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Topological gauge fields and the composite particle duality
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We unveil a duality that extends the notions of both flux attachment and statistical transmutation in spacetime
dimensions beyond (2+1)D. Thus, a quantum system in arbitrary dimensions can experience a modification of
its statistical properties if coupled to a certain gauge field. For instance, a bosonic quantum fluid can feature
composite fermionic (or anyonic) excitations when coupled to a statistical gauge field. We compute the explicit
form of the aforementioned synthetic gauge fields in D � 3 + 1. We introduce a bosonic liquid and its composite
dual in (1+1)D as proof of principle. We recover well-known results, resolve old controversies, and suggest
a microscopic mechanism for the emergence of such a gauge field. We also outline potential directions for
experimental realizations in ultracold atom platforms.
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I. INTRODUCTION

Flux attachment [1] is a physical mechanism describing
how charged particles capture magnetic flux quanta and be-
come composite entities, often featuring exotic properties [2].
In two spatial dimensions, this constitutes a well-established
picture to intuitively understand the low-energy effective de-
scription of some topologically ordered phases of matter [3,4].
The appearance of a Chern-Simons field is found responsible
for this phenomenon and is intrinsically related to the frac-
tionalization of quantum numbers [5,6]. All the above can
be encapsulated as part of a Bose-Fermi correspondence in
which dynamical gauge fields play a pivotal role [7]. The
situation is much different in other dimensions, where the
previous concepts become ill defined. For instance, there is
no Chern-Simons term in even spacetime dimensions, so the
existence of pointlike anyons [8], as well as their interpreta-
tion as composites, seems no longer valid. It is then natural to
ask whether an analogous mechanism to flux attachment can
be found in all generality. This is a subtle question, especially
in spatially one-dimensional systems, where the notion of a
magnetic field is not even defined so, strictly speaking, there
is no flux to attach. Yet, Bose-Fermi correspondences [9–12]
seem almost inevitable and many instances of linear anyons
have been proposed [13].

In this paper, we introduce a composite particle duality
understood as a correspondence between theories with dif-
ferent quantum statistics. This is the physical statement that
gauge dressing a set of fields can effectively transmute their
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commutation relations. Matter becomes dyonically charged
by construction and, in a gauge transformed or dual picture, is
seen as composites. This is a familiar notion that we now dis-
close as generic across dimensions under the same mechanism
(see Table I). As an illustration, we study a nonrelativistic
model in one spatial dimension. We verify the presence of
fractional statistics and resolve an old controversy [14–16].
In this context, and based on recent experimental work in
ultracold atoms [17,18], we suggest a microscopic origin for
such a statistical gauge field emerging in interacting quantum
many-body systems. More broadly, evidence from the afore-
mentioned duality enables us to make the following general
observations:

(i) The composite particle duality naturally generalizes
those of conventional flux attachment and statistical transmu-
tation. It survives in any dimension, its origin is geometric, it
is physically enforced by topological terms, and satisfies an
order-disorder operator structure [19].

(ii) Bose-Fermi correspondences can be seen as statistical
transmutation. Hence, they can be probed in experiments by
gauge-coupling quantum matter and tuning the coupling con-
stant of the statistical gauge field. This will correspond to a
physical interpolation between faces of the duality or, equiv-
alently, changing the statistical parameter. We also expect the
presence of exotic gauge-charge composite quasiparticles.

II. COMPOSITE PARTICLE DUALITY

We establish that the minimal coupling of charged matter
to a U (1) statistical gauge field aμ in D = d + 1 spacetime
dimensions is equivalent to the formation of electric-magnetic
entities identified as gauge-charge composites. In some
instances, the latter may be regarded as anyons. This corre-
spondence is summarized as

HB =
N∑

i=1

π2
i

2m
+ Hint ←→ H̃C =

N∑
i=1

p̃2
i

2m
+ H̃int, (1)
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TABLE I. Main features of the electromagnetic response for
matter coupled to statistical gauge fields. Blue (red) coloring at the
bottom row denotes high (low) intensity of the vector field. Observe
a jump discontinuity at the origin for the kink, a singular point for
the vortex, and a singular Dirac string on the positive z axis for the
monopole.

Spatial dimension d = 1 d = 2 d = 3

Flux attachment ax ∝ n b ∝ n ∇ · b ∝ n
Topological quantization No Yes Yes
Topological soliton Kink Vortex Monopole

Statistical field

where πi = pi − a(xi ), N is the number of particles, and inter-
actions are short ranged. We postulate that the statistical gauge
potential is a topologically nontrivial pure gauge configuration

a(xi ) = ∇xi�(x1, . . . , xN ), (2)

where a(xi ) ≡ a(xi; x1, . . . , xN ) refers to the gauge poten-
tial being evaluated at the location of particle xi, although
it might be a function of the position of all the particles in
the system and, as we will find later, also of matter density
|�B(x1, . . . , xN )|2. We identify a many-body Hamiltonian in
the bare (B) basis, and another corresponding to the composite
(C) basis. Both sides of the duality are related by a large
gauge transformation which removes/introduces a minimally
coupled statistical gauge field. In doing so, it connects homo-
topically distinct states with the same physical properties. This
transformation corresponds to the naive generalized contin-
uum version of the well-known Jordan-Wigner transformation
which, in second-quantized language, reads

�̂C(x; �x) = Ŵ†(x; �x)�̂B(x). (3)

The operator Ŵ (x; �x) = exp[ih̄−1�̂(x; �x)] is identified as a
disorder operator [20,21], �̂ is a (D − 1)-dimensional Jordan-
Wigner brane [22], and �x is a reference contour centered
at x in the sense of Ref. [19] but physically identified as a
Dirac string or open ’t Hooft line. Correspondence (3) can
be understood as an operator identity valid regardless of the
underlying Hamiltonian. Considering the bare species �̂B to
be a bosonic (fermionic) field, and hence satisfying ordinary
equal-time (anti)commutation relations, then �̂C constitutes
a composite field obeying generalized commutation relations,
except for at the point x = x′, where relations reduce to those
of bare species due to the cancellation of branes. The density
operator is n̂(x) = �̂

†
B(x)�̂B(x) = �̂

†
C(x; �x)�̂C(x; �x), so all

possible local interaction terms which are functions of the
density are identical on both sides of the duality.

The explicit form of the statistical gauge field might be
guessed, but it can also be derived on the grounds of topologi-
cal field theory. Hence, we introduce a U (1) topological gauge
field Â as a new gauge connection obtained from solving
a topological current constraint satisfying ∂μĴ μ(x) = 0 by
construction. A particularly simple form is

Ĵ μ = κ

2π
εμνλαβ... ∂ν Âλαβ..., (4)

where Â is an antisymmetric gauge-dependent (D − 2)-form
field that transforms as Âμνλα... → Âμνλα... + ∂[μ ξ̂νλα... ], and
κ is a real constant whose value may or may not be con-
strained through Dirac quantization. This general relation
reduces to a scalar field (�̂) in (1+1)D, a Chern-Simons field
(Âμ) in (2+1)D, and a Kalb-Ramond field (B̂μν) in (3+1)D
or higher (Ĉμνλ...). A relation such as that in Eq. (4) has
been identified and discussed extensively in previous work on
functional bosonization [23–33] and is nothing but a manifes-
tation of the Hodge duality F̂ ≡ dÂ = �Ĵ mapping p forms
in D dimensions to (D − p) forms through the Hodge star
operator (�). We can write the (D − 2)-form field as Â = dα̂

at the expense of violating the corresponding Bianchi identity
d (dα̂) �= 0 due to the nontrivial topology of α̂, hence the
name for Â. The current constraint can also be found as an
equation of motion of a parent effective gauge action when
minimally coupled to a matter source. In the following, we re-
strict ourselves to spatial dimensions d = 1, 2, 3. An educated
guess for an action is then S[a,A] = Stopo. −

∫
dDxJ μaμ,

where

Stopo. =
∫

dDx
( κ

2π
εμνλ...αβAμνλ...∂αaβ + L[A]

)
(5)

is a combination of background field (BF) and another
topological term changing with spatial dimension. Upon
elimination of the topological gauge field, one recovers
Chern-Simons terms for odd D dimensions or θ terms for
even. These terms will, in general, give restricted dynamics to
the statistical gauge field when coupled to matter via a Gauss’s
law constraint. The statistical gauge field (a) is physically
coupled to matter while the topological gauge field (A) is
auxiliary. The Euler-Lagrange equations with respect to both
define, respectively, the current bosonization rule and a local
condition expressing the topological gauge field in terms of
the statistical one. While we have no apparent evidence to
expect the action (5) to be unique, we claim that the terms
involved should induce torsion or helicity [34] (e.g., a twist)
in the gauge connection and not merely curvature. Upon using
the equations of motion, we recover the relations

J μ

(1+1)D = κ

2π
εμν∂ν� = κ

2π
εμνaν, (6)

J μ

(2+1)D = κ

2π
εμνλ∂νAλ = κ

2π
εμνλ∂νaλ, (7)

J μ

(3+1)D = κ

2π
εμνλα∂νBλα = κ

2π
εμνλα∂ν∂λaα. (8)

From here, we can read the corresponding flux attachment
Gauss’s laws in vector notation as

[(1 + 1)D] :
2π

κ
n(t, x) = ax(t, x), (9)

[(2 + 1)D] :
2π

κ
n(t, x) = b(t, x), (10)

[(3 + 1)D] :
2π

κ
n(t, x) = ∇ · b(t, x), (11)

where the “electric” charge density is J 0 = n(t, x) and
“magnetic” field is b(t, x) ≡ bi = εi jk∂ jak [35]. The corre-
spondence in Eq. (1) supplemented by the statistical gauge
fields found in Eqs. (9)–(11) can be understood as a physical
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mechanism for flux attachment and statistical transmutation.
They constitute the main result of this work. The (2+1)D con-
straint corresponds to the usual description of flux attachment
[1]. Equation (11) in (3+1)D can be immediately identified as
the magnetic monopole law, but with n(t, x) being an electric
charge density, not the usual magnetic source. In other words,
an entity carrying electric charge also becomes a source mag-
netic field, i.e., it forms a composite reminiscent of a dyon
[36–38] and undergoes an inverse Witten effect. This is indeed
the consequence of flux attachment in higher dimensions.

III. A SIMPLE DUAL MODEL

Hereafter, for illustrative purposes, we will be interested in
the (1+1)D case, for which the time component of the topo-
logical current in Eq. (4) reduces to the usual bosonization
relation n̂(x) = γ −1 ∂x �̂(x), where γ = 2π/κ . By simple in-
tegration, we see that �̂(x) = γ

∫ x
−∞ dx′ n̂(x′). This appears

naturally for a density-dependent gauge potential of the form

âx(x) = γ

∫ ∞

−∞
dx′ ∂x �(x − x′) n̂(x′) = γ n̂(x), (12)

where �(x) denotes a Heaviside step function, which plays
the role of a kink. We observe that the gauge potential in
(1+1)D is a pure gauge one, âx = ∂x�̂. Provided there is no
singularity to wind around, we expect no topological quan-
tization in this model as opposed to its higher-dimensional
relatives. Additionally, we notice that for a system of point
particles, in first-quantized language, Eq. (12) nontrivially
reduces to ax(xi ) = ∂xi� = γ

∑
j �=i sgn( j − i)δ(xi − x j ) with

a string � = γ
∑

j<l �(x j − xl ). This resolves the long-
standing tension between Refs. [14–16] as it systematically
corrects the sign error made in Ref. [14] and identified in
Ref. [15].

In order to understand the implications of the density-
dependent gauge field (12) and the duality, we should study its
behavior in the presence of dynamical matter. The discussion
that follows can be taken as an extension of Kundu’s results
[16]. We consider a (1+1)D nonrelativistic weakly interacting
Bose gas [39] minimally coupled to a statistical gauge field
with action S[�̂, âμ] = ∫

dt dx LB and Lagrangian density

LB = ih̄ �̂†Dt �̂ − h̄2

2m
(Dx�̂ )†(Dx�̂ ) − g

2
�̂†�̂†�̂�̂. (13)

The form of the gauge field is given by the topological con-
straint Ĵ μ = Ĵμ = γ −1εμν âν in Eq. (6), where Ĵμ = (n̂, Ĵx ),
which reads

Ĵμ(x) =
(

�̂†�̂,
h̄

2mi
[�̂†Dx �̂ − (Dx �̂ )† �̂]

)
, (14)

is a conserved current. The gauge covariant derivative is given
by Dμ = ∂μ − ih̄−1âμ and the commutation relations are

[�̂(x), �̂(x′)] = [�̂†(x), �̂†(x′)] = 0, (15)

[�̂(x), �̂†(x′)] = δ(x − x′). (16)

This model admits a composite dual description of the form
S̃[�̂C] = ∫

dt dx L̃C with

L̃C = ih̄ �̂
†
C ∂t �̂C − h̄2

2m
∂x�̂

†
C ∂x�̂C − g

2
�̂

†
C�̂

†
C�̂C�̂C, (17)

where the composite field obeys the algebra

�̂
†
C(x)�̂†

C(x′) − e
i
h̄ γ sgn(x−x′ )�̂

†
C(x′)�̂†

C(x) = 0, (18)

�̂C(x)�̂†
C(x′) − e− i

h̄ γ sgn(x−x′ )�̂
†
C(x′)�̂C(x) = δ(x − x′),

(19)

and the coupling γ constitutes also the statistical angle. The
composite dual action is found via the Jordan-Wigner trans-
formation [Eq. (3)], which reads as

�̂(x) = e
i
h̄ γ

∫ ∞
−∞ dx′ �(x−x′ )n̂(x′ )�̂C(x), (20)

and acts as a large gauge transformation and allows interpo-
lation between both faces of the duality. This constitutes a
statistical transmutation. Notice that the Jordan-Wigner string
is nothing but the aforementioned scalar (kink) field �̂(x). A
crucial rewriting of the kinetic term as

H̃kin ∼ ∂x�̂
†
C ∂x�̂C = (Dx �̂ )†(Dx �̂ ) (21)

= ∂x�̂
†∂x�̂ − 2γ m

h̄2 : n̂ ĵx : +γ 2

h̄2 �̂†n̂2 �̂, (22)

with : • : denoting normal ordering and current density

ĵx = h̄

2mi
[�̂†∂x �̂ − (∂x �̂ )† �̂], (23)

shows that minimal coupling to a density-dependent gauge
potential is nothing but a density-current nonlinearity and a
three-body term. Thus, modifying the coupling of the inter-
actions in Eq. (22) is equivalent to tuning the statistics in the
dual description. The most dramatic effects are produced by
the term involving the current density, which breaks parity
(P) and time reversal (T ). This leads to asymmetric dynamics
and chiral solitons [17,18,40]. We see that the composite dual
model is nothing but an anyonic Lieb-Liniger model [41–43].
It is worth stressing that Girardeau’s Bose-Fermi correspon-
dence [44–46] is a particular case of the above prescription.

IV. MACROSCOPIC ORIGIN

The reader might wonder whether the statistical gauge field
in Eq. (12) has really anything to do with conventional flux
attachment. Let us consider the local law ∇ × â(x) = γ n̂(x)
on a punctured two-dimensional disk with r = ε inner and
r = R outer radius, respectively. When taking the limit ε → R
the disk approaches an annulus. This implies |R − ε| ≈ 0 and
∂r â ≈ 0 in ε � r � R. The magnetic field in polar coordinates
(r, ϕ) becomes

∇ × â(x)|ε→R =
[

1

r
âϕ (r, ϕ) − 1

r
∂ϕ âr (r, ϕ)

]∣∣∣∣
r→R

. (24)

In this limit, the flux attachment expression at r = R reads

â′
ϕ (ϕ) = 1

R
[âϕ (ϕ) + ∂ϕ ξ̂ (ϕ)] = γ n̂(ϕ), (25)

where ξ̂ (ϕ) = −âr (R, ϕ) becomes just a memory of the
higher-dimensional space and is absorbed in a new gauge
potential, yielding Eq. (9) as a reduced expression for flux
attachment. A similar logic can be applied in dimensionally
reducing the parent gauge action in Eq. (5). This is written
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schematically as S2+1 → S1+1, with identification

SBF[A, a] + SCS[A] −→ SAx.[�, a] + Sχ [�], (26)

L1+1 = κ

2π
�εμν∂μaν + κ

2π
ε01∂0�∂1�, (27)

where μ, ν = {t, x}. We notice that LAx. in Eq. (26) consti-
tutes both an axion and a BF term. It can also be understood,
upon integration by parts, as a many-body Aharonov-Bohm
twist effect [47]. The axion contribution alone leads to a
decoupling from the gauge field, but the introduction of Lχ

provides the axion with chiral dynamics. As expected, these
contributions give a vanishing Hamiltonian, since they are first
order in time derivatives, and are universal in that they do
not depend on a specific matter model. Rather, they introduce
constraints on the system, and fix the form of the statistical
gauge field to be linear in density.

V. MICROSCOPIC EMERGENCE OF A STATISTICAL
GAUGE FIELD

The previous discussion gives a macroscopic or phe-
nomenological description of matter. However, it does not
provide an intuitive explanation for how these statistical
gauge fields could effectively be generated. It is evident from
Eq. (22) that the minimal coupling to a linear-in-density gauge
field [Eq. (12)] can be seen as a combination of two- and
three-body contact interactions and an exotic parity-breaking
term. The latter is a chiral interaction Hint ∼: (k n̂2) : since it
is momentum dependent in k space. We wonder whether it can
arise from more conventional interaction terms. Hence, we
consider a bosonic field theory with two-body interactions and
a pseudospin-1/2 degree of freedom α = {↑,↓}. We focus
only on central, spin-preserving interactions

∑
α,β

∫
dx dx′ �̂†

α (x)�̂†
β (x′)U αβ (x − x′)�̂β (x′)�̂α (x). (28)

Upon rotation on the Bloch sphere and Fourier transforming
we obtain the effective interaction in a new spin basis σ =
{+,−}, as

∑
σ,τ,σ ′,τ ′

∫
k1,k2,q

χ̃ στσ ′τ ′
k1,k2,qb̂†

k1+q,σ b̂†
k2−q,τ b̂k2,σ ′ b̂k1,τ ′ . (29)

We introduce
∫

k ≡ 1√
vol.

∫
dd k and define the screening func-

tion in momentum space as

χ̃ στσ ′τ ′
k1,k2,q =

∑
α,β

Ũ αβ
q η̂

† ασ
k1+q η̂

† βτ

k2−q η̂
τ ′β
k2

η̂σ ′α
k1

. (30)

Function χ̃ can be interpreted as describing dressed interac-
tions, while Ũ describes bare ones. The change of spin basis
is nothing but a qubit k-dependent rotation parametrized by

η̂σα
k = R̂n̂σ

(θk ) = exp

(
−i θk

n̂σ · �σ
2

)
. (31)

A particular instance of the above scheme has been realized
in a Raman-coupled Bose-Einstein condensate with internal
atomic structure [17,18]. As an instructive example, we con-
sider the lowest-energy spin branch (σ = τ = σ ′ = τ ′) and
disregard the rest. In this context, (±) states are dressed states.

We consider ultra-short-range bare interactions U αβ (x) =
gαβ δ(x), where δ(x) is the Dirac delta function. At low orders
in k ≈ k0 + δk expansion, with δk � 1, we verify that the
effective interaction kernel acquires the form

χ̃ σσσσ
k1,k2,q ∼ O

(
δk0

i

) + O
(
δk1

i

) ∼ (1 + δki ) δδk1+δk2,δq. (32)

Thus, emergent longer-range interactions now appear as a
consequence of atomic light dressing [48] and allow for the
generation of the chiral interaction.

Alternatively, one can view the density-dependent gauge
field arises in the mean-field limit if a Pauli coupling term
∝h̄� �σ · �n is present in the Hamiltonian. For weak enough
particle interactions we can expand in a perturbation series
and project onto one of the eigenstates of the system re-
lying on the adiabatic theorem. The result is an effective
Hamiltonian with emergent Berry connection terms arising
perturbatively. The first-order contribution A(1)

σ ∝ |�σ |2 is
linear in mean-field density and can be computed in closed
form. Hence, topological terms and the corresponding statisti-
cal gauge fields, such as the density-dependent one discussed
here [40] or Chern-Simons [49] are not fictitious in the
sense of a convenient computational trick, but can instead
dynamically arise from effective microscopic interparticle in-
teractions or as interacting Berry phase effects.

VI. LATTICE VERSION

The previous ideas work equally well on the lattice, where
they manifest as dynamical complex tunneling rates, being the
general prescription of the form

Ĥ = −J
d∑

j, μ=1

(
ĉ†

j e
iâμ( j)ĉ j+êμ

+ H.c.
) + Ĥint, (33)

where interactions are local, ĉ is a bosonic (or fermionic) an-
nihilation operator, j denotes the lattice site, and μ sums over
nearest neighbors in d spatial dimensions. Here, the statistical
gauge field

âμ( j) ≡ â( j; j + êμ) = 1

h̄

∫ x j

x j+ê j

dx · â(t, x) (34)

is the operator-valued Peierls phase, defined on the links of
the lattice, and accumulated in a tunneling event. The ex-
plicit form will once again depend on dimensionality, being
âx( j) = γ n̂ j in d = 1. In d = 2 it is the solution, in any suit-
able gauge, of (b̂ j − γ n̂ j ) = 0 with b̂ j = εab�a âb( j) being
the “magnetic” field associated with plaquette j and �a the
lattice directional derivative. In d = 3 it is the solution of
(�a b̂a

j − γ n̂ j ) = 0. It is worth observing that matter fields
(i.e., electric charges) live on the direct lattice, while fluxes
(i.e., magnetic charges) live on the dual lattice. Also, notice
that recovering the continuum limit must be considered at
all orders [50] in order to preserve the compactness of the
statistical parameter γ ∈ [0, 2π ). Now, for the particular case
of Hubbard-like interactions for Ĥint, such a model reduces
to an anyon-Hubbard model [51] and has been extensively
studied in 1d [52], but remains largely unexplored in other
dimensions.
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VII. CONCLUSIONS

The composite particle duality establishes statistical trans-
mutation as a generic physical phenomenon in nonrelativistic
quantum many-body systems across dimensions. Hence, we
advocate the existence of anyons understood as composites,
in dimensions other than d = 2, although not necessarily
as pointlike objects. We support the assertion made by
several authors [19,21,53] of an underlying order-disorder
scheme in Bose-Fermi correspondences, as it constitutes the
basis of our effective transmutation mechanism identifying
bare/composite theories. The whole picture is embodied by
a generalized Jordan-Wigner mapping playing the role of
a gauge transformation with topological features. From our
construction, we expect new and old families of topological
quantum liquids and solids to be found by merely coupling
conventional quantum matter to suitable statistical gauge
fields aμ in the corresponding dimension. Our scheme is valid
regardless of the bare species being bosonic or fermionic.
This work also opens the door to the experimental real-
ization of Bose-Fermi dualities, a range of anyonic models

[e.g. Eq. (33)], and a different class of topological gauge
theories that have not yet been studied in the context of
quantum simulators, with the recent exception of Ref. [17].
Yet, density-dependent gauge potentials have already been
experimentally implemented [17,54–57] in ultracold atomic
platforms, so we are hopeful that such realizations can come
to fruition in the near future.
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