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Network structure and dynamics of effective models of nonequilibrium quantum transport
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Across all scales of the physical world, dynamical systems can be usefully represented as abstract networks
that encode the systems’ units and interunit interactions. Understanding how physical rules shape the topological
structure of those networks can clarify a system’s function and enhance our ability to design, guide, or control
its behavior. In the emerging area of quantum network science, a key challenge lies in distinguishing between
the topological properties that reflect a system’s underlying physics and those that reflect the assumptions of the
employed conceptual model. To elucidate and address this challenge, we study networks that represent nonequi-
librium quantum-electronic transport through quantum antidot devices—an example of an open, mesoscopic
quantum system. The network representations correspond to two different models of internal antidot states:
a single-particle, noninteracting model and an effective model for collective excitations including Coulomb
interactions. In these networks, nodes represent accessible energy states and edges represent allowed transitions.
We find that both models reflect spin conservation rules in the network topology through bipartiteness and
the presence of only even-length cycles. The models diverge, however, in the minimum length of cycle basis
elements, in a manner that depends on whether electrons are considered to be distinguishable. Furthermore, the
two models reflect spin-conserving relaxation effects differently, as evident in both the degree distribution and
the cycle-basis length distribution. Collectively, these observations serve to elucidate the relationship between
network structure and physical constraints in quantum-mechanical models. More generally, our approach
underscores the utility of network science in understanding the dynamics of quantum systems.
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I. INTRODUCTION

The intersection of network science and quantum physics
is an emerging area of interdisciplinary research [1,2]. Meth-
ods from network science have been used to characterize
features of quantum networks that are relevant to the de-
sign of quantum information and communication systems,
such as quantum synchronization [3], transport efficiency
[4], and robustness to noise [5]. Conversely, quantum effects
and dynamics have been applied to complex networks, such
as by modeling quantum walks [6,7], partitioning networks
[8,9], and representing nodes as entangled states [10]. In
both directions of inquiry, interdisciplinary work has focused
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on manipulating network structure to optimize networks for
quantum information processing, storage, and communica-
tion technologies. Yet, this focus has necessarily neglected
the important space of questions surrounding how network
structure emerges naturally and directly from quantum sys-
tems themselves. In previous work, we sought to address
this gap by considering the structure of mesoscopic quantum
networks, and by demonstrating the utility of network char-
acterizations in explaining transport properties [11]. Here we
take a complementary approach and ask: What network topol-
ogy emerges from different physical models of mesoscopic
quantum systems? And how are these differences in network
topology impacted by underlying system dynamics?

Mesoscopic quantum systems, such as quantum dots and
quantum antidots, are of particular interest to those designing
quantum information processing devices [12–15]. They are
widely tunable and can be efficiently controlled electronically
by capacitive coupling to electrostatic gates that can alter their
equilibrium charge [16–19]. Mesoscopic quantum systems
can be probed with transport experiments: electrons tunneling
between reservoirs weakly coupled to a mesoscopic system
induce transitions between quantum mechanical configura-
tions, whose properties can be deduced from measurements
of current and conductance. Features of mesoscopic sys-
tems, however, are difficult to characterize and predict since
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FIG. 1. An overview of antidot physics. (a) Schematic cross section of an antidot. Tunneling occurs between edge states carrying a Fermi
sea of electrons (green) and quantized antidot energy states. (b) Equivalent capacitor network for the antidot electrostatics. The quantized
charge on the antidot is −Ne, where N is the number of electrons (relative to a fixed reference configuration) and e is the electron charge.
The electrostatic potential of the antidot is controlled via capacitive couplings (CS , CD, CG) to the source, drain, and gate voltages (VS , VD, VG).
Any remaining coupling to other elements of the device is modeled as a capacitive coupling to the ground potential (CR), such that the total
capacitance is C = CS + CD + CG + CR. Figure adapted from Ref. [31].

simulating a many-body interacting system is computationally
intractable due to exponential scaling of the system’s Hilbert
space with particle number [20,21]. Without true quantum
simulators, the best tools available to model mesoscopic sys-
tems are numerical, semiclassical models.

In the recent literature, network science has emerged as
a promising tool to offer intuition for the architectures of
physical systems that produce mesoscopic dynamics [22–26].
Network science provides a complementary tool to elucidate
emergent properties of interacting systems rather than a com-
putational shortcut to calculate the same properties one arrives
at directly from the underlying models used to construct
the networks. For example, in a previous study employing
a single-particle model of quantum-electronic transport, we
demonstrated that statistical characterizations from network
science can capture physically-relevant emergent properties of
nonequilibrium transport [11]. Yet, the work left unanswered
the question of how different physical constraints embedded
in various models of quantum phenomena are reflected in
the network architecture [27,28]. That such reflections might
exist is intuitively plausible when one considers the nature of
the physical models, which can represent quantum states and
mechanisms for state excitation quite differently, for example,
by using different bases or at different levels of approximation
[29,30].

To better understand the interdigitation between physics
and topology, we study networks constructed from two mod-
els of nonequilibrium transport through a quantum antidot
[see Fig. 1(a)]: a single-particle model and an effective model
[31]. Both models produce experimentally accurate time-
averaged values of current and conductance from transport
experiments, but describe the internal antidot configurations
and mechanisms for excitations in different ways [31]. The
single-particle model treats quantum states as composed of
distinguishable, noninteracting elementary particles, whereas
the interacting model describes quantum states in terms
of collective quasiparticle excitations of a many-body liq-
uid. That is, the two models are not merely different basis
representations of the same physics. We performed a statis-
tical investigation of the models’ network topology, paying

particular attention to the network’s cycle structure and degree
distribution, which are high-order and lower-order, respec-
tively, topological characteristics relevant to the propagation
of information and control profiles of complex networks
[32–34].The framework of network construction and topo-
logical analysis enables a systematic study of the differences
between the single-particle and effective models, since these
subtleties are not captured by the static, time-averaged exper-
iments measuring current and conductance. By characterizing
networks built from these two models, we demonstrate that
the physical constraints and dynamics encoded in different
effective models manifest in their network topology. While
outside the scope of this paper, our approach paves the way
for future studies on the control profiles of quantum networks,
with implications for devising specific quantum control
strategies.

II. METHODS

Here, we extend previous work that built a network model
of the energy landscape of nonequilibrium transport through
quantum antidots [11]. Expanding upon that study, we now
consider an effective model in addition to a single-particle
model of antidot states. We also examine the impact of includ-
ing spin-conserving relaxation effects on network structure.
Together, these extensions allow us to ask (and answer) further
questions about the relations between physical processes and
resultant network topology in mesoscopic quantum systems.

A. Transport regime of interest

For an overview of transport through mesoscopic systems,
and antidots in particular, we direct readers to seminal reviews
such as Refs. [16–19]. Here, we focus on spin-resolved trans-
port through a single quantum antidot at filling factor νAD = 2
in the integer quantum Hall regime at relatively low mag-
netic fields (B < 1 T) see Fig. 1(a)]. In this regime, both the
single-particle and effective models of internal antidot config-
urations qualitatively describe transport experiments [35,36].
For further details on nonequilibrium transport through
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quantum antidots in this particular regime, we direct readers
to Refs. [11,31].

To quantitatively characterize transport in an antidot sys-
tem weakly coupled to extended metallic leads, experiments
measure (and models predict) the current, I , and the differ-
ential conductance, G = dI

dV . Nonzero current indicates the
presence of accessible quantum states in the antidot within
the energy window defined by the relative electrochemical
potentials of the source, μS , and drain, μD [see Fig. 1(b)].
Differential conductance reflects changes in the transport con-
figurations, generally due to changes in the alignment of
state transitions with μS and μD. Differential conductance is
typically positive but can become negative in certain configu-
rations. Together, current and conductance are used as both
qualitative and quantitative indicators of quantum transport
phenomena, and they are the key output of computational
models for comparison with experiments [11,31].

The number of relevant antidot states involved with
nonequilibrium quantum transport grows rapidly with the ap-
plied bias [see Fig. 1(b)]. The additional states relevant for
nonequilibrium transport include excited states that represent
different spin and orbital configurations [18]. The ways in
which these spin and orbital configurations are connected
through tunneling and relaxation events are manifold, lead-
ing to a richly structured collective energy landscape. In
fact, landscape complexity grows exponentially with particle
number; it quickly becomes computationally intractable to
calculate transport characteristics analytically. As a result, the
best tools available to model nonequilibrium transport through
mesoscopic systems are numerical, semiclassical models.
Quantum antidot states can be modeled either in terms of the
electron state occupation number (see Sec. II B) or as edge
waves in the charge distribution (see Sec. II C) [36]. In the
open geometry of an antidot, the number of electrons associ-
ated with a particular energy state is undefined; instead, we
employ a particle-hole transformation to describe the system
in terms of a finite number of holes [31].

B. Single-particle model

Here we provide a brief description of the single-particle
model for transport through quantum antidots (see Ref. [11]
for further details). The single-particle energies are labeled by
orbital (m = 0, 1, 2, . . .) and spin (σ = ± 1

2 ) quantum num-
bers,

εmσ = m�ESP + σEZ, (1)

yielding an energy spectrum of two ladders of equally spaced
energy levels. The spacing between orbital energy levels,
�ESP, is assumed to be constant, and the separation between
energy ladders is the Zeeman energy EZ . Excitations are also
governed by these two energy scales, with possible values

Eex = j�ESP ± qEZ , (2)

where q = 0 and q = 1 represent spin-conserving or spin-
flip transitions, respectively, and j is any integer. Internal
quantum states of the antidot are represented as a pair of elec-
tronic occupation vectors (n↑, n↓), with components nmσ = 0
or 1 for each orbital, m, and spin, σ . Since we can track
whether electrons occupy specific orbitals, the electrons in the

single-particle model are distinguishable. Once the possible
electronic occupation vectors are enumerated, a Boolean set
of selection rules can be calculated by determining which sets
of electronic occupation vectors differ by exactly one electron.
That is, if the XOR sum of two sets of electronic occupation
vectors is exactly 1, then the transition is allowed. Otherwise,
the transition is forbidden.

C. Effective model

We can also consider an effective model of antidot states,
in which electrons are indistinguishable and excited states are
described as collective excitations of a quantum liquid around
the antidot edge [36,37]. The effective model is based on the
full Hamiltonian for a system of N interacting electrons within
the standard Born-Oppenheimer approximation in which the
electronic degrees of freedom are decoupled from those of the
lattice [38]. The Hamiltonian can be written in the form

Ĥ =
N∑
i

ĥi + e2

4πεε0

N∑
i> j

1

|xi − x j | , (3)

where ĥi is the single-particle Hamiltonian acting on the ith
electron, which is given by

ĥi = 1

2m∗ (−ih̄∇i + eA)2 − eϕ(xi ) − gμBBŝzi. (4)

This general Hamiltonian does not have any known ana-
lytic solutions for more than one electron.

Using Hartree-Fock mean-field theory (see Sec. I A of the
Supplemental Material [39]), we assume that each electron
in the multielectron system is described by its own single-
particle wave function [Eq. (4)]. The multielectron wave
function 	 can be written as a Slater determinant of orthono-
mal single-particle spin orbitals, and we can obtain the total
energy E for 	 using the variational principle [31]. In this
way, we obtain a fermionic basis of multiparticle states, which
characterizes antidot states by occupation numbers of fermion
orbitals. Since the fermionic basis states are not general eigen-
states of the interacting Hamiltonian [Eq. (3)], we obtained
the eigenenergies by diagonalizing the matrix Hamiltonian
constructed from the subspace of fermionic basis states with
a given (M, Sz ), using the rules for addition of angular mo-
mentum [36]. This process leads to a bosonic basis, in which
the neutral excitations are described by a spectrum of edge
waves similar to the one-dimensional Tomonaga-Luttinger
liquid model [40,41].

The antidot states and transition rules among them are
defined as follows. In the effective model, the antidot states are
given by |N, SZ , nL, nS〉, where N is the particle number of the
state, SZ is the total spin projection, nL ∈ Z+ is the excitation
of the density modes, and nS ∈ Z+ is the excitation of the
spin modes. The ground-state configurations, |N, Sz, 0, 0〉, are
known as maximum density droplets [37]. For these config-
urations, the fermionic basis states remain eigenstates of the
interacting Hamiltonian and we can accurately calculate their
energies using Hartree-Fock theory. For consistency between
the single-particle and effective models, we use the same
ground-state energy calculations in both simulations. The con-
figuration energy for an arbitrary state in the effective model is
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FIG. 2. Single-particle model versus effective model of nonequilibrium transport through quantum antidots. Current and conductance
calculations based on a single-particle model (a) and an effective model (b) of energy states in quantum antidots. Both models were run with
the following parameters: T = 50 mK, B = 1.2 T, effective spin-up tunneling rate 
↑ = 500 MHz, and effective spin-down tunneling rate

↓ = 50 MHz. All subsequent figures are based on models run with these parameters unless noted otherwise. The number of nodes and the
number of edges for the networks corresponding to each set of voltage settings constructed based on a single-particle model (c) and an effective
model (d) of energy states. Note that we excluded networks corresponding to voltage settings that result in a current with magnitude less than
1 pA from our analysis; the values in panels (c) and (d) that are displayed as NaN indicate that networks were excluded.

given by U (|N, SZ , nL, nS〉) = U (|N, SZ , 0, 0〉) + nL × EL +
nS × ES , where EL is the energy scale for the density mode
excitations and ES is the energy scale for the spin-mode exci-
tations. A transition between two states of the effective model
is allowed if �N = ±1 and �nS ∈ { 1

2 ,− 1
2 } − �|SZ |. The

binary selection rules are weighted by the Clebsch Gordan
coefficient for the addition of the spins SZ and SZ ± 1

2 cor-
responding to the transition. This model of weighted selection
rules qualitatively replicates asymmetries in the conductance
map over the voltage space [see Fig. 2(b)] observed in exper-
iments [31].

D. Computational model of transport through
a quantum antidot

The physics of the antidot enters the calculation in the
form of a set of quantum states, its associated energy spec-
trum, and a set of matrix elements for transitions between
states. However, the method to construct and solve a dynam-
ical transition-rate matrix for the steady-state probabilities
of the antidot is agnostic to the physical model used to
obtain the quantum states. We used the same dynamical
rate-equation approach to obtain steady-state probability oc-
cupations for the antidot’s configurations as in Ref. [11].

In Secs. II B and II C, we described two different models of
internal antidot configurations, which yield different descrip-
tions of the quantum states and transition rules. In both cases,
however, the total particle number, N , and the spin projection,
Sz, are good quantum numbers, and hence the selection rules
between quantum states can be written in block-matrix form,
e.g.,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 W +↓
Sz0−1 · · · 0

W −↓
Sz0− 3

2

0 W −↑
Sz0− 1

2

...

W +↑
Sz0−1 0 W +↓

Sz0

W −↓
Sz0− 1

2

0 W −↑
Sz0+ 1

2
... W +↑

Sz0
0 W +↓

Sz0+1

0 · · · W −↓
Sz0+ 1

2

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(5)

Here, the states are organized as groups that define each
block, {|N, Sz〉}, with Sz increasing from top to bottom (Sz0 is
the ground-state spin projection) and N alternating between
two adjacent integer values. The submatrices W ±σ

Sz
contain

the selection rules for adding (+) or removing (−) a parti-
cle of spin σ to a state with initial spin projection Sz. The
specific states included in the model (both the number of
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blocks and the number of states in each block) are determined
through energy and dynamical considerations for a given bias
configuration.

The transition rates γs′→s from antidot configuration |s′〉
to |s〉 are calculated according to a combination of antidot
selection rules and Fermi’s golden rule (see Sec. I B of the
Supplemental Material for a full derivation of the transition
rates). The resulting transition rate matrix, R, is defined by
Ri j = γsis j = γs j→si , where i and j represent different con-
figurations. We seek the steady-state configuration where the
total transition rate into and out of each state is equal, and the
solution to the dynamical rate equation yields the steady-state
occupation probabilities P (see Refs. [11,31] for details about
the dynamical rate-equation approach). From P, we can com-
pute the current flowing from each spin-polarized reservoir
and the spin-resolved conductance [31].

Using this computational model, we can simulate quantum
transport as a function of experimental parameter settings
including gate voltages, drain-source bias, magnetic field, and
temperature, and we can choose whether to use an energy
spectrum based on a single-particle model or an effective
model. Figures 2(a) and 2(b), respectively, show transport
simulations for the single-particle and effective models. The
settings chosen in this paper are motivated by spin-resolved
transport experiments in which the underlying physical pa-
rameters (e.g., �ESP, EZ, and the spin-dependent tunneling
rates) have been well characterized [31]. Unless indicated
otherwise, the temperature is 50 mK, �ESP = 30.7 µeV, EZ =
45.8 µeV, EC = 85 µeV, the effective spin-up tunneling rate
is 500 MHz, and the effective spin-down tunneling rate
is 50 MHz. For details on how the experimental parame-
ter settings enter into quantum transport calculations, see
Secs. I B–I D of the Supplemental Material. For a direct com-
parison of the qualitative agreement between experimental
measurements and calculations based on the single-particle
and effective models, see Sec. I E of the Supplemental Ma-
terial.

E. Spin-conserving relaxation effects

We can include spin-conserving relaxation effects within
each set of antidot configurations with the same number
of particles and total spin {|N, Sz〉} by adding block matri-
ces T describing these processes to the main diagonal of
the matrix in Eq. (5) [31]. For the single-particle model,
we encoded the spin-conserving relaxations as Ti j = 1 if
state j results from moving one of the electrons in state i
to the lowest available orbital in state i, and Ti j = 0 oth-
erwise. For the effective model, we set Ti j = 1 if state i
(represented as |Ni, SZi, nLi, nSi〉) and state j (represented as
|Nj, SZ j, nL j, nS j〉) have the same total spin (Ni = Nj) and
spin-mode excitation (nSi = nS j), and state i is a density mode
excitation of state j (nL j < nLi). For both models, the relax-
ation rate was set at 500 MHz when relaxation was included,
which is on the same order as the tunneling rates into and out
of the antidot.

F. Dynamical properties and null models

To investigate dynamical differences between the models,
we explored how a random walker would move in the state

space. To do so, we considered the rate matrices R of both
models and used the steady-state occupation probability P
to weight the probability of selecting an initial position [see
Figs. 3(a) and 3(b)]. We initialized 10 000 random walkers and
evolved the system forward for 10 000 time steps. We charac-
terize the dynamics quantitatively by the degree of diffusion,
defined as the length of the shortest transition path from the
walker’s initial starting point to its current point.

To investigate how the dynamics of the models, as defined
by the steady-state occupation probabilities P combined with
transition rate matrices R, drive network topology, we perform
a null model analysis of the average dynamical cycle length
for random walkers in the state space. The average dynamical
cycle length is defined as the average of the distance a walker
travels before returning to a specific node. For the null models,
we test the impacts of initializing the random walkers with
uniform probability, evolving the walkers based on an un-
weighted transition matrix, and evolving the walkers based on
weighted transition matrices wherein the weights are shuffled
among existing edges. These sets of experiments preserve the
network connectivity but alter the dynamics of the evolution.

G. Network construction and statistical characterization

Similar to constructing a dynamical equation that de-
termines the transition rate matrix and the occupation
probabilities, the method to construct networks is agnostic
to the underlying physical model used to represent antidot
configurations. In the networks representing transport through
quantum antidots, the nodes represent antidot configurations
and the edges represent possible transitions between config-
urations after single electron tunneling events and relaxation
events. We used the same method to construct networks based
on the transition rate matrices R [see Figs. 4(a) and 4(b)
and Supplemental Material Figs. S5(a) and S5(b)] and cor-
responding probability vectors P as reported in Ref. [11]. The
thresholding method for the probability vectors is presented
in Sec. I F of the Supplemental Material.

With these adjacency matrix representations of our net-
work in hand, we can begin to perform rigorous statistical
characterizations of network size, density, and topology [42].
The number of nodes n in a network is given by the size of the
matrix, and the number of edges in the network is the number
of nonzero elements in the matrix [see Figs. 2(c) and 2(d)
and Supplemental Material Figs. S4(c) and S4(d)]. To evaluate
the network’s topology, we focus on two statistical measures
relevant to a network’s capacity to propagate current, signals,
nutrients, or other physical, biological, or informational items
[32,33]: the network’s degree distribution and cycle structure.
The degree of a node i is the sum over i of Ai j . A narrow
degree distribution is indicative of a particularly ordered sys-
tems; in a lattice, for example, the degree distribution is a delta
function because every node has the same degree, given by the
number of its immediately adjacent neighbors [43]. A broad
degree distribution is indicative of more complexity, where
some parts of the system are heavily connected (forming net-
work hubs), and other parts of the system are less connected
[44]. In fact, degree heterogeneity is a direct quantification
of a network’s complexity as formalized in the notion of
entropy [45].
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FIG. 3. Random walk dynamics on the state space. (a) A classical random walker starts in a random state in the state space and transitions
on the graph following the rate matrix R. (b) The distance of the random walker as a function of time. Distance is measured in terms of the
length of the shortest transition path from the walker’s initial starting point to its current point. Here we show the distance for the system’s
parameter values shown in (c). (c) The distance from the initial starting point at t = 20 for the single-particle and the effective model, both
with and without relaxation. A shortest transition path is calculated for each of 10 000 random walkers; here we plot the average over those
10 000 simulations. The initial starting point of the random walker is weighted by the steady-state probability obtained in the steady-state
analysis. (d) The number of nodes and the number of edges for the physical conditions of panel (c), separately plotted for the single-particle
and effective models. Color indicates VDS.

The distribution of node degrees is a so-called lower-order
topological characteristic that considers only the edges in a
node’s immediate neighborhood: those edges that connect
the node directly to other nodes. Ongoing work in the field
of network science, however, continues to demonstrate that
higher-order topological characteristics—those that charac-
terize the organization of edges which are more than 1 hop
away from a node—have important roles to play in system
dynamics and control [45–49]. It therefore seems prudent
to consider both lower-order and higher-order topological

statistics in our evaluation. In choosing each, we considered
the growing body of evidence indicating that degree distri-
bution (lower-order) and cycle structure (higher-order) are
two specific network features that consistently shape the dy-
namics, capacity for information storage, and control profile
of a network [32,44,50–52]. We therefore complemented the
examination of the degree distribution with an examination
of the network’s cycle basis, which can be algorithmically
extracted using the python software package NETWORKX
[53,54].

FIG. 4. Example rate and adjacency matrices. (a) Example transition rate matrix R (left) and its corresponding adjacency matrix A (right)
obtained using a single-particle model of quantum transport. The network these matrices represent corresponds to voltage settings resulting in
a current of |I| = 81.0 pA and 112 states. (b) Example transition rate matrix R (left) and its corresponding adjacency matrix A (right) obtained
using an effective model of quantum transport. The network these matrices represent corresponds to voltage settings resulting in a current of
|I| = 81.8 pA and 98 states.
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A cycle is a closed walk that does not retrace any edges
immediately after traversing them. Cycles are particularly
relevant for understanding transport because a dense cycle
structure has been shown to be optimal for transport in the
face of spatially and temporally varying loads [55] and to pro-
vide resilience of transport following network damage [56]. A
cycle basis is a basis for the vector space of all cycles, defined
over Z2, such that all cycles of a network can be expressed in
terms of linear combinations of elements in the cycle basis.
Although a network can be decomposed into a cycle basis in
many different ways, the length distribution of the cycle basis
elements is unique [57]. Since extracting the cycle basis of
a network can be computed in polynomial time, in contrast
with an exhaustive enumeration of all possible cycles which
requires exponential time, our analysis of cycle structure is
restricted to considering the length of cycle basis elements
in this paper [58], an approach similar to one recently used
for characterizing hydrogen bond network topology [59]. To-
gether, the degree distribution and cycle basis allow us to
examine the interplay between network topology and meso-
scopic physics.

III. RESULTS

By examining networks constructed from two models of
nonequilibrium transport through quantum antidots, we can
explore which aspects of energy-state transition networks are
common to the physical process of transport versus which
aspects reflect particular transport mechanisms. The former
will manifest as characteristics common to all transport net-
works, and the latter will manifest as characteristics that vary
across transport models. We begin by examining dynamical
differences between the two models of antidot transport.

A. Dynamical properties of the transition rate matrices

Both models give similar quantitative and qualitative re-
sults for the steady-state properties of the system in the desired
experimental parameter range. Yet, this fact does not require
the time evolution of the two models to be equivalent. To
investigate dynamical differences between the models, we
explored how a random walker would move in the state space.
To do so, we considered the rate matrices R of both models
and used the steady-state occupation probability to weight
the probability of selecting an initial position [see Figs. 3(a)
and 3(b)]. The two models display markedly different pat-
terns of distance from their initial position after 20 steps [see
Fig. 3(c)]. Here we quantify these differences in terms of the
degree of diffusion and in terms of the continuity of distance
as a function of applied bias. We will consider the latter first.

The single-particle model displays a continuous transition
among distances for all values of VG when varying the bias
potential VDS. In contrast, the effective model displays a no-
table discontinuity for moderate bias going from a distance
of more than six edges to a distance of less than three edges
within a few microvolts. The presence of a discontinuity in the
effective model can be further appreciated when considering
basic network metrics like the number of nodes or the number
of edges for the physical graph. The single-particle model
displays a smooth transition in these two metrics for the full
range of VDS [see Fig. 3(d)]. In contrast, the effective model

displays a discontinuous transition in these two metrics as VDS

enters and exits the middling range (colored navy blue in the
figure).

To complement our examination of the continuity or dis-
continuity in distance as a function of VDS, we study the
extent of diffusion in each model. The single-particle model
displays a consistently low amount of diffusion, a distance of
around three edges, regardless of network size or location in
voltage space. In contrast, the effective model displays dif-
fusive behavior that varies dramatically and discontinuously
across regions within the voltage space, from a distance of
eight edges in some regions to a distance of one in others
[see Fig. 3(c)]. That is, the effective model displays regions
of both much greater and much lower diffusion compared
to the single-particle model. Since the qualitative diffusion
properties vary across these two underlying physical models,
and these qualitative differences are not a direct reflec-
tion of network size, a deeper analysis of the topology is
needed to understand the interplay between physical rules,
network topology, and dynamical properties. The following
sections tackle this question by modeling the transition net-
work as a general graph and examining both higher- and
lower-order topological characteristics, and then we turn back
to examine the ways in which the transport dynamics them-
selves drive these topological characteristics.

B. Spin constraints lead to bipartite networks

Using two models of non-equilibrium transport through
quantum antidots—a single-particle model and an effective
model—we constructed networks over a range of voltage con-
figurations spanning two Coulomb diamonds [see Figs. 2(a)
and 2(b)]. Transport calculations using both models agree
with experimental values of current and conductance [see
Figs. 2(c) and 2(d)], but the models assume quite different
transport mechanisms. We first examined networks con-
structed from both models when excluding relaxation effects.
We found that all networks from both models are bipartite.
A bipartite network has two classes of nodes and edges that
connect only nodes of one class with nodes of the other class
[60]. Intuitively then, bipartiteness reflects the shared spin
conservation rules that are a common underlying constraint
upon both models. Edges represent single tunneling events of
electrons into or out of the antidot, so neighboring nodes differ
by 1

2 total spin [see Fig. 5(a)]. Understanding edges as single-
electron tunneling events leads to a natural two-color marking
scheme of integer versus half-integer total spins [Fig. 5(b)].

As a direct extension of their bipartite nature, we found that
all networks contained only even-length cycles in their cycle
bases [see Figs. 5(c) and 5(d)]. Recall that a cycle is a closed
walk that does not retrace any edges immediately after travers-
ing them. To complete a cycle and return to the starting antidot
configuration (node), an even number of tunneling events
must occur since each tunneling event (edge) changes the
total spin of a state (node) by 1

2 . While networks constructed
using an effective model have a minimum cycle length of 4
in their cycle bases elements—an expected minimum length
since in the network representations, a 2-cycle is simply an
edge—networks constructed using the single-particle model
have a minimum cycle length of 6 [see Fig. 5(d)].
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FIG. 5. Spin constraints result in even-length cycles. (a) A schematic of cycle trajectory through an adjacency matrix representation of a
network. The block diagonal represents antidot energy-state configurations that the system may occupy, and the grey off-diagonal blocks store
transition rates between antidot states. The cycle shown in the schematic corresponds to a cycle of length 6, where each node in the cycle
is a distinct antidot configuration in the diagonal block, and each edge is represented by two blue arrows that pass from one node through
a transition rate to a new node. Spin-preserving relaxations occur within a diagonal block. Since the schematic shows an implementation of
transport without relaxation, the system must pass through a grey transition state to move from one node to another. Since the spin changes
by a half-integer amount during each transition, all cycles have an even length. (b) Sample networks with a two-coloring scheme, where
nodes having an integer spin are shown in purple and nodes having a half-integer spin are shown in green for a single particle noninteracting
model (left) and for an effective model (right). (c) Distribution of cycle length in the cycle basis space for the single networks shown in (b).
(d) Distribution of cycle lengths for all networks over the voltage space displayed in Fig. 2 corresponding to a current greater than 1 pA for the
networks constructed from the single-particle model (top) and from the effective model (bottom). In each box plot, the central mark represents
the median, the top and bottom edges indicate the third and first quartiles, the whiskers extend to ±2.7σ , and individual outliers are displayed
by –.

The difference in minimum cycle lengths stems from a fun-
damental difference between the single-particle model and the
effective model. In the single-particle model, particles are dis-
tinguishable, and individual electrons occupy specific excited
states. In the effective model, particles are indistinguishable,

and excitations of density and spin modes are represented
collectively. Enumerating all of the possible 4-cycles, we ob-
serve two constraints that prohibit these cycles from occurring
for the single-particle model [see Fig. 6(a)], but there exist
6-cycles for the single-particle model that do not violate these
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FIG. 6. Enumeration of cycles. (a) All possible 4-cycles that involve two electrons tunneling into and two electrons tunneling out of an
antidot are shown in schematics (i)–(v). The color of the nodes indicates the number of electrons in the antidot following the schematics in
the clockwise direction; counter-clockwise cycle node labeling is given by changing the sign of the added or subtracted electrons (e.g., N + 1
in the clockwise labeling becomes N − 1 in the counter-clockwise labeling). (b) An example of a 6-cycle demonstrating a pattern of electrons
tunneling into and out of the antidot that does not invalidate any of the energy or spin conservation rules for the single-particle antidot model.
(c) An example of a valid 4-cycle for the effective model with the full quantum numbers labeled for each state. Notice that this cycle is the
same as the one shown in subpanel A(ii).

constraints [see Fig. 6(b)]. First, energy conservation allows
the antidot to contain only N and N+1 electrons, eliminat-
ing the cycles shown in Figs. 6(a)(iii)–6(a)(v). Note that this
constraint also applies to the effective model. Second, an
individual electron cannot be added and removed (or removed
and added) sequentially, since in the network representation,
such a process would constitute two nodes connected by an
edge rather than a path through a cycle. This second constraint
eliminates the cycles shown in Figs. 6(a)(i) and 6(a)(ii) for
the single-particle model. This constraint does not apply to
the effective model in which electrons are indistinguishable.
More precisely, there is no issue in adding or removing the
same electron since the internal antidot configuration does
not track individual electrons, and therefore these 4-cycles are
present in networks constructed using the effective model. An
example of such a 4-cycle for the effective model is shown in
Fig. 6(c).

C. Spin-conserving relaxation effects
introduce odd-length cycles

As described in Sec. II E, both the single-particle model
and the effective model can incorporate spin-conserving

relaxation effects by adding block matrices to the diagonal
of the matrix describing selection rules between eigenstates.
For the networks constructed from models that include spin-
conserving relaxation effects, an edge represents either a
sequential tunneling event or a relaxation event. Including
spin-conserving relaxation effects results in a greater number
of edges compared with networks excluding relaxation effects
corresponding to the same voltage settings (see Fig. S4 in
the Supplemental Material), since two nodes may be con-
nected through a spin-conserving relaxation event. Relaxation
events do not suppress sequential tunneling events so long
as the sequential tunneling rate is on the same order as (or
faster than) the relaxation rate; when the relaxation rate is
much faster than the tunneling rate, the antidot will effectively
remain in its ground state [18]. These relaxation pathways,
however, violate the constraints needed to produce a bipartite
structure; nodes connected by a relaxation event have the same
total spin, so the two-color marking scheme of integer versus
half-integer spins discussed in Sec. III B no longer holds.

When we introduce spin-conserving relaxation effects to
both models of quantum transport, we observe odd-length
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FIG. 7. Spin-conserving relaxation effects introduce odd-length cycles. (a) Example networks with edges corresponding to spin-conserving
relaxations highlighted in blue for the single-particle model (top) and the effective model (bottom). (b) Cycle length distribution for the single
networks shown in panel (a). (c) Distribution of cycle lengths for all networks over the voltage space displayed in Fig. 2 corresponding to
a current greater than 1 pA for the networks constructed from the single-particle model (top) and the effective model (bottom). In each box
plot, the central mark represents the median, the top and bottom edges indicate the third and first quartiles, the whiskers extend to ±2.7σ , and
individual outliers are displayed by –.

cycles; yet it is important to note that the models’ distinct
mechanisms of spin-conserving relaxation alter the network
structures in different ways [Fig. 7(a)]. For the single-particle
model, a relaxation between antidot configurations i and j
is allowed if configuration j results from moving one of the
electrons in configuration i to the lowest available orbital
in configuration i. Since there are multiple possible excited
configurations accessible for a given number of electrons, a
ground configuration node has multiple edges corresponding
to relaxations from different possible excited states [Fig. 7(a)].
As a result, cycles can contain multiple relaxations; cycle
basis elements containing an odd number of relaxations result
in odd-length cycles in the cycle basis distribution, whereas
cycle basis elements containing an even number of relaxations
result in even-length cycles [Figs. 7(b) and 7(c)].

For the effective model, a relaxation between states i and
j is allowed if both configurations have the same number of
particles N and the same spin-excitation quantum number nS,
and if the density spin excitation number of configuration j is
less than the density spin excitation number of configuration
i. Since the only possible density spin excitation numbers are
0 and 1, each node has at most one edge corresponding to a
spin-conserving relaxation [Fig. 7(a)]. This fact is reflected in
the only odd-length cycles in the cycle basis of the effective
model as 3-length cycles, since there is at most one relaxation

in a cycle basis element [Figs. 7(b) and 7(c)]. In sum, while
including spin-conserving relaxation effects results in odd-
length elements in the cycle basis for networks constructed
using both the single-particle and effective models, the mod-
els’ distinct mechanisms to describe excitations yield different
cycle structures.

D. Degree distribution

While cycles are a higher-order topological characteristic
that describes the organization of edges which are more than
one hop away from a given node, degree distribution is a
lower-order topological characteristic that concerns the orga-
nization of edges directly connected to a given node. While
we observed that distinguishability of particles and different
mechanisms for relaxation impact the cycle structure of the
networks, we seek to understand how the different physi-
cal representations of the antidot impact network structure
locally. Degree distribution is one of the most fundamental
properties of a network used to discern well-known types of
networks, such as scale-free networks, Erdős-Rényi random
graphs, and lattices, and is particularly relevant for ques-
tions pertaining to controlling many-body quantum systems
with applications in quantum information processing devices,
since the distribution of edges in a network governs how

023125-10



NETWORK STRUCTURE AND DYNAMICS OF EFFECTIVE … PHYSICAL REVIEW RESEARCH 5, 023125 (2023)

FIG. 8. Physical constraints limit the tail of the degree distribution. The degree distribution of networks constructed using the
(a) single-particle model, (b) single-particle model with spin-conserving relaxation effects, (c) effective model, and (d) effective model with
spin-conserving relaxation effects. Each network corresponds to voltage settings resulting in |I| > 1 pA. Networks corresponding to the 25,
50, and 75 percentile values and the maximum value of current over the voltage regime examined are highlighted in red, blue, yellow, and
green in panels (a) and (c). The networks corresponding to the same voltage settings in (b) as in (a) and in (d) as in (c) are highlighted in the
corresponding color.

information flows locally from one node to another [61,62].
More broadly, we are also interested in how the degree distri-
bution of state-transition networks using two different models
of internal antidot configurations compares with other natu-
rally occurring networks.

Unlike many other social, biological, and physical net-
works, the quantum transport networks studied here do not
exhibit a strongly heavy-tailed degree distribution, nor one
following a power law or exponentially truncated power law.
This fact is true regardless of which underlying physical
model was used to construct the networks and whether spin-
conserving relaxation effects were included (see Fig. 8) [63].
The longest tail observed was for the single-particle model
with relaxation. For both models, quantum mechanical se-
lection rules govern how many energy states are accessible
from a given energy state, so there is a physical constraint on
the maximum number of edges connected to a single node.
While the physical constraints on the number of edges limits
the length of the distribution’s tail, we observe that the degree
distributions do not display any scaling behavior (broad scale,
scale-free, or single-scale) before the cutoff [64]. Moreover,
the distributions are not unimodal, bimodal, or, in general,
smooth.

Relaxation effects alter edges within a network, so incor-
porating spin-conserving relaxation effects alters the degree
distribution of the network (see Fig. 8). In the effective model,
adding spin-conserving relaxation effects results in at most
one additional edge for each node; given an antidot con-
figuration with an excited density mode, there is only one
possible relaxation to a state with the same total spin and
spin excitation but with no density mode. We observe the
introduction of spin-conserving relaxations in the effective

model as a shift in peaks of the degree distribution between
models with and without relaxation [see Figs. 8(c) and 8(d).
In the single-particle model, there are multiple possible ex-
cited antidot configurations that will relax to the same ground
configuration, so including spin-conserving relaxation effects
can yield more than one additional edge for a single node.
The maximum number of observed edges due to relaxation
effects for a single node was 24. We observe the introduction
of spin-conserving relaxation effects for the single-particle
model through the lengthened tail of the degree distribution
[see Figs. 8(a) and 8(b)], whereas we observe the introduc-
tion of spin-conserving relaxation effects for the effective
model as a shift in peaks from even- to odd-degrees in the
degree distribution [see Figs. 8(c) and 8(d)]. Altogether, we
observed that spin conservation, particle distinguishability,
selection rules, and relaxation mechanisms shape both lower-
and higher-order topological characteristics of state-transition
networks with implications for the dynamical properties and
control profiles of quantum transport networks.

E. Null models demonstrate the impact of dynamics
on network structure

Although we motivate our study of the higher- and lower-
order topological characteristics of networks representing two
different models of antidot transport systems from the ob-
servation that the dynamic behaviors of the networks are
qualitatively different (Fig. 3), we turn back to examine how
the dynamics of the antidot transport system drives the net-
work topology. We do so by examining how the average
dynamic cycle length for classical random walkers on the
transition state matrices changes with null model experiments.
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FIG. 9. Steady-state occupation probabilities and transition rates drive dynamic network topology. Average dynamic cycle length is
displayed for (top) the single-particle model and (bottom) the effective model when 10 000 classical random walkers after 10 000 times
steps are, from left to right: (full random walker) initialized via the steady-state probability weights and evolved forward based on the original
transition rate matrices; (shuffled rates) initialized via the steady-state probability weights and evolved forward based on transition rate matrices
with conserved connectivity but shuffled transition rates; (constant initialization) initialized randomly via a uniform probability distribution
and evolved forward based on the original transition rate matrices; and (random connection) initialized via the steady-state probability weights
and evolved forward based on transition rate matrices with the connectivity reshuffled randomly.

In Fig. 9, where the random walkers are initialized via
the steady-state occupation vector and the system is evolved
forward via the transition rate matrices, we observe a sim-
ilar qualitative difference in average dynamic cycle length
between the single-particle model and the effective model
as observed in the diffusion study in Sec. III A. That is,
the networks constructed using the effective model display
discontinuous transitions between values of average dynamic
cycle length within the voltage space, whereas we observe a
comparatively more continuous transition between values of
average dynamic cycle length for the single-particle model.

For all null model experiments performed, we found that
this distinctive qualitative difference regarding continuity of
transitions between values of average dynamic cycle length
within the voltage space across the single-particle and effec-
tive models disappears (Fig. 9). Furthermore, we found that
for all null model experiments, both voltage spaces display
patterns of average cycle length that are qualitatively similar
to each other, but qualitatively different from either of the
full random walker simulations. This observation supports our
hypothesis that the transport dynamics drive the topological
structure and network dynamics of the energy-state networks.

In the shuffled rates and constant initialization null ex-
periments, both of which preserve connectivity within the

transition rate matrices but alter the relative weighting of
the initial distribution of walkers or the relative weights of
transitions across edges, the voltage space loses much of the
structure of average cycle length observed in the full random
walker simulations for both null model experiments. That is,
the values of the initial steady-state distribution combined
with the transition rates drive the qualitative features of the
landscape of dynamic network features.

In the random connection experiments, we observe that
shuffling the transition rates among the energy states quan-
titatively shortens the average dynamic cycle lengths for both
the single-particle and the effective models. Reshuffling the
edges preserved the single connected component, so walkers
were not isolated in small, unreachable connected compo-
nents. Rather, the shuffled dynamics prevented the walkers
from traveling within the network. This observation indicates
that the connectivity of edges embedded in the transition rate
dynamics drives the propagation of information throughout
the network.

Taken together, these null model simulations enable us to
connect the dynamics of the antidot transport system with
the network topologies of the different models we use to
study the physics of the system. In particular, the steady-state
occupation probabilities and values of transition rates appear
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to drive the differences in qualitative dynamic behaviors such
as average dynamic cycle length we observe across the two
systems; evidence for this relation arises from the fact that
when we remove this feature from the simulations, the be-
havior within the voltage space of continuity between values
of average dynamic cycle length is qualitatively similar. Fur-
thermore, the connectivity, or underlying network structure,
of the transition rates themselves appears to be the primary
driver of the lengths of the dynamic cycles; evidence for this
relation arises from the fact that shuffling the connectivity
of the transition rate matrices leads to the walkers exhibiting
excitatory rather than cyclic behavior.

IV. DISCUSSION

A. Effective models of many-body quantum systems

Many-body quantum systems are difficult to simulate on
classical computing systems because the number of param-
eters necessary to represent the system grows exponentially
with particle number. As a result, physicists have devised
effective models that can be implemented numerically to
describe many-body quantum systems. In using effective
models, physicists make explicit decisions about how to de-
scribe a system as well as which physical effects to include,
depending on the question they seek to answer [65]. In the
many-body quantum system studied here, chiral edge waves
of the quantum antidot in a two-dimensional electron gas
system can be viewed either in terms of the electron state oc-
cupation numbers (as in the single-particle model) or as edge
waves in the charge distribution (as in the effective model)
[36]. Both models are useful; they yield quantitative values
for current and conductance that match experimental data
and also recreate many qualitative features of transport ex-
periments. These two models are even connected through the
maximum-density-droplet state, in which the ground eigen-
state of the single-particle model is exactly the ground-state
solution to the many-particle Hamiltonian, even when ac-
counting for electron-electron interactions [37].

While the two models studied here both yield values of
current and conductance in agreement with time-averaged
experimental data, they describe different mechanisms for
transport. In the single-particle model, distinguishable elec-
trons tunnel to discrete antidot states labeled by occupation
vectors, and individual electrons occupy excited states. In the
effective model, indistinguishable electrons tunnel to discrete
antidot states labeled by collective spin and density modes.
While the difference in how these antidot states are labeled
does not impact time-averaged values for current and conduc-
tance, our results demonstrate that the choice of underlying
physical model impacts the nature of state transitions allowed,
which in turn defines the collective energy landscape on which
the system exists. These dependencies manifest in two funda-
mental aspects of the state transition network’s structure: the
degree distribution and the cycle structure.

Given the growing interest in network-based approaches
to study, model, and control systems governed by quan-
tum physics, our network-based approach to study transport
through quantum antidots represents a paradigm to begin to
move toward network-based control strategies [46,66–68].

By finding similarities across networks constructed to repre-
sent the same system but using different underlying models,
we can better understand which network characteristics re-
flect physical constraints versus the mechanisms of a specific
model. For example, as reported in Sec. III B, networks rep-
resenting antidot systems without spin-conserving relaxation
effects are bipartite, regardless of which model was used to
represent antidot states. This result indicates that control-
based strategies designed specifically for bipartite networks
may be appropriate to manipulate the antidot to a desired
state in regimes in which spin-conserving relaxation effects do
not play a role [69]. Altogether, the network-based approach
presented here illuminates how different mechanisms to de-
scribe transport have different implications for the dynamics
and control of many-body quantum systems.

B. Cycle structure and degree distribution in quantum
transport networks

The ability to control many-body quantum systems has
become increasingly important in quantum information pro-
cessing devices. The ability to identify driver nodes, devise
control strategies, and design robust (un)controllable subsys-
tems is crucial in order to store, encode, process, and protect
information across biological, technological, and quantum
systems [5,70–72]. Controlling transport is key to many quan-
tum technologies, and both the cycle structure and the degree
distribution impact the control profiles of complex networks
[34]. A network’s control profile comprises its response to
various perturbations designed to guide the system towards
specific states. One metric commonly used to evaluate this
response is the network’s controllability. A network is con-
trollable if we can identify a set of inputs or driver nodes
such that the network can be driven from any initial con-
dition to a target condition within a finite amount of time.
The degree distribution of a network has a large role in de-
termining the number of driver nodes in the control profile
of a network, where driver nodes tend to avoid high-degree
nodes [73]. More generally, the degree distribution dictates
how a control signal propagates to neighboring nodes, and
cycles dictate how those control signals reverberate in feed-
back loops. Designing efficient control strategies for complex
networks therefore requires an understanding and accounting
of both the degree distribution and cycle structure.

To better understand the role of cycle structure in the
available dynamics, as well as their control, it is useful to
consider the study of cycles in real-world systems. Recent
work examining the cycle structure of biological, physical,
and engineered systems has shown that cycle structure im-
pacts information propagation, information storage, feedback,
resilience to noise, and robustness [32,33,74–76]. Robustness
of a network refers to the ability of a network to continue car-
rying out a given function when a fraction of its components
is damaged. By definition, cycles increase the robustness of
transport in a network under an attack that breaks edges, and
dense cycle structures have been shown to optimize transport
function in response to varying loads and resilience to damage
in biological systems such as leaf vasculature and insect wing
veins, engineered systems such as city streets, and physical
networks such as river deltas [55]. While a tree structure is
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optimal for transport when there is a spatially and temporally
constant load, optimization under varying loads and robust-
ness to an attack dictates the opposite of a treelike structure
[77,78]. Robustness of transport to an edge attack requires
that breaking any one edge does not yield a disconnected
network, and while the optimal structure for a network at
any single point in time may be treelike, the overall opti-
mization of spatially and temporally varying transport load
requires redundant paths in the form of cycles. Furthermore,
cycles play a role in the dynamic stability (the tendency of
a network to return to an equilibrium state after a perturba-
tive disturbance) of biological and engineered networks [79].
For example, long cycles are relevant to maintain excitable
dynamics in neural networks [51] and short cycles are respon-
sible for maintaining sustained activity [50]. Dynamic states
in networks with longer cycles persist for a longer period of
time than those with shorter cycles [80]. Cycle structure can
also influence mechanical properties of physical systems. For
example, recent work has shown that short cycles in polymer
networks influence rubber elasticity [81]. Collectively, these
studies underscore the key role of cycle structure in a net-
work’s dynamics and function.

Complementing a network’s cycle structure is its de-
gree distribution. A network’s degree distribution impacts
the dynamics whereby information flows and is distributed
throughout a network, as well as the network’s controllability
and robustness to damage. Dynamically, networks dominated
by either even- or odd-degree nodes have different properties:
networks dominated by odd-degree nodes tend to noise-
induced energy-state changes more than those dominated by
even-degree nodes [80]. Networks with a large fraction of
odd-degree nodes have been shown to have more unstable
dynamics compared with networks with a higher fraction of
even-degree nodes. The reason is intuitive: nodes with an odd
degree always have an unpaired edge, leaving the network
more susceptible to dynamically unstable (chaotic) behavior
since unpaired edges can cause a network to tend toward
getting stuck in certain states [80]. The degree distribution is
also an important topological feature in understanding how
robust a network is to both random and targeted attacks, such
as an attack in which edges connected to the highest degree
nodes are targeted for removal. For example, a bimodal degree
distribution optimizes network robustness in the face of both
random and targeted attacks [82]. Collectively, these studies
underscore the fundamental relevance of the degree distribu-
tion for a network’s dynamics.

It is interesting to consider our results in light of this exten-
sive literature. Specifically, recall we found that altering the
physical model underlying the description of internal antidot
configurations impacts both the degree distribution and cycle
structure of network representations. The network structures
have different implications for the dynamical properties and
control profiles of the antidot system. For example, for the
networks constructed using the effective model without spin-
conserving relaxation effects, the networks are dominated by
even-degree nodes, whereas when spin-conserving relaxation
effects are included, the networks are dominated by odd-
degree nodes [see Figs. 8(c) and 8(d)]. On a dynamical level,
this shift from the relative prevalence of even- versus odd-
degree nodes indicates that spin-conserving relaxation effects

may serve a destabilizing role in the networks. In terms of net-
work robustness, while the shortest path between two nodes is
the most efficient route to communicate information between
them, it may not be the optimal route when taking into ac-
count traffic, noise, and resistance. In the case of the transport
networks, barriers preventing the shortest path between two
nodes from being the optimal include passing through an
antidot configuration that is energetically costly or improbable
to reach (for a discussion of such barriers in the state space,
and their relevance for control, see Ref. [68]). In this case,
information may flow through paths that are not topologically
the shortest, and hence short cycles are critical to provide
alternative paths and to improve fault tolerance [75]. We found
that in models excluding spin-conserving relaxation effects,
the shortest cycle basis elements differ based on whether in-
ternal antidot configurations are represented using occupation
vectors (as in the single-particle model) or collective spin
and density modes (as in the effective model) (see Fig. 5).
Our results indicate that altering the underlying representation
of nonequilibrium transport through quantum antidots has
profound implications for understanding the dynamics and
devising control strategies for many-body quantum systems.

C. Methodological limitations and future directions

Several methodological considerations are pertinent to this
paper. First, we compared the structure of quantum transport
networks constructed using two underlying models of internal
antidot configurations: a single-particle model and an effec-
tive model. The implementation of sequential transport used
for both models does not include higher-order cotunneling
processes or spin-flip relaxation effects (due to hyperfine cou-
pling or phonon-mediated spin-orbit interactions [18]), both
of which may be present in experiments. Yet, even without
including these effects, we find close quantitative agreement
between the computational model and experiments [31]. No-
tably, our approach does allow spin-flip relaxation effects to
be incorporated by adding block transition matrices between
elements off the main diagonal of Eq. (5).

Second, while the undirected networks allow us to probe
the relationship between topology and quantum networks at
the most fundamental level, certain physical effects that may
impact dynamics are buried. For example, in the undirected
networks, both tunneling events and relaxations are repre-
sented as undirected edges, when relaxations may be more
accurately represented as directed edges. A natural extension
of this paper would be to explore the network properties of
directed networks with edges weighted by occupation proba-
bilities and transition rates.

Third, since enumerating all of the cycles in a network
is a computationally intensive process that typically employs
a brute-force depth-first search algorithm [83], we explore
the cycle basis to probe basic features of the cycle structure.
While there may be many cycle bases corresponding to a cycle
space, the lengths of the cycle basis elements are fixed, so
the analysis of length of elements in the cycle bases does
not depend on the choice of basis. Future work could further
explore the cycle structure of these networks by examining
the first Betti number [84,85], characterizing loop redundancy
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[86,87], and by using other statistical measures to characterize
the number of cycles [88].

Fourth, our findings directly motivate experiments to probe
the dynamics of quantum transport. For example, full counting
statistics experiments directly measure tunneling rates and
the distribution function of current fluctuations by measur-
ing individual electron tunneling events [89]. Our numerical
simulations of antidot transport could be expanded to yield
electron counting statistics and current correlation functions
resolved by spin and edge states, which would enable us to
more directly study the dynamical properties of transport. The
current correlation functions would be directly related to the
dynamical transitions of the system between different internal
states. Comparisons of these dynamical properties between
effective models, and with experimental data, could further
elucidate the role of network topology on system dynamics,
and help to differentiate between physical models that are
not easily distinguishable based on current and conductance
measurements alone.

Finally, the framework of constructing and analyzing net-
works developed here generalizes to any system that can
be modeled as a Markov process. Markovian processes are
often sufficient to capture the effects of stochastic processes
in interactions between a discrete quantum system and an
infinite bath. Some examples are cavity-QED experiments
[90], superconducting qubit systems [91], trapped-ion sys-
tems [92], and generic quantum computers under broadband
control [93]. Optically driven quantum systems are another
interesting example of a Markovian process, where transitions
between internal quantum states involve the absorption or
emission of single photons. As for the electronic transport
system we study in this paper, different models of the internal
dynamics can yield identical predictions for the steady-state
photon emission rate, whereas dynamical information appear-
ing in the correlation function of emitted photons can be used
to distinguish between models [94].

As the complexity of experimentally accessible quantum
systems increases beyond the point at which exact calcula-
tions are tractable, alternative methods to assess and classify
their dynamics are urgently required. Here we draw attention

to lengths of cycles in the cycle basis and degree distribu-
tion as two network characteristics of particular interest for
their ability to reflect fundamental mechanisms specific to
different physical models as well as for their relevance in
understanding system dynamics and implications for devising
control strategies. Our paper represents a general frame-
work to analyze different models of many-body quantum
systems using a network-science approach as an example
of the ways in which concepts from classical network sci-
ence can address pressing challenges in quantum information
science.

V. CONCLUSION

Using network science to study the energy-state transi-
tions of nonequilibrium transport through a quantum antidot
based on two different models of internal antidot states, we
demonstrated that structural properties of the network reflect
model-specific spin and energy constraints. These constraints
result in different minimum-length elements in the cycle bases
across models as well as different degree distributions. This
understanding of how different physical models of meso-
scopic quantum phenomena alters network structure may
inform the design and control of quantum devices for quantum
simulation, storage, or information processing.
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P. Studerus, K. Ensslin, D. C. Driscoll, and A. C. Gossard,
Counting Statistics of Single Electron Transport in a Quantum
Dot, Phys. Rev. Lett. 96, 076605 (2006).

[90] A. Devi, S. D. Gunapala, and M. Premaratne, Coherent and
incoherent laser pump on a five-level atom in a strongly
coupled cavity-QES system, Phys. Rev. A 105, 013701
(2022).

023125-17

https://doi.org/10.1103/PhysRevE.90.052805
https://doi.org/10.1103/PhysRevLett.90.078701
https://doi.org/10.1145/363219.363232
https://doi.org/10.1103/PhysRevLett.104.048704
https://doi.org/10.1103/PhysRevE.99.012321
https://doi.org/10.1016/j.cosrev.2009.08.001
https://doi.org/10.1039/D0CP05126H
https://doi.org/10.1016/j.ipl.2004.03.007
https://doi.org/10.1103/PhysRevE.64.026118
https://doi.org/10.1504/IJCEE.2018.096365
https://doi.org/10.1038/scientificamerican0503-60
https://doi.org/10.1073/pnas.200327197
https://doi.org/10.1007/978-3-319-44677-642
https://doi.org/10.1038/s41467-021-21554-0
https://doi.org/10.1073/pnas.1617387114
https://doi.org/10.1063/1.4931570
https://doi.org/10.1038/srep01647
https://doi.org/10.1080/00018732.2014.933502
https://doi.org/10.1103/PhysRevA.54.1715
https://doi.org/10.1371/journal.pcbi.1006630
https://doi.org/10.1038/nature10011
https://doi.org/10.1103/PhysRevE.72.056127
https://doi.org/10.1038/s41598-018-30249-4
https://doi.org/10.1109/TCYB.2018.2868124
https://doi.org/10.1103/PhysRevLett.98.088702
https://doi.org/10.1103/PhysRevE.100.042402
https://doi.org/10.1073/pnas.0805344105
https://doi.org/10.1073/pnas.1603351113
https://doi.org/10.1073/pnas.2006305117
https://doi.org/10.1103/PhysRevE.71.047101
https://doi.org/10.1137/0201010
https://doi.org/10.1209/0295-5075/120/44003
https://doi.org/10.1016/j.csfx.2019.100004
https://doi.org/10.1162/netna00073
https://doi.org/10.1088/1742-5468/2005/06/P06005
https://doi.org/10.1103/PhysRevLett.96.076605
https://doi.org/10.1103/PhysRevA.105.013701


POTESHMAN, OUELLET, BASSETT, AND BASSETT PHYSICAL REVIEW RESEARCH 5, 023125 (2023)

[91] S.-l. Ma, J.-k. Xie, and F.-l. Li, Generation of superposition
coherent states of microwave fields via dissipation of a super-
conducting qubit with broken inversion symmetry, Phys. Rev.
A 99, 022302 (2019).

[92] E. Ben Av, Y. Shapira, N. Akerman, and R. Ozeri, Di-
rect reconstruction of the quantum-master-equation dynam-
ics of a trapped-ion qubit, Phys. Rev. A 101, 062305
(2020).

[93] G. McCauley, B. Cruikshank, S. Santra, and K. Jacobs, Ability
of Markovian master equations to model quantum computers
and other systems under broadband control, Phys. Rev. Res. 2,
013049 (2020).

[94] R. E. K. Fishman, R. N. Patel, D. A. Hopper, T.-Y. Huang, and
L. C. Bassett, Photon-emission-correlation spectroscopy as an
analytical tool for solid-state quantum defects, PRX Quantum
4, 010202 (2023).

023125-18

https://doi.org/10.1103/PhysRevA.99.022302
https://doi.org/10.1103/PhysRevA.101.062305
https://doi.org/10.1103/PhysRevResearch.2.013049
https://doi.org/10.1103/PRXQuantum.4.010202

