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Universal quantum computation based on nanoelectromechanical systems
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We propose to use a buckled plate as a qubit, where a double-well potential is mechanically produced by
pushing the plate from both sides. The right and left positions of the plate are assigned to be quantum states |0〉
and |1〉. The NOT gate is executed by changing the buckling force acting on the plate, while the Pauli-Z gate and
the phase-shift gate are executed by applying an electric field. A two-qubit phase-shift gate is materialized with
the use of an electrostatic potential. They constitute a set of universal quantum gates. We estimate the relaxation
time and the coherence time. We also discuss the fidelity of each gate operation. An examination of sample
parameters leads to a feasibility of a nano-electro-mechanical-system-based quantum computer.
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I. INTRODUCTION

According to Moore’s law, elements of integrated circuits
become exponentially small as a function of year. The size
will become the order of nanometers within 10 years, where
quantum mechanical effects are inevitable. For example,
the superposition of states and entanglement occur, which are
absent in classical mechanics. It is impossible to decrease the
size of elements smaller than 1 nm, which is a typical scale of
atoms. This is the end of Moore’s law. Quantum computation
[1–3] is a candidate for “More than Moore,” which resolves
the limit of Moore’s law. It gives an exponential speedup for
some algorithms. The problem is how to materialize a qubit
based on actual materials. Various proposals have been made
such as superconductors [4], photonic systems [5], quantum
dots [6], trapped ions [7], and nuclear magnetic resonance
[8,9]. Nanoscale-skyrmion-based qubits [10,11] and meron-
based qubits [12] have also been proposed.

A micro-electro-mechanical system (MEMS) is one of
the basic elements in current technology [13–15]. It uses
electrostatic energy to induce mechanical motions. If the
size becomes of the order of nanometers, it is called a
nano-electro-mechanical system (NEMS) [16,17]. It has been
demonstrated [18–20] that quantum effects emerge in the
oscillation modes of a cantilever, which are described by a
quantum harmonic oscillator. Carbon nanotubes, DNAs, or
biomolecules are used to compose elements in a NEMS.
Quantum effects have also been observed for a buckled beam
made of a carbon nanotube. Nanomechanical qubits have been
proposed in this context [21–23].

The buckled plate has two stable positions. It can be used
as a classical bit. It has been proposed that an Ising annealing
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machine is executable by a series of buckled plates [24]. Its
mechanism is based on the electrostatic potential inducing the
Ising interaction between two adjacent plates.

A buckled plate would also reveal quantum effects when
the displacement is sufficiently small. In this paper, we pro-
pose to use it as a quantum bit, which is well described by a
double-well potential. We then propose how to construct a set
of universal quantum gates based on a buckled plate MEMS,
which consists of the phase-shift gate, the HADAMARD gate,
and the CNOT gate. They are constructed by tuning the tension,
applying an electric field, and voltage. A merit is that it is not
necessary to use an external magnetic field.

This paper is composed as follows. In Sec. II, we consider
a chain of buckled plates at regular intervals along a line.
When their size is of the order of nanometers, the dynamics
is described by a Schrödinger equation with a double-well
potential for each plate. The qubit state |0〉 or |1〉 is assigned
to the plate buckled to the right- or left-hand side. The sys-
tem is 2N -fold degenerate when there are N plates. Although
they are degenerate, quantum tunneling is prohibited due to a
large double-well potential barrier between the two states |0〉
and |1〉.

In Sec. III, we discuss how to perform quantum gate oper-
ations. First, we construct the

√
NOT and the NOT gates. In the

case of the NOT gate, for instance, we transform the qubit state
|0〉 to |1〉 by changing the buckling force acting on the plate
so as to transform the double-well potential to a single-well
potential. Next, we construct the phase-shift and Pauli-Z gates,
where we change the phases of the qubit states |0〉 and |1〉
by temporally controlling an applied field. Then, we discuss
the Ising gate and the CNOT gate, which are two-qubit gates.
Universal quantum computation is possible with the use of
these gate operations.

In Sec. IV, we discuss how to read out the gate operations.
In Sec. V, we estimate the relaxation time and the coherence
time. We argue that it is possible to execute quantum gates 100
times for a sample with the Q factor Q = 103, and 104 times
for a sample with Q = 106 under a reasonable assumption on
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FIG. 1. A series of buckled plates, representing the bit state
|0110〉. The position of each buckled plate is read out with the aid
of a cantilever probe, indicated in red.

the sample parameters. In Sec. VI, we estimate the fidelity for
each gate operation.

Section VII is devoted to discussions, where the feasibility
of a NEMS-based quantum computer is addressed. Appen-
dices are presented. We review how to derive the double-well
potential for a buckled plate, where the parameters defining
the double-well potential are explicitly fixed with the use
of sample parameters. We also review how to estimate the
relaxation time and the coherence time.

II. QUANTUM NEMS AND QUBITS

A. Quantum NEMS

The bistable structure of a buckled plate has been stud-
ied with a typical application to memories [24–26]. It was
proposed [24] to use this buckled plate as the classical bit
information 0 (1 ), when it is buckled rightward (leftward),
as illustrated in Fig. 1.

We push a plate from both ends. The position along the x
axis is determined to be x = ±a by minimizing the double-
well potential [24,27] VDW(x),

VDW(x) = λ(x2 − a2)2, (1)

where explicit representations of λ and a in terms of the
sample parameters are given in Appendix A. The buckled
plate is an example of a MEMS (NEMS), when its size is of
the order of micrometers (nanometers).

The dynamics of a buckled NEMS is described by the
Schrödinger equation

ih̄
d

dt
ψ (x, t ) = Hψ (x, t ), (2)

where the Hamiltonian is

H = − h̄2

2m

d2

dx2
+ VDW(x), (3)

together with the double-well potential (1).
It is straightforward to rewrite the Schrödinger equa-

tion and the Hamiltonian as

i
d

dτ
ψ (X, τ ) = H̃ψ (X, τ ) (4)

and

H̃ = − 1
2 (d/dX )2 + (X 2 − A2)2 (5)

FIG. 2. Wave functions and the energy spectrum by varying
stress. (a) a = xu and (b) a = 2xu. The horizontal axis is x in units of
xu, and the vertical axis is the energy in units of Eu. The ground-state
wave function is colored in red, while the first-excited state wave
function is colored in cyan. (c) Energy spectrum as a function of a.
(d) Logarithm plot of the energy difference between the ground state
and the excited state.

in terms of the dimensionless time τ = t/tu, the dimensionless
parameters X ≡ x/xu and A ≡ a/xu, and the dimensionless
Hamiltonian H̃ = H/Eu, where

tu = (m2/h̄λ)1/3, xu = h̄1/3/(mλ)1/6,

Eu = (h̄4λ/m2)1/3 (6)

give the units of time, space, and energy, respectively.

B. Qubits

We numerically determine the wave functions and the
eigenenergies of the double-well system [28,29], which are
shown in Fig. 2. They are those of the nondegenerate levels
for small a (a/xu � 1) and those of twofold degenerate levels
for large a (a/xu � 1). They are well described by those of
the harmonic potential for large a.

We represent the qubit state |0〉 by the wave function ψ+(x)
localized at x = +a and the qubit state |1〉 by the wave func-
tion ψ−(x) localized at x = −a. Their degeneracy is resolved
for a � xu, where the ground state is well described by the
symmetric state (ψ+ + ψ−)/

√
2.

Actually, the twofold degeneracy is slightly broken for fi-
nite a. The energy difference between the ground state and the
first-excited state is calculated. The log10(E1 − E0) is plotted
in Fig. 2(d). It is found that the energy difference is as tiny as
10−14Eu at a ≈ 2.5xu.

The potential is approximated by the harmonic potential,

VDW(x) � 4a2λ(x ∓ a)2 + o[(x ∓ a)3], (7)

in the vicinity of x = ±a with a � 2xu, where the ground-state
wave function is given by

ψ±(x) =
(

mω

h̄π

)1/4

exp

[
− mω

2h̄
(x ∓ a)2

]
, (8)
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with the characteristic frequency ω = 2a
√

2λ/m and the
ground-state energy E0 = h̄ω/2.

Since the two-qubit states |0〉 and |1〉 are degenerate, one
may wonder if they are mixed by quantum tunneling. Then,
the lifetime of a qubit state is too short. However, this is not
the case because of a large double-well potential barrier. We
estimate the tunneling rate as � = e−2ς with ς = 3.1 × 1010

for typical sample parameters in Appendix B.
When we align N buckled plates at regular intervals, we

obtain the N-qubit system with 2N -fold degenerate states
|s1s2 · · · sN 〉, si = 0, 1. An instance of the four-qubit state
|0110〉 is illustrated in Fig. 1.

C. Initialization

In quantum computation, we start with the state |00 · · · 0〉,
where all plates are buckled to the right-hand side. To generate
this state, we start with the configuration where all plates are
not buckled. Then, we gradually push all plates from both ends
in the presence of an external electric field so that they are
buckled toward the right-hand side to minimize the energy.

III. QUANTUM GATES

It is known that a set of the π/4 phase-shift gate, the
HADAMARD gate, and the CNOT gate is enough for construct-
ing any quantum circuits. It is known as the Solovay-Kitaev
theorem of universal quantum computation [3,30,31]. We ex-
plicitly show that they are actually constructed in a buckled
NEMS.

A. Construction of
√

NOT and NOT gates

Our scenario reads as follows. Let us start from the state
|0〉 at a = a0 � 2xu. For definiteness, we take a0 = 3xu. We
smoothly change the stable position a from a0 to a = 0, where
the double-well potential (1) is transformed to a single-well
potential. Then, we smoothly change the position a back to
the point a0. More explicitly, by pushing the plate from both
ends, we temporally control the stable position a according to
a smooth function,

a(t ) = a0

2

[
tanh

t − t2
T − tanh

t − t1
T + 2

]
, (9)

with three parameters t1, t2, and T . The resultant state need
not be the state |0〉 or |1〉, but can be a superposition of |0〉
and |1〉 in general. We plot Eq. (9) in Fig. 4(a1) for the

√
NOT

gate, and in Fig. 4(b1) for the NOT gate.
We study the dynamics of the wave packet by numerically

solving the Schrödinger equation (2) with a time-dependent
Hamiltonian (3), where the double-well potential (1) is time
dependent with the use of the time-dependent position (9).

We start from the initial state ψ+ given by Eq. (8) localized
at the right-hand side. In order to see the result of the gate
operation, we focus on the state ψ (x, t ) after enough time of
the gate operation at t = t3 � t2. We show the amplitudes
|ψ (±a0, t3)| and the phase shifts argψ (±a0, t3) as a func-
tion of t2 in Figs. 3(a) and 3(b), respectively. They change
significantly as a function of t2. Indeed, |ψ (±a0, t3)| = 0 at

FIG. 3. (a) Absolute values |ψ (±a0, t3)|. They vanish at t2 = t NOT
2

and t2 = t Id
2 , while they cross each other at t2 = t

√
NOT

2 . (b) The phase
difference arg[ψ (a0, t3)/ψ (−a0, t3)]. It has a gap at t2 = t NOT

2 and
t2 = t Id

2 . The horizontal axis is the parameter t2 in units of tu.

t2 = t
√

NOT
2 and t NOT

2 as in Fig. 3(a), and the jumps occur in arg
[ψ (a0, t3)/ψ (−a0, t3)] at these points as in Fig. 3(b).

1.
√

NOT gate

We first construct the square-root NOT gate,

U ±√
NOT

= 1√
2

(eiπ/4I2 ± e−iπ/4σx ), (10)

FIG. 4. (a) The
√

NOT gate, where we have set t
√

NOT

2 = 27.02tu.
(b) The NOTgate, where we have set t NOT

2 = 28.87tu. (a1),(b1) The
time evolution of a(t ) given in Eq. (9) in units of xu. (a2),(b2) The
time evolution of the spatial profile of the absolute value of the wave
function ψ (x, t ) starting from the localized state at the right-hand
side. (a3),(b3) The time evolution of the wave functions |ψ (±a0, t )|.
We have set a0 = 3xu, t1 = 20tu, and T = 5tu. The horizontal axis is
the time ranging 0 < t < 60tu .
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FIG. 5. Wave functions and the energy spectrum under electric
field Ex . (a) a = xu and (b) a = 3xu. The horizontal axis is x in
units of xu, and the vertical axis is the energy in units of Eu. The
ground-state wave function is colored in red, while the first-excited
state wave function is colored in cyan. We have set qExa0 = 0.5Eu.

which satisfies (U ±√
NOT

)2 = ±σx. We observe in Fig. 3(a) that
the amplitude |ψ (a0, t )| at the initial position colored in ma-
genta decreases for t2 > 26tu, and it becomes identical to
|ψ (−a0)| colored in cyan at t

√
NOT

2 = 27.02t u. This value of
the parameter is special, where we study the time evolution
of the spatial profile. The result is given in Fig. 4(a2), where
the wave packet is split equally to the right and left positions.
The time evolution of the amplitude at x = ±a0 is shown in
Fig. 4(a3). We find that the wave function becomes stationary
after the gate operation for t � 40tu. Precisely in the same
way, the equal splitting occurs when we start from the initial
state ψ− given by Eq. (8) localized at the left-hand side. This
gate operation at t

√
NOT

2 is summarized as U ±√
NOT

.

2. NOT gate

Next, we construct the NOT gate, UNOT ≡ σx. We observe
in Fig. 3(b) that the amplitude |ψ (a0, t )| at the initial po-
sition colored in magenta becomes zero at t NOT

2 = 28.87tu.
This value of the parameter is also special, where the wave
packet moves to the left position as shown in Fig. 4(b2). The
corresponding time evolution of the amplitude at x = ±a0 is
shown in Fig. 4(b3). This is the NOT gate, σx. We find that the
wave function becomes stationary after the gate operation for
t � 40tu.

B. Construction of phase-shift and Pauli-Z gates

We proceed to construct the phase-shift gate. We apply
an electric field along the x direction to the buckled plate,
where the potential is given by qExx, with q being the electric
charge stored in the plate. The potential and eigenfunctions
under the electric field, VDW(x) + qExx, are shown in Fig. 5.
We numerically evaluate the energy spectrum as a function

of the electric field, which is shown in Fig. 6(a). The energy
difference between the ground state and the first-excited state
monotonically increases with the increase of the electric field,
as shown in Fig. 6(b). For a0 = 3xu, the energy spectrum
changes linearly as a function of the electric field, as shown
in Fig. 6(c). In the first-order perturbation theory, the energy
is estimated as

〈ψ±|qExx|ψ±〉 = ±qExa0, (11)

which is consistent with the numerical results shown in
Fig. 6(c). This energy shift is represented by the effective
Hamiltonian HEx ≡ a0qExσz.

We have numerically evaluated the dynamics of the wave
packet starting from the Gaussian distribution (8) under the
temporally controlled electric field according to the formula

Ex(t ) = E0

2

[
tanh

t − t1
T − tanh

t − t2
T

]
, (12)

as shown in Fig. 7(a). The absolute value |ψ (x, t )| does not
change, but the phase is modulated as in Fig. 7(b) for the state
|ψ+〉. The phase modulation for the state |ψ−〉 is precisely op-
posite that of the state |ψ+〉. Hence, the result is summarized
as the unitary operator,

UZ (θ ) = diag(e−iθ/2, eiθ/2) = exp

[
− iθ

2
σz

]
, (13)

where θ is determined as a function of t2, as illustrated in
Fig. 7(b). This is the phase-shift gate by angle θ .

1. π/4 phase-shift gate

The π/4 phase-shift gate UT ≡ diag(1, eiπ/4) is realized
by the z rotation (13) with the angle θ = π/4 as UT =
e−iπ/8UZ ( π

4 ) up to the overall phase factor eiπ/8.

2. Pauli-Z gate

The Pauli-Z gate is realized by the z rotation with the angle
π as UZ = −iUZ (π ) in a similar way.

C. The HADAMARD gate

The HADAMARD gate is defined by UH ≡ (σz + σx )/
√

2. It
is realized by a sequential application of the z rotation and the
x rotation [32] as

UH = −iUZUNOTUZ . (14)

FIG. 6. Energy spectrum as a function of the applied electric field Ex in the case of (a) a = xu and (c) a = 3xu. (b) The energy difference
between the ground state and the first-excited state in the case of a = xu. The horizontal axis is Ex in units of Eu/qa0.
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FIG. 7. (a) The time dependence of the applied electric field Ex

according to (12). (b) The time evolution of the phase difference
compared with the phase evolution without an electric field. The
color indicates the time t2 = 20tu + ntphase ranging from n = 1 (red)
to n = 8 (cyan), where tphase = 0.13tu. We have set t1 = 20tu. The
horizontal axis is the time range 0 < t < 40tu. We have set T = 5tu.

D. Two-qubit phase-shift gate

Next, we construct two-qubit gates made of two buckled
plates. In the parallel-plate NEMS, the capacitance between
the plates x1 and x2 is well described by

Cpara(x1, x2) = ε0S

Xcap + x1 − x2
, (15)

where Xcap is the distance between the adjacent plates without
buckling, S is the area of the plate, and ε0 is the permittivity.
The electrostatic potential is given by

Ucap = Cpara(x1, x2)

2
V 2

1 , (16)

when we control the voltage V1 between the plates.
We consider a set of two adjacent plates, where the poten-

tial energy is given by

V (x1, x2) ≡ V (x1) + V (x2) + Cpara(x1, x2)

2
V 2

1 . (17)

We show the potential in the x1 − x2 plane in Fig. 8. In the
absence of the applied voltage V1 = 0, there are fourfold
degenerate bottoms at u1 = ±a and u2 = ±a, as shown in
Fig. 8(a), where the ground-state energy is h̄ω. Under the
applied voltage, they are split as

V (a, a) = V (−a,−a) = ε0S

Xcap

V 2
1

2
≡ E0, (18)

FIG. 8. Density plot of energy spectrum (17) in the x1 − x2 plane
for (a) zero voltage V1 = 0 and (b) nonzero voltage ε0SV 2

1 /2 = 100.
We have set Xcap = 10xu and a = 2xu.

V (a,−a) = ε0S

Xcap + 2a

V 2
1

2
≡ E+, (19)

V (−a, a) = ε0S

Xcap − 2a

V 2
1

2
≡ E−. (20)

We plot the potential profile with nonzero voltage in Fig. 8(b).
We assume that the plate distance Xcap is very large compared
with the deviation a and obtain

E+ − E0 � − a

X 2
cap

ε0SV 2
1 , E− − E0 � a

X 2
cap

ε0SV 2
1 . (21)

We assume that the plate distance Xcap is very large compared
with the displacement a.

We start with the Gaussian state �σ1σ2 (x1, x2) ≡
ψσ1 (x1)ψσ2 (x2) with Eq. (8) localized at four points x1 = σ1a
and x2 = σ2a, where σ1 = ±, σ2 = ±. The absolute value of
this wave function almost remains as it is for a potential at
a/xu � 1, but a phase shift occurs. The unitary evolution is
given by

U (t ) = exp[−i(E0/h̄ + ω)t] (22)

for σ1 = σ2 = + and σ1 = σ2 = −,

U (t ) = exp[−i(E+/h̄ + ω)t] (23)

for σ1 = + and σ2 = −, and

U (t ) = exp[−i(E−/h̄ + ω)t] (24)

for σ1 = − and σ2 = +, where we have added the zero-point
energy.

It corresponds to the two-qubit phase-shift gate

U2-phase(t ) = e−i E0
h̄ t diag

(
1, e−i EX

h̄ t , ei EX
h̄ t , 1

)
, (25)

by identifying the qubit state (|00〉, |01〉, |10〉, |11〉)t = (| +
+〉, | + −〉, | − +〉, | − −〉)t , where EX = (E− − E+)/2.

1. Ising gate

The Ising gate is defined by UZZ ≡ diag(1,−1,−1, 1) and
realized by setting EX t/h̄ = π in Eq. (25) up to the global
phase exp[−iE0t/h̄].

2. CZ gate

The CONTROLLED-Z (CZ) gate is defined by UCZ =
diag(1, 1, 1,−1). It is constructed by a sequential application
of the Ising gate and the one-qubit phase-shift gates as [33]

UCZ = eiπ/4UZ

(
π

2

)
UZ

(
π

2

)
UZZ . (26)

3. CNOT gate

The CNOT gate U 1→2
CNOT is defined by

U 1→2
CNOT ≡

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠, (27)

where the first qubit is the controlled qubit and the second
qubit is the target qubit. The CNOT is constructed by a sequen-
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TABLE I. The Q factor, the relaxation time T1, the coherence
time T2, and the number of the gate operations (Operation).

Q factor T1 T2 Operation Refs.

5 × 102 0.173 µs 0.170 µs 0.42 SiC [54]
4 × 103 1.38 µs 2.44 µs 3.45 Si [58] Gold [55]
104 3.46 µs 2.62 µs 6.55 Al [56]
105 34.6 µs 8.27 µs 20.7 SiN [57]
106 0.346 ms 10.5 µs 26.2 Al [40], SiN/Al [42]

tial application of the CZ gate (26) and the HADAMARD gate
(14) as U 1→2

CNOT = U (2)
H UCZU (2)

H .

IV. DECOHERENCE

We evaluate the relaxation time T1 and the coherence time
T2. They are determined by the strength of the coupling be-
tween the qubit and bosonic modes due to the environment
[34–38]. There are two contributions. One is the thermal
fluctuation contributing to T1 and T2 and the other is the
voltage fluctuation contributing only to T2. As we review in
Appendix C, they read

T1 = 2Q

ω0(2n̄th + 1)
, T2 = 4Q

ω0(2n̄th + 1) + 8Qγz
, (28)

where γz is a coupling constant between the voltage and the
qubit, Q is the Q factor to be determined experimentally, ω0 is
the characteristic frequency, and n̄th is the Bose distribution,

n̄th(ω0) = 1/(eh̄ω0/kBT − 1). (29)

As a typical characteristic frequency, let us take that of a
carbon nanotube [39], ω0 = 2π × 327 MHz.

At T = 20 mK, we have

T1 = 1.38 µs, T2 = 2.44 µs (30)

for Q = 4 × 103 and

T1 = 0.346 ms, T2 = 10.5 µs (31)

for an ultrahigh quality factor Q = 106 as in Refs. [19,40–
43]. We have used the value γz = 23 kHz. The results are
comparable to the previous results on nanomechanical qubit
T2 = 50 µs = 3 kHz in Ref. [23]. We next evaluate the opera-
tion time in order to estimate how many times it is possible to
execute quantum gate operations. The unit operation time is of
the order of the time unit tu = (m2/h̄λ)1/3 given in Eq. (6). We
obtain tu = (m2/h̄λ)1/3 = 10 ns by assuming a typical mass
of a carbon nanotube, m = 10−21 kg, and the coefficient of
the double-well potential (1), λ = 3 × 1015 kg/m2 s2, with a
length of a NEMS L0 = 1 µm and the buckled length y0 =
0.99 µm. A typical gate operation time is 40tu = 0.4 µs, as
shown in Fig. 4. It is shorter than the minimum value of the
relaxation time T1 and the coherence time T2, and it is possible
to execute quantum gates 3 times for a sample with Q = 103

and 26 times for a sample with Q = 106. See Appendix C for
details.

We summarize the Q factor, the relaxation time T1, the
coherence time T2, and the number of the gate operations in
Table I.

V. CANTILEVER READOUT PROCESS

We discuss the readout process of the final positions of the
buckled plates. For example, we prepare a detection cantilever
probe for each buckled plate, as illustrated in Fig. 1. The
probe detects the position with the aid of such as atomic
force microscopy [44], capacitive interactions, mechanical or
van der Waals interactions, resistive difference, or detecting
electron field emission [45]. The merit is that it would be pos-
sible to construct an integrated circuit of the NEMS machine
containing readout probes.

We explain the case to use an atomic force microscope
(AFM) to detect the position of the buckled plate, as shown
in Fig. 9. We attach a cantilever, where the atomic force is
given by the Lennard-Jones potential,

U (r) = 4ε

[(
s

r

)12

−
(

s

r

)6
]
, (32)

with [46] s = 2.4 nm and ε = 0.2 eV = 3.2 × 10−20 J. The
kinetic equation of the cantilever reads

m
d2x

dt2
= −κ� − dU

dr
, (33)

where r is the distance between the cantilever and the buckled
plate, r =

√
(x − a)2 + (� − �0)2, with x being the position of

the buckled plate, a = 0.127 µm is the stable position of the
buckled plate, � is the position of the cantilever, and �0 is the
vertical distance between the cantilever and the buckled plate.

The total potential of the cantilever is given by

Ucanti = κ0

2
�2 + 4ε

[(
s

r

)12

−
(

s

r

)6
]
. (34)

The spring constant of the cantilever [47] is κ0 = 0.1 kg/s2.
When the plate position is on the right side, we have r =
�0 − �. For �0 = 5 nm, the stable position is determined as
� = 2.3 nm. The position of the cantilever is detected by the
Piezo effect, where the resistance is modified by the bend-
ing of the cantilever. The sensitivity of resistivity per unit
displacement [47] is �R/(R��) ∼ 6.3 × 10−5 nm−1, where
�� is the displacement of the cantilever. The characteristic
resistance of a cantilever is 2.5 k� [48]. The resistance change
is 362 m�.

On the other hand, when the plate position is on the left
side, we have r =

√
4a2 + (� − �0)2. The stable position is

� = 0 and there is no resistance change.
The ratio of the spring constant between the cantilever and

the buckled plate is given by

κ0

κ
= 0.1 kg/s2

4.22 × 103 kg/s2 = 0.24 × 10−5. (35)

Hence, it is possible to read out the position of the buckled
plate without affecting the position of the buckled plate. In
addition, the moving directions of the buckled plate and the
cantilever are diagonal, which assures the independence of the
two motions. As a result, the position of the buckled plate can
be read out by using a cantilever.

The resonant frequency [47] of the cantilever is 345 kHz.
A typical readout time is estimated as 1/345 kHz = 2.90 µs.
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FIG. 9. (a) Illustration of the readout process. The red triangles represent the heads of cantilevers, the cyan rectangles represent buckled
plates, and the green arrows represent the atomic force interaction. (b) Potential with the right-side position. (c) Potential with the left-side
position. The horizontal axis is the position of the cantilever in units of nm. The vertical axis is the potential energy of the cantilever in units
of kg nm2/s2.

It is comparable to the relaxation time T1 = 1.38 µs with Q =
4 × 103 given in (30) and much shorter than T1 = 0.346 ms
with Q = 106 given in (31). If we use an ultrahigh-frequency
cantilever [49] with the resonant frequency 3.5 MHz, a typical
readout is estimated as 0.286 µs, which is much faster than the
relaxation time and the coherence time.

VI. FIDELITY

The fidelity for two wave functions ψρ and ψσ is defined
in general by

f (σ, ρ) = |〈ψρ |ψσ 〉|2, (36)

where the wave function is given by |ψ〉 = α|0〉 + β|1〉 for
a single qubit. We estimate the fidelities of various gates by
choosing σ as the numerically estimated wave function and
ρ as the wave function of the ideal quantum gate. We also
estimate the fidelity under noise for each gate operation.

A. Fidelity of the NOT gate

We calculate the fidelity of the NOT gate. An ideal gate
process is

UNOT|0〉 = |1〉, UNOT|1〉 = |0〉. (37)

We take an inner product between ideal result |1〉 and numeri-
cally obtained wave function |ψnumerical〉 and it is estimated by

fNOT ≡ |〈ψnumerical|1〉 | = |β|. (38)

We show the fidelity fNOT as a function of the operation time
t2 in Fig. 10(a). We obtain fNOT = 0.9930 ± 0.0018.

Next, we introduce a noise in the gate operation process,

a(t ) = (1 + η)
a0

2

[
tanh

t − t2
T − tanh

t − t1
T + 2

]
, (39)

where η represents a noise, which is a uniform random distri-
bution ranging from −η to η. We show the fidelity fNOT as a
function of the noise strength for the fixed time in Fig. 11(a).
The error bar is estimated by the standard deviation of fNOT in
the range 50tu � t � 60tu.

B. Fidelity of the
√

NOT gate

The action of the
√

NOT gate is given by

U√
NOT

|0〉 = eiπ/4

√
2

|0〉 + e−iπ/4

√
2

|1〉. (40)

The fidelity is calculated as

f√NOT ≡ |〈ψ |ψ√
NOT〉| =

∣∣∣∣α eiπ/4

√
2

+ β
e−iπ/4

√
2

∣∣∣∣, (41)

for a single qubit, |ψ〉 = α|0〉 + β|1〉. We show the fidelity
f√NOT as a function of the operation time t2 in Fig. 10(b). We
obtain f√NOT = 0.9906 ± 0.0026.

We show the fidelity as a function of the noise strength for
the fixed time in Fig. 11(b), where the noise is introduced in
the same way as in the case of the NOT gate. The error bar
is estimated by the standard deviation of f√NOT in the range
50tu � t � 60tu.

FIG. 10. Fidelity [Eq. (36)] as a function of operation time t2 for (a)
√

NOT gate, (b) NOT gate, and (c) phase-shift gate. We have set t1 = 20,
a = 3xu, and T = 5tu. The error bar is estimated by the fluctuation in the range 0.5T < t < T . The vertical axis is the fidelity.
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FIG. 11. Fidelity [Eq. (36)] as a function of noise strength η. (a)
√

NOT gate, (b) NOT gate, and (c) phase-shift gate. We have set t1 = 20,
a = 3xu, and T = 5tu. We have taken 100 times average of the randomness. The vertical axis is the fidelity.

C. Fidelity of the phase-shift gate

The action of the π/4 phase-shift gate is

UT |0〉 = |0〉, UT |1〉 = e−iπ/4|1〉. (42)

It is impossible to define the fidelity by the inner product for
the phase-shift gate because it is always 1. Alternately, we
estimate the fidelity by

fphase ≡ cos
(
φnumerical − π

4

)
, (43)

where φnumerical is the numerically estimated phase. We show
the fidelity fphase as a function of the operation time t2 in
Fig. 10(c). Although there is a fluctuation in Fig. 7(b), the
numerically estimated maximum fidelity f phase is higher than
99.99.

The voltage fluctuation may occur during the gate process,
which introduces a noise into the electric field,

Ex(t ) = (1 + η)
E0

2

[
tanh

t − t1
T − tanh

t − t2
T

]
. (44)

We show the fidelity as a function of the noise strength for
the fixed time in Fig. 11(c). The error bar is estimated by the
standard deviation of fphase in the range 40tu � t � 50tu.

VII. DISCUSSIONS

We have proposed a universal quantum computer based on
a buckled NEMS lined up at regular intervals. We would like
to discuss the difference between the previous proposals on
nanomechanical qubits [21–23] and the present proposal on
NEMS qubits. The previous works utilize a harmonic oscil-
lation of a nanomechanical system, which leads to a bosonic
mode. Then, they introduce anharmonicity by optomechanical
coupling [21,22] or by coupling a quantum dot to a nanotube
[23]. The major advance would be that strong anharmonicity
is naturally introduced by buckling in the present proposal.
In addition, we electrically control qubits and it would be
possible to make an integrated system of many qubits with
cantilever probes equipped.

Finally, we address the feasibility of the NEMS-based
quantum computer by examining typical sample parameters
[19]. The length of an element is of the order of ∼1–100 µm.
The mass is of the order of ∼10−21–10−14 kg. The character-
istic frequency is of the order of ∼1 MHz to 1 GHz. Such
a NEMS-based quantum computer would be realizable by
improving the present technology.
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APPENDIX A: BUCKLED PLATE MEMS

In this Appendix, we determine the parameters λ and a in
the double-well potential (1) in terms of sample parameters.
We consider a plate with length 2L0 and the spring constant
κ placed along the y axis. The form of the buckled plate is
determined by the Euler-Bernoulli equation [25],

d4w

dy4
+ m2 d2w

dy2
= 0, (A1)

with m2 ≡ P/EI , where P is the axial load, E is Young’s
modulus of the beam material, and I is the second moment of
area of the beam. In solving the Euler-Bernoulli equation for
a clamped-clamped beam, we may use the fixed boundary
condition or the free boundary condition.

First, we impose the fixed boundary condition, as shown in
Fig. 12(a1), which reads

w(−y0) = w(y0) = 0,
dw

dy

∣∣∣∣
y=−y0

= dw

dy

∣∣∣∣
y=y0

= 0, (A2)

where y0 is the position of the supporting point along the y
axis.

The lowest-energy solution is given by [50]

w = x

2

(
1 + cos

πy

y0

)
, (A3)

where x is the position of the plate on the x axis. The length
of the buckled plate is given by

L(x) =
∫ y0

−y0

dy
√

1 + (dw/dy)2. (A4)

It is calculated as

L(x) =
∫ y0

−y0

dy

√
1 + π2x2

4y2
0

sin2 πy

y0
= 4y0

π
E

(
−i

πx

2y0

)
,

(A5)
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FIG. 12. Illustration of a buckled plate with (a1) fixed boundary
condition and (a2) free boundary condition. (b) The potential V (x)
in Eq. (A7) for various y0 as a function of x in units of xu. (c) The
potential minimum point xmin in units of xu as a function of y0.

where E is the complete elliptic integral of the second kind
defined by

E (k) ≡
∫ π/2

0

√
1 − k2 sin2 θdθ. (A6)

With the use of Eq. (A5), the potential energy is given by the
Hooke law,

V (x) = κ

2
[2L(x) − 2L0]2, (A7)

which we show for various y0 in Fig. 12(b). It is a double-well
potential. The point xmin at which the potential V (x) takes the
minimum is shown as a function of y0 in Fig. 12(c).

We expand Eq. (A7) in x by fixing L0 and y0 as

V (x) = κ

2
(2L0 − 2y0)2 + 1

4y0
(L0 − y0)κπ2x2

+ (3y0 − L0)

256y3
0

κπ4x4 + o(x6), (A8)

which is summarized as

V (x) = λ(x2 − a2)2 + V0 + o(x6), (A9)

with

λ ≡ 3y0 − L0

256y3
0

κπ4, a ≡ y0
4
√

2

π

√
L0 − y0

3L0 − y0
. (A10)

By neglecting the terms V0 and o(x6) in Eq. (A9), we obtain
the double-well potential (1) in the main text under the fixed
boundary condition.

Second, we impose the free boundary condition as shown
in Fig. 12(a2), which reads

d2w

dy2

∣∣∣∣
x=−y0

= d2w

dy2

∣∣∣∣
x=y0

= 0, (A11)

whose solution is [51]

w = x0 cos
πy

2y0
. (A12)

The length L(x0) is given by Eq. (A5) precisely as in the case
of the fixed boundary condition. The potential energy is given
by the same Hooke law as Eq. (A7). Hence, we also obtain
the double-well potential (1) in the main text under the free
boundary condition.

APPENDIX B: QUANTUM TUNNELING

Quantum tunneling between the two states |0〉 and |1〉 is
estimated by means of the Wentzel-Kramers-Brillouin (WKB)
approximation. The tunneling rate � is given by

� = e−2ς , ς ≡ 1

h̄

∫ a

−a
dx|

√
2mVDW(x)|. (B1)

For the double-well potential (1), we find

ς =
√

2mλ

h̄

4a3

3
. (B2)

Hence, the quantum tunneling is exponentially small as a
function of a. a is estimated as

a ≡ y0
4
√

2

π

√
L0 − y0

3L0 − y0
= 0.127 µm, (B3)

where we have used L0 = 1 µm, y0 = 0.99 µm. By using m =
10−21 kg and λ = 3 × 1015 kg/m2 s2, the ς is estimated as

ς = 3.1 × 1010. (B4)

Thus, the tunneling rate � is negligibly small.

APPENDIX C: COHERENCE TIME

In this Appendix, we derive [34–38] the formula (28) for
the relaxation time T1 and the coherence time T2 used in
Sec. IV. We consider a Hamiltonian system HS coupled to
an environment HB via an interaction Hamiltonian H int. The
whole Hamiltonian is given by

H = HS + HB + Hint. (C1)

The environment Hamiltonian is given by

HB =
∑

k

ωkb†
kbk, (C2)

while the interaction Hamiltonian is given by

Hint = L ⊗ (B + B†) + L† ⊗ (B + B†), (C3)

with

B =
∑

k

g(k)b(k), (C4)

where L is the Lindbladian operator describing the dissipation
mechanism, b(k) is a bosonic operator, and g(k) is the cou-
pling constant between the system and the environment.
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The Lindblad equation for the density matrix ρ reads

dρ

dt
= − i

h̄
[HS, ρ] + γ−

∑
j

(
LρL† − 1

2
{L†L, ρ}

)

+ γ+
∑

j

(
L†ρL − 1

2
{LL†, ρ}

)
, (C5)

where

γ− = γ [n̄th(ω0) + 1], γ+ = γ n̄th(ω0), (C6)

with the Bose distribution (29) and the decay rate γ . We
consider a two-level system described by

H = �

2
σz, L− = γ−σ−, L+ = γ+σ+, Lz = γzσz.

(C7)
Here, L− and L+ describe amplitude damping, where L−
describes the stimulated emission and L+ describes the stim-
ulated absorption. It is introduced by thermal fluctuation. On
the other hand, Lz describes the dephasing. It is introduced by
voltage fluctuation. The Lindblad equation reads

dρ

dt
= − i

h̄

[
�

2
σz, ρ

]
+ γ−

∑
j

(
σ−ρσ+ − 1

2
{σ+σ−, ρ}

)

+ γ+
∑

j

(
σ+ρσ− − 1

2
{σ−σ+, ρ}

)

+ γz

∑
j

(σzρσz − ρ), (C8)

which is explicitly given by

dρz

dt
= −γ (ρz − ρz∞), (C9)

dρ01

dt
=

(
i� − γ

2
− 2γz

)
ρ01, (C10)

dρ10

dt
=

(
−i� − γ

2
− 2γz

)
ρ10, (C11)

where we have defined

γ = γ+ + γ− = γ (2n̄th + 1), ρz∞ = γ+ − γ−
γ+ + γ−

. (C12)

The solutions are

ρx(t ) = e−(γ /2+2γz )t [ρx(0) cos �t − ρy(0) sin �t], (C13)

ρy(t ) = e−(γ /2+2γz )t [ρx(0) sin �t − ρy(0) cos �t], (C14)

ρz(t ) = [ρz(0) − z∞]e−γ t + ρz∞. (C15)

The relaxation times T1 and T2 are estimated as

T1 = 1/γ , T2 = 2/(γ + 4γz ). (C16)

First, we evaluate the thermal fluctuation effect. The
Caldeira-Legget model leads to an effective equation of mo-
tion,

m
d2x

dt2
= −κx − μ

dx

dt
, (C17)

with μ = 2mγ , and κ is the spring constant. The γ represents
the friction γ ≡ μ/2

√
mκ in this context. The characteristic

frequency is ω0 = √
κ/m. The Q factor is an experimentally

observable quantity given by Q = √
mκμ = ω0/2γ . Alterna-

tively, the γ can be estimated from the Q factor as

γ = ω0/2Q. (C18)

It follows from Eq. (C16) and this equation that

T1 = T2

2
= 1

γ (2n̄th + 1)
= 2Q

ω0(2n̄th + 1)
, (C19)

which is Eq. (28) in the main text.
As a typical mass and a typical characteristic frequency, let

us use those of a carbon nanotube [39], where m = 10−21 kg
and ω0 = 2π × 327 MHz. For Q = 4 × 103, we have

γ = ω0

2Q
= 327 MHz

8 × 103
= 40.9 kHz. (C20)

By using the Boltzmann constant kB = 1.38 ×
10−23 m2 kg/s2 K, we estimate h̄ω0/kBT � 0.113 at
T = 20 mK. With the use of the Bose distribution (29),
we have n̄th � 8.36. The relaxation time T1 and the coherence
time T2 are estimated as

T1 = T2

2
= 1

γ (2n̄th + 1)
= 1.38 µs. (C21)

For an ultrahigh quality factor Q = 106 as in Refs. [19,40–
43], the decay rate is estimated as

γ = ω0

2Q
= 327 MHz

2 × 106
= 163 Hz. (C22)

The relaxation time T1 and the coherence time T2 are estimated
as

T1 = T2

2
= 1

γ (2n̄th + 1)
= 0.346 ms. (C23)

These results are given in Eqs. (30) and (31) in the main text.
Next, we estimate the coherence time due to the dephasing.

The main source of the voltage fluctuation is the Johnson-
Nyquist noise, which is determined by

VN =
√

4kBT R� f . (C24)

The resistance ratio of the nanotube [52,53] is 2.5 ×
10−3 �cm, which leads to the resistance R = 2.5 × 10−7 �

for a nanotube with 1 µm length. By inserting T = 20 mK
and f0 = 327 MHz, we find VN = 9.5 × 10−12 V. The energy
for the voltage fluctuation is 0.95 µeV = 230 MHz. Then, the
dephasing time is estimated as 4.3 µs.

Finally, we evaluate the operation time in order to estimate
how many times it is possible to execute quantum gate opera-
tions. The spring constant is estimated as κ = mω2

0 = 4.22 ×
103 kg/s2. By assuming a length of a NEMS L0 = 1 µm and
the buckled length y0 = 0.99 µm, we find

λ ≡ 3y0 − L0

256y3
0

κπ4 � κπ4

128L2
0

= 3 × 1015 kg/m2 s2. (C25)

The unit operation time is estimated as tu = (m2/h̄λ)1/3 =
10 ns. The typical gate time is 40tu = 0.4 µs, as shown
in Fig. 4. It is possible to execute quantum gates
1.38 µs/0.4 µs � 3 times for a sample with Q = 4 × 103 and
10.5 µs/0.4 µs � 26 times for a sample with Q = 106.
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