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We report the development of a combined machine learning and high-throughput density functional theory
(DFT) framework to accelerate the search for new ferroelectric materials. The framework can predict potential
ferroelectric compounds using only elemental composition as input. A series of machine-learning algorithms
initially predict the possible stable and insulating stoichiometries with polar crystal structures, necessary for
ferroelectricity, within a given chemical composition space. A classification model then predicts the point groups
of these stoichiometries. A subsequent series of high-throughput DFT calculations finds the lowest-energy crystal
structure within the point group. As a final step, nonpolar parent structures are identified using group theory
considerations, and the values of the spontaneous polarization are calculated using DFT. By predicting the crystal
structures and the polarization values, this method provides a powerful tool to explore new ferroelectric materials
beyond those in existing databases.
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I. INTRODUCTION

Ferroelectrics are functional materials that display a
switchable spontaneous electric polarization, usually achieved
through atomic displacements that connect the ground-state
polar crystal structure to a nonpolar parent structure. The
search for new ferroelectrics is an active area of research
due to the multitude of possible applications ranging from
capacitors in random access memory [1,2], to transducers [3],
and photovoltaics [4,5].

Beyond the traditional trial and error attempts, researchers
have utilized different strategies and tools in the pursuit of
discovering new ferroelectric materials. For example, symme-
try and atomic displacement considerations have been used
to screen crystallographic databases for new ferroelectrics
[6,7]. The combination of improved computational resources
and electronic-structure methods facilitated high-throughput
screening of materials and led to new ferroelectric candi-
dates [8–10]. Machine learning (ML) methods have also
been used to guide searches for high-temperature ferroelec-
tric perovskites [11] and to the identification of ferroelectric
photovoltaic perovskites [12]. More recently, research has
used distortion modes as physically inspired descriptors to
predict new structural polymorphs of ferroelectrics [13]. The
success of applying ML methods to perovskite ferroelectrics
motivates our study to construct a generalized framework for
accelerating the discovery of new ferroelectrics.

One central task for effectively applying machine-learning
algorithms to materials-science problems is developing ap-
propriate descriptors. Descriptors are vector-based numerical
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representations that uniquely define the material and are
usually based on compositional or structural features. It is
convenient to use features that rely only on the chemical for-
mula to screen for new compounds so as not to require a priori
knowledge of the crystal structure. Accordingly, machine-
learning models have been developed using compositional
features to predict and screen for properties ranging from band
gap and ferromagnetism to load-dependent hardness of mate-
rials [14–16]. However, since the main factor to be considered
in a potential ferroelectric is a polar crystal structure, it is
not sufficient to rely on compositional features to search for
new ferroelectrics. One avenue to address this issue is first to
predict the crystal structure given a particular composition.

Lately, methods based on density functional theory (DFT),
combined with evolutionary algorithms or random sampling
of structure spaces, have been developed to predict the
ground-state crystal structure of materials [17–19]. However,
these methods tend to become computationally expensive
due to the vast configuration spaces that need to be as-
sessed for compositions with more than three elements. Thus,
machine learning provides an opportunity to accelerate the
prediction of crystal structures. One approach to utilizing
machine learning for crystal structure prediction is to con-
struct composition-crystal structure correlations [20]. The
main challenge for such an approach is the broad and imbal-
anced range and distribution of the existing crystal structure
types among the more than 10 000 cases in the crystalline
databases. Another approach is to create machine learning-
based interatomic potentials [21] for specific phase spaces.
However, fast and accurate prediction of crystal structures
remains an open challenge.

A ferroelectric candidate must possess a polar crystal
structure, be insulating and be thermodynamically stable. In
addition, there should exist a reasonable distortion path be-
tween the low-symmetry polar phase and a higher-symmetry
nonpolar phase. In this work, we develop a framework that

2643-1564/2023/5(2)/023122(8) 023122-1 Published by the American Physical Society

https://orcid.org/0000-0001-9860-6251
https://orcid.org/0000-0001-5792-4894
https://orcid.org/0000-0003-2555-2429
https://orcid.org/0000-0003-2323-5745
https://orcid.org/0000-0003-1968-0379
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.5.023122&domain=pdf&date_stamp=2023-05-25
https://doi.org/10.1103/PhysRevResearch.5.023122
https://creativecommons.org/licenses/by/4.0/


RAMON FREY et al. PHYSICAL REVIEW RESEARCH 5, 023122 (2023)

consists of a series of machine-learning models in conjunction
with high-throughput DFT calculations and group theoretical
analysis to screen for new ferroelectric materials requiring
only chemical composition as input. We demonstrate the ap-
plication of our framework by first applying it to chemical
spaces that contain known ferroelectric compounds (e.g., Ba–
Ti–O) and then screening for new ferroelectric compounds
of quaternary sulfide and selenides. The machine learning
models and codes used in this paper are provided in the open-
source GitLab repository [22].

II. COMPUTATIONAL DETAILS

A. Machine learning

A regression model was constructed to predict the for-
mation energy of the compositions using a random-forest
algorithm. DFT formation energies of ternary and quaternary
compounds, acquired from the Materials Project database
[23,24], were used for training. For compositions with more
than one entry (polymorphs), only the one with the lowest
DFT energy was kept, leading to 65 120 data points.

A balanced random-forest classifier, as implemented in
the imbalanced-learn library [25], was used to distinguish
between metals and nonmetals. For this classifier, the param-
eter “sampling strategy” determines a balanced random-forest
classifier, as implemented in the imbalanced-learn library
[25], was used to distinguish between metals and nonmetals.
For this classifier, the parameter “sampling strategy” deter-
mines the way undersampling is performed to deal with the
imbalance problem; within this model, it was set to 1, which
means that the majority class is undersampled to contain as
many entries as the minority class. For training, band gaps
were also extracted from the Materials Project in addition to
the experimental band gap data compiled in Ref. [14].

Further, a model was developed to classify the com-
positions into polar or nonpolar crystal structures before
classifying the point group of any predicted polar compounds.
The point-group classifier and the band-gap model were con-
structed using a balanced random forest classifier algorithm.
For the polar/nonpolar model, the “sampling strategy” pa-
rameter was again set to 1. The “sampling strategy” was
within the hyperparameter optimization for the point-group
model. Training data for these two models were extracted
from the Pearson crystal structure database (PCD), consid-
ering only ternary and quaternary compounds around room
temperature and ambient pressure (270–310 K and 1–3 bar).
Compounds that did not have a structure prototype assigned,
had multiple polymorphs, or contained radioactive elements
were discarded. The remaining dataset consisted of 87 153
compounds.

The data were represented by descriptors based on 31
elemental properties (Table 1 in the Supplemental Material
[26]) and their mathematical expressions (average, difference,
minimum, maximum, and sum), resulting in 155 features.
All models were created using the Scikit-learn library within
the python environment [27]. For all models, the hyperpa-
rameters, that is the number of trees, maximum tree depth,
maximum number of features, and bootstrap, were optimized
using a grid search with 10-fold cross validation with an 80:20

train/test split. For the regression models, the R2-score and
for the classifiers, the balanced accuracy (obtained using the
“balanced_accuracy_score” implementation in Scikit-learn)
were used as evaluation metrics for the grid search.

B. Density functional theory

All DFT calculations were performed with the Vienna
ab initio simulation package (VASP) using a plane-wave basis
set with projector-augmented-wave pseudopotentials (PAW)
and Perdew-Burke-Ernzerhof (PBE) exchange-correlation
functionals [28–32]. To appropriately treat strongly-
correlated electronic systems, an on-site effective Hubbard
Ueff = U − J correction was applied to the transition-metal
d states of compositions containing the elements Co, Cr,
Fe, Mn, Mo, Ni, V, and W, according to the standard
VASP input sets for Materials Project, as implemented in
pymatgen [33]. High-throughput DFT calculations were
automated using in-house python scripts and the pymatgen
library to prepare and process input and output files. DFT
calculations were performed in three subsequent rounds
of increasing convergence criteria for efficiency. The
criteria for electronic energies and ionic forces were set
to 10−4 eV and 0.1 eV/Å for the first round and then were
tightened to 10−6 eV and 0.01 eV/Å, respectively. The
energy cutoff values were selected, for each compound,
based on the maximum default cutoff energy values of the
constituent elements that are included in the pseudopotential
basis set for the first round and were multiplied by 1.2
for the second round. For rounds one and two, k points
were generated automatically using a gamma-centered
Monkhorst-Pack scheme, with the number of subdivisions
along each reciprocal lattice vector calculated as follows:
max(2, round (20/ai )), ai being the length of the lattice
vector in Å. For the third round, the standardized input
parameters from the Materials Project [23,24] were set to
ensure consistency for the construction of meaningful convex
hulls. For sulfides and selenides, one final set of calculations
was performed with tighter convergence criteria of 10−8 eV
and 0.001 eV/Å for electronic and ionic parts, respectively,
with a plane-wave energy cutoff of 600 eV. Finally, to confirm
the dynamical stability of the predicted crystal structures,
phonon calculations were performed using the Phonopy
package [34].

III. RESULTS AND DISCUSSIONS

A. Workflow

In Fig. 1, we summarize our framework for predicting po-
tential ferroelectric compounds starting from a set of chemical
elements. We begin by identifying thermodynamically favor-
able compositions that are insulating and likely adopt a polar
crystal structure using machine-learning models. Next, we use
a combination of ML, high-throughput DFT, and symmetry
analysis to determine the exact crystal structure of the pre-
dicted compositions and further downselect the ferroelectric
candidates. In the following, we discuss these steps, illustrated
by Fig. 1, in detail.
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FIG. 1. Schematic of the developed workflow. The workflow
consists of nine steps illustrated by nine panels. First panel: Choice
of chemical elements. Second panel: Generation of the different pos-
sible compounds by varying the stoichiometries. Third panel: Three
machine-learning models predict each compound’s band gap, energy
above the convex hull, and polarity, then finally the point group.
Fourth and fifth panels: According to the stoichiometry and point
group predicted, all the possible prototype structures are extracted
from the PCD database. Sixth panel: The potential candidate struc-
tures are relaxed using high-throughput DFT to identify the lowest
energy structure (seventh panel). Finally, symmetry analysis is used
to identify the higher-symmetry parent structure (eighth panel), and
detailed DFT calculations provide details about the new ferroelectric
candidate (ninth panel).

1. Screening potential ferroelectric compositions

We start by using a series of ML models to quickly
screen composition spaces so that we focus only on viable
compositions. As shown in Fig. 1, in this part, we develop
three ML models to predict compositions with favorable
formation energies, insulating behavior, and polar crystal
structure.

Chemical elements are used to construct binary, ternary,
and quaternary composition diagrams, which are further eval-
uated by ML models. Each composition is represented by a
vector constructed based on its constituent elemental proper-
ties. First, a ML model evaluates the thermodynamic stability
of the compositions by predicting their formation energies
based on Materials Project entries (65 120 DFT calculated

energies). The data obtained from the Materials Project are
first randomly split into training and test sets with a ratio of
80:20 and are then utilized to construct a ML model using a
random-forest regressor. We achieved high statistical scores of
coefficient of determination R2 = 0.93 and root mean squared
error RMSE = 0.32 eV by evaluating the random forest clas-
sifier on the test set, which included 13 024 compounds. The
regression curve that compares the ML and DFT formation
energies on the test set is shown in Fig. S1 within the Supple-
mental Material [26]. Unfortunately, formation energy is not
a good indicator of thermodynamic stability, as compounds
with negative formation energy might decompose to other
competing phases. Therefore, we construct convex hulls based
on the predicted formation energies and only consider com-
positions that are predicted to be within 150 meV above the
convex hull for further evaluation within the framework. The
reasons for adding the 150 meV buffer are twofold. First, it
ensures that errors in our prediction do not lead to discarding
promising candidates. Second, many compounds in crys-
talline databases are, in fact, thermodynamically metastable
and therefore marginally above the convex hull, although still
synthesizable.

The compositions that are predicted to lie on or near the
convex hull are further evaluated for their metallic/insulating
behavior, which we take to be the absence or presence of a
band gap in the electronic density of states. A classifier is
constructed using a balanced random-forest algorithm based
on DFT data combined with experimental band gaps (a total
of 68 853 entries). Similar to the formation-energy model, the
data set is split into training:test sets with a ratio of 80:20.
The classifier exhibits an outstanding 87.5 % accuracy on the
test set. The confusion matrix is also determined to evaluate
further the model’s ability to correctly differentiate between
metals and nonmetals, as shown in Fig. S2a within the Sup-
plemental Material [26]. The diagonal elements are ideally all
equal to 1 in a confusion matrix, corresponding to true posi-
tives and true negatives. For example, true positives indicate
metals correctly predicted to be metallic, while true negatives
refer to insulators correctly determined to be insulating. The
true positive and the true negative elements of our developed
classifier are 0.86 and 0.9, respectively illustrating the high
predictive power of the ML model.

Next, we develop a ML model that takes the compositions
selected from the previous steps and determines whether they
are likely to adopt a polar or a nonpolar crystal structure, see
Fig. 1. For this model, 87 153 structures are extracted from
Pearson’s crystal structure database, containing only 5960
polar crystal structures. Such a significant imbalance in the
data can lead to a bias toward predicting compositions as
nonpolar. We address this issue by implementing a balanced
random-forest algorithm that randomly undersamples the ma-
jority class for each tree separately. Using this approach, an
accuracy of 83.8% is achieved with a balanced confusion
matrix where false positives and true negatives are 0.84 and
0.86, respectively, shown by Fig. S2b within the Supplemental
Material [26]. However, it is worth noting that this accuracy
is slightly overestimated due to data leakage from training to
test set arising from compounds with similar stoichiometries,
such as compounds with small dopings and solid solutions.
Therefore, we grouped all noninteger stoichiometries to their
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FIG. 2. (a) Distribution of the point-group symmetries of the
compounds in the Pearson Crystal Database (PCD). (b) Confusion
matrix of the point-group classifier. (c) Confusion matrix for the
point-group classifier when the undersampled classes are merged.

closest integer equivalent and stratified the train-test splits
accordingly to obtain a more conservative statistic. As a result,
the accuracy of the classifier drops by 1%, see Fig. S3a within
the Supplemental Material [26]. We note that there is no
unequivocal way to decide on which stoichiometries should
be grouped, and the choice of grouping is somewhat arbitrary.

So far, our workflow predicts stable and insulating compo-
sitions with polar crystal structures utilizing three successive
machine learning models. This screening method significantly
reduces the composition space required to search for new
ferroelectric materials.

2. Crystal structure prediction

Next, we use a combined ML/DFT method to predict the
crystal structure of the candidates. This approach is more
effective than the direct prediction of crystal structures by
machine learning because of the large number of classes and
imbalanced distribution of the existing data in crystal structure
databases.

The first step is to predict the point-group symmetry of
the compositions using ML. In total, there are 10 point-
group symmetries that constitute the noncentrosymmetric
polar crystal classes: 1 (C1), 2 (C2), 3 (C3), 4 (C4), 6 (C6),
m (CS), mm2 (C2v), 3m (C33v), 4mm (C4v), and 6mm (C6v)
in Hermann-Mauguin (Schoenflies) notation. Unfortunately,
the distribution of the polar compounds in Pearson’s crystal
structure database is highly imbalanced between these 10
point group symmetries. Figure 2(a) shows the point group
symmetry distribution of polar crystal structures in PCD, illus-
trating the lack of examples for 1, 2, 3, 4, and m point groups.
Interestingly, a significant percentage, 31.5%, of polar crystal
structures in the PCD possess the mm2 point group symme-
try. This class imbalance leads to difficulties in utilizing a
multiclassifier. Even with undersampling, the random-forest

multiclassifier yields low prediction accuracies for the mi-
nority classes, as shown by its confusion matrix [Fig. 2(b)].
For example, it classifies the compositions correctly for the
1 point group symmetry only 37% of the time. To resolve
this issue, we merged point groups 1, 2, 3, 4, and m into
a single class called “merged.” Utilizing this simplification
and further undersampling, an accuracy of 80.2% was reached
for the test set with a reasonably balanced confusion matrix,
Fig. 2(c). By grouping all noninteger stoichiometries to their
closest integer equivalent and stratifying the train-test splits
the accuracy of the classifier drops by 3%, see Fig. S3b within
the Supplemental Material [26].

Predicting the point-group symmetries narrows down the
possible crystal structure prototypes significantly. Therefore,
it is now feasible to use DFT to determine the crystal
structures. To generate the structural input for the DFT cal-
culations, we take the candidate stoichiometries combined
with their predicted point-group symmetries and deter-
mine all the likely crystal structure prototypes they can
adopt by comparing them to existing materials in PCD. In
addition, all possible configurations of the candidates’ ele-
ments in each crystal structure prototype are automatically
generated.

To keep the computational cost low, we perform the
DFT calculations in three automated steps, with succes-
sively tightened convergence criteria. After each step, the
total energies are evaluated, and structures with a larger en-
ergy difference than a set cutoff energy are discarded. The
cutoff energies are set at 1 and 0.25 eV for the first and
second rounds, respectively. Finally, after the third round,
the crystal structure with the lowest calculated DFT to-
tal energy is considered to be the crystal structure of that
composition.

3. Ferroelectric compounds

A ferroelectric candidate has a nonzero spontaneous po-
larization switchable by applying an electric field. We now
address these points using DFT and group theory start-
ing from the crystal structures predicted in the previous
section.

First, we identify high-symmetry nonpolar parent crys-
tal structures using group-super group relationships utilizing
the PSEUDO tool from the Bilbao crystallographic server
[35]. We automate this process by employing web-scraping
methods within the workflow. We then compute the atomic
displacements that connect the high-symmetry nonpolar and
low-symmetry polar structures and take the magnitude of
these atomic displacements as a proxy for the strength of
the electric field likely needed to reverse the spontaneous
polarization. All compounds in which the largest atomic dis-
placement is greater than 1.5 Å are discarded, as they will
likely not have a switchable polarization. The atomic dis-
placements are also utilized to estimate the polarization values
by multiplying them by the Bader charges, chosen for an
initial estimate since they are readily available at no addi-
tional computational cost. Subsequently, the final ferroelectric
candidates’ electronic structure, crystal structure, dynamical
stability, and precise polarization values are evaluated using
DFT calculations.
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FIG. 3. Potential ferroelectric compounds of the Ba–Ti–O com-
position space are identified using ML models that predict proximity
to the convex hull, band gap, and polarity of chemical compositions.
BaTiO3 is among the selected candidates with a predicted point
group of 4mm. Note that the selection is sequential, meaning that
the selected polar compositions are close to the convex hull and are
insulating.

B. Case studies and predictions

All the ML models within the workflow show high statisti-
cal accuracy for predicting potential ferroelectric compounds.
Next, we test the workflow by screening composition spaces
that contain well-known ternary and quaternary ferroelectric
compounds, namely BaTiO3, BiFeO3, and SrBi2Ta2O9, to
validate our methodology further. We then retrain all ML
models excluding any data with BaaTibOc, BiaFebOc, and
SraBibTacOd compositions from training sets to ensure the
models are indeed predictive for these case studies. Below, the
workflow implementation is discussed for the case Ba–Ta–O
as an example, while the other two cases are included within
the Supplemental Material (Fig. S4) [26].

Figure 3 shows the phase diagram for Ba–Ti–O, which
is constructed by first creating a composition grid followed
by a series of ML models, as described in the previous sec-
tion. From 729 initial compositions, our formation energy
ML model predicts 172 compositions, highlighted by green
circles in Fig. 3, to be on or near the convex hull. Next,
we predict 79 of these compositions to be insulating (blue
circles in Fig. 3). Finally, only 18 compositions are pre-
dicted to crystallize in a polar crystal structure, shown by red
circles. Interestingly, BaTiO3 is among these compositions,
demonstrating the ability of ML models to quickly screen
composition spaces to focus the search onto viable, functional
materials. In addition to BaTiO3, we also predict the known
ferroelectric BaTi2O5 [36]. While the other predicted polar
compositions are new and potentially interesting, we will not
focus further on them in the current paper. Our multiclas-
sifier further predicts BaTiO3 to have a 4mm point group.
Next, automated DFT calculations are performed to predict

the crystal structure of BaTiO3. Our workflow identifies three
crystal structure prototypes, BaNiSn3-type, BaTiO3-type, and
CePtB3-type, to be compatible with the 4mm point group for
BaTiO3. There are two possible sites for Ti in each crys-
tal structure prototype. Therefore, six crystal structures were
generated for DFT screening. DFT total energy calculations,
performed in three subsequent steps, determine the lowest
energy for the case where Ba, Ti, and O adopt the BaTiO3-
type crystal structure (space group P4mm) with each Ti atom
coordinated by six oxygens. The calculated total energies for
each step are provided in Table 2 within the Supplemental Ma-
terial [26]. The predicted P4mm crystal structure for barium
titanate is the known room-temperature ferroelectric phase
of BaTiO3 [37]; however, it is not its ground-state crystal
structure, which has R3m symmetry [38]. This is expected,
as our polar-nonpolar and point-group classifiers are trained
based on room-temperature experimental data. Similarly, our
workflow successfully predicts BiFeO3 (3m) and SrBi2Ta2O9

(mm2) as potential ferroelectric compositions, see Fig. S4
within the Supplemental Material [26]. Next, given the
success of our workflow in correctly identifying known fer-
roelectric compositions and their crystal structures, we apply
it to predict new ferroelectric candidates. The workflow is ap-
plied to the composition spaces of 14 quaternary sulfides and
selenides, selected based on their similarities to known oxide
ferroelectrics [39]. Initially, the ML part of the workflow is
utilized to screen 6561 stoichiometries for each composition
space by predicting their convex hulls, band gaps, and point
groups. On average, 73 compositions (11 if only cases with
the most common oxidation states of the constituent ele-
ments are considered) are recommended by the ML models
as potential ferroelectrics, significantly reducing the search
space. The ML screening takes less than one hour for each
composition space (6561 stoichiometries) when performed on
a typical workstation (Intel Core i7-3770). Therefore, this
implementation is ideal for screening numerous composi-
tions. Subsequently, we run all the ML-selected compositions
(163 in total) through the rest of the workflow. On average,
nine crystal structures were generated, and their DFT ener-
gies were elucidated to determine these compositions’ crystal
structures.

Finally, our workflow predicts eight new compounds
as potential ferroelectrics, listed in Table I. Note that it
did not predict any potential ferroelectric compounds for
Cd–Cr–Nb–Se, Cd–Fe–Nb–S, Cd–Fe–Nb–Se, Bi–Ti–Ta–Se,
Pb–Bi–Ta–Se and Bi-Ti-Nb-Se composition spaces. Table I
also lists, for each selected compound, the composition, the
energy above the convex hull, the DFT-calculated band gap,
the estimated polarization value, the space group of the cor-
responding high-symmetry crystal structure, which we use
for our polarization calculations and to determine the dis-
tortion between the high and low-symmetry structures, and
their energy difference. Interestingly, most candidates are
predicted to crystallize in the Pna21 space group. For ex-
ample, one of the candidates, SrBiNbSe5 (Pna21), is close
to the convex hull (0.15 eV above the hull), is insulating
and has a sizable polarization (18.9 µC/cm2), estimated from
the Bader charges. Figure 4 shows the crystal structure of
SrBiNbSe5 adopting KTiOPO4-type structure, a known fam-
ily of ferroelectrics [40,41]. SrBiNbSe5 features a pseudo
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TABLE I. Predicted potential ferroelectric compounds of selected quaternary composition spaces of sulfides and selenides. Space groups
are predicted using our combined ML/DFT approach. The energies above the convex hull (E above hull) values are determined using DFT
calculations in comparison to the data available in the Materials Project. The band-gap values are determined using DFT calculations at
the PBE/PBE+U level. Polarization values are estimated from Bader charges and atomic displacements from the higher-symmetry crystal
structures, which are determined from group theoretical relationships. Max distortion shows the maximum distance any atom is displaced
between the high-symmetry and the polar crystal structure. �E is the total energy difference between the polar and the nonpolar crystal
structures per formula unit.

Composition E above hull Band gap Polarization High-symmetry Max distortion �E
space Composition Spacegroup [eV] [eV] [µC/cm2] spacegroup [Å] [eV]

Pb–Bi–Nb–S PbBiNbS6 P21 0.09 1.2 5.5 P21/m 0.95 1.18
PbBi2Nb2S9 P21 0.17 1.12 12.0 P21/c 1.42 0.77
Pb2Bi3NbS9 Cmc21 0.17 0.47 3.3 Cmcm 0.44 0.23
Pb4BiNbS8 Pmn21 0.16 0.68 5.5 Pmna 0.93 2.33

Pb–Bi–Nb–Se Pb2BiNbSe6 Pna21 0.11 0.7 3.6 Pnma 0.43 0.16
Pb2BiNbSe8 P1 0.18 0.93 4.9 P1̄ 1.15 0.49
PbBiNbSe6 Pna21 0.12 1.12 5.2 Pnma 1.37 0.94

Pb–Bi–Ta–S PbBiTaS6 P21 0.09 1.3 8.6 P21/m 1.29 1.69
Pb2BiTaS6 Pc 0.07 1.31 0.06 P21/c 0.08 0.00
BiTaPb2S8 P1 0.12 1.43 16.5 P1̄ 1.17 0.33

Bi–Ti–Nb–S BiNbTiS6 Pna21 0.12 0.7 3.7 Pnma 1.01 1.05
BiNbTi2S8 P1 0.20 0.44 18.3 P1̄ 1.07 0.67

Bi–Ti–Ta–S BiTaTiS6 Pna21 0.1 0.56 16.9 Pnma 1.29 1.98
Sr–Bi–Nb–S SrBiNbS5 Pna21 0.15 0.4 7.9 Pnma 1.43 0.96

BiNbSr4S8 Pmn21 0.19 1.16 6.8 Pmna 1.31 1.82
BiNbSrS4 Pna21 0.18 0.58 14.7 Pnma 0.73 0.06

Sr–Bi–Nb–Se SrBiNbSe5 Pna21 0.15 0.7 18.9 Pnma 1.22 0.01
Sr–Bi–Ta–Se SrBiTaSe5 Pna21 0.12 1 5.3 Pnma 0.85 0.31

three-dimensional bonding framework, with double layers of
distorted, edge-sharing bismuth octahedra connected along
[100] through corner-shared NbSe4 tetrahedra. The resulting
voids are then occupied by the Sr ions running along the
c direction. Our polarization calculations using the Berry

FIG. 4. The predicted crystal structure of SrBiNbSe5 (KTiOPO4-
type crystal structure), space group Pna21.

Phase method show an even higher calculated polarization
value of 31.1 µC/cm2 (Fig. S5b within the Supplemental Ma-
terial [26]) compared to our initial estimate. Furthermore,
beyond the energetic considerations, our calculated phonon
density of states (Fig. S5a within the Supplemental Mate-
rial [26]) shows that this compound is dynamically stable,
as indicated by the absence of any imaginary phonon mode.
Finally, the low-energy difference between the predicted low-
symmetry and high-symmetry crystal structures, 0.01 eV per
formula unit, is a promising indication that an energetically
viable switching path exists for SrBiNbSe5. Note that the
switchability could be further investigated using a nudged
elastic band calculation. Therefore, SrBiNbSe5 is a promising
compound for further experimental and computational explo-
ration as a potential new ferroelectric. However, we would
like to note that even though our methodology is promis-
ing, many challenges remain in realizing new ferroelectrics.
Specifically, further work is required to fully incorpo-
rate synthesizability, synthetic conditions, and ferroelectric
switching.

IV. SUMMARY

We developed a workflow that combines machine learning
and high-throughput DFT to screen for new ferroelectric ma-
terials using an innovative crystal structure prediction method.
The workflow first uses a set of screening criteria, predicted
using ML models, to quickly focus the search on viable
ferroelectric compositions, followed by prediction of crystal
structures and further down-selection of the candidates with
the assistance of DFT. Ferroelectricity is connected with the
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crystal structure of a material, and therefore, an important
component of our workflow was our approach for predicting
the crystal structure of any polar compound. We also present
an automated approach based on group theory to determine
the nonpolar parent crystal structure of the candidates (to cal-
culate ferroelectricity) instead of just looking for a nonpolar
phase in the existing databases. We validated our methodol-
ogy by rediscovering known ferroelectric compounds, such as
BaTiO3. Moreover, we demonstrated the application of our
workflow by predicting new ferroelectric compounds of sul-
fides and selenides. We hope our paper motivates attempts to
synthesize and characterize these new potential ferroelectrics.
Finally, we note that our method can be applied to any
composition space and therefore provides a versatile tool to

accelerate the development of new ferroelectric materials by
focusing experimental and computational efforts on likely
viable candidates.
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