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Exploring disordered quantum spin models with a multilayer multiconfigurational approach
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Numerical simulations of quantum spin models are crucial for a profound understanding of many-body
phenomena in a variety of research areas in physics. An outstanding problem is the availability of methods to
tackle systems that violate area laws of entanglement entropy. Such scenarios cover a wide range of compelling
physical situations including disordered quantum spin systems among others. In this paper, we employ a
numerical technique referred to as multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) to
evaluate the ground state of several disordered spin models. ML-MCTDH has previously been used to study
problems of high-dimensional quantum dynamics in molecular and ultracold physics but is here applied to study
spin systems. We exploit the inherent flexibility of the method to present results in one and two spatial dimensions
and treat challenging setups that incorporate long-range interactions as well as disorder. Our results suggest that
the hierarchical multilayering inherent to ML-MCTDH allows to tackle a wide range of quantum many-body
problems such as spin dynamics of varying dimensionality.
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I. INTRODUCTION

A quantum many-body system satisfies the area law of
entanglement if the amount of entanglement between a sub-
system and the remainder of the system is proportional to
the area of the boundary [1]. Systems that obey the area law
typically have constraints such as locality in interaction and
underlying symmetries that force their eigenstates to reside
on certain submanifolds of the Hilbert space, rendering their
numerical simulation efficient. Consequently, several numer-
ical methods that rely on truncating the Hilbert space such
as density matrix renormalization group method (DMRG)
[2,3], time evolving block decimation (TEBD) [4–6], tensor
networks [7,8], and other matrix product states (MPS) based
methods have been very successful in simulating quantum
matter for a variety of physics [9–13] and chemistry problems
[14–20].

However, there are quantum states that exhibit scaling of
entanglement proportional to the total system size, in which
case the merits of MPS based methods may be questioned. As
a matter of fact, quantum systems having strong violation of
area law (entanglement grows linearly with the system size)
are more common than previously expected [21–27]. Such
scenarios are typically described by disordered Hamiltonians
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rendering them nontranslationally invariant and inducing a
high level of degeneracy in their low-energy spectrum. It is
often the case that the experimental realization of many-body
quantum systems are far from homogeneous, for example,
crystals with dislocations or impurities [28–30], experiments
investigating quantum Hall effect [31–33], glassy states of
frustrated spin models [34–36], and Anderson localization
[37–39]. For such systems, evaluating even the ground state
can be challenging with existing methods.

In this paper, we propose an alternative numerical approach
that can tackle the simulation of disordered spin systems. The
multilayer multiconfiguration time-dependent Hartree (ML-
MCTDH) method [40,41] is an extension of the MCTDH
method [42–44], which was originally developed to study
the multimode high-dimensional wave packet dynamics of
complex molecular systems [45–47]. Later extensions allow
for the treatment of bosonic [48–52] and fermionic [53–56]
ensembles as well as mixtures thereof [57–59]. In an unprece-
dented approach, we adapt the ML-MCTDH techniques to
study the ground-state properties of spin models, in particular
spin glass Hamiltonians, which possess random couplings.
Our results show that ML-MCTDH characterizes the ground
state of disordered spin systems accurately. We demonstrate
that this method can handle long-range interactions, scale to
large system sizes, as well as work in both one and higher
spatial dimensions. The overall flexibility of ML-MCTDH
is very promising and might serve as a tool for simulating
quantum many-body systems in regimes where conventional
methods may falter. Specifically it comprises the perspective
of simulating the nonequilibrium quantum dynamics of many-
body systems.

This paper is organized as follows. We provide a brief
introduction to ML-MCTDH in Sec. II A and discuss the
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different spin models for which we evaluate the ground-state
properties in Sec. II B. The two prototypical disordered spin
models chosen for this paper include cases of weak and strong
violation of area law of entanglement entropy. Additionally,
we also include the ubiquitous transverse field Ising model
with short-range and long-range interactions for comparison
purposes. Our analysis comprises ground-state characteristics
such as energy, correlations, and entanglement, which are
benchmarked against exact diagonalization [60] and DMRG,
all of which are shown in Sec. III. Section IV contains our
conclusions and outlook.

II. THEORETICAL FRAMEWORK

A. Multilayer multiconfiguration
timedependent Hartree method

To set the stage and to be self-contained, we believe it
is adequate and instructive to provide a brief introduction to
the ML-MCTDH method. One of the main challenges in the
numerical treatment of quantum many-body systems is the
exponential growth of Hilbert space dimension with system
size. In this section, we describe how the ML-MCTDH is able
to represent complex many-body wave functions with many
degrees of freedom and thus deal with large system sizes. We
start by first discussing the original MCTDH method, which
already contains the fundamental working principles and ex-
tend to ML-MCTDH by adding the notion of a hierarchy of
multiple layers.

The traditional and most straightforward approach to wave
packet dynamics uses an ansatz given by a linear super-
position |�(t )〉 = ∑

J AJ (t ) |�J〉 of time-independent |�J〉
configurations with time-dependent coefficients AJ (t ). With-
out loss of generality, we assume a physical scenario with
N degrees of freedom xκ with κ = 1, . . . , N . Depending
on the system under consideration, the degrees of freedom
could, for example, be spatial degrees of freedom of parti-
cles or bosonic/fermionic occupation numbers. A set of nκ

time-independent (primitive) basis functions |χ (κ )
jκ

(xκ )〉 with
jκ = 1, . . . , nκ is employed for each degree of freedom. The
|χ (κ )

jκ
(xκ )〉 are naturally chosen to form an orthonormal ba-

sis for each degree of freedom. The configurations |�J〉 are
product states with respect to combinations of the primitive
basis functions where the multi-index J = ( j1, j2, . . . , jN )
runs through all possible combinations such that the full wave
function ansatz is given by

|�(t )〉 =
n1∑

j1=1

· · ·
nN∑

jN =1

Aj1... jN (t )
N⊗

κ=1

∣∣χ (κ )
jκ

(xκ )
〉
. (1)

The time evolution of the many-body wave function |�(t )〉 is
governed by the Dirac-Frenkel variational principle [61,62],

〈δ�(t ) | (ı∂t − Ĥ ) | �(t )〉 = 0. (2)

By inserting the wave function ansatz (1) in Eq. (2), one
obtains the equation of motion for the expansion coefficients
AJ (t ),

ıȦJ (t ) =
∑

L

〈�J |Ĥ |�L〉 AL(t ), (3)

which can be solved numerically using standard time integra-
tion methods.

In this traditional wave packet ansatz, the number of con-
figurations and corresponding coefficients

∏N
κ=1 nκ , scales

exponentially with N , limiting the applicability of this ap-
proach to systems with only few degrees of freedom. In many
physical scenarios, it is often the case that using a small set of
time-dependent basis functions can provide an accurate repre-
sentation of the many-body wave function thereby allowing to
simulate larger systems. Thus, in MCTDH, Eq. (1) is replaced
with time-dependent configurations,

|�(t )〉 =
m(1;1)∑
j1=1

· · ·
m(1;N )∑
jN =1

A(1)
j1... jN

(t )
N⊗

κ=1

∣∣ϕ(1;κ )
jκ

(xκ , t )
〉
, (4)

where |ϕ(1;κ )
jκ

(xκ , t )〉 denotes the jκ th time-dependent basis
function for the κth degree of freedom and are referred to as
single particle functions (SPFs). The numbers m(1;κ ) specify
the number of SPFs used for the κth degree of freedom. The
superscript (1) or (1; κ ) for the SPFs, coefficients and SPF
numbers indicate that these objects are part of the same, first
layer of the wave function ansatz, a notation that will become
essential for the multilayer extension below. The SPFs in turn
are represented with respect to the time-independent basis of
the standard ansatz (1),

∣∣ϕ(1;κ )
jκ

(xκ , t )
〉 =

nκ∑
	=1

c(κ )
jκ ;	(t )

∣∣χ (κ )
	 (xκ )

〉
. (5)

The MCTDH wave function ansatz can be understood as a
three-layer approach [see Fig. 1(a)]. The top layer corresponds
to the total many-body wave function expanded with respect
to the SPFs using time-dependent coefficients. The middle
layer refers to the time-dependent SPFs expanded with re-
spect to the time-independent primitive basis functions while
the lowest layer contains the primitive basis functions them-
selves. The time-dependent variational principle (2) yields
equations of motion for both the coefficients A(1)

j1... jN
(t ) and

the SPFs |ϕ(1;κ )
jκ

(xκ , t )〉, which we omit here for brevity but
more details can be found in Ref. [44]. In order to ensure
convergence, a sufficient number of SPFs has to be employed
such that they span a Hilbert space of adequate size in order to
capture the underlying physics correctly. As a matter of fact,
it is often the case that the MCTDH wave function ansatz (4)
contains a much smaller number of configurations compared
to the wave packet ansatz (1), i.e.,

∏N
κ=1 mκ � ∏N

κ=1 nκ , lead-
ing to a significant reduction of the computational effort.
MCTDH was successfully used to study molecular problems
with 12–14 degrees of freedom [45–47] and later extended
to 15–24 degrees of freedom [63–66] and even 100 degrees
of freedom for system-bath problems [67–69] using mode
combination [70,71]. However, capturing beyond-mean-field
effects requires at least two SPFs for each degree of freedom
such that the total number of configurations is at least 2N ,
highlighting the exponential scaling with respect to the system
size.

In order to treat much larger systems, the ML-MCTDH
approach was introduced, which has been highly success-
ful in the treatment of systems with hundreds or even
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FIG. 1. Diagrammatic representation of a three-layer MCTDH (a) and a four-layer ML-MCTDH (b) ansatz for the many-body wave
function �(t ) of a system with N = 4 physical degrees of freedom.

thousands of degrees of freedom [40,72–74] including the
study of vibrational as well as electronic dynamical processes
in molecules [75,76] or linear rotor chains [77]. The central
idea of ML-MCTDH is to group the N physical degrees of
freedom x1, . . . xN into d logical coordinates as shown below,

q1 = {x1, x2, . . . , xs1}
q2 = {xs1+1, xs1+2, . . . , xs1+s2}

...

qd = {xs1+...+sd−1+1, . . . , xN }. (6)

For each logical coordinate qλ a new set of time-dependent

SPFs {|ϕ(2;λ)
	λ

(qλ, t )〉}m(2;λ)

	λ=1
is introduced. In ML-MCTDH, the

many-body wave function ansatz Eq. (4) is replaced by ex-
panding it with respect to these new, second layer SPFs

|�(t )〉 =
m(2;1)∑
	1=1

· · ·
m(2;d )∑
	d =1

A(2)
	1,...,	d

(t )
d⊗

λ=1

∣∣ϕ(2;λ)
	λ

(qλ, t )
〉
. (7)

The newly introduced functions |ϕ(2;λ)
	λ

(qλ, t )〉 are represented
with respect to a subset of the original MCTDH SPFs given
by Eq. (5) that are associated with the logical coordinate qλ,
i.e.,

∣∣ϕ(2;λ)
	λ

(qλ, t )
〉

=
m(1;α)∑
jα=1

· · ·
m(1;β )∑
jβ=1

⎡
⎣A(1;λ)

	λ; jα,..., jβ
(t ) ·

β⊗
κ=α

∣∣ϕ(1;κ )
jκ

(xκ , t )
〉
⎤
⎦. (8)

Here, α = α(λ) = 1 + ∑λ−1
i=1 si and β = β(λ) = ∑λ

i=1 si cor-
respond to the index of the first and last physical coordinate
associated with the logical coordinate qλ respectively. The
newly introduced SPFs |ϕ(2;λ)

	λ
(qλ, t )〉 can be interpreted as

a multidimensional wave function that follows an MCTDH
ansatz with respect to the original MCTDH SPFs (5). With
this interpretation, ML-MCTDH can be viewed as adding
another layer to the original MCTDH scheme ending up in
a four-layer ansatz for the many-body wave function, which is
schematically depicted in Fig. 1(b). In general, more middle
layers can be added where each layer introduces a new set

of SPFs that are constructed using an MCTDH ansatz with
respect to the layer below in a recursive manner. This allows
the tree structure to be adapted and tailored specifically for
the physical problem under consideration. It should be noted
that the SPFs across all layers are chosen to form orthonor-
mal basis sets and remain orthonormal throughout the time
evolution. In summary, ML-MCTDH offers great flexibility
regarding the degrees of freedom due to the choice of an
appropriate primitive basis according to the physical problem
under consideration. When treating the dynamics of particles
for example, FFT-based [78,79] schemes or discrete vari-
able representations [80–82] are commonly used to provide a
primitive basis for the spatial degrees of freedom. By using
fermionic [56] or bosonic [50–52] occupation numbers the
treatment of indistinguishable particles is possible as well.

In the present paper, we investigate spin-1/2 systems and
consequently employ a two-dimensional primitive basis con-
taining the spin-up and spin-down state for each degree of
freedom, i.e., nκ = 2, |χ (κ )

1 〉 = |↑〉 and |χ (κ )
2 〉 = |↓〉 for all

κ = 1, . . . , N . While in general MCTDH and ML-MCTDH
are tools to study the dynamics of many-body quantum sys-
tems, they also provide access to eigenstates of the underlying
Hamiltonian by switching from real to imaginary time propa-
gation. More details can be found in Appendix A.

B. Spin Models

Three different quantum spin models are investigated in
order to study the performance of the ML-MCTDH method.
As a starting point and for comparison purposes, it is useful
to consider the transverse field Ising model (TFIM) [83,84]
as it is one of the most fundamental and well studied models
and has been realized in a variety of physical setups includ-
ing trapped ions [85–88], Rydberg atoms [89–92], and single
crystals [93]. The Hamiltonian of the TFIM in 1D is given by

HTFIM = −
L∑

i, j=1
i< j

Ji jσ
z
i σ z

j − hx

L∑
i=1

σ x
i − hz

L∑
i=1

σ z
i (9)

where Ji j specifies the interaction strength between the ith
and jth spin while hx (hz) determines the strength of a
transverse (longitudinal) magnetic field. We consider both
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nearest-neighbor interactions (SR-TFIM), i.e., Ji j = Jδi+1, j ,
and long-range interactions that decay as a power law of the
distance between the spins, i.e., Ji j = J|i − j|−α (LR-TFIM).
The parameter J determines the energy scale of the system
and the exponent α controls the range of the interactions. We
choose J > 0 such that ferromagnetic order, i.e., the align-
ment of neighboring spins in the z direction, is energetically
favorable. For the long-range interactions, we choose α = 3,
which is accessible by trapped ions as well as Rydberg atoms.

For the remaining two models in the present paper (see be-
low) we choose disordered systems that violate the area law of
entanglement entropy. Numerical methods like DMRG, which
are based on matrix product states rely on the area law and
may fall short while treating such models. While it has been
shown that a homogeneous, gapped 1D spin systems with
local interactions like the SR-TFIM obey the area law [1,94],
understanding the impact of disorder on the entanglement
properties of ground states remains an open and challenging
question. It is known that in such nontranslationally invariant
scenarios, weak (logarithmic scaling with the system size)
[94–96] or even stronger [21–27] violations of the area law
can occur. Our first disordered model is a XY spin glass
(XYSG) [97–99] given by the Hamiltonian

HXYSG =
L∑

i, j=1
i< j

Ji j

|i − j|α (σ+
i σ−

j + σ+
j σ−

i ) (10)

with the spin flip operators σ± = σ x ± ıσ y. We choose α = 3
and Ji j from a uniform distribution in [−1, 1]. This spin glass
model exhibits weak violation of the area law [26,27]. The
second disordered spin model we analyze is motivated by
the strong disorder renormalization group (SDRG) framework
[21,100–103] whose ground state is known to exhibit strong
area-law violation. The relevant Hamiltonian is

HSDRG = 1

2

L−1∑
i=1

Ji
(
σ x

i σ x
i+1 + σ

y
i σ

y
i+1

)
, (11)

where the spin couplings are fine-tuned to be Ji = J0 f (|L/2 −
i|) with f (n) = e−2n2

[21]. In general, a 1D spin chain with
nearest-neighbor interactions like the SR-TFIM (9) can be
solved exactly by mapping it to the free fermionic chain via
the Jordan-Wigner transformation. Models that incorporate
disorder or long-range interactions like Eqs. (10) and (11) can-
not be treated this way rendering the development of powerful
numerical tools like ML-MCTDH crucial.

A priori, it is not clear which tree structure is best suited
to treat a given many-body problem with the ML-MCTDH
method. In particular, different topologies can lead to vastly
different simulation runtimes but yield comparable results as
long as proper convergence with respect to the number of
SPFs on each layer is ensured. Finding a good tree struc-
ture is an iterative process that is guided by monitoring the
occupation of the SPFs as well as the physical observables
under consideration. As a starting point, it is usually bene-
ficial to couple degrees of freedom at the lowest layers of
the tree that are strongly interacting in the underlying Hamil-
tonian. The goal is to exploit the multilayering aspect of
the method as much as possible in order to obtain a very
compact representation of the many-body wave function and

thus reduce the computational cost. In Fig. 2 we show the
various tree diagrams that are used in the present paper.
For the SR-TFIM we employ a binary tree with log2(L) + 1
layers, see panel (a). This choice is natural as it couples
the neighboring spins on the lowest layers. Since this can-
not be achieved for all couplings at the same time, some of
these interactions are mediated through the upper layers. The
same binary tree topology works for the LR-TFIM as well
since the interaction between neighboring spins is still the
strongest. However, due to the long-range character of the
interactions, more SPFs have to be used on the upper layers
in order to capture long-range effects. A binary tree struc-
ture also works well for describing the XYSG model where
the design of a more optimized tree structure is prohibitive
due to the random nature of the couplings. When treating
two-dimensional systems more complex tree structures are
required [see panel (b)]. In the present example of a 9 × 9
square lattice, we alternate between combining triplets of log-
ical coordinates along the x and y direction. We can treat the
SDRG model accurately with the tree depicted in panel (c),
which is a simple MCTDH ansatz with mode combination that
does not rely on any multilayering. This approach combines
the strongly interacting central spins into one logical coordi-
nate, which is then coupled to logical coordinates combining
the outer spins.

III. RESULTS AND DISCUSSION

We benchmark the performance of the ML-MCTDH
method against exact diagonalization (ED) and DMRG by
characterizing the ground state of different spin models using
its energy E0, correlation functions Cββ (i, j), and entangle-
ment entropy SvN. The exact diagonalization implementation
uses the QuSpin package [104] in conjunction with some
routines provided by quimb [105]. The DMRG code is based
on the ITensor library [106].

Figure 3(a) shows the ground-state energy per spin for the
SR-TFIM as a function of system size L for a fixed transverse
field of hx = J for which there is excellent agreement between
all three methods. Naturally ED is limited to a few spins,
while DMRG and ML-MCTDH can treat much longer chains,
exhibiting great scalability with respect to the system size.
However, calculating ground states for large systems can be
computationally time consuming. In order to accelerate the
convergence to the ground state for these large systems, we
impose a small longitudinal magnetic field hz = 0.01J , which
lifts the twofold degeneracy of the ground state. It should be
noted that our approach works as well in the absence of a lon-
gitudinal field. Figures 3(b) and 3(c) illustrate the convergence
of the ground-state energy E0;M obtained by ML-MCTDH and
DMRG with respect to the ground-state energy E0,ED com-
puted with ED. This is quantified by calculating the relative
error �E = |E0;M/E0;ED − 1| as a function of time steps for
ML-MCTDH in (b) and number of sweeps for DMRG in (c).
When compared to ED, both methods achieve excellent accu-
racy for the SR- and LR-TFIM, but for the disordered XYSG
and SDRG systems, it is clear that ML-MCTDH manages to
obtain a much higher precision than DMRG.

Figure 3(c) also illustrates that the DMRG ground-state en-
ergy converges rapidly and reaches its final value already after
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64
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5
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64

FIG. 2. (a) Tree structure used for the SR-TFIM (m(3;i) = 6 and m(2;i) = 12), LR-TFIM (m(2;i) = m(3;i) = 16), as well as XY-SG (m(2;i) = 16
and m(3;i) = 32) of L = 16 spins in 1D. (b) Tree structure used for the SR-TFIM extended to 2D on a square lattice of 9 × 9 spins. (c) Tree
structure used for the SDRG model of L = 16 spins in 1D.

2–4 sweeps. We employ a protocol consisting of nine sweeps
and allow the bond dimension of the matrix product states to
dynamically grow up to 1000. More details on this scheme can
be found in Appendix B. A maximal bond dimension of 14
for the SR-TFIM and 57 for the LR-TFIM of L = 16 spins is
sufficient for an accurate description of the ground state across
the whole range of transversal fields. The XYSG demands a
higher maximal bond dimension of 129 due to its disordered
character. The SDRG model requires a surprisingly low final
maximal bond dimension of 8. By forcing the DMRG algo-
rithm to use a minimal bond dimension of at least 100 and
checking all observables under consideration, we ensured that

4 8 16 32 64 128 256 512
L

1.20

1.25

−E
0
(L

J
)−

1

(a) SR-TFIM ground state energy at hx = J

ED
DMRG
ML-MCTDH

0 200 400 600 800 1000 1200
Time step

10−11
10−9
10−7
10−5
10−3
10−1

Δ
E

(b) ML-MCTDH

SR-TFIM
LR-TFIM

XYSG
SDRG

1 2 3 4 5 6 7 8 9
Sweep

10−11
10−9
10−7
10−5
10−3
10−1

Δ
E

(c) DMRG

SR-TFIM
LR-TFIM

XYSG
SDRG

FIG. 3. (a) Ground-state energy per spin of the SR-TFIM in 1D
for hx = J and hz = 0.01J as a function of the system size L. (b) Rel-
ative error of the ML-MCTDH ground-state energy with respect to
the ED ground-state energy as a function of imaginary time step
for different 1D models of L = 16 spins. (c) Relative error of the
DMRG ground-state energy with respect to ED ground-state energy
as a function of the sweep index for different 1D models of L = 16
spins.

our results for the SDRG model are indeed converged and
an increase in bond dimension does not improve the results.
One of the challenges when studying quantum many-body
problems is the ability to capture nontrivial correlations. Here,
we use the connected correlation function [107,108], which is
defined as

Cββ (i, j) = 〈
σ

β
i σ

β
j

〉 − 〈
σ

β
i

〉 〈
σ

β
j

〉
, β ∈ {x, y, z}, (12)

to measure correlations in the system and characterize the
magnetic ordering between spins i and j. Figure 4 shows re-
sults for correlation functions defined in Eq. (12) for different
spin models. For the SR-TFIM in 1D and its 2D extension
as well as the LR-TFIM we observe excellent agreement
between all three methods as seen in panels (a)–(d). The
connected correlations in the x direction denoted by Cxx(i, j)
were evaluated for disordered spin models by averaging over
10 disorder realizations and over all unique spin pairings with
i < j corresponding to a given separation r = |i − j|. The
results are shown in panels (e)–(f). In the case of XYSG,
DMRG struggles to capture the correlations correctly as the
low-energy spectrum exhibits many near-degeneracies, which
are not well resolved by the DMRG algorithm such that it
usually locks on to one of the first excited states. Although this
issue in DMRG can be mitigated by rescaling the Hamiltonian
such that the energy splitting is increased this is not practical
for larger systems. ML-MCTDH, however, does not have any
such issues. When analyzing the correlations for the SDRG
model [panel (f)] with respect to one of the center spins
c = L/2, the methods agree with only a minor deviation for
the value of C(c, c + 3) in the case of DMRG. Due to the
decay of the coupling constants towards the outer spins, the
correlations will also quickly die off with increasing distance
from the center spin. Except for the minor deviation in the
case of DMRG, all methods agree very well with each other.

In order to determine the entanglement of the ground state,
we employ the von Neumann entanglement entropy (VNEE)
SvN [109] of a subsystem A with the remainder of the system,

SvN = −Tr[ρA ln (ρA)] (13)

where ρA is the reduced density matrix [61] of the subsystem
A. Figure 5 shows the VNEE defined in Eq. (13) for the spin
models LR-TFIM in panel (a), XYSG in panel (b), and SDRG
in panel (c) as a function of subsystem size Ls. The subsystem
A was here chosen to consist of the Ls left-most spins in
the chain. In the case of LR-TFIM, we chose the transverse
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FIG. 4. Connected correlation (12) functions for different mod-
els. (a) Correlation of the first spin with the ith spin in z direction for
the SR-TFIM of L = 128 spins in 1D with hx = 1.5J and hz = 0.01J .
[(b),(c)] Correlation of the central spin with the spin at position �r in
z direction for the SR-TFIM extended to 2D on a 9 × 9 square lattice
(2D) for hx = 3J and hz = 0.01J . (d) Correlation in z direction of
the first spin with the ith spin in the LR-TFIM for L = 16 in 1D with
hx = J and hz = 0. (e) Correlation of the first spin in the XYSG for
L = 16 in 1D. We average over 10 disorder realizations as well as all
unique spin pairings Cxx (i, j) with i < j that correspond to a given
separation distance r = |i − j| and show the result as a function of
r =. (f) Correlation in x direction of one of the central spins c = L/2
with its right-hand side neighbors for the SDRG model with L = 16
in 1D.

field to be hx = 0.5J such that the ground state is twofold
degenerate due to the global spin-flip symmetry. For a finite
system, the ground state is expected to be a superposition
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FIG. 5. VNEE (13) for the different models of L = 16 spins in
1D as a function of subsystem size Ls. Panel (a) shows the result for
the LR-TFIM with hx = 0.5J and hz = 0, Panel (b) for the XYSG,
averaged over 10 disorder realizations, and panel (c) for the SDRG
model.

state, which possesses non-negligible entanglement. This be-
havior is correctly captured by ED and ML-MCTDH while
DMRG yields a much lower entanglement as it converges to
one of the degenerate states. It is important to note that the
exact superposition of both degenerate ground states is arbi-
trary in both ED and ML-MCTDH, which affects the absolute
value of SvN and explains the discrepancy between these two
methods. The disordered XYSG model is known to have area-
law violation proportional to SvN ∝ ln Ls which is not visible
in Fig. 5(b) due to the small system size and low number of
realizations. Here, the discrepancy between the three methods
can be attributed to the high amount of degeneracy in the
low-energy spectrum. The different algorithms lock on to
different states and thus yield different results. In the case
of the SDRG model we observe a great agreement between
ML-MCTDH and ED. However, DMRG cannot describe the
linear growth of entanglement SvN ∝ Ls due to the formation
of distant singlet states, which then have to be entangled.

IV. CONCLUSIONS AND OUTLOOK

Solving a many-body problem with large system sizes re-
quires sophisticated numerical methods that go beyond exact
diagonalization. Quantum Monte Carlo methods [110] rely
on the wave function spanning fewer relevant many-body
configurations. Other approaches represent the many-body
wave function through an efficient compression of the state
like with matrix product states, more general tensor networks
or in some cases even neural networks [111–113]. Despite
the unquestionable success of these methods, they can fail
for various reasons like the sign problem in quantum Monte
Carlo methods [110], inefficiency of current quantum state
compression in high-dimensional systems or due to the area-
law violation.
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In this paper, we propose an alternative computational
method to explore many-body quantum spin models and
specifically the case of disordered systems, which are known
to violate the area law in entanglement. Focusing on the
ground-state properties of prototypical many-body disordered
spins models, ML-MCTDH achieves a remarkable accu-
racy in particular compared to conventional methods. While
MCTDH methods are regularly used to solve for complex
wave packet dynamics problems, our paper is the first step
in adapting these techniques to simulate a larger class of
intricate many-body spin models. One of the key advantages
of using the multilayer version of MCTDH is its ability to
treat large system sizes as well as degrees of freedom with
many primitive basis states. The latter aspect can be use-
ful for simulating higher spin degrees of freedom such as
SU(n) physics [114,115] or higher spatial dimensions. In fu-
ture works, it will be interesting to compare the performance
of ML-MCTDH with existing numerical methods applied
to higher dimensional spin lattices [9,12,116]. MCTDH al-
gorithms were originally built to study quantum dynamics.
Therefore, a natural next step would be to simulate many-
body spin dynamics [117] with these methods, which can
be achieved very straightforwardly by switching to real time
propagation. We are convinced that ML-MCTDH can be a
useful tool in this field of active research that includes intrigu-
ing topics like thermalization [118,119], quench dynamics
[120,121], and optimal control [122,123]. From a more tech-
nical point of view, there is also the scope for improving the
scheme of building the different layers within ML-MCTDH:
One can potentially optimize this process by either using
machine learning methods [111–113,124–127] or spawning
techniques [128–130] and even combine them with tensor
network methods [131]. Thus, ML-MCTDH techniques can
prove to be very a powerful alternative theoretical tool in
modeling complex many-body (spin) systems.
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APPENDIX A: COMPUTATION OF EIGENSTATES

Here, we discuss how ML-MCTDH can be applied to
determine the many-body ground states of spin models by
switching from real time to imaginary time propagation.
Solving the time-independent Schrödinger equation by di-
agonalization of the Hamiltonian matrix [60] is prohibitive
for large systems. Instead, eigenstates can be obtained by

propagating an initial trial state according to the time-
dependent Schrödinger equation in imaginary time τ =
ıt [132]. The evolution of the many-body wave func-
tion in the eigenbasis of the Hamiltonian reads |�(τ )〉 =∑

n An(0)e−τEn |�n〉. After a sufficiently long propagation
time the ground state becomes the dominant component of
the instantaneous many-body wave function as long as its
initial contribution A0(0) is not zero. This scheme is feasible
in the framework in (ML)-MCTDH as well [44] and has been
applied for example to compute initial states in photodissoci-
ation studies [43,133–135]. Since imaginary time propagation
relies on the exponential damping of any contributions from
excited states, often long propagation times are required in
order to achieve adequate convergence towards the ground
state. The improved relaxation algorithm [136–138] employs
a hybrid scheme consisting of imaginary time propagation
and diagonalization to improve the convergence speed. By
applying the time-independent variational principle to the
(ML)-MCTDH ansatz, one obtains an eigenvalue equation de-
termining the top layer coefficients A(T )

	1,...,	d
(t ) where T is the

number of layers. The equations determining the SPFs on
the lower layers could be solved iteratively, which, however,
would result in highly nonlinear equations that are difficult
to converge [138], similar to multiconfiguration consistent
field theory [139]. Instead, the improved relaxation algorithm
alternates between updating the top layer coefficients by solv-
ing the eigenvalue equation and imaginary time propagation
to adapt the SPFs. By always choosing the nth eigenvector
to obtain a new set of top layer coefficients, the algorithm
converges towards the nth eigenstate of the Hamiltonian. Con-
sequently, improved relaxation provides easy access to excited
states, which would otherwise require to first compute and
then project out lower lying states. For the diagonalization
involved we employ the implicitly restarted Lanczos method
[140] via ARPACK [141].

APPENDIX B: DMRG PROTOCOL

In the present paper, we chose a sweep protocol of nine
sweeps and allow a maximum bond dimension for the matrix
product state of up to 1000. We followed a typical procedure
of increasing the allowed maximum bond dimension with
each sweep while always ensuring enough headroom between
this value and the actual maximal bond dimension of the
matrix product state. For the first few sweeps we added a
small noise term that improves the convergence and decrease
its strength with each sweep. Another important parameter
is the cutoff that determines the actual bond dimension. We
followed best practice and started with a value of 10−6 at the
beginning of the sweep protocol and decreased it rapidly with
each sweep. The last two sweeps were performed with a cutoff
of 10−14, which ensures near exact accuracy. We observe that
even for a long chain of length L = 1024 in the SR-TFIM, the
final maximal bond dimension was only 14, which is expected
due to the short-range and homogeneous nature of the model.
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