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Resonant helicity mixing of electromagnetic waves propagating through matter
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Dual scatterers preserve the helicity of an incident field, whereas antidual scatterers flip it completely. In this
setting of linear electromagnetic scattering theory, we provide a completely general proof on the nonexistence of
passive antidual scatterers. However, we show that scatterers fulfilling the refractive index matching condition
flip the helicity of the fields very efficiently without being in contradiction with the law of energy conservation.
Moreover, we find that this condition is paired with the impedance matching condition in several contexts of
electromagnetism and, in particular, within Fresnel’s and Mie’s scattering problems. Finally, we show that index-
matched media induce a resonant helicity mixing on the propagating electromagnetic waves. We reach this
conclusion by identifying that the refractive index matching condition leads to the phenomenon of avoided
crossing.
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I. INTRODUCTION

The coupling of two harmonic oscillators is one of the most
studied systems in physics textbooks with long-stretching
implications in many areas of research [1]. Under suitable
modifications, coupled harmonic oscillators allow us to under-
stand such distant phenomena as the strong-coupling of light
matter interactions [2], hybridization of plasmonic and polari-
tonic systems [3,4], atomic dark states [5,6], or even neutrino
oscillations [7–9]. Here we explore a hitherto hidden form of
this kind of coupling which appears within the polarization of
electromagnetic waves propagating through matter.

A natural way of describing the polarization of electro-
magnetic fields is to use helicity as a degree of freedom. The
electromagnetic helicity, �, can be understood as the circular
polarization basis in the plane wave expansion of an electro-
magnetic field. In an operator formalism, helicity is defined
as the projection of the spin angular momentum, S, onto the
direction of the linear momentum, P, i.e., � = S · P/|P|, and
for monochromatic electromagnetic fields in homogeneous
media it takes the particularly simple form of � = k−1∇×
[10–14], where k is the modulus of the wave vector. The
electromagnetic helicity is conserved in the interaction with
dual samples, i.e., systems that have the same response to
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electric and magnetic fields. Thus, a dual sample, when il-
luminated with a beam with well-defined helicity, produces a
scattered electromagnetic field with the same helicity of the
incident field [see Fig. 1(a)]. On the other hand, an antidual
sample produces a scattered electromagnetic field only with
the opposite helicity [see Fig. 1(b)]. These concepts have been
essential to understanding the anomalous scattering of light by
spherical particles [15,16] and nanodisks [17]. Such scattering
phenomena were first described by Kerker and coworkers in
what they are now known as the Kerker conditions [18]. It
has been shown that the absence of backscattered field, in the
first Kerker condition, is directly related to dual spherical scat-
terers. On the other hand, the second Kerker condition, which
leads to the zero forward scattering condition, has been shown
to be related to antidual particles [19]. While the properties
of dual particles are well understood and have been exploited
for a wide variety of applications both experimentally and
theoretically [20–28], antidual particles remain elusive. Even
if similar scientific efforts have been dedicated, difficulties
have arisen when trying to identify experimentally realizable
antidual scatterers [29–40].

In this work, we demonstrate in full generality that antidual
scatterers which are not externally pumped with energy are
precluded in linear electromagnetic scattering theory. How-
ever, we show that modes of electromagnetic helicity can be
maximally mixed under a resonant condition that respects
the law of energy conservation. Such a resonant condition
appears in a symmetric manner with respect to the duality
condition, i.e., just as a dual medium occurs when ∇Z = 0,
where Z is the local impedance, the resonant helicity mixing
condition is found for media in which ∇n = 0, where n is
the local refractive index. This closes a long-standing contro-
versy about the implementation of helicity flipping scatterers,
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FIG. 1. (a) Sketch of a dual sample, i.e., one which preserves the
helicity of an incident field. (b) Sketch of an antidual sample, i.e.,
one which completely flips the helicity of an incident field.

while at the same time, we indicate where the experimental
efforts should be directed instead. Finally, we characterize
the resonant helicity mixing condition with the aid of time-
independent perturbation theory and find that it can be related
to the phenomenon of avoided crossing. The connection with
quantum two-level systems aligns the resonant helicity mix-
ing effect with other relevant physical phenomena in particle
physics.

II. ANTIDUALITY AND ENERGY CONSERVATION

Let us first show that passive antidual scatterers are not
compatible with energy conservation in linear electromag-
netic scattering theory. To that end, let us consider the most
general situation in which an arbitrary incident field with
a definite frequency ω, [Ei(r, ω), Hi(r, ω)], scatters off a
sample which, in turn, emits a field at the same frequency,
[Es(r, ω), Hs(r, ω)]. With such fields one naturally computes
the total fields outside the scatterer just by taking the sum of
the incident and the scattered electromagnetic fields, i.e., Et =
Ei + Es and Ht = Hi + Hs. With the total fields, the absorbed,
scattered, or extincted powers are computed in terms of the
time-averaged Poynting vector, St = 1

2 Re[Et×H∗
t ] [41–43].

From Poynting’s theorem, the absorbed power is calculated
through the integral of the flux of the total Poynting vector
across a surface S which encloses the sample, i.e., Wa =
− ∫

St · n dS, where n is a unitary vector perpendicular to
the surface. By expanding St in terms of the incident and
scattered fields, one obtains the most general form of the
energy conservation law in electromagnetic scattering theory:
Wa = Wext − Ws, where Wext and Ws are the extincted and scat-
tered powers, respectively. The extincted and scattered powers
also depend on the flux of a vector, in a similar fashion to
Wa, but using Sext = − 1

2 Re[Ei×H∗
s + Es×H∗

i ] for Wext, and
Ss = 1

2 Re[Es×H∗
s ] for Ws.

Now, we will show that Sext vanishes identically for a
generic antidual sample. Indeed, an antidual scatterer is most
generally defined as one which completely flips the helicity
of the incident electromagnetic field. This implies that given
an incident illumination with helicity eigenvalue λ = ±1, the
scattered field emitted by an antidual sample is of helicity −λ.
Using Maxwell’s equations and the helicity operator, such a
situation can most generally be represented by the following
constraints over the incident and scattered electromagnetic
fields:

√
εmEi = iλ

√
μmHi and

√
εmEs = −iλ

√
μmHs, where

εm and μm are the electric permittivity and magnetic

permeability of the (lossless) medium in which the sample is
embedded. Substituting these relations into the definition of
the extinction component of the Poynting vector, it is obtained
that Sext = 0 for any antidual scatterer. This implies that,
regardless of the size, form, material constituents, or even the
spatial shape of the incident illumination, an antidual scatterer
produces a null extincted power. Thus, the relation among the
absorbed, extincted, and scattered powers enforces that, for an
antidual sample, Wa = −Ws. As the scattered power is positive
by definition, one is only left with two possibilities: either the
scatterer is externally pumped with energy (Wa < 0) or both
the absorbed and scattered powers must vanish. As a result, we
conclude that passive antidual scatterers, i.e., those in which
there is no external energy pumping, are precluded.

Let us underline the importance of this first contribution by
briefly discussing previous works which are mainly devoted
to the study of antidual dipolar spheres under plane-wave
illumination [19,29–40]. In those works, it was essentially
found that the zero forward scattering condition [29–36,38],
which follows from dealing with a cylindrically symmetric
antidual particle [19,37,44], cannot be met according to the
optical theorem. Indeed, the optical theorem states that the
extincted power is proportional to the scattering amplitude in
the forward direction [33,41–43] and, thus, it is straightfor-
ward to deduce that Wext = 0 for this type of scatterers. It was
then concluded that Kerker’s original second condition could
not be achieved for passive dipolar spheres under plane-wave
illumination. Now, our contribution generalizes this key re-
sult of linear electromagnetic scattering theory to an arbitrary
antidual scatterer under general illumination conditions. Our
findings finally settle this long debate on the existence of
passive antidual scatterers as 40 years ago the second Kerker
condition was formalized by Kerker, Wang, and Giles.

Even though the construction of antidual scatterers with
natural materials is not possible, we have found that there
exists a condition which is not in contradiction with the energy
conservation law and leads to scatterers that flip the helicity
very efficiently.

III. HELICITY FLIPPING PASSIVE SCATTERERS

We will be dealing with linear electromagnetic scatterers.
Then, as a starting point, we use the source-less time-
independent Maxwell’s equations:

−iωD(r, ω) = ∇×H(r, ω), ∇ · D(r, ω) = 0,

iωB(r, ω) = ∇×E(r, ω), ∇ · B(r, ω) = 0. (1)

Let us consider, as a simplification of the problem, that the
scattering process takes place upon an isotropic sample, i.e.,
D(r, ω) = ε(r)E(r, ω) and B(r, ω) = μ(r)H(r, ω), where
ε(r) and μ(r) are the local electric permittivity and magnetic
permeability, respectively. There is another formulation of
Maxwell’s equations, based on the the Riemann-Silberstein
(RS) vector [45–47]. Such a vector is defined as a linear com-
bination of the electric and magnetic fields, i.e., Fλ(r, ω) =
2−1/2[

√
ε(r)E(r, ω) + iλ

√
μ(r)H(r, ω)], with λ = ±1. This

formulation is better for our purposes because it explicitly
captures the polarization degree of freedom of electromag-
netic waves. Actually, following the previous notation, the
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label λ denotes the eigenvalue of the helicity operator �.
When studying the properties of electromagnetic waves, it
can be shown that the RS vector represents each of the two
polarization degrees of freedom or helicities. This can be
checked by employing the usual representation of the helicity
operator, � → k−1∇×, and expressing the time-independent
Maxwell’s equations in a homogeneous medium as a function
the RS vector: k−1∇×Fλ = λFλ. Additionally, as we will see,
this formulation of Maxwell’s equations can be cast in terms
of a hamiltonian notation, which will prove to be very useful
in the next section.

Let us rewrite Maxwell’s equations given by Eq. (1) in
terms of the RS vector for inhomogeneous media [10,11]:

ωF+ = 1√
n
∇×

(
F+√

n

)
+ 1

n
∇ ln

√
Z×F−, (2)

ωF− = − 1√
n
∇×

(
F−√

n

)
− 1

n
∇ ln

√
Z×F+, (3)

∇ · F+ = −∇ ln
√

n · F+ + ∇ ln
√

Z · F−, (4)

∇ · F− = −∇ ln
√

n · F− + ∇ ln
√

Z · F+, (5)

where, for convenience, we have omitted the (r, ω) dependen-
cies and we have also defined the local impedance, Z (r) =√

μ(r)/ε(r), and refractive index, n(r) = √
ε(r)μ(r). Also,

“×” and “·” operations represent the cross product and the
scalar product, respectively. Please note that Eqs. (2)–(5)
represent the time-independent Maxwell’s equations in an
isotropic and inhomogeneous medium exactly as those given
by Eq. (1). In this form, Faraday’s and Ampère’s laws given by
Eq. (2) and Eq. (3) can be written as an eigenvalue problem:

H

(
F+
F−

)
= ω

(
F+
F−

)
,

with H =
(

1√
n
∇×( ·√

n

)
1
n∇ ln

√
Z×

− 1
n∇ ln

√
Z× − 1√

n
∇×( ·√

n

)
)

. (6)

This particular way of expressing Faraday’s and Ampère’s
laws has lead some authors to denote the operator H as the
“photon hamiltonian,” in analogy with the time-independent
Schrödinger’s equation [10,11,48–50]. In this line, note that
the frequency (or energy) of the system is completely de-
termined by Eq. (6). However, for our immediate purpose,
Eq. (6) indicates that the role of a generic inhomogeneous
medium is to interconnect the different helicity components
of the electromagnetic field through the spatial derivatives of
Z and n.

The study of the impedance matching condition, i.e.,
media in which ∇Z = 0, has been particularly fruitful for
the communities of linear scattering theory and metamateri-
als [15,17,18,22,24,51–53]. Under this condition the duality
symmetry is restored in macroscopic Maxwell’s equations,
leading to the conservation of helicity [13]. Indeed, in terms
of Faraday-Ampère’s laws given by Eq. (6), it can be checked
that the time evolution of the helicity components are de-
coupled under this condition. Such a matching condition was
first identified by Giles and Wild in the expressions of the
Fresnel coefficients for a plane wave impinging on a plane
surface [54]. In particular, they found that when imposing the

impedance matching condition, the reflection, r, and transmis-
sion, t , coefficients are the same for both s and p polarizations,
i.e., rs = rp and ts = tp, independently of the incidence angle.
Following this pioneering work, Kerker, Wang, and Giles one
year later reported the effects of the impedance matching
condition within Mie theory, i.e., in the problem of an elec-
tromagnetic wave scattering off a sphere [18]. Their findings
confirmed that such a condition was very particular as it
leads to specific analytical relations between the Mie coeffi-
cients, i.e., the amplitudes of the scattered electric/magnetic
multipolar modes (a�/b�) and also the amplitudes of the
internal electric/magnetic multipolar modes (d�/c�). In par-
ticular, it was found that the amplitude of the electric and
magnetic multipolar modes, for both internal and scattered
fields, is the same under this particular condition: a� = b� and
d� = c�, ∀ �. Moreover, they realized that the analytical re-
lation between the scattering coefficients implied an absence
of backscattered fields. Since then, the impedance matching
condition has most commonly been denoted as the first Kerker
condition in the literature and adopts the analytical form
ε = μ for a scatterer embedded in vacuum.

While the role of the impedance has been analyzed in a
wide variety of problems, the refractive index has been quite
generally overlooked. Taking into account the time evolution
of the fields described by Eq. (6), the index matching condi-
tion, i.e., media which fulfill ∇n = 0, would imply having an
environment in which the helicity components are mixed. At
first sight, however, one is not able to tell the difference with
a common dielectric medium (μ = 1 and, thus, Z = 1/n) in
which the helicity components are also coupled. The index
matching condition was first reported by Giles and Wild in the
expressions of the Fresnel coefficients [54]. Under this con-
dition they found that the reflection coefficients are changed
by a relative sign regardless, again, of the incidence angle,
i.e., rs = −rp and ts = tp. Interestingly, this implies that, when
scattering off an index-matched plane surface, the reflected
light always has the opposite helicity [55]. In Kerker’s sem-
inal paper, the refractive index matching condition was only
studied for small spherical particles (see Sec. 4 in Ref. [18]),
overlooking the implications that it generally had on the ana-
lytical expressions of the Mie coefficients. In what follows, we
show that the refractive index matching condition does lead
to spherical scatterers which very efficiently flip the helicity
of electromagnetic waves, while still respecting the energy
conservation law.

Whenever the refractive indices of the sphere (n1) and
the surrounding medium (n2) are equal, we have found that
the following analytical relation is fulfilled within the Mie
coefficients: a�c� = −b�d�, ∀ �. Furthermore, and most im-
portantly, it can also be checked that the limit lims→1 a� =
−b�, ∀ � holds, where s is the impedance contrast (see Sup-
plemental Material [56]). This implies that, under the index
matching condition (n1 = n2), if one takes the impedances
of the sphere (Z1) and the surrounding medium (Z2) to be
increasingly similar (s = Z1/Z2 → 1), then the helicity of
the scattered field is the opposite of the incident field. In
other words, an antidual scatterer emerges [19]. However,
note that such a limit can only be reached if there is no
scatterer, as expected from our previous result on antiduality
and energy conservation (see Sec. II). To shed light on this,
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FIG. 2. Helicity expectation value, 〈�〉, for a passive sphere
of size parameter X = 3 illuminated by a circularly polarized
plane wave. 〈�〉 is given as a function of the impedance contrast,
s = Z1/Z2, and refractive index contrast, m = n1/n2. In particular,
〈�〉 = 1 implies a dual scatterer and 〈�〉 = −1 an antidual one. The
impedance matching condition is fulfilled through the line s = 1 and
refractive index matching condition through the line m = 1.

we have computed the helicity expectation value, 〈�〉, for
the fields scattered by a sphere of radius a when illuminated
by a circularly polarized plane wave. In Fig. 2 we show the
result in terms of the size parameter X = ka of the sphere,
where k is the wave vector modulus of the incident wave.
The helicity expectation value is a bounded observable, 〈�〉 ∈
[−1, 1], and its extreme values imply a dual, 〈�〉 = 1, or an
antidual, 〈�〉 = −1, scatterer [57,58]. As it can be observed
from Fig. 2, an outstanding behavior is found when the index
matching condition is fulfilled, through the line m = 1. Values
of 〈�〉 ∼ −1 are obtained in the vicinities of such a line
but never reaching the exact antiduality condition. Similar
conclusions can be drawn from helicity maps for the large and
the small sphere regimes (see Supplemental Material [56]).

So, we have just shown that, although passive antidual
scatterers are precluded by the energy conservation law, one
can obtain a pretty similar behavior for index-matched spheres
(see Fig. 2). This is based on the analytical expressions of the
Mie coefficients under the refractive index matching condi-
tion, which had previously been overlooked in the literature.
In addition, our analysis indicates that the impedance and
refractive index matching conditions are paired in several con-
texts of electromagnetism. Indeed, we have explicitly shown
that these two matching conditions have parallel implications
over Fresnel and Mie coefficients (see Table I). The pairing of
the impedance and index matching conditions may be partic-
ularly useful in the field of Metamaterials, where one could in
principle control the effective impedance and refractive index
by properly engineering the inclusions and meta atoms. As
it is known, helicity preserving and flipping surfaces emit,
respectively, in the forward and backward directions provided
that they have certain cylindrical symmetries [44]. On the
other hand, note that Fresnel coefficients do not depend on the

TABLE I. Fresnel and Mie coefficients under the impedance
and refractive index matching conditions. rs/p and ts/p are Fresnel
reflection and transmission coefficients for s and p polarized waves.
a� and b� are the scattering Mie coefficients, whereas d� and c� are
the internal Mie coefficients. Note that the last approximate equality
only holds in the limit s → 1 and cannot be exactly fulfilled due to
energy conservation.

Fresnel Mie

∇Z = 0 rs/rp = ts/tp = 1 a�/b� = d�/c� = 1
∇n = 0 rs/rp = −ts/tp = −1 a�/b� = −d�/c� ∼ −1

angle of incidence for index-matched surfaces. Furthermore,
reflected and transmitted powers are also independent of the
helicity of the incident plane wave whenever ∇n = 0. These
properties could serve to construct angle- and polarization-
independent ultrathin beamsplitters.

IV. REFRACTIVE INDEX MATCHING AND THE AVOIDED
CROSSING PHENOMENON

The previous analysis points in the direction that the
∇n = 0 condition allows for helicity flipping media as close
as energy conservation allows. However, the exact mecha-
nism for this helicity transfer still remains hidden. In this
last part, we characterize the phenomenon that leads to the
construction of efficient helicity flipping scatterers. To that
aim, we evaluate the eigenfrequencies appearing in Eq. (6)
for one-dimensional inhomogeneous media, i.e., systems in
which Z = Z (x) and n = n(x). Due to the complexity of such
a general problem, we have constrained to slowly varying
environments for which time-independent perturbation the-
ory may be applied. In other words, we analytically derive
the form of Faraday’s and Ampère’s laws for smooth one-
dimensional inhomogeneous media and compute the energies
of the propagating electromagnetic waves in terms of Z and n.

Standard time-independent perturbation theory may only
be employed if the operator given by Eq. (6) can be ex-
pressed as a sum of two terms, i.e., H = H0 + V , where H0

is the “hamiltonian” of a homogeneous medium and V is
the perturbation “potential” due to small inhomogeneities.
Moreover, depending on whether we consider the pertur-
bation in the direction of constant impedance or constant
refractive index, V has a different analytical form. Most
generally, the perturbation potential in an arbitrary direc-
tion of the (Z, n) parameter space can be constructed as
a linear combination of the perturbation potentials in each
direction. It can be shown that in the perturbative regime,
the operator given by Eq. (6) breaks up into two terms:
H0 = n−1

0 (∇× 0
0 −∇×) and V = n−2

0 ( D A
−A −D) where n0 is a

real constant representing the refractive index of the unper-
turbed system. The operators which define the components
of the V operator are D = −[ikt e(x)ûy + δxûx]× and A =
(2Z0)−1n0∂xd (x)ûx×. We have defined the functions d (x) =
Z (x) − Z0 with d (x)/Z0 
 1, where Z0 is the impedance of
the unperturbed system. Moreover, we have set e(x) = n(x) −
n0 with e(x)/n0 
 1 and we have defined the operator δx =√

e(x)∂x[
√

e(x) · ]. Finally, without loss of generality, we
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consider that the solutions can be written as �(r) = �(x)eikt y

(see Supplemental Material [56]). Notice also that V depends
on the derivatives of e(x) and d (x). Thus, for the perturbation
theory to be valid, both ∂xe(x)/e(x) and ∂xd (x)/d (x) must be
small compared to kt . This precludes the use of sharp and
steplike functions.

Once we have obtained the complete perturbation poten-
tial, we need a set of exact solutions of the unperturbed
system. Such a set of solutions is obtained by solving the sys-
tem of coupled differential equations H0�(x) = ω�(x). As
expected, the solutions are circularly polarized plane waves
propagating in the XY plane. We find four different types of
normalized eigenstates: �λ±(x) = √

ωûλ exp(±ikxx), which
are classified by their helicity, λ, and direction of propagation,
±kx, with k2

x = ω2n2
0 − k2

t ; and ûλ is a normalized polarization
vector. All of these eigenvectors fulfill H0�λ±(x) = ω�λ±(x),
implying that they are degenerate (see Supplemental Material
[56]). This means that the exact solutions of Maxwell’s equa-
tions in a homogeneous medium share the same energy and,
thus, degenerate time-independent perturbation theory must
be employed. In our case, the approximate solutions to the
perturbed system, �(1), can be found as linear superpositions
of the unperturbed system eigenstates (�(1) = ∑

j Kj� j) by
diagonalizing the 4×4 matrix constructed from the matrix
elements 〈� j |V �i〉 , where �k , k ∈ {++,+−,−+,−−}. Fi-
nally, the eigenvalues of the matrix correspond to the first
order energy corrections.

As the problem we are interested in is one dimen-
sional, the matrix elements are computed as 〈� j |V �i〉 =∫ ∞
−∞ dx [� j (x)]∗ · [V �i(x)]. The computation of such inte-

grals results in the matrix equation MK = 	ω
ω

K, where K =
(K1, K2, K3, K4)T . In addition, 	ω represents the first order
correction to the energy such that the perturbed energies are
obtained as ω(1) = ω + 	ω. After a similarity transformation,
the matrix M can be written in a form M′ that better allows
us to identify the physical properties of the problem. Thus, we
are left with the following eigensystem: M′K′ = 	ω

ω
K′, where

M′ =

⎛
⎜⎜⎝
D + |F | C∗ 0 0

C −(D − |F |) 0 0
0 0 D − |F | C∗
0 0 C −(D + |F |)

⎞
⎟⎟⎠
(7)

and K′ = (K ′
1, K ′

4, K ′
2, K ′

3)T . Please note that the helicity com-
ponents are reordered within the vector K′. In the new basis,
K ′

1 and K ′
2 still represent positive helicity components, and

also, the negative helicity components are still associated with
K ′

3 and K ′
4 (see Supplemental Material [56]). Parameter C

in Eq. (7) captures the effect of the inhomogeneities in the
impedance, i.e., C vanishes whenever ∂xZ (x) = 0. On the
other hand, D and F capture the effect of the inhomogeneities
in the refractive index, i.e., D and F are zero whenever
∂xn(x) = 0.

Bearing this in mind, we can straightforwardly analyze the
effect of inhomogeneities from the elements of the matrix in
Eq. (7). First of all, it is clear that for an arbitrary pertur-
bation in the (Z, n) parameter space, the whole system can
be split into two independent subsystems. Moreover, due to

(a)

(b) (c)

FIG. 3. (a) Sketch of an inhomogeneous medium with Z (x) =
Z0 + d (x) and n(x) = n0 + e(x), with the functions d (x) = α/[1 +
exp (x/�)] and e(x) = −β exp (−x2/�2). (b) First order energy cor-
rections: Z0 = n0 = 1, ω = 1, kt = 0.4, � = 1, and α = 0.01 (in
colors). All units are normalized to an arbitrary frequency ω0 and
c = 1. The gray dashed lines are obtained with the same parameters
but fixing α = 0, which implies that C = 0 in this case. (c) Mix-
ing parameter of the two-level systems [59]. Whenever β = 0, the
refractive index matching condition is fulfilled.

their dimensionality, each of the subsystems can be analyzed
in close analogy to a quantum mechanical two-level system.
In particular, the case of impedance matching (C = 0) im-
plies, in this formalism, that the levels are decoupled and,
thus, there is no mixing between the helicities, whereas the
refractive index matching condition (F = D = 0) makes the
two-level systems be simultaneously degenerate and coupled.
On the other hand, the expression of the energy corrections is
	ω = ±ω(S ± |F |), where S =

√
D2 + |C|2, and for index-

matched inhomogeneous media the perturbed energies are
computed as ω(1) = ω ± ω|C|. This is the exact mathematical
form that energies take in a resonant two-level system. In addi-
tion, whenever n(x) is a constant function, perturbed states can
be written as linear superpositions of the unperturbed states
with amplitudes of the same modulus, which is also a key
characteristic of the systems undergoing quantum resonance
[59].

In Fig. 3 we have numerically computed a particular
case of a one-dimensional inhomogeneous system. We have
considered that the perturbation is given by the functions
d (x) = α/[1 + exp (x/�)] and e(x) = −β exp (−x2/�2) [see
Fig. 3(a)]. The amplitude of the perturbation in the impedance
is determined by the parameter α and in the refractive index
by β. Note that whenever α = 0 helicity is preserved and, on
the other hand, whenever β = 0 the refractive index matching
condition is fulfilled. To meet the requirements imposed by
perturbation theory we have chosen α = 0.01 
 Z0 and |β| �
0.01 
 n0. In Fig. 3(b) we have computed the corrections to
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the energy as a function of β (in colors). For comparison, in
the same figure, we also display the energy corrections for
the case in which α = 0 (gray dashed lines). Whenever α = 0
we have that C = 0 and, thus, the helicity components are
decoupled in this case. From the form of the matrix in Eq. (7)
it can be checked that the ascending (descending) diagonal
gray lines correspond to solutions with well-defined positive
(negative) helicity. Finally, in Fig. 3(c), we have computed
the mixing parameters of the two-level systems identified in
Eq. (7), which happen to be the same. Among others, this
parameter has been employed to study the resonant mixing
of neutrino flavors in matter and it is a signature of quantum
resonance when it approaches unity [8,9]. The reported re-
sults are completely compatible with the phenomenon of the
avoided crossing.

To sum up, our results indicate that index-matched me-
dia induce a resonant helicity mixing on the electromagnetic
waves that propagate through them. We have reached to
this conclusion by applying perturbation theory to Maxwell’s
equations for smooth varying environments and comput-
ing the energies of the propagating waves in terms of the
medium parameters. Strikingly and completely unexpectedly,
we have identified that the refractive index matching condition
(∇n = 0) leads to the phenomenon of avoided crossing (see
Fig. 3). A great deal of phenomena in physics are related to
the avoided crossing of energy levels, but this is the first time
that such a connection is made for the helicity components of
electromagnetic fields. In our view, there is an effect which
closely resembles the resonant helicity mixing condition:
the Mikheyev-Smirnov-Wolfenstein (MSW) effect in neutrino
physics [7,8]. This effect, which has been regarded as the
solution to the solar neutrino problem [60], takes place when
neutrinos propagate through a medium with varying matter
density, ρ(x). Similarly, there also exists a condition over the
medium for which neutrino flavors are resonantly mixed, i.e.,
whenever ρ(x) = ρR. However, the resonant density, ρR, is a
function of the initial neutrino energy and, thus, only neutrinos
that are released with enough energy hit the resonance in their
way out of the sun. This turns out on an almost complete
conversion of the high energy electron neutrinos generated
by the sun into other neutrino flavors. One can observe the
mathematical concordance of the analogy between neutrino
flavors and electromagnetic helicity components, and the den-
sity matching and refractive index matching conditions.

V. CONCLUSIONS

In conclusion, we have shown that passive antidual scat-
terers are precluded by the energy conservation law in linear
electromagnetic scattering theory. The result is completely
general and it is independent of the size, shape, material con-
stituent or, even the spatial form of the illuminating field. Then
we have presented the condition of refractive index match-
ing and showed that it appears paired with the impedance
matching condition in several contexts of electromagnetism
including Fresnel and Mie coefficients. Evaluating the an-
alytical form of Mie coefficients under the index matching
condition, something which had been previously overlooked,
we have found that this condition leads to spherical scatterers

which flip the helicity of the incoming light very efficiently.
Importantly, these scatterers do not contradict the energy con-
servation law and, thus, could in principle be constructed
from natural materials or metamaterials. Finally, we have con-
cluded that index-matched media induce a resonant helicity
mixing on the electromagnetic waves that propagate through
them. We have reached to this conclusion by evaluating the
energies of propagating waves in terms of the medium param-
eters and identifying that the index matching condition leads
to the phenomenon of avoided crossing.

We believe that our findings will have an impact on,
at least, three different communities. Our first contribution
generalizes a key result of linear electromagnetic scattering
theory to generic passive scatterers under general illumi-
nation conditions. This closes a historical discussion on
the zero forward scattering problem [29–36,38], the second
Kerker condition, [20,33,34,36,38,58,61,62] and the possible
existence of passive antidual scatterers [19,37,40,44,58,62].
Moreover, identifying the refractive index matching condi-
tion as being paired to the impedance matching condition in
several contexts of electromagnetism opens up a great deal
of new possibilities in the field of Metamaterials. Exactly as
impedance-matched meta atoms are commonly employed to
maximize transmissivity [17,22,52,53], index-matched parti-
cles are good candidates to build reflective photonic devices.
Also, index-matched metasurfaces could serve to construct
angle- and polarization-independent ultrathin beam-splitters.
Finally, the connection with quantum two level-systems aligns
the resonant helicity mixing condition with other phenom-
ena such as the MSW effect. This identification opens up
a window of possible crosspollination of ideas with particle
physics.
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