 ‖ x ‖ x κxx , κxy approximate Bridgman [38]

‖ x ‖ y κxx , κxy approximate
12 ‖ x ‖ z κxx , κxy exact* CVT [71]

‖ x toward x from z κxx , κxy approximate
13 ‖ x ‖ x κxx , κxy approximate CVT [39]
14 ‖ x NA κ⊥ NA Bridgman [63]
15 ‖ x ‖ x κxx , κxy approximate Bridgman [70]

‖ x ‖ y κxx , κxy approximate
16 ‖ x ‖ x κxx NA Bridgman [68]

‖ x ‖ y κxx NA Bridgman
‖ x ‖ x κxx NA CVT
‖ x ‖ y κxx NA CVT

17 ‖ x toward x from z κxx , κxy approximate Bridgman [65]
18 ‖ x ‖ x and ‖ y κxx NA CVT [69]

‖ y ‖ x and ‖ y κyy NA
19 ‖ x ‖ x κxx , κxy approximate CVT [104]
20 ‖ x ‖ x κxx , κxy approximate CVT [105]

geometric errors [38]. A practical difficulty would arise from
the notorious sample dependence [63,64], which would ob-
scure the possible equivalence between λe

yy(Bx ) and λe
xx(Bx ).

We discuss two experimental protocols that take into account
the sample quality variations and can be applied to α-RuCl3

to quantitatively verify the half-integer value of κxy.
One of the approaches is to make use of the threefold

rotational symmetry, which is supposed to be realized in
the low-temperature crystal structure of α-RuCl3 [75,76],
although it seems to be still under discussion [68,77–79].
The advantage of this method is that it can directly measure
the anisotropy of the thermal resistivity λe

xx − λe
yy under the

magnetic field without changing the sample (improved single-
device method). The idea is similar to the method proposed in
Refs. [80,81], where the elastoresistive effect is considered.

Here, we assume that the crystal structure of a monolayer
α-RuCl3 effectively belongs to the 3̄1m point group, as shown
in Fig. 6(b). There are three twofold rotation axes and three
vertical mirrors, which are related to each other by three-
fold rotational symmetry. We note that the proposed space
group R3̄ at low temperature [76,82–84] is expected to make
the tensor components more complicated [41,48] due to the
ferroaxial nature of the point group [85,86]. The absence of

κxy(By) in α-RuCl3 [38], which is allowed in the 3̄ system,
validates this setting. According to the symmetry conditions
for the in-plane thermal Hall effect, the form of λ̂ is obtained
from Eq. (9) by replacing ρ with λ.

First, we prepare a sample for the measurement with Jx

and Bx [Fig. 6(c)]. We obtain the field dependence of λe
xx(Bx )

(∝ 	Tx), and λo
yx(Bx ) (∝ 	Ty with the antisymmerization by

field), but not λe
yy(Bx ). Instead, we measure the anisotropy

λe
xx − λe

yy by rotating the magnetic field in situ around the
z axis by 120◦ and perform the same measurement [see left
bottom of Fig. 6(c)]. This configuration is similar to the planar
Hall effect measurement, and the presence of the field-even
off-diagonal component can be known, that is in fact propor-
tional to λe

xx − λe
yy.

Due to the threefold rotational symmetry of the crystal, we
can accurately predict the form of λ̂(B120◦ ) using Eq. (6) with
the rotation matrix R120◦ ,

λ̂2D(B120◦ ) = R−1
120◦ λ̂2D(Bx )R120◦

=
( (

λe
xx + 3λe

yy

)
/4 −λo

yx + √
3
(
λe

xx − λe
yy

)
/4

λo
yx + √

3
(
λe

xx − λe
yy

)
/4

(
3λe

xx + λe
yy

)
/4

)
.

(15)
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Accordingly, we obtain λo
yx + √

3(λe
xx − λe

yy)/4 as the off-
diagonal component. By measuring the field dependence, we
separate the field-symmetric and antisymmetric components
in the yx component, respectively, as

λS
yx(B120◦ ) =

√
3
(
λe

xx − λe
yy

)
/4 + δ (16)

and

λAS
yx (B120◦ ) = λo

yx. (17)

We introduce the δ term in the first equation, which is pro-
portional to the longitudinal component owing to the possible
misalignment of the Hall electrodes.

The δ term can be eliminated by performing the same
measurement with the field rotation by −120◦ [left top
of Fig. 6(c)]. The field-symmetric contribution to the off-
diagonal thermal Hall resistivity is given as

λS
yx(B−120◦ ) = −

√
3
(
λe

xx − λe
yy

)
/4 + δ. (18)

We note that the intrinsic component (∝ λe
xx − λe

yy) is re-
versed from that for B120◦ , while the extrinsic δ term is
not. An antisymmetrization with respect to ±120◦ can be
defined as λS′

yx(|B|) = (λe
yx(B120◦ ) − λe

yx(B−120◦ ))/2. We ob-

tain λS′
yx = √

3(λe
xx − λe

yy)/4, which provides the anisotropy
between λe

xx(Bx ) and λe
yy(Bx ). Here, we note that the field

dependence of λe
xx, λe

yy, and λo
yx in each equation are identical

to those of Bx due to the threefold rotational symmetry unless
the demagnetization effect is significant.

The measurement can be done within a single-device by
using an appropriate sample stage with rotators. The demon-
stration of λS′

yx = 0 gives a proof for λe
xx(Bx ) = λe

yy(Bx ), which
justifies the approximate form of Eq. (14) for estimating the
thermal Hall conductivity in α-RuCl3. Otherwise, the exact
form of Eq. (13) has to be used to accurately estimate κo

xy in the
spin-disordered regime, suggesting the need for a correction
of the reported half-integer value.

The other approach to verify λe
xx = λe

yy in α-RuCl3 is to
measure two different samples (two-device method), and to
utilize the thermal Hall effect itself as a sample quality check.
This can be done by preparing two high-quality samples that
show quantized κ

o,approx
xy /T = 1

2 K0/d in individual setups for
the heat current parallel to the x and y axis [Figs. 5(b) and
5(c)], respectively. For a sample in the Jx setup (sample X),
we measure

κX,approx
xy (Bx ) = λX

yx/
(
λX

xx

)2
. (19)

With a sample in the Jy setup (sample Y), we obtain

κ
Y,approx
y(−x) (Bx ) = λY

(−x)y/
(
λY

yy

)2
. (20)

Here, we omit e and o for simplicity.
If we find that the thermal Hall plateaus are quantized

to κ
X,approx
xy (Bx, T )d/T � κ

Y,approx
y(−x) (Bx, T )d/T � 1

2 K0, we can
confirm their comparable quality. And, we obtain an indirect
proof of λe

yy(Bx, T ) � λe
xx(Bx, T ) because

1 �
√

κ
X,approx
xy (Bx, T )/κY,approx

y(−x) (Bx, T ) = λY
yy/λ

X
xx. (21)

On the other hand, if the reproducibility of a different quan-
tization κ

Y,approx
y(−x) (Bx )d/T = rK0 (r �= 1

2 ) is established for the
Jy setup, it may be an artifact due to the approximate forms of
the κxy [Eq. (14)], and the precise thermal Hall conductivity
could be estimated by a geometric mean (14), and the precise
thermal Hall conductivity could be estimated by a geometric
mean

κexact
xy d/T �

√
κ

X,approx
xy κ

Y,approx
xy d/T =

√
r/2K0 �= 1

2 K0.

(22)

This would provide an opportunity to reconsider the true
quantization value of the thermal Hall conductivity in
α-RuCl3.

The preceding discussion is about the effect due to the
possible anisotropy between λe

xx(Bx ) and λe
yy(Bx ). For the

quantitative evaluation of the κxy in α-RuCl3, two additional
effects mentioned above also have to be considered. For the
proposed space group R3̄ at low temperature, there are twin
operations that change the orientation of the RuCl6 octahedra
and reverse the sign of κxy(Bx ): the C2 operation perpendicular
to the honeycomb lattice (C2z) and the mirror operation myz

(see Appendix D for details). It has been pointed out that the
ABAB-stacking of the honeycomb layers in the ABC-stacking
affects the magnetic transition temperature [68,79,87,88], and
such crystals can be avoided by the magnetization measure-
ments [37,38]. Since the twin domains due to the C2z and
myz are expected to have the same transition temperature, the
twinned crystals can only be distinguished, for example, by
checking the intensity profile of the electron/x-ray diffraction
pattern. As for the out-of-plane thermal transport, it has been
reported [89] to be comparable to the in-plane transport, while
the out-of-plane thermal Hall effect λo

yz (and also λe
xz) has not

been reported. Nevertheless, this effect may be negligible as
the thermal Hall angle λo

yz/λ
e
zz is expected to be significantly

small in magnetic insulators [90].

VII. CONCLUSIONS

Unlike the normal Hall effect, the in-plane (thermal) Hall
effect is a response where the lack of crystal symmetry
is essential. As a result, several factors, including crystal
twinning, out-of-plane transport, and in-plane rotational sym-
metry, have to be taken into account in order to quantitatively
evaluate the Hall conductivity under the in-plane field con-
dition. To accurately extract the Hall conductivity from the
measured resistivity components, a formalism beyond the
conventionally-used formula is required because the xy-plane
symmetry is inevitably broken.

In principle, two independent experimental setups are re-
quired to measure at least three independent components in
the (thermal) resistivity tensor (two-device method). Possible
sample dependence may prevent an accurate conversion to the
conductivity tensors, while the values of the Hall resistivity in
individual experiments can be used as a check of the equiva-
lence of the sample quality. Another improved single-device
approach using the rotation of the in-plane field is possibly
available when the crystal has threefold rotational symmetry,
which is the archetype of the in-plane Hall system for the
theoretical consideration of the quantized anomalous Hall
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effect [19–23,25,33], and thermal Hall effect of Kitaev-related
honeycomb magnets [48,72–74]. The protocols presented in
this paper would be useful to shed additional light on the
experimental evidence for the quantization of κxy in α-RuCl3,
and more generally applicable to the evaluation of the un-
conventional in-plane Hall conductivity of a broader class of
quantum materials.

Note added. We became aware of a similar paper by Cao
et al. [91], which derives the symmetry condition of the
in-plane Hall effect for all nonmagnetic and magnetic point
groups up to the first-order of the induced magnetization.
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APPENDIX A: LIST OF POINT GROUPS FOR THE
NONZERO IN-PLANE HALL EFFECT

In the main text, we show that the in-plane Hall effect
is allowed only when some symmetries are absent. As an
example, we prove that the twofold rotation axis along the
magnetic field is forbidden [Condition 1, see Fig. 2(a)]. The
proofs for the Conditions 2 to 4 [Fig. 2(b) and 2(c)] are given
as follows.

We can apply the corresponding logic to the system with a
mirror symmetry perpendicular to the magnetic field [Condi-
tion 2, Fig. 2(b)]. The orientation of Jx is reversed by the myz

while the sample configuration (including the induced para-
or diamagnetic moment), Eo

y , and Bx remain the same. This
relationship gives the equation

Eo
y = ρo

yx(Bx, 0, 0) · Jx = ρo
yx(Bx, 0, 0) · (−Jx ), (A1)

proving that ρo
yx = 0.

As for the twofold rotational axis along the z axis [Condi-
tion 3, see Fig. 2(c)], we can prove the absence of the in-plane
Hall effect. This is the case when the crystal has C2, C4,
S4, or C6 rotational symmetry along the z axis in zero field.
We assume that although the magnetic field induces para- or
diamagnetic moments in the xy plane, they do not reduce the
symmetry of the system lower than T C2z, where T is the
time-reversal operation. The C2z rotation of the whole setup
changes the upper panel to the bottom in Fig. 2(c). We obtain
the following equations:

Eo
y = ρo

yx(Bx, By, 0) · Jx, (A2)

−Eo
y = ρo

yx(−Bx, 0, 0) · (−Jx ). (A3)

Since ρo
yx(−Bx, 0, 0) = −ρo

yx(Bx, 0, 0), we prove that ρo
yx = 0.

For the mirror symmetry in the xy plane [Condition 4, see

Fig. 2(d)], the proof is as follows. Again, we note that the
system becomes symmetric against T mxy operation under the
in-plane magnetic field. The equation for the upper panel in
Fig. 2(d) is Eo

y = ρo
yx(Bx, By, 0) · Jx, and the mirror operation

to the experimental setup gives Eo
y = ρo

yx(−Bx,−By, 0) · Jx.
The last equation gives −Eo

y = ρo
yx(Bx, By, 0) · Jx to prove

ρo
yx = 0.

On the basis of the Conditions 1 to 4, we produce the
list of the crystal point groups that allow the in-plane Hall
effect. Table I summarizes such point groups and allowed ρ̂

components and field-configurations required to induce the
in-plane Hall. The leading term with respect to the applied
field is also shown. The absence of the orthorhombic point
groups in the table indicates that they do not allow the in-plane
Hall effect as long as the applied field is in the high-symmetry
directions such as the xy plane.

In the same table, we show the symmetry conditions for the
in-plane Hall effect in the magnetic materials, where the time-
reversal symmetry is broken due to internal magnetic order
parameters. The low-field expansion of the Hall coefficient
for all magnetic point groups has been given in Ref. [42],
which gives the allowed Hall coefficients up to the B-linear
term. We present the extension to the arbitrary field region.
Evidently, we can apply the same discussion to the two cases
[systems with the symmetry C2x, or myz, Condition 1’ and
2’, corresponding to Figs. 2(a) and 2(b)] considered in the
main text to derive the ρo

yx(Bx ) even for magnetic materials.
We also have to assume that the Bx does not induce the fur-
ther symmetry breaking that lowers the C2x or myz symmetry,
which would be reasonably satisfied in many materials such
as ferromagnets with magnetization M ‖ x and two-sublattice
antiferromagnets with sublattice moments SA/B ‖ x. For the
antiferromagnets with SA/B ‖ y or z or more complicated non-
colinear magnets, we have to carefully check if the spin
canting due to Bx does not lower the original symmetries.

In addition to the above, there are the other six symmetries
need to be considered, i.e., T C2 along the z axis (Condition
3’), T m in the xy plane (Condition 4’), C2 along the z axis
(Condition 5’), m in the xy plane (Condition 6’), T C2 along
the x axis (Condition 7’), and T m in the yz plane (Condition
8’). We separate them into three parts, and show the pictorial
approaches to prove that they give the absence of the in-plane
Hall effect.

First, we consider the following two symmetry conditions:
T C2 along the z axis, and T m in the xy plane on the basis of
Figs. 7(a) and 7(b).

(3’) ρo
yx(Bx, By, 0) is zero if there is a T C2 axis along the

z direction under the magnetic field.
We can prove this in three steps. First, we consider the

magnetic material with T C2z symmetry under a magnetic
field along the x axis. Figure 7(a) shows the schematic in-
plane field configuration, where we symbolically introduce
the internal magnetic moments, SA and SB, which represent
the internal time-reversal symmetry breaking [92]. In the top
panel, we assume that the in-plane Hall electric field Ey is
induced by the Jx. We apply the pure twofold rotation to
the whole setup to obtain the middle panel. We note that the
internal magnetic moments are all reversed since C2z = T −1

for the T C2z-symmetric system. The internal magnetic mo-
ments can be reversed by the Onsager’s relation (see Ref. [42]
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FIG. 7. Symmetry conditions 3’ and 4’ for the absence of the
in-plane Hall effect in magnetic materials. See the caption of Fig. 2
for details. The gray and pale blue arrows in the crystal represent
the ordered magnetic moments, SA and SB, which are canted by
the applied magnetic field. (a) Application of the C2z rotation to the
whole setup including the crystal with T C2z symmetry transforms the
top to the middle, which is accompanied with the inversion of Eo

y , Bxy,
and Jx . The Onsager’s relation [Eq. (A4)] allows the transformation
from the middle to the bottom. (b) Corresponding figure for the
crystal with T mxy symmetry.

for detail)

ρo
yx(−SA,−SB,−B) = ρo

xy(SA, SB, B)

= −ρo
yx(SA, SB, B). (A4)

The last equation can be expressed by the bottom panel
in Fig. 7(a). Comparing the top and the bottom, we find that
Eo

y does not change its sign even if we reverse the current
direction, which gives the proof for ρo

yx = 0.
(4’) ρo

yx(Bx, By, 0) is zero if there is a T m in the xy plane
under the magnetic field.

We can apply the same discussion for the above. Applica-
tion of the pure mxy operation to the whole setup reverses the
magnetic field direction in the xy plane as well as the internal
magnetic moments [top to middle in Fig. 7(b)]. The Onsager’s
relation gives the transformation from the middle panel to the
bottom panel, which gives the opposite sign of Eo

y from the
top, i.e., ρo

yx = 0.
Next, we consider the other two cases: systems with sym-

metries C2z or mxy in zero field. In contrast to the nonmagnetic
cases [Figs. 2(c) and 2(d)], the C2z and mxy symmetries are
potentially accompanied by the anomalous Hall effect ρA

yx
unless additional symmetries forbid the out-of-plane magneti-
zation [42]. Strictly, the application of the Bxy field breaks the
symmetry C2z or mxy due to canting of magnetic moments,
nevertheless, we can prove that the Bxy-field induced Hall
effect to be zero. This means that we can even observe the
Hall voltage under the in-plane field in such systems, but it
cannot be viewed as the intrinsic in-plane Hall effect, but the
field-evolution of the anomalous Hall effect ρA

yx(Bxy). Sign of
ρyx(Bxy) only depends on the sign of the order parameters
(regarding SA and SB) responsible for the anomalous Hall
effect, i.e., its field dependence is symmetric with respect to
the Bxy unless the out-of-plane magnetization is flipped.
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FIG. 8. Symmetry conditions 5’ and 6’ for the absence of the
in-plane Hall effect in magnetic materials. See the caption of Figs. 2
and 7 for details. The magnetic order parameters, SA and SB, po-
tentially have the out-of-plane component to induce magnetization
along the z axis for the anomalous Hall system. The magnetic mo-
ments are canted by the applied magnetic field to break the zero-field
symmetry. For the case of the anomalous Hall system, pink arrows
indicate the electric field due to the anomalous Hall effect, EA

y un-
der ±Jx . We put the Bxy-field-odd transverse electric field Eo

y as a
tentative in-plane Hall effect, which is proved to be zero. (a) The
case for the crystal with the C2z rotational symmetry in zero field.
Application of the C2z rotation to the whole setup transforms the
top to the middle, which is accompanied with the inversion of Eo

y ,
EA

y , Bxy, and Jx . The magnetic moments are rotated to RSA/B. The
Bxy-field inversion induces the transformation from the middle to the
bottom. (b) Corresponding figure for the crystal with the mxy as the
zero-field symmetry.

To prove the above in the pictorial approach, we consider
below.

(5’) ρo
yx(Bx, By, 0) is zero if there is a C2 along the z axis

in zero field unless the applied field flips the spontaneous
magnetization.

As shown by the top panel in Fig. 8(a), we consider
whether Eo

y is zero in the magnetic material under Jx. Due
to the applied Bxy, the internal magnetic moments are canted
to break the zero-field C2z symmetry. Here, since the B in the
exact xy plane does not lift the degeneracy for the out-of-plane
magnetization, we consider the magnetic monodomain state
and assume that the possible anomalous Hall electric field EA

y
is maintained to be the same sign even if the Bxy is sweeped
from positive to negative. We apply the C2z rotation to the
whole system to obtain the middle panel, where the internal
moments are also rotated to RSA/B symbolically. The Bxy-field
inversion transforms the middle to the bottom, where Eo

y is
reversed by definition. We can safely assume that the internal
moments rotate back to SA/B keeping the sign of EA

y as the
exact Bxy field does not flip the out-of-plane magnetization.
Comparing the top and bottom, we obtain the proof for ρo

yx =
0. In contrast to the above rather artificial setup, practically,
we might have to foresee that the anomalous Hall effect would
be flipped through the sweep Bxy → −Bxy due to potential
field misalignment towards the out-of-plane direction. This
causes the apparent field-odd response of ρyx, but it should
not be interpreted as the intrinsic in-plane Hall effect.
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FIG. 9. Symmetry conditions 7’ and 8’ for the absence of the
in-plane Hall effect in magnetic materials. See the caption of Figs. 2,
7, and 8 for details. (a) The case for the crystal with the T C2x

rotational symmetry in zero field. Application of the C2x rotation
to the whole setup transforms the top to the second panel, which
is accompanied with the inversion of Eo

y , and EA
y . The magnetic

moments are rotated to RSA/B. The Onsager’s relation [Eq. (A4)]
allows the transformation from the second to the third panel. The
Bx-field inversion induces the transformation from the third panel to
the bottom. (b) Corresponding figure for the crystal with the mxy as
the zero-field symmetry.

(6’) ρo
yx(Bx, By, 0) is zero if there is a m in the xy plane

in zero field unless the applied field flips the spontaneous
magnetization.

We can apply the above discussion as shown in Fig. 8(b).
The mirror inversion with mxy transforms from the top to the
middle with the reversal of the internal magnetic moments to
RSA/B and the Bxy. The Bxy-field inversion gives the bottom
panel, where SA/B goes back to the original configuration.
Only the Eo

y is remained reversed to give the proof for ρo
yx = 0.

Lastly, we consider the remaining two cases: systems with
symmetries T C2x or T myz in zero field. These two symmetries
also potentially allow the spontaneous out-of-plane magne-
tization and thus the anomalous Hall effect, ρA

yx, while the
application of the Bx field breaks the symmetries. We can
prove the following two rules in the same manner described
above.

(7’) ρo
yx(Bx, 0, 0) is zero if there is a T C2 along the x axis

in zero field unless the applied field flips the spontaneous
magnetization.

As shown by the top panel in Fig. 9(a), we consider
whether Eo

y is zero in the magnetic material under Jx. Due
to the applied Bx, the internal magnetic moments are canted
to break T C2x symmetry for the zero field. Here, since the
B along the exact x axis does not lift the degeneracy for the
out-of-plane magnetization, we assume the possible anoma-
lous Hall electric field EA

y is maintained to be the same sign.
We apply the C2x rotation to the whole system to obtain
the second panel, where the internal moments are also ro-
tated to RSA/B symbolically. The application of the Onsager’s

relation [Eq. (A4)] to the second panel leads to the third
panel. Eventually, the Bx-field inversion leads to the bottom
panel, where only the Eo

y is reversed by definition. We can
safely assume that the internal moments rotate back to SA/B

keeping the sign of EA
y as the exact Bx field does not flip

the out-of-plane magnetization. This can be know from the
fact that, through the transformation from the top panel to
the third, the possible out-of-plane magnetization is reversed
twice by the C2x and the Onsager’s relation to recover into the
original configuration. Comparing the top and the bottom, we
obtain the proof for ρo

yx = 0.
(8’) ρo

yx(Bx, 0, 0) is zero if there is a T m in the yz plane
in zero field unless the applied field flips the spontaneous
magnetization.

We can apply the same steps as described above to
Fig. 9(b). The top panel is equivalent to the bottom panel,
where Eo

y is unchanged even though the Jx is reversed. This
means the ρo

yx = 0.
On the basis of the forbidden rules derived above, we can

deduce the magnetic point groups that allow the in-plane Hall
effect as summarized in Table I [93]. For example, the (mag-
netic) monoclinic 2/m does not show the finite ρo

xz(Bx, By, 0)
aside from the anomalous Hall effect ρA

xz due to M ‖ y because
of the presence of the mxz (and C2y as well), while it allows
ρo

yx(Bx ). As for the tetragonal point group 4′ with the T C4

rotation along the z axis, we can prove ρo
yx(Bx, By, 0) = 0

because the operation of the T C4 rotation twice is equivalent
with C2 along the z axis. We note that T C4 does not allow ρA

yx
either in contrast to the 2/m case. The in-plane Hall effect is
allowed for ρo

xz(Bx ), but forbidden for ρo
xz(Bz ) because Bz is

parallel to the T C4 axis.
Similarly to the crystal twin discussed in the main text,

different types of twin is expected in magnetic system, i.e.,
magnetic domains with respect to the time reversal. In contrast
to the former, the reversal of the magnetic moments does not
affect the sign of the in-plane Hall effect. We put the in-plane
Hall resistivity as ρo

yx(SA + δsA, SB + δsB, Bx ), where SA/B are
the symbolic sublattice moments and δsA/B are the Bx-induced
canting towards the field (see Ref. [42] for detail). We apply
the Onsager’s relation Eq. (A4) to obtain

ρo
yx(SA + δsA, SB + δsB, Bx )

= ρo
xy(−SA − δsA,−SB − δsB,−Bx )

= −ρo
yx(−SA − δsA,−SB − δsB,−Bx )

= ρo
yx(−SA + δsA,−SB + δsB, Bx ). (A5)

In the last equation, we assume that the Bx-field inversion only
cause the sign change of δsA/B. Comparing the first and the last
equation, we obtain that the sign of the sublattice magnetic
moments does not affect the in-plane Hall effect.

The magnetic half-Heusler compound DyPtBi is an exam-
ple showing the in-plane Hall effect [35]. The crystal structure
belongs to 4̄3m in a paramagnetic state and the antiferromag-
netic order breaks the time-reversal symmetry. The in-plane
Hall effect is allowed in the (111) plane with the current along
the [11̄0] axis and the magnetic field is away from the current
direction as long as the mirror symmetry in the (11̄0) plane
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is maintained. The observed signal for the field parallel to
the current (J ‖ B ‖ [11̄0]) suggests a symmetry breaking of
m ⊥ [11̄0] due to a possible field-induced canted spin texture.
Further analysis of the magnetic structure would be useful
to identify the symmetry breaking that enhances the in-plane
Hall effect in this system.

APPENDIX B: EFFECT OF OUT-OF-PLANE TRANSPORT
TO THE VALIDITY OF σ̂2D AND ρ̂2D

In this section, we discuss how to justify the approximation
of the 2 × 2 matrices for the 3 × 3 matrices of ρ̂ and σ̂ . We
provide the explicit form of the ρ̂ in Eq. (5), as the inverse
matrix of σ̂ in Eq. (4),

ρ̂2/m(Bx ) = 1

	σ

⎛
⎜⎜⎜⎝

σ e
yyσ

e
zz + (

σ o
yz

)2 −σ o
xyσ

e
zz − σ o

yzσ
e
xz σ o

xyσ
o
yz − σ e

yyσ
e
xz

σ o
xyσ

e
zz + σ o

yzσ
e
xz σ e

xxσ
e
zz − (

σ e
xz

)2 −σ o
yzσ

e
xx − σ o

xyσ
e
xz

σ o
xyσ

o
yz − σ e

yyσ
e
xz σ o

yzσ
e
xx + σ o

xyσ
e
xz σ e

xxσ
e
yy + (

σ o
xy

)2

⎞
⎟⎟⎟⎠ (B1)

where 	σ is expressed as

	σ = σ e
xxσ

e
yyσ

e
zz + σ o

xyσ
o
yzσ

e
xz + σ o

xyσ
o
yzσ

e
xz

− σ e
yy

(
σ e

xz

)2 + (
σ o

yz

)2
σ e

xx + (
σ o

xy

)2
σ e

zz. (B2)

Here, we assume that the field-odd Hall components, σ o
xy and

σ o
yz are small compared to the field-even quantities, and set

the quadratic form to be zero, e.g., (σ o
xy)2 = 0. The 	σ is

approximated as follows:

	σ ∼ σ e
xxσ

e
yyσ

e
zz − σ e

yy

(
σ e

xz

)2

= σ e
xxσ

e
yyσ

e
zz(1 − tan φex tan φez ). (B3)

We introduce two pseudo-Hall angles, φex = arctan(σ e
xz/σ

e
xx )

and φez = arctan(σ e
xz/σ

e
zz ) The form of 	σ can be under-

stood as being corrected from the off-diagonal-free form
σ e

xxσ
e
yyσ

e
zz by 1 − tan φex tan φez. The correction is negligible

when tan φex � 1 in a quasi-two-dimensional system, and
Eq. (6) is reduced to ρo

yx = σ o
xy/(σ e

xxσ
e
yy), ensuring a direct

proportionality between the in-plane Hall resistivity and con-
ductivity.

Here, we discuss the form of σ̂ as the inverse matrix of ρ̂.
The 	ρ is defined as the determinant of ρ̂, and is approxi-
mated by

	ρ ∼ ρe
xxρ

e
yyρ

e
zz − ρe

yy

(
ρe

zx

)2

= ρe
xxρ

e
yyρ

e
zz(1 − tan θex tan θez ). (B4)

We introduce θex = arctan(ρe
zx/ρ

e
xx ) and θez =

arctan(ρe
zx/ρ

e
zz ). Similar to 	σ , the 	ρ is corrected from

ρe
xxρ

e
yyρ

e
zz by 1 − tan θex tan θez. The conductivity tensor

components, σ e
xx, σ e

yy, and σ o
xy are obtained

σ e
xx ∼ 1/

[
ρe

xx(1 − tan θex tan θez )
]
, (B5)

σ e
yy ∼ 1/ρe

yy, (B6)

and

σ o
xy ∼ (

ρo
yx + ρe

zxρ
o
zy/ρ

e
zz

)
/
[
ρe

xxρ
e
yy(1 − tan θex tan θez )

]
. (B7)

Compared to the quasi-two-dimensional forms [Eqs. (10) and
(11)], both σ e

xx and σ o
xy gets a correction in the denominator

due to the crystalline planar Hall effect (ρe
zx), which could be

negligible in quasi-two-dimensional systems for tan θez � 1,
i.e., ρe

zz is large. As for the σ o
xy, the numerator in Eq. (B7)

also gets a correction by the leakage from the Hall effect ρo
zy

in the yz plane. The two-dimensional approximation of the
σ o

xy [Eq. (11)] is valid only if ρe
zxρ

o
zy/ρ

e
zz is negligible. This

is realized in quasi-two-dimensional systems with low out-
of-plane carrier (electrons/phonons/magnons, etc.) mobility
giving a small out-of-plane normal-Hall-angle ρo

zy/ρ
e
zz.

APPENDIX C: SYMMETRY CONDITIONS
FOR NONZERO ρe

zx

As suggested in the main text, the out-of-plane trans-
port inevitably contaminates the in-plane Hall signal through
the potentially finite σ e

xz. Henceforth, we refer to σ e
xz (ρe

zx)
as the crystalline planar Hall conductivity (resistivity). In-
deed, we can prove that the conditions for the nonzero
ρe

zx(Bx, By, 0) (and σ e
xz(Bx, By, 0)) are equivalent to those for

the ρo
yx(Bx, By, 0) by using the pictorial approaches regarding

Figs. 2 and 7–9.
To avoid repeating similar explanations, we show only

representative cases. One example is a vertical mirror sym-
metry in the yz plane [see Fig. 10(a)]. Here, we consider

Bx

Jx

Bx

-Jx

myz

Ee
z

(a) Vertical mirror plane
(nonmagnetic material)

Ee
z

x

y

z

myz

mxy

Bxy

Jx

-Bxy

Jx

mxy

(b) In-plane mirror plane
(nonmagnetic material)

Ee
z

-Ee
z

x

y

z

FIG. 10. Symmetry conditions for the absence of the crystalline
planar Hall effect. See the caption of Fig. 2 for details. The orange
circle with a dot or a cross represents a tentative crystalline planar
Hall electric field ±Ee

z proportional to ρe
zx , which is proved to be zero.

(a) The mirror inversion myz transforms the top to the bottom, which
is accompanied with the inversion of Jx , but Bx and Ee

z remain intact.
(b) Corresponding figure for the crystal with the mxy symmetry.
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FIG. 11. (a) Left: The proposed crystal structure of α-RuCl3 at
low temperature [76], which belongs to the R3̄ space group. Right:
Top view of the three types of Cl-Ru-Cl honeycomb layer of different
orientations denoted as A, B, and C. Displacement of the atomic
position of chlorine from the symmetric position is exaggerated for
visibility. The black line is the unit cell in the rhombohedral axes.
(b) Top view of the original R3̄ crystal structure, characterized by the
ABC stacking and the obverse setting. The Cartesian coordinate, xyz,
is defined, and the expected thermal Hall conductivity κo

xy(Bx ) is set
to be positive. [(c), (d)] Possible twin domains produced by the twin
operations: C2z for (c), mxz for (d), and myz for (e). The stacking order
(ABC or CBA), the lattice setting (obverse and reverse), and the sign
of the κo

xy(Bx ) are also shown.

that a tentative out-of-plane electric field Ee
z is induced by

the application of Jx, which is proved to be zero. The mirror
operation transforms the system from the top to the bottom,

where the Bx and Ee
z remain intact, but the Jx is reversed.

This relationship is expressed as Ee
z = ρe

xz(Bx, 0, 0) · Jx =
ρe

xz(Bx, 0, 0) · (−Jx ), and thus ρe
xz(Bx, 0, 0) = 0. The other ex-

ample is a horizontal mirror symmetry in the xy plane [see
Fig. 10(b)]. The mirror inversion reverses Ee

z , and Bxy to give
the equation Ee

z = ρe
xz(Bx, By, 0) · Jx = −ρe

xz(−Bx,−By, 0) ·
Jx. We note that ρe

xz(Bx, By, 0) = ρe
xz(−Bx,−By, 0), and thus

obtain the proof of ρe
xz(Bx, By, 0) = 0. We can straight-

forwardly prove the other conditions for the absence of
ρe

xz(Bx, By, 0).
The leading order in terms of B for ρe

xz (and σ e
xz as well)

depends on the crystal symmetry. Triclinic and monolcinic
systems are ρe

xz �= 0 even in zero field. Other point groups
start from ρe

xz ∝ B2 since it originates from the anisotropy of
magnetoresistance, which is zero at B = 0.

APPENDIX D: THERMAL TRANSPORT MEASUREMENTS
AND TWIN OPERATIONS OF α-RuCl3

In Table II, we show a list of published literature re-
porting the thermal transport properties of α-RuCl3. Each
raw summarizes the experimental conditions (heat current
and magnetic field direction), the equations, either Eq. (13)
or (14), used to estimate the thermal Hall conductivity, and
growth methods for single crystals.

Figure 11(a) shows the proposed crystal structure of the
R3̄ RuCl3 [76,82–84], which is described by the stacking of
Cl-Ru-Cl layers along the [111]r (r denotes the rhombohedral
lattice) in the order of A, B, and C [see Fig. 11(b)]. Each layer
can be completely superimposed by a pure spatial translation
of [100]r. As the R3̄ lattice does not have the symmetries, C2z,
mxz, and myz, three different types of twin domains associated
with the stacking faults can be considered [94]. Figure 11(c)
shows the crystal structure after the C2z operation. The ABC
stacking is converted to the CBA stacking and the rhombo-
hedral unit cell is changed to the reverse setting (see the
orientation of the unit cell). As we discussed the symmetry
condition for the in-plane Hall effect in Fig. 2(c), the C2z

rotation reverses the sign of the κo
xy(Bx ) (< 0). A similar

discussion can also be applied to the mxz and myz operations
as summarized in Figs. 11(b) and 11(c), respectively. We note
that, in contrast to the case of the triangular lattice consid-
ered in Fig. 3(c), the obverse-reverse twinning (twinning by
reticular merohedry) is irrelevant for the sign reversal of the
κo

xy. This occurs between the ferroaxial domains [85,86] in
the same obverse-reverse settings, which can be identified
by the sign of the electrogyration [95,96], and the intensity
difference of electron/x-ray diffraction at, e.g., hkl = 113n
and 1̄1̄3n [97].
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[21] X.-L. Sheng and B. K. Nikolić, Monolayer of the 5d transition
metal trichloride OsCl3: A playground for two-dimensional
magnetism, room-temperature quantum anomalous Hall ef-
fect, and topological phase transitions, Phys. Rev. B 95,
201402(R) (2017).

[22] P. Zhong, Y. Ren, Y. Han, L. Zhang, and Z. Qiao, In-
plane magnetization-induced quantum anomalous Hall effect
in atomic crystals of group-V elements, Phys. Rev. B 96,
241103(R) (2017).

[23] J. Zhang, Z. Liu, and J. Wang, In-plane magnetic-field-induced
quantum anomalous Hall plateau transition, Phys. Rev. B 100,
165117 (2019).

[24] Z. Liu, G. Zhao, B. Liu, Z. F. Wang, J. Yang, and F. Liu,
Intrinsic Quantum Anomalous Hall Effect with In-Plane Mag-
netization: Searching Rule and Material Prediction, Phys. Rev.
Lett. 121, 246401 (2018).

[25] Z. Li, Y. Han, and Z. Qiao, Chern Number Tunable Quan-
tum Anomalous Hall Effect in Monolayer Transitional Metal

Oxides via Manipulating Magnetization Orientation, Phys.
Rev. Lett. 129, 036801 (2022).

[26] A. G. Mal’shukov, K. A. Chao, and M. Willander, Hall effect
in a magnetic field parallel to interfaces of a III-V semicon-
ductor quantum well, Phys. Rev. B 57, R2069(R) (1998).

[27] V. A. Zyuzin, In-plane Hall effect in two-dimensional helical
electron systems, Phys. Rev. B 102, 241105(R) (2020).

[28] R. Battilomo, N. Scopigno, and C. Ortix, Anomalous planar
Hall effect in two-dimensional trigonal crystals, Phys. Rev.
Res. 3, L012006 (2021).

[29] S. Sun, H. Weng, and X. Dai, Possible quantization and half-
quantization in the anomalous Hall effect caused by in-plane
magnetic field, Phys. Rev. B 106, L241105 (2022).

[30] J. H. Cullen, P. Bhalla, E. Marcellina, A. R. Hamilton, and
D. Culcer, Generating a Topological Anomalous Hall Effect
in a Nonmagnetic Conductor: An In-Plane Magnetic Field as
a Direct Probe of the Berry Curvature, Phys. Rev. Lett. 126,
256601 (2021).

[31] H. Tan, Y. Liu, and B. Yan, Unconventional anomalous Hall
effect from magnetization parallel to the electric field, Phys.
Rev. B 103, 214438 (2021).

[32] H. Wang, Y.-X. Huang, H. Liu, X. Feng, J. Zhu, W. Wu, C.
Xiao, and S. A Yang, Theory of intrinsic in-plane Hall effect,
arXiv:2211.05978.

[33] T. Liang, J. Lin, Q. Gibson, S. Kushwaha, M. Liu, W. Wang,
H. Xiong, J. A. Sobota, M. Hashimoto, P. S. Kirchmann et al.,
Anomalous Hall effect in ZrTe5, Nat. Phys. 14, 451 (2018).

[34] J. Zhou, W. Zhang, Y.-C. Lin, J. Cao, Y. Zhou, W. Jiang, H. Du,
B. Tang, J. Shi, B. Jiang et al., Heterodimensional superlattice
with in-plane anomalous Hall effect, Nature 609, 46 (2022).

[35] J. Chen, H. Li, B. Ding, P. Chen, T. Guo, X. Xu, D. Zheng, H.
Zhang, X. Xi, and W. Wang, Unconventional anomalous Hall
effect in the canted antiferromagnetic half-Heusler compound
DyPtBi, Adv. Funct. Mater. 32, 2107526 (2022).

[36] A. Kitaev, Anyons in an exactly solved model and beyond,
Ann. Phys. 321, 2 (2006).

[37] Y. Kasahara, T. Ohnishi, Y. Mizukami, O. Tanaka, S. Ma, K.
Sugii, N. Kurita, H. Tanaka, J. Nasu, Y. Motome et al., Majo-
rana quantization and half-integer thermal quantum Hall effect
in a Kitaev spin liquid, Nature (London) 559, 227 (2018).

[38] T. Yokoi, S. Ma, Y. Kasahara, S. Kasahara, T. Shibauchi, N.
Kurita, H. Tanaka, J. Nasu, Y. Motome, C. Hickey et al., Half-
integer quantized anomalous thermal Hall effect in the Kitaev
material candidate α-RuCl3, Science 373, 568 (2021).

[39] P. Czajka, T. Gao, M. Hirschberger, P. Lampen-Kelley, A.
Banerjee, N. Quirk, D. Mandrus, S. Nagler, and N. P. Ong,
Planar thermal Hall effect of topological bosons in the Kitaev
magnet α-RuCl3, Nat. Mater. 22, 36 (2023).

[40] H. J. Juretschke, Symmetry of galvanomagnetic effects in an-
timony, Acta Cryst. 8, 716 (1955).

[41] Y. C. Akgoz and G. A. Saunders, Space-time symmetry re-
strictions on the form of transport tensors. I. Galvanomagnetic
effects, J. Phys. C: Solid State Phys. 8, 1387 (1975).

[42] H. Grimmer, General relations for transport properties in mag-
netically ordered crystals, Acta Cryst. A 49, 763 (1993).

[43] I. M. B. de Figueiredo and R. E. Raab, A pictorial approach to
macroscopic space-time symmetry, with particular reference
to light scattering, Proc. R. Soc. London A 369, 501 (1980).

[44] H. Takeda, J. Mai, M. Akazawa, K. Tamura, J. Yan, K.
Moovendaran, K. Raju, R. Sankar, K.-Y. Choi, and M.

023138-15

https://doi.org/10.1098/rspa.1959.0008
https://doi.org/10.1103/PhysRev.117.689
https://doi.org/10.1143/JPSJ.11.89
https://doi.org/10.1143/JPSJ.12.1327
https://doi.org/10.1103/PhysRevB.30.1099
https://doi.org/10.1103/PhysRevB.38.5215
https://doi.org/10.1088/0022-3719/7/9/008
https://doi.org/10.1103/PhysRevB.32.1183
https://doi.org/10.1103/PhysRevB.48.2098
https://doi.org/10.1103/PhysRevB.50.5180
https://doi.org/10.1103/PhysRevB.84.085123
https://doi.org/10.1103/PhysRevLett.111.086802
https://doi.org/10.1103/PhysRevB.94.085411
https://doi.org/10.1103/PhysRevB.95.201402
https://doi.org/10.1103/PhysRevB.96.241103
https://doi.org/10.1103/PhysRevB.100.165117
https://doi.org/10.1103/PhysRevLett.121.246401
https://doi.org/10.1103/PhysRevLett.129.036801
https://doi.org/10.1103/PhysRevB.57.R2069
https://doi.org/10.1103/PhysRevB.102.241105
https://doi.org/10.1103/PhysRevResearch.3.L012006
https://doi.org/10.1103/PhysRevB.106.L241105
https://doi.org/10.1103/PhysRevLett.126.256601
https://doi.org/10.1103/PhysRevB.103.214438
http://arxiv.org/abs/arXiv:2211.05978
https://doi.org/10.1038/s41567-018-0078-z
https://doi.org/10.1038/s41586-022-05031-2
https://doi.org/10.1002/adfm.202107526
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1038/s41586-018-0274-0
https://doi.org/10.1126/science.aay5551
https://doi.org/10.1038/s41563-022-01397-w
https://doi.org/10.1107/S0365110X55002181
https://doi.org/10.1088/0022-3719/8/9/010
https://doi.org/10.1107/S0108767393003770
https://doi.org/10.1098/rspa.1980.0013


TAKASHI KURUMAJI PHYSICAL REVIEW RESEARCH 5, 023138 (2023)

Yamashita, Planar thermal Hall effects in the Kitaev spin liquid
candidate Na2Co2TeO6, Phys. Rev. Res. 4, L042035 (2022).

[45] The Hall effect is often used to describe only field-odd trans-
verse responses [5,27,106], but phenomenologically it is more
generally defined as being independent of the field-reversal
symmetry [46,107].

[46] L. P. Kao and E. Katz, Phenomenological theory of anisotropic
isothermal galvanomagnetic effects, J. Phys. Chem. Solids 6,
223 (1958).

[47] A. C. Smith, J. F. Janak, and R. B. Adler, Electronic Conduc-
tion in Solids (McGraw-Hill, New York, 1967).

[48] F. G. Utermohlen and N. Trivedi, Symmetry analysis of tensors
in the honeycomb lattice of edge-sharing octahedra, Phys. Rev.
B 103, 155124 (2021).

[49] D. Szaller, S. Bordács, and I. Kézsmárki, Symmetry condi-
tions for nonreciprocal light propagation in magnetic crystals,
Phys. Rev. B 87, 014421 (2013).

[50] S.-W. Cheong, SOS: Symmetry-operational similarity, npj
Quantum Mater. 4, 53 (2019).

[51] T. Kurumaji, Spiral spin structures and skyrmions in multifer-
roics, Phys. Sci. Rev. 5, 20190016 (2020).

[52] S. Parsons, Introduction to twinning, Acta Cryst. D 59, 1995
(2003).

[53] In a single-carrier system, it can be proved that those two terms
in Eq. (6) completely cancel with each other [15] unless the
Berry curvature has finite contribution. In two-carrier system,
this cancellation is imperfect due to mobility difference.

[54] I. Isenberg, B. R. Russell, and R. F. Greene, Improved method
for measuring Hall coefficients, Rev. Sci. Instrum. 19, 685
(1948).

[55] J. R. Drabble and R. Wolfe, Geometrical effects in transverse
magnetoresistance measurements, J. Electronics and Control
3, 259 (2007).

[56] S. Mumford, T. Paul, E. Kountz, and A. Kapitulnik, Sam-
ple shape and boundary dependence of measured trans-
verse thermal properties, J. Appl. Phys. 128, 175105
(2020).

[57] A. Gourgout, M. Leroux, J.-L. Smirr, M. Massoudzadegan,
R. P. S. M. Lobo, D. Vignolles, C. Proust, H. Berger, Q. Li,
G. Gu et al., Magnetic freeze-out and anomalous Hall effect in
ZrTe5, npj Quantum Mater. 7, 71 (2022).

[58] J. Fujioka, R. Yamada, M. Kawamura, S. Sakai, M. Hirayama,
R. Arita, T. Okawa, D. Hashizume, M. Hoshino, and Y.
Tokura, Strong-correlation induced high-mobility electrons in
Dirac semimetal of perovskite oxide, Nat. Commun. 10, 362
(2019).

[59] J. Ge, D. Ma, Y. Liu, H. Wang, Y. Li, J. Luo, T. Luo, Y. Xing,
J. Yan, D. Mandrus et al., Unconventional Hall effect induced
by Berry curvature, Natl. Sci. Rev. 7, 1879 (2020).

[60] A. K. Nayak, J. E. Fischer, Y. Sun, B. Yan, J. Karel, A. C.
Komarek, C. Shekhar, N. Kumar, W. Schnelle, J. Kübler et
al., Large anomalous Hall effect driven by a nonvanishing
Berry curvature in the noncolinear antiferromagnet Mn3Ge,
Sci. Adv. 2, e1501870 (2016).

[61] M. Hirschberger, S. Hayami, and Y. Tokura, Nanometric
skyrmion lattice from anisotropic exchange interactions in a
centrosymmetric host, New J. Phys. 23, 023039 (2021).

[62] M. S. Alam, A. Fakhredine, M. Ahmed, P. K. Tanwar, H.-Y.
Yang, F. Tafti, G. Cuono, R. Islam, B. Singh, A. Lynnyk, C.
Autieri, and M. Matusiak, Sign change of anomalous Hall

effect and anomalous Nernst effect in the Weyl semimetal
CeAlSi, Phys. Rev. B 107, 085102 (2023).

[63] J. A. N. Bruin, R. R. Claus, Y. Matsumoto, N. Kurita, H.
Tanaka, and H. Takagi, Robustness of the thermal Hall ef-
fect close to half-quantization in α-RuCl3, Nat. Phys. 18, 401
(2022).

[64] M. Yamashita, J. Gouchi, Y. Uwatoko, N. Kurita, and H.
Tanaka, Sample dependence of half-integer quantized thermal
Hall effect in the Kitaev spin-liquid candidate α-RuCl3, Phys.
Rev. B 102, 220404(R) (2020).

[65] Y. Kasahara, S. Suetsugu, T. Asaba, S. Kasahara, T. Shibauchi,
N. Kurita, H. Tanaka, and Y. Matsuda, Quantized and unquan-
tized thermal Hall conductance of Kitaev spin-liquid candidate
α-RuCl3, Phys. Rev. B 106, L060410 (2022).

[66] J. Nasu, J. Yoshitake, and Y. Motome, Thermal Transport in
the Kitaev Model, Phys. Rev. Lett. 119, 127204 (2017).

[67] P. Czajka, T. Gao, M. Hirschberger, P. Lampen-Kelley, A.
Banerjee, J. Yan, D. G Mandrus, S. E. Nagler, and N. P. Ong,
Oscillations of the thermal conductivity in the spin-liquid state
of α-RuCl3, Nat. Phys. 17, 915 (2021).

[68] J. A. N. Bruin, R. R. Claus, Y. Matsumoto, J. Nuss, S. Laha,
B. V. Lotsch, N. Kurita, H. Tanaka, and H. Takagi, Origin of
oscillatory structures in the magnetothermal conductivity of
the putative Kitaev magnet α-RuCl3, APL Mater. 10, 090703
(2022).

[69] É. Lefrançois, J. Baglo, Q. Barthélemy, S. Kim, Y.-J. Kim, and
L. Taillefer, Oscillations in the magnetothermal conductivity
of α-RuCl3: Evidence of transition anomalies, Phys. Rev. B
107, 064408 (2023).

[70] S. Suetsugu, Y. Ukai, M. Shimomura, M. Kamimura, T. Asaba,
Y. Kasahara, N. Kurita, H. Tanaka, T. Shibauchi, J. Nasu et al.,
Evidence for a phase transition in the quantum spin liquid state
of a Kitaev candidate α-RuCl3, J. Phys. Soc. Jpn. 91, 124703
(2022).

[71] É. Lefrançois, G. Grissonnanche, J. Baglo, P. Lampen-Kelley,
J.-Q. Yan, C. Balz, D. Mandrus, S. E. Nagler, S. Kim, Y.-J.
Kim et al., Evidence of a Phonon Hall Effect in the Kitaev Spin
Liquid Candidate α-RuCl3, Phys. Rev. X 12, 021025 (2022).

[72] L. E. Chern, E. Z. Zhang, and Y. B. Kim, Sign Structure of
Thermal Hall Conductivity and Topological Magnons for In-
Plane Field Polarized Kitaev Magnets, Phys. Rev. Lett. 126,
147201 (2021).

[73] E. Z. Zhang, L. E. Chern, and Y. B. Kim, Topological magnons
for thermal Hall transport in frustrated magnets with bond-
dependent interactions, Phys. Rev. B 103, 174402 (2021).

[74] S. Koyama and J. Nasu, Field-angle dependence of ther-
mal Hall conductivity in a magnetically ordered Kitaev-
Heisenberg system, Phys. Rev. B 104, 075121 (2021).

[75] O. Tanaka, Y. Mizukami, R. Harasawa, K. Hashimoto, K.
Hwang, N. Kurita, H. Tanaka, S. Fujimoto, Y. Matsuda,
E.-G. Moon et al., Thermodynamic evidence for a field-angle-
dependent Majorana gap in a Kitaev spin liquid, Nat. Phys. 18,
429 (2022).

[76] S.-Y. Park, S.-H. Do, K.-Y. Choi, D. Jang, T.-H. Jang, J.
Schefer, C.-M. Wu, J. S. Gardner, J. M. S. Park, J.-H.
Park et al., Emergence of the isotropic Kitaev honeycomb
lattice with two-dimensional Ising universality in α-RuCl3,
arXiv:1609.05690.

[77] S. Kim, B. Yuan, and Y.-J. Kim, α-RuCl3 and other Kitaev
materials, APL Mater. 10, 080903 (2022).

023138-16

https://doi.org/10.1103/PhysRevResearch.4.L042035
https://doi.org/10.1016/0022-3697(58)90099-4
https://doi.org/10.1103/PhysRevB.103.155124
https://doi.org/10.1103/PhysRevB.87.014421
https://doi.org/10.1038/s41535-019-0193-9
https://doi.org/10.1515/psr-2019-0016
https://doi.org/10.1107/S0907444903017657
https://doi.org/10.1063/1.1741078
https://doi.org/10.1080/00207215708937088
https://doi.org/10.1063/5.0024253
https://doi.org/10.1038/s41535-022-00478-y
https://doi.org/10.1038/s41467-018-08149-y
https://doi.org/10.1093/nsr/nwaa163
https://doi.org/10.1126/sciadv.1501870
https://doi.org/10.1088/1367-2630/abdef9
https://doi.org/10.1103/PhysRevB.107.085102
https://doi.org/10.1038/s41567-021-01501-y
https://doi.org/10.1103/PhysRevB.102.220404
https://doi.org/10.1103/PhysRevB.106.L060410
https://doi.org/10.1103/PhysRevLett.119.127204
https://doi.org/10.1038/s41567-021-01243-x
https://doi.org/10.1063/5.0101377
https://doi.org/10.1103/PhysRevB.107.064408
https://doi.org/10.7566/JPSJ.91.124703
https://doi.org/10.1103/PhysRevX.12.021025
https://doi.org/10.1103/PhysRevLett.126.147201
https://doi.org/10.1103/PhysRevB.103.174402
https://doi.org/10.1103/PhysRevB.104.075121
https://doi.org/10.1038/s41567-021-01488-6
http://arxiv.org/abs/arXiv:1609.05690
https://doi.org/10.1063/5.0101512


SYMMETRY-BASED REQUIREMENT FOR THE … PHYSICAL REVIEW RESEARCH 5, 023138 (2023)

[78] B. W. Lebert, S. Kim, D. A. Prishchenko, A. A. Tsirlin,
A. H. Said, A. Alatas, and Y.-J. Kim, Acoustic phonon
dispersion of α-RuCl3, Phys. Rev. B 106, L041102
(2022).

[79] H. B. Cao, A. Banerjee, J.-Q. Yan, C. A. Bridges, M. D.
Lumsden, D. G. Mandrus, D. A. Tennant, B. C. Chakoumakos,
and S. E. Nagler, Low-temperature crystal and magnetic struc-
ture of α-RuCl3, Phys. Rev. B 93, 134423 (2016).

[80] M. C. Shapiro, A. T. Hristov, J. C. Palmstrom, J.-H. Chu, and
I. R. Fisher, Measurement of the B1g and B2g components of
the elastoresistivity tensor for tetragonal materials via trans-
verse resistivity configurations, Rev. Sci. Instrum. 87, 063902
(2016).

[81] P. Walmsley and I. R. Fisher, Determination of the resistivity
anisotropy of orthorhombic materials via transverse resistivity
measurements, Rev. Sci. Instrum. 88, 043901 (2017).

[82] A. Glamazda, P. Lemmens, S.-H. Do, Y. S. Kwon, and K.-
Y. Choi, Relation between Kitaev magnetism and structure in
α-RuCl3, Phys. Rev. B 95, 174429 (2017).

[83] S. Mu, K. D. Dixit, X. Wang, D. L. Abernathy, H. Cao, S. E.
Nagler, J. Yan, P. Lampen-Kelley, D. Mandrus, C. A. Polanco
et al., Role of the third dimension in searching for Majorana
fermions in α-RuCl3 via phonons, Phys. Rev. Res. 4, 013067
(2022).

[84] Y. Nagai, T. Jinno, J. Yoshitake, J. Nasu, Y. Motome, M. Itoh,
and Y. Shimizu, Two-step gap opening across the quantum
critical point in the Kitaev honeycomb magnet α-RuCl3, Phys.
Rev. B 101, 020414(R) (2020).

[85] V. Gopalan and D. B. Litvin, Rotation-reversal symmetries in
crystals and handed structures, Nat. Mater. 10, 376 (2011).

[86] J. Hlinka, J. Privratska, P. Ondrejkovic, and V. Janovec, Sym-
metry Guide to Ferroaxial Transitions, Phys. Rev. Lett. 116,
177602 (2016).

[87] Y. Kubota, H. Tanaka, T. Ono, Y. Narumi, and K. Kindo,
Successive magnetic phase transitions in α-RuCl3: XY-like
frustrated magnet on the honeycomb lattice, Phys. Rev. B 91,
094422 (2015).

[88] R. D. Johnson, S. C. Williams, A. A. Haghighirad, J.
Singleton, V. Zapf, P. Manuel, I. I. Mazin, Y. Li, H. O. Jeschke,
R. Valentí et al., Monoclinic crystal structure of α-RuCl3 and
the zigzag antiferromagnetic ground state, Phys. Rev. B 92,
235119 (2015).

[89] R. Hentrich, A. U. B. Wolter, X. Zotos, W. Brenig, D. Nowak,
A. Isaeva, T. Doert, A. Banerjee, P. Lampen-Kelley, D. G.
Mandrus et al., Unusual Phonon Heat Transport in α-RuCl3:
Strong Spin-Phonon Scattering and Field-Induced Spin Gap,
Phys. Rev. Lett. 120, 117204 (2018).

[90] T. Ideue, T. Kurumaji, S. Ishiwata, and Y. Tokura, Giant ther-
mal Hall effect in multiferroics, Nat. Mater. 16, 797 (2017).

[91] J. Cao, W. Jiang, X.-P. Li, D. Tu, J. Zhou, J. Zhou, and Y. Yao,
In-plane Anomalous Hall Effect in PT -Symmetric Antiferro-
magnetic Materials, Phys. Rev. Lett. 130, 166702 (2023).

[92] S. Shtrikman and H. Thomas, Remarks on linear
magneto-resistance and magneto-heat-conductivity, Solid
State Commun. 3, 147 (1965).

[93] In Ref. [31], a similar table is also given, where ferromagnetic
cases for each point group are considered, while the cubic
groups are excluded without sufficient justification.

[94] Such a fourfold twinning of the R3̄-crystal has been reported,
for example, in VI3 [108].

[95] K. Aizu, Reversal in optical rotatory power—“gyroelectric”
crystals and “hypergyroelectric” crystals, Phys. Rev. 133,
A1584 (1964).

[96] A. S. Gupta, O. Arteaga, R. Haislmaier, B. Kahr, and
V. Gopalan, Reinvestigation of electric field-induced op-
tical activity in α-quartz: Application of a polarime-
ter with four photoelastic modulators, Chirality 26, 430
(2014).

[97] G. L. Nord Jr and C. A. Lawson, Order-disorder transition-
induced twin domains and magnetic properties in ilmenite-
hematite, Am. Mineral. 74, 160 (1989).

[98] D. Hirobe, M. Sato, Y. Shiomi, H. Tanaka, and E. Saitoh,
Magnetic thermal conductivity far above the Néel temperature
in the Kitaev-magnet candidate α-RuCl3, Phys. Rev. B 95,
241112(R) (2017).

[99] I. A Leahy, C. A. Pocs, P. E. Siegfried, D. Graf, S.-H. Do,
K.-Y. Choi, B. Normand, and M. Lee, Anomalous Thermal
Conductivity and Magnetic Torque Response in the Honey-
comb Magnet α-RuCl3, Phys. Rev. Lett. 118, 187203 (2017).

[100] Y. Kasahara, K. Sugii, T. Ohnishi, M. Shimozawa, M.
Yamashita, N. Kurita, H. Tanaka, J. Nasu, Y. Motome, T.
Shibauchi, and Y. Matsuda, Unusual Thermal Hall Effect in a
Kitaev Spin Liquid Candidate α-RuCl3, Phys. Rev. Lett. 120,
217205 (2018).

[101] Y. J. Yu, Y. Xu, K. J. Ran, J. M. Ni, Y. Y. Huang, J. H.
Wang, J. S. Wen, and S. Y. Li, Ultralow-Temperature Ther-
mal Conductivity of the Kitaev Honeycomb Magnet α-RuCl3

Across the Field-Induced Phase Transition, Phys. Rev. Lett.
120, 067202 (2018).

[102] R. Hentrich, M. Roslova, A. Isaeva, T. Doert, W. Brenig, B.
Büchner, and C. Hess, Large thermal Hall effect in α-RuCl3:
Evidence for heat transport by Kitaev-Heisenberg param-
agnons, Phys. Rev. B 99, 085136 (2019).

[103] R. Hentrich, X. Hong, M. Gillig, F. Caglieris, M. Čulo, M.
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