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Transmon arrays are one of the most promising platforms for quantum information science. Despite being
often considered simply as qubits, transmons are inherently quantum mechanical multilevel systems. Being
experimentally controllable with high fidelity, the higher excited states beyond the qubit subspace provide
an important resource for hardware-efficient many-body quantum simulations, quantum error correction, and
quantum information protocols. Alas, dissipation and dephasing phenomena generated by couplings to various
uncontrollable environments yield a practical limiting factor to their utilization. To quantify this in detail,
we present here the primary consequences of single-transmon dissipation and dephasing to the many-body
dynamics of transmon arrays. We use analytical methods from perturbation theory and quantum trajectory
approach together with numerical simulations, and deliberately consider the full Hilbert space, including the
higher excited states. The three main nonunitary processes are many-body decoherence, many-body dissi-
pation, and heating/cooling transitions between different anharmonicity manifolds. Of these, the many-body
decoherence—being proportional to the squared distance between the many-body Fock states—gives the strictest
limit for observing effective unitary dynamics. Considering experimentally relevant parameters, including also
the inevitable site-to-site disorder, our results show that the state-of-the-art transmon arrays should be ready
for the task of demonstrating coherent many-body dynamics using the higher excited states. However, the
wider utilization of transmons for ternary-and-beyond quantum computing calls for improving their coherence
properties.

DOI: 10.1103/PhysRevResearch.5.023121

I. INTRODUCTION

Transmon arrays have recently taken substantial advances
in size, coherence, and controllability, opening doors for
exciting demonstrations of quantum information protocols
[1–13] and many-body simulations [14–27]. Transmons are
typically operated as quantum two-level systems, qubits, de-
spite their inherent nature as anharmonic oscillators with
approximately d ∼ 5 − 10 well-defined quantum states [28].
Treating them as proper quantum multilevel systems can be
leveraged in several ways, including enhanced hardware effi-
ciency and functionality of quantum error correction [29,30],
fault-tolerant protocols [2,31], and versatile quantum simula-
tions with less mapping overhead [32–36]. As a result, the
utilization of the higher excited states has recently garnered
substantial interest, witnessed through the demonstrations of
qutrit operations and algorithms with transmons [21,37–45],
other superconducting quantum devices [46,47], as well as
trapped ion and photonic platforms [48,49].

Taking the higher excited states into account, a transmon
array can be accurately described using the Bose-Hubbard
model with attractive interactions [14,17,32,50]. In our previ-
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ous works, we have derived an effective model for the unitary
dynamics of highly-excited states of coupled transmons based
on nearly-degenerate perturbation theory [35,36]. In the typ-
ical parameter regime where the transmon anharmonicity U
dominates the hopping rate J , these states can be interpreted
as quasiparticles exhibiting, for example, edge localization
and effective long-range interactions. This has since found
an application in explaining emergent soliton dynamics [51].
In addition to the unitary dynamics of systems of transmons,
dissipation and dephasing rates of the higher excited states of
individual transmons have also been quite well characterized
[21,37,39]. However, the combination of these two topics—a
quantitative understanding of the nonunitary dynamics for the
higher excited states in transmon arrays—has not been studied
before in detail.

In this work, we include the dissipation and dephasing
processes into the many-body dynamics of transmon arrays
both analytically and numerically. We identify three main pro-
cesses, listed here in descending order of their typical effective
rates: many-body decoherence, many-body dissipation, and
heating/cooling induced by the combination of pure transmon
dephasing processes and many-body dynamics.

The Bose-Hubbard model with attractive interactions
conserves the total boson number, meaning that the uni-
tary dynamics neither adds nor removes excitations from
the system. This is broken by the many-body dissipation
process inducing transitions between the different boson-
number manifolds and occurring at a rate proportional to the
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instantaneous total boson number. The many-body decoher-
ence process, on the other hand, reduces the coherence of
many-body superpositions at a rate proportional to the squared
distance between the many-body Fock states. Finally, in the
parameter regime of strongly interacting bosons, U/J � 1,
the many-body spectrum of the Bose-Hubbard model is split
into well-separated regions with almost-conserved interaction
energy [35,36]. The transmon dephasing process combined
with the many-body dynamics breaks this quasiconserved
symmetry by inducing heating and cooling transitions be-
tween these so-called anharmonicity manifolds.

Our results show that, with experimentally realistic values
for dissipation and dephasing, it should be possible to observe
the many-body dynamics of the higher excited states between
coupled transmons in state-of-the-art transmon arrays, even
including the inevitable site-to-site disorder. We clearly see
that the dephasing of the highly-excited states is one of the
critical factors in their wider utilization in ternary-and-beyond
quantum computation and simulations.

The article is organized as follows. In Sec. II, we introduce
the attractive Bose-Hubbard model of a transmon array, to-
gether with the typical dissipation and dephasing processes in
transmons through a master equation formalism. Sections III
and IV focus individually on the effects of dissipation and de-
phasing processes. In Sec. V, we describe phenomena induced
by disorder in the dissipation and dephasing rates between
the individual transmons. Conclusions and future outlooks are
presented in Sec. VI.

II. OPEN MANY-BODY DYNAMICS
IN A TRANSMON ARRAY

A transmon is made of Josephson junctions and capac-
itor plates, realizing an anharmonic oscillator with natural
frequency ω and anharmonicity U , see Fig. 1(a). Nearby trans-
mons interact with each other through a capacitive interaction
J . In many-body language, the anharmonicity U describes
the strength of the on-site many-body interactions between
bosonic excitations, while J is the hopping rate between
neighboring transmons. Hence, an array of L transmons is
effectively described by the Bose-Hubbard model with attrac-
tive interactions [17,32],

ĤBH

h̄
=

L∑
�=1

ω�n̂� −
L∑

�=1

U�

2
n̂�(n̂� − 1)

+
L−1∑
�=1

J�(â†
� â�+1 + â�â†

�+1), (1)

written here in the basis of the local bosonic annihilation
â�, creation â†

� , and occupation number n̂� = â†
� â� operators,

with the reduced Planck’s constant h̄. The bosonic excitations
described by the model are microwave photons but we use
the term “boson” for generality in this article. In modern
arrays of transmons [15,24,26], we have ω�/2π ∼ 5 GHz for
the on-site energies, J�/2π ∼ 10 MHz – 30 MHz for the hop-
ping frequencies, and U�/2π ∼ 200 MHz – 250 MHz for the
on-site interactions. Due to the inevitable small differences in
manufactured devices, the parameters of any two transmons
are usually not equal. However, for the sake of simplicity, we

FIG. 1. (a) A schematic of a 1D transmon array, where the trans-
mons are represented as anharmonic oscillators with frequencies ω�,
anharmonicities U�, nearest-neighbor hopping rates J�, dissipation
rates γ�, and dephasing rates κ�. (b) A many-body energy level
spectrum of a transmon array and a schematic showing many-body
transitions due to the dissipation (yellow arrows) and dephasing
(green looped arrows) processes. The colored bands denote the an-
harmonicity manifolds containing several many-body eigenstates.
The “hard-core boson” manifolds are marked with grey dashed
boxes.

will assume in most parts of this work that there is no disorder
in the parameters of the Hamiltonian, i.e., ω� = ω, J� = J , and
U� = U .

The transmon anharmonicity dominates the hopping fre-
quency, U � J , resulting in an energy spectrum where states
with the same total anharmonicity Â = −∑

� n̂�(n̂� − 1)/2
form well-separated bands, see Fig. 1(b). Due to the con-
servation of energy, the unitary dynamics of the model takes
place mostly within the anharmonicity manifold of the initial
state. The ratio J/U � 1 can be considered a perturbation
parameter. A highly-excited transmon can then be seen as a
bosonic excitation—a quasiparticle—located at one site of the
transmon chain and interacting with other quasiparticles, sin-
gle bosons, or array edges [36]. The term “hard-core bosons”
refers to the state manifold where the value of the total anhar-
monicity equals zero, having no excitations beyond the qubit
subspace and having the highest energy for a given number of
photons, see Fig. 1(b).

Transmons experience nonunitary dissipation and dephas-
ing processes. The master equation yielding the nonunitary
evolution of the density matrix of the system is given by

d ρ̂

dt
= − i

h̄
[ĤBH, ρ̂] +

L∑
�=1

γ�

2
(2â�ρ̂â†

� − â†
� â�ρ̂ − ρ̂â†

� â�)

+
L∑

�=1

κ�

2

(
2n̂�ρ̂n̂� − n̂2

�ρ̂ − ρ̂n̂2
�

)
. (2)

In transmon arrays, typical experimental values
[9,11,15,26,27,52] for the mean dissipation rates γ and
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the mean dephasing rates κ are γ /2π ∼ 5 kHz – 10 kHz
(T1 ∼ 15 µs – 30 µs) and κ/2π ∼ 50 kHz – 300 kHz
(T �

2 ∼ 1 µs – 6 µs). In quantum information setups, where
the devices are better isolated, one can achieve much better
values [10,53]: T1 ∼ 30 µs – 300 µs and T2 ∼ 50 µs – 100 µs.
Here, we use the more conservative values from the array
setups. The rates usually differ quite significantly from site to
site, with typical standard deviations of σγ /γ ∼ 0.2 – 0.5 and
σκ/κ ∼ 0.3 – 0.5. Despite the disorder, we first assume that all
the rates are identical, γ� = γ and κ� = κ , and then in Sec. V
shortly discuss the effects of the disorder. The higher excited
states of a transmon have pronounced susceptibility to charge
noise [28]. This means that in practice, their dephasing rates
are larger than implied by Eq. (2), see, e.g., Refs. [21,37,39].
We first consider the simple dephasing model of Eq. (2) and
discuss its extension in Sec. V. In what follows, we consider
the many-body dynamics under dissipation and dephasing
separately.

III. DISSIPATION

Let us first focus on uniform dissipation (γ� = γ ) consid-
ering the master equation:

d ρ̂

dt
= − i

h̄
[ĤBH, ρ̂] +

L∑
�=1

γ

2
(2â�ρ̂â†

� − â†
� â�ρ̂ − ρ̂â†

� â�)

= − i

h̄
(ĤNJρ̂ − ρ̂Ĥ†

NJ) +
L∑

�=1

γ â�ρ̂â†
�. (3)

On the second line, we have split the equation into two parts
according to the quantum trajectory approach [54]. There, the
nonunitary dynamics is described by the no-jump evolution
under the non-Hermitian Hamiltonian

Ĥ (γ )
NJ = ĤBH − i

L∑
�=1

h̄γ

2
â†

� â�, (4)

interrupted by random quantum jumps via the jump operators√
γ â�. The rate at which a particular quantum jump occurs

is 〈ψ (t )|γ â†
�a�|ψ (t )〉 = γ 〈n̂�〉. The total rate is then given by

〈ψ (t )| ∑� γ â†
�a�|ψ (t )〉 = γ N . Here, the instantaneous jump

events remove a photon at the site � and change the state
discontinuously,

|ψQJ(t )〉 =
√

γ â� |ψ (t )〉√
〈ψ (t )|γ â†

� â�|ψ (t )〉
. (5)

Since the Bose-Hubbard Hamiltonian (1) commutes with the
total photon number operator N̂ = ∑

� n̂�, the no-jump evo-
lution can be split into two independent parts, Hermitian
evolution and damping at the rate γ N ,

|ψNJ(t + τ )〉 = e−iĤ (γ )
NJ τ/h̄ |ψ (t )〉√

〈ψ (t )|(e−iĤ (γ )
NJ τ/h̄

)†
e−iĤ (γ )

NJ τ/h̄|ψ (t )〉
= e−γ Nτ e−iĤBHτ/h̄ |ψ (t )〉 , (6)

assuming that one starts from a quantum state in a single
photon-number sector with N = 〈N̂〉. Physically this means
that between the quantum jumps, the evolution of the system

FIG. 2. The populations PN of the different photon number sec-
tors as a function of time for N = 0, 1, . . . , 4, as given by Eq. (7).
The system is initially in the photon number sector N = 4 and the
dissipation rate is γ /2π ≈ 8 kHz (T1 = 20.0 µs).

is identical to one experiencing no dissipation. This conclu-
sion holds even if we include the dephasing process since
it induces no transitions between the photon-number sectors.
Thus, if an experimental setting allows, by postselecting based
on the total number of bosons, one can recover the quantum
dynamics without any dissipation effects.

In order to solve the master equation (3), we split
the full density matrix into different photon number sec-
tors, ρ̂ = ∑Nmax

N=0 PN (t )ρ̂N , where ρ̂N = �̂N ρ̂�̂N and �̂N is
a projector to the space of states with the total pho-
ton number N . The master equation then reduces to the
rate equations ṖN (t ) = −γ NPN (t ) + γ (N + 1)PN+1(t ) de-
scribing transitions between the blocks N → N − 1 at the
rate γ N . By solving the rate equations, we obtain the
probabilities

PN (t ) =
(

Nmax

N

)
e−γ Nt (1 − e−γ t )Nmax−N (7)

of being in the photon number sector N . These are depicted in
Fig. 2.

The anharmonicity manifolds are spanned by the many-
body Fock states |n1, n2, . . . , nL〉 = |n〉 with a fixed value
for the anharmonicity a = −∑

� n�(n� − 1)/2 and the total
photon number N = ∑

� n�. For example, the lowest anhar-
monicity manifold is spanned by the states |N�〉 where all
bosons reside at a single site � = 1, 2, . . . , L. The second-
lowest anharmonicity manifold is spanned by the states
|(N − 1)�, 1k〉. Notice that in our shorthand notation of the
many-body Fock states, we write explicitly only the boson
numbers of the occupied sites. A photon-loss event by a quan-
tum jump can lead to transitions between the anharmonicity
manifolds. Note that the states in the lowest anharmonicity
manifold are always mapped to a state in the lowest an-
harmonicity manifold of the next photon number manifold,
|N�〉 → |(N − 1)�〉. Similarly, the states in the highest anhar-
monicity manifold consisting of the hard-core boson states
are mapped to the states in the highest anharmonicity mani-
fold in the next photon number sector. In between, however,
there are different decay channels depending on which site
decays, although the total decay rate always equals to γ N .
As an example, the states |(N − 1)�, 1k〉 decay to the man-
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ifold |(N − 2)�, 1k〉 at a rate γ (N − 1) and to the manifold
|(N − 1)�〉 at a rate γ , see Fig. 1(b).

The photon loss event, occurring at a single site, generally
has a localizing effect. For example, if the state of the sys-
tem is a superposition in the lowest anharmonicity manifold,
|ψ〉 = ∑L

�=1 cl |N�〉 with some coefficients cl , then a quantum
jump of Eq. (5) at the site �′ reduces it into a localized state
|ψ〉 = |N ′

�〉, wiping out all the information on the coefficients
c�.

In addition to transitions, dissipation also causes decoher-
ence. By considering the evolution of the off-diagonal term
of the density matrix ρ̂ between any many-body Fock states
|n1, n2, . . . , nL〉 = |n〉 and |m1, m2, . . . , mL〉 = |m〉,

d 〈n|ρ̂|m〉
dt

= 〈n|[Ĥ, ρ̂]|m〉
ih̄

− γ

2

L∑
�=1

(n� + m�) 〈n|ρ̂|m〉 ,

(8)
we see that the decoherence rate Kγ

n,m between the states
is simply proportional to the total number of photons they
contain,

Kγ
n,m = γ

2

L∑
�=1

(n� + m�). (9)

In our case, the system is limited to a single total photon
number sector, and so the decoherence rate due to dissipation
becomes

Kγ
n,m = γ N. (10)

To summarize, dissipation in a transmon array is rather a sim-
ple process, leading essentially to a cascade N → N − 1 →
· · · → 0 between the photon number sectors and to a loss of
coherence as described by Eq. (9).

IV. DEPHASING

The dephasing process originates from temporal fluctua-
tions of the transmon frequencies, and it can be modeled using
the master equation

d ρ̂

dt
= − i

h̄
[ĤBH, ρ̂] +

L∑
�=1

κ

2

(
2n̂�ρ̂n̂� − n̂2

�ρ̂ − ρ̂n̂2
�

)
(11)

with the jump operators
√

κ n̂� for each transmon. Here we
have ignored the dissipation altogether for simplicity. By writ-
ing down the non-Hermitian Hamiltonian corresponding to
the no-jump evolution of the dephasing process,

Ĥ (κ )
NJ = ĤBH − i

L∑
�=1

h̄κ

2
n̂2

�, (12)

we see that the anti-Hermitian part −i
∑L

�=1 h̄κ n̂2
�/2 does not

commute with the Hermitian part ĤBH. This implies that the
dephasing process, and even its no-jump evolution generated
by Ĥ (κ )

NJ , induces transitions between the eigenstates of the
attractive Bose-Hubbard Hamiltonian. Thus, in general, it is
a more complicated process than the dissipation considered
above.

FIG. 3. (a) The decay of the off-diagonal elements
|〈0300| ρ̂ |0030〉| and |〈4000| ρ̂ |2200〉| of the density matrix
as a function of time t . The dashed lines show the comparison to the
exponential decay exp(−tKκ

n,m)/2, with the decoherence rates given
by Eq. (14). (b) The populations Pa = Tr(ρ̂�̂a) of the anharmonicity
manifolds as a function of time. The solution of the rate equation (18)
(dashed line) with the transition rates of Eq. (19) agrees very well
with the numerical results. The parameters of the simulation are
J/2π = 20 MHz, U/2π = 230 MHz, κ/2π ≈ 40 kHz (T �

2 = 8 µs),
L = 4, and N = 3. Here, we have ignored the dissipation altogether
to highlight the dephasing phenomena.

A. Decoherence of the many-body Fock states

Let us first focus on the pure decoherence rates, introduced
through the off-diagonal elements of the density matrix be-
tween many-body Fock states. Multiplication of Eq. (11) by a
pair of arbitrary Fock states 〈n| and |m〉, with n �= m, results
in

d 〈n|ρ̂|m〉
dt

=〈n|[Ĥ, ρ̂]|m〉
ih̄

− κ

2

L∑
�=1

(n� − m�)2 〈n|ρ̂|m〉 .

(13)

From the last term, we see that the decoherence rate is given
by

Kκ
n,m = κ

2
|n − m|2, (14)

where |n|2 is the squared Euclidean norm of the vector n =
(n1, n2, n3, . . . , nL ).

Let us elucidate the effect of the decoherence to the dy-
namics of the attractive Bose-Hubbard model through four
examples. First, in the lowest anharmonicity manifold, the
state of the system is always some superposition of the
N-boson stacks, |ψ〉 = ∑

� c� |N�〉. Now, the decoherence
process between the Fock states |N�〉 and |N�′ 〉 occurs at
the rate of Kκ

n,m = κN2, see Fig. 3(a). This means that the
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steady state of the system is a mixed state of |N�〉, and it is
reached at the rate of κN2. We study this in more detail in
Sec. V.

Next, in the second-lowest anharmonicity manifold, the
dynamics occurs between the states |(N − 1)�, 1k〉. There are
now a few possibilities for the speed of the decoherence
process between the states |(N − 1)�, 1k〉 and |(N − 1)�′ , 1k′ 〉,
depending on the relative positions between the N − 1 boson
stacks and the single bosons. The slowest rate is obtained
when the stacks are located at the same site (�′ = �). In
this case, the decoherence occurs at the rate of Kκ

n,m = κ . At
the other extreme, if neither the stacks nor the bosons line
up (�′, k′ �= �, k), the decoherence rate is given by Kκ

n,m =
κ[(N − 1)2 + 1]. Regardless of the different decoherence
rates, the final steady state is a mixed state of |(N − 1)�, 1k〉,
reached on the time scales of κ−1.

As a third example, in the hard-core boson manifold, the
lowest decoherence rate is attained between pairs of states that
differ only by a single excitation pair, such as |. . . 0101 . . .〉
and |. . . 1001 . . .〉. For these, the decoherence rate is just
Kκ

n,m = κ . Correspondingly, the maximum decoherence rate
is between the state pairs where the local excitation structure
differs the most. For instance, when N � L/2, the maximum
decoherence rate Kκ

n,m = κN/2 is achieved, for example, be-
tween the states |1010 . . .〉 and |0101 . . .〉.

Finally, in the same way, that the dephasing leads to deco-
herence between states inside an anharmonicity manifold, it
degrades coherence between states in different manifolds, see
Fig. 3(a).

To summarize, on the time scales of the order of κ−1 or
shorter, the density matrix is reduced to a diagonal matrix
representing a mixed state within the initial anharmonicity
manifold.

B. Transitions between the anharmonicity manifolds

The states in an anharmonicity manifold are actually
weakly coupled to the states in the neighboring manifold
via the hopping interaction. As derived in Ref. [35] through
the first-order nondegenerate perturbation theory in J/U ,
the N-boson stack state belonging to the anharmonicity
manifold a = −N (N − 1)/2 and the state of N − 1 stacked
bosons plus a lone boson belonging to the anharmonicity
manifold b = −(N − 1)(N − 2) are more accurately given
by

|N�〉a = |N�〉 − J
√

N

U (N − 1)

∑
σ=±1

|(N − 1)�, 1�+σ 〉 , (15)

|(N − 1)�, 1�+σ 〉b = |(N − 1)�, 1�+σ 〉 + J
√

N

U (N − 1)
|N�〉 .

(16)

Under unitary dynamics, the effect of this nondegenerate cou-
pling is typically weak and leads to fast oscillations between
the two manifolds [36]. However, when combined with the
dephasing process, it results in actual transitions between the
manifolds. Intuitively, we can understand this by considering
the state |N�〉a of Eq. (15) under the action of the quantum

jump operator
√

κ n̂�,

∣∣ψ (κ )
QJ

〉 =
√

κ n̂� |N�〉a√
a〈N�|κ n̂2

�|N�〉a

= |N�〉a + J
√

N

U (N − 1)

∑
σ=±1

|(N − 1)�, 1�+σ 〉b . (17)

This holds to the first order in J/U . The additional contribu-
tion by the states |(N − 1)�, 1�+σ 〉b exemplifies the transitions
between the anharmonicity manifolds. A similar phenomenon
occurs for quantum jumps by operators

√
κ n̂�+σ .

For a more rigorous derivation, we first note that the de-
phasing reduces the density matrix to a diagonal form ρ̂ =∑

a Pa�̂a on a fast time scale κ−1. Here, �̂a is a projector
to the anharmonicity manifold a and the coefficient Pa is
the corresponding population. What we now consider are the
slow transition rates between the anharmonicity manifolds. In
other words, we consider the longer-time (slower) dynamics
based on the concept of local equilibrium. We assume that the
density matrix is always of the form determined by the equi-
librium of the leading-order dynamics, but the relative weights
between the different manifolds are different. Inserting this
diagonal density matrix into the master equation (11) yields
the rate equation:

Ṗa =
∑

b

(Pb − Pa)ab. (18)

The effective transition rates ab between the anharmonicity
manifolds a and b are given by (see details on the derivation
in the Appendix)

ab = κ

Tr(�̂a)[h̄U (a − b)]2

L∑
�=1

Tr
(
�̂a[n̂�, ĤJ ]�̂b[ĤJ , n̂�]

)
= κ

Tr(�̂a)[h̄U (a − b)]2

∑
na,mb

|na − mb|2| 〈na|ĤJ |mb〉 |2

(19)

to first order in J/U , akin to the quantum jump consideration
above. This implies that the dynamics between the anhar-
monicity manifolds occurs at rates of the order of κ (J/U )2,
assuming all the internal dynamics is fast compared to this.

As an example, let us again consider the lowest anhar-
monicity manifold a1 = −N (N − 1)/2 spanned by the states
|N�〉. Applying ĤJ to any state in a1 always gives us a
state in the second-lowest manifold b1 = −(N − 1)(N − 2)/2
spanned by the states |(N − 1)�, 1m〉. Thus, the only nonzero
rate away from a1 is

a1b1 = 4κ

(
J

U

)2 L − 1

L

N

(N − 1)2
. (20)

Other transition rates can be derived similarly, see the
Appendix. Figure 3(b) compares the solution of the rate equa-
tion (18) with the rates of Eq. (19) to the full numerical
solution of the master equation and demonstrates a very good
agreement between the two approaches. Due to the κ (J/U )2

dependence, the cooling and heating rates of Eq. (19) are slow
with respect to the many-body decoherence and dissipation
when calculated using realistic transmon array parameters.
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This is evident also by comparing the time scales of Fig. 3(b)
to those of Figs. 3(a) or 2.

C. Transitions out of the hard-core boson manifold

Above, we focused on the lowest anharmonicity manifolds
corresponding to the higher excited states of transmons. The
formalism derived in Eqs. (18) and (19) also applies to the
hard-core boson manifold, that is, the highest anharmonicity
manifold with a = 0, see Fig. 1(b). The hopping term of
the Bose-Hubbard Hamiltonian couples the hard-core boson
states to the states residing in the second-highest anharmonic-
ity manifold b = −1. For example, the state |1101 . . .〉 is
coupled to the state |0201 . . .〉. The dephasing-induced tran-
sition rate away from the hard-core boson manifold is

H.c. = 8κ

(
J

U

)2 N (N − 1)

L
, (21)

which interestingly increases quadratically as a function of the
total excitation number N in contrast to the transition rates in
the lower end of the energy spectrum for the boson stacks. The
transition rate of Eq. (21) is the nonunitary counterpart of the
always-on ZZ interaction of hard-core bosons [23,36]. Both
of them are corrections resulting from the exclusion of the
higher excited states beyond the qubit subspace. Notice that
the states with no neighboring excitations, such as |10101 . . .〉,
experience no transitions, and the corresponding population
does not leak out of the manifold.

V. EFFECTS OF DISSIPATION, DEPHASING, AND
DISORDER IN BOSON STACK DYNAMICS

In the absence of dissipation and dephasing, a character-
istic property of the dynamics of a transmon array is the
confinement of the state of the system into the anharmonicity
manifold of the initial state [36]. As a consequence, an excited
state of an individual transmon behaves like a quasiparticle
that moves around the array without splitting into less-excited
states. Its effective hopping rate is given by J̃ = J[N/(N −
1)!](J/U )N−1, where N is the number of bosons comprising
the quasiparticle, that is, the local occupation number. When
multiple transmons in the array are highly excited, the dynam-
ics can be further limited by effective interactions between
the quasiparticles. Noting that dissipation and dephasing both
cause transfer between the manifolds, it is worth looking into
how they affect the quasiparticle dynamics. We will do this
by studying two example cases in both of which the unitary
dynamics is well described by the effective Hamiltonians of
Ref. [36].

In our first example, we have a chain of L = 4 trans-
mons with one of them prepared in the third exited level,
so that N = 3. With the initial state |32〉, the unitary time-
evolution results in oscillations along the array at the rate
J̃ = 3J (J/U )2/2. Due to the effective edge repulsion expe-
rienced by the quasiparticle, these oscillations are limited to
only among the states |32〉 and |33〉. Now, with dephasing
included, based on Eq. (14) and the large distance between
the states, we expect the oscillations to decay quite rapidly,
at the rate Kκ

n,m = κN2 = 9κ (on the time scales of ≈0.4 µs).
Figure 4(a) shows that this is indeed the case. We can also

FIG. 4. The local occupations 〈n̂�〉 of the sites � as a function of
time. The nonunitary (solid) time evolution as described by Eq. (2),
including both dissipation and dephasing, is compared against the
unitary case (dashed) under the Bose-Hubbard Hamiltonian (1). The
initial state is (a) a boson stack |32〉 with the total number of sites
L = 4 and (b) an array of boson stacks |21, 33, 35〉 with L = 5. In
both cases, the nonunitary dynamics is solved using the quantum tra-
jectory approach, averaging over 16 000 trajectories. The parameters
of the simulation are J/2π = 20 MHz, U/2π = 230 MHz, γ /2π ≈
8 kHz (T1 = 20.0 µs), and κ/2π ≈ 40 kHz (T �

2 = 8 µs).

see that the small oscillations between the center sites and
the edges allow dephasing to cause mixing within the entire
initial anharmonicity manifold. Dissipation, which occurs on
the time scales of (3γ )−1 ≈ 7 µs, has only a rather weak effect
on the time scales of the quasiparticle oscillations.

The second example we consider is a chain of L = 5
transmons with three quasiparticles, shown in Fig. 4(b). With
the initial state |21, 33, 35〉, edge localization and effective
repulsive interactions between the quasiparticles lead to the
unitary dynamics to be mostly limited to the subspace S =
{|21, 33, 35〉 , |31, 23, 35〉 , |31, 33, 25〉}. Here, the quasiparticle
of two bosons moves along the chain via effective exchange
interactions at the rate � = 3J (J/U )/4. Within the subspace
S , the distances between the Fock vectors are much smaller
than in the first example. Consequently, the decoherence rate
due to dephasing inside S is considerably slower, Kκ

n,m = κ .
The oscillations should therefore remain significantly longer.
Note, however, that the distances between the subspace S and
the rest of the initial anharmonicity manifold can be larger,
and so mixing within the manifold might be faster.

Based on these examples, we can conclude that the ef-
fective many-body dynamics of the higher excited states of
transmons can survive the presence of dissipation and de-
phasing at short time scales. However, even with a relatively
large hopping frequency of J/2π = 20 MHz, any dynamical
effects occurring at third order or above in J/U are too slow
for the current analog simulators. Since the dissipation times
are usually significantly larger than the dephasing times—and
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one can, in principle, also remove the effects of dissipation
by postselecting based on the total boson number—we con-
clude that the dephasing time sets the upper limit to the time
scales available for operations involving the higher excited
levels of transmons. Perhaps the easiest engineering approach
to try and circumvent this problem is to increase the value
of the hopping rate J by enhancing the capacitive coupling
between the transmons, either by using larger capacitors or by
geometric means [55]. As the characteristic frequencies of the
dynamics of the higher excited states scale as (J/U )N , already
a 10% to 25% increase in the value of J can have a drastic
effect.

A. Parametric disorder in dissipation and dephasing

Dissipation and dephasing in transmons arise from var-
ious sources, such as microscopic defects and fluctuators,
quasiparticles, delicate device properties, and electromagnetic
environments [56]. The degree to which these sources affect
the dissipation and dephasing properties is mostly set by the
device fabrication process, and thus cannot be much altered
after the transmon array has been assembled. Since it is impos-
sible to fabricate perfectly identical transmons, the transmon
arrays exhibit rather strong parametric site-to-site disorder in
the values of γ� and κ�, the standard deviations being in the
range of 20 % to 50 %, see, e.g., Refs. [9,11,15,26,27,52].

Let us briefly analyze the effects of dissipation disorder
and dephasing disorder on the system by comparing them to
the ideal uniform case. Now, when the dissipation rates γ�

are sitedependent, the anti-Hermitian part −i
∑

� h̄γ�â†
� â� in

Eq. (4) no longer commutes with the Hermitian part ĤBH, and
so the no-jump evolution is not just the Hermitian dynamics
modified by the damping factor as was the case in Eq. (6).
Furthermore, the total rate of photon loss due to quantum
jumps becomes time-dependent, 〈ψ (t )|∑� γ�â†

� â�|ψ (t )〉 =∑
� γ� 〈n̂�〉 (t ). However, when the effective dynamics in the

array is faster than γ −1, with γ being the site-averaged mean
dissipation rate, then, by time-averaging, we see that the
photon loss rate is still given by γ N . The decoherence rate
between the many-body Fock states |n〉 and |m〉 due to the
disordered dissipation becomes

Kγ
n,m = 1

2

L∑
�=1

γ�(n� + m�) = 1

2
γ · (n + m), (22)

where we have defined the vector γ = (γ1, γ2, . . . , γL ).
Similarly, the decoherence rate due to disordered dephas-

ing becomes

Kκ
n,m = 1

2

L∑
�=1

κ�(n� − m�)2 = 1

2
(n − m) · κ · (n − m), (23)

where we have defined the diagonal matrix κ =
diag(κ1, κ2, . . . , κL ). The expression (19) for the transition
rates between the anharmonicity manifolds also generalizes to
the case of disordered dephasing, see the Appendix. But since
it considers transitions between uniformly distributed initial
and final states in the manifolds, the averaged transition rate
of Eq. (19) should also describe the disordered situation very
well, with κ now being the site-averaged mean dephasing
rate.

FIG. 5. The local occupations 〈n̂�〉 of the sites � as a function
of time under nonunitary time evolution with (solid) and without
(dashed) disorder. In both cases, the mean values for the dissipation
and dephasing rates are equal. Similar to Fig. 4, the initial state is
(a) |32〉 (with L = 4) and (b) |21, 33, 35〉 (with L = 5). The simulation
parameters are otherwise the same as in Fig. 4, except that the
dissipation and dephasing times used in the disordered simulation
are those of the qubits denoted (a) Q10–Q13 and (b) Q10–Q14 in
Ref. [26]. This results in (a) γ /2π = 8.9 kHz, σγ /2π = 2.6 kHz,
κ/2π = 111.5 kHz, σκ/2π = 48.9 kHz, and (b) γ /2π = 8.5 kHz,
σγ /2π = 2.4 kHz, κ/2π = 111.2 kHz, σκ/2π = 43.8 kHz.

In Fig. 5, we have numerically compared the nonunitary
time evolution with and without the parametric disorder in
dissipation and dephasing. To be experimentally as relevant as
possible, the disorder pattern is taken from Ref. [26]. We see
that, indeed, disorder produces only minor deviations in the
case; many sites are traversed within a coherence/dissipation
time. If one studies frozen dynamics due to, for example,
edge-localization, then disorder can naturally have notable
effects.

Finally we point out that the dephasing model of the
master equation (2) is a simplification for the higher excited
states in transmons. Equation (14) yields that the dephasing
rate between two consecutive higher exited states |n〉 and
|n + 1〉 in a single transmon would be independent on n:
Kκ

n,n+1 = κ/2. Due to increased sensitivity to charge fluctu-
ations, the higher excited states of a transmon have worse
than that coherence properties [21,37]. Formally speaking,
this phenomena can be easily accounted for by replacing the
operators

√
κ�n̂� with some other diagonal operators d̂� in

the dephasing part of the master equation (2). For example,
a possibility to model the enhanced decoherence can be d̂� =√

κ� exp[a�(n̂� − 1)] with suitably chosen coefficients κ� and
a� and by defining that d̂� |0〉 = 0. The results presented in
Sec. IV can be straightforwardly generalized for the operator
d̂�. The detailed study of this topic has left a subject of future
research.
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VI. CONCLUSIONS

In this work, we studied nonunitary many-body dynam-
ics in transmon arrays, taking into account dissipation and
dephasing. Our focus was specifically on the dynamics of
the higher excited states lying beyond the hard-core boson
approximation, that is, we treated transmons as proper bosonic
quantum multilevel systems in the experimentally relevant
parameter regime of state-of-the-art devices. Instead of a local
view to a single transmon, we investigated the nonunitary ef-
fects of dissipation and dephasing on global many-body states.
In particular, we considered the many-body Fock states |n〉 =
|n1, n2, . . . , nL〉 which can be grouped into different anhar-
monicity manifolds based on the values of the anharmonicity
A = −∑

� n�(n� − 1)/2 and the total photon number N =∑
� n�.
The main findings demonstrated three clearly distin-

guishable processes: many-body decoherence, many-body
dissipation, and transitions between the anharmonicity man-
ifolds. The total decoherence rate between the many-body
Fock states |n〉 and |m〉 is Kn,m = γ N + κ|n − m|2/2. In the
worst case, the decoherence rate scales as N2. Furthermore,
the dephasing rates κ are typically an order of magnitude
larger than the dissipation rates γ . Our numerical simulations
with the dissipation rate γ /2π ≈ 8 kHz (T1 = 20 µs) and the
dephasing rate κ/2π ≈ 40 kHz (T �

2 = 8 µs) show that the dy-
namics involving the higher excited states occurring on the
time scales of (J/U )−2J−1 or less should be readily realiz-
able with hopping rates J/2π � 20 MHz. For higher-order
many-body dynamics on the time scales of (J/U )−3J−1, the
hopping rate J needs to be modestly increased to the values
of �2π × 25 MHz. The other two processes—transitions be-
tween the photon number manifolds due to dissipation and
heating/cooling transitions between the anharmonicity man-
ifolds due to dephasing—are both slower compared to the
decoherence. To summarize, the dephasing times of the higher
excited states put a practical limit on observing coherent
many-body higher-excited-state dynamics in transmon arrays.

As an outlook for the future, an interesting application
to extend the present work is to study potential realizations
of dynamical quantum phase transitions under non-unitary
conditions. Moreover, since the dissipation and dephasing
processes are inherently local, our results are readily ap-
plicable to general array geometries. Here our focus was
mainly in the detrimental effects of dissipation and dephasing
to many-body dynamics. However, by proper engineering,
one can also take advantage of them, through, e.g., real-
ization of non-Hermitian exceptional points [22,57,58] and
robust topological states [59,60]. Versatile and controllable
transmon arrays with many engineering options provide a
promising platform for further studies of quantum aspects in
non-Hermitian phenomena [61,62].
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APPENDIX: DEPHASING-INDUCED TRANSITION RATES
BETWEEN ANHARMONICITY MANIFOLDS

We derive here in detail the expression for the transition
rates between the anharmonicity manifolds by the combina-
tion of dephasing and unitary Bose-Hubbard dynamics. We
work now in the Heisenberg picture with respect to the Hamil-
tonian ĤBH of Eq. (1), and denote operators in this picture as
ň� to distinguish them from the Schrödinger picture operators
n̂�. The starting point is that the dephasing has rendered the
density matrix fully diagonal, ρ̌ = ∑

a Pa�̂a. Here, the op-
erators �̂a are projectors to the states in the anharmonicity
manifold a, and Pa is a coefficient describing the population
in that manifold. Then, the master equation (11) can be written
in the form of a rate equation

Ṗa =
∑

b

(Pb − Pa)ab, (A1)

where the effective transition rate ab from the anharmonicity
manifold a to the manifold b is given by

ab = 1

Tr�̂a

L∑
�=1

κ�Tr[(�̂aň��̂b)(�̂bň��̂a)], (A2)

expressed in terms of the projectors �̂a and �̂b and allowing
for disorder in the dephasing rates κ� for generality.

We can expand the Heisenberg-picture number operators
in each anharmonicity manifold a by considering the hopping
Hamiltonian ĤJ as a small perturbation,

ň� = ň(0)
� + ň(1)

� + · · · (A3)

with the zeroth-order and first-order terms in J/U given by

ň(0)
� =

∑
a j,bk

ei(Ea j−Ebk )t/h̄
〈
E (0)

a j

∣∣ n̂�

∣∣E (0)
bk

〉 ∣∣E (0)
a j

〉 〈
E (0)

bk

∣∣ , (A4)

ň(1)
� =

∑
a j,bk

ei(Ea j−Ebk )t/h̄
(〈

E (1)
a j

∣∣ n̂�

∣∣E (0)
bk

〉 ∣∣E (0)
a j

〉 〈
E (0)

bk

∣∣
+ 〈

E (0)
a j

∣∣ n̂�

∣∣E (1)
bk

〉 ∣∣E (0)
a j

〉 〈
E (0)

bk

∣∣
+ 〈

E (0)
a j

∣∣ n̂�

∣∣E (0)
bk

〉 ∣∣E (1)
a j

〉 〈
E (0)

bk

∣∣
+ 〈

E (0)
a j

∣∣ n̂�

∣∣E (0)
bk

〉 ∣∣E (0)
a j

〉 〈
E (1)

bk

∣∣). (A5)

Here, Ea j and |Ea j〉 are the eigenenergies and the correspond-
ing eigenstates of the Bose-Hubbard Hamiltonian (1), and
we have further expanded the states in powers of J/U as
|Ea j〉 = |E (0)

a j 〉 + |E (1)
a j 〉 + · · · , see also Ref. [36]. Now, the

state |E (0)
a j 〉 belongs to the anharmonicity manifold a. Since

different manifolds are orthogonal to each other, and oper-
ating with n̂� keeps us within a manifold, we always have
〈E (0)

a j | n̂� |E (0)
bk 〉 = 0 for b �= a. Thus, multiplying the above

equations with projectors from both sides, we obtain

�̂aň(0)
� �̂b = 0, (A6)

�̂aň(1)
� �̂b =

∑
j,k

ei(Ea j−Ebk )t/h̄
∣∣E (0)

a j

〉 〈
E (0)

bk

∣∣
× (〈

E (1)
a j

∣∣ n̂�

∣∣E (0)
bk

〉 + 〈
E (0)

a j

∣∣ n̂�

∣∣E (1)
bk

〉)
. (A7)
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This means that the transition rates ab of Eq. (A2) are second
order in J/U , for

(�̂aň��̂b)(�̂bň��̂a) ≈ (
�̂aň(1)

� �̂b
)(

�̂bň(1)
� �̂a

)
=

∑
jkm

ei(Ea j−Eam )t/h̄
∣∣E (0)

a j

〉 〈
E (0)

am

∣∣
× (〈

E (1)
a j

∣∣ n̂�

∣∣E (0)
bk

〉 + 〈
E (0)

a j

∣∣ n̂�

∣∣E (1)
bk

〉)
× (〈

E (1)
bk

∣∣ n̂�

∣∣E (0)
am

〉 + 〈
E (0)

bk

∣∣ n̂�

∣∣E (1)
am

〉)
,

(A8)

where we used the orthonormality of the zeroth-order eigen-
states to eliminate one of the sums. Taking the trace removes
the time-dependent exponential factor, yielding

Tr[(�̂aň��̂b)(�̂bň��̂a)]

≈
∑

jk

(〈
E (1)

a j

∣∣ n̂�

∣∣E (0)
bk

〉 + 〈
E (0)

a j

∣∣ n̂�

∣∣E (1)
bk

〉)
× (〈

E (1)
bk

∣∣ n̂�

∣∣E (0)
a j

〉 + 〈
E (0)

bk

∣∣ n̂�

∣∣E (1)
a j

〉)
. (A9)

Using again the orthogonality of the different anharmonicity
manifolds, we do not need to know the components of |E (1)

a j 〉
lying in a, but only their projections

�̂b

∣∣E (1)
a j

〉 = �̂bĤJ

h̄U (a − b)

∣∣E (0)
a j

〉
(A10)

to the manifold b. Substituting these into the equa-
tion above, and noting that

∑
k |E (0)

bk 〉 〈E (0)
bk | = �̂b and∑

j 〈E (0)
a j |Ô|E (0)

a j 〉 = Tr[�̂aÔ�̂a], we can write the leading-

order approximation for the effective transition rates as

ab =
L∑

�=1

κ�

Tr(�̂a[ĤJ , n̂�]�̂b[ĤJ , n̂�]�̂a)

(Tr�̂a)[h̄U (a − b)]2

= 1

Tr�̂a

∑
na,mb

[
κ · (na − mb)

h̄U (a − b)

]2

|〈na|ĤJ |mb〉|2. (A11)

In the main text, we give the transition rate from the
lowest to the second-lowest anharmonicity manifold in the
case of uniform dephasing, see Eq. (20). Equation (A11) is
simple enough to allow us to also compute explicit transi-
tion rates between other anharmonicity manifold pairs. For
example, from the second-lowest anharmonicity manifold
spanned by the states |(N − 1)�, 1m〉, we can get to three dif-
ferent manifolds using the hopping Hamiltonian ĤJ: (i) to the
lowest anharmonicity manifold a1 = −N (N − 1)/2 spanned
by the states |N�〉; (ii) to the manifold b2 = −(N − 2)(N −
3)/2 + 1, spanned by the states |(N − 2)�, 2m〉; and (iii) to
the manifold b3 = −(N − 2)(N − 3)/2 spanned by the states
|(N − 2)�, 1m, 1n〉. The corresponding rates are

b1a1 = 4κ

(
J

U

)2 N

L(N − 1)2
, (A12)

b1b2 = 8κ

(
J

U

)2 N − 1

L(N − 3)2
, (A13)

b1b3 = 4κ

(
J

U

)2 L − 2

L

N − 1

(N − 2)2
. (A14)

The expression (A11) is also relatively simple to be used
numerically to compute transition rates between arbitrary an-
harmonicity manifold pairs.
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