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In amorphous solids, there exists a universal phenomenon of vibrational anomaly, i.e., an excess of vibrational
modes over the Debye level in the low-terahertz-frequency regime, which is termed a boson peak. Although the
origin of the boson peak has been studied extensively for decades, quantitative prediction of its intensity remains
elusive. In this paper, we try to quantify the intensity of the boson peak via an interpretable machine-learning
strategy based on a dataset consisting of >1600 glass samples prepared with cooling rates spanning four
orders of magnitude. We have attempted to extract information from a pure static structure and vibrational
localization through four different feature inputs, among which the partial pair distribution function (PDF)
yields the best predictive performance. It is found that the first several neighbor shells corresponding to a
characteristic subnanometer length scale are important for capturing the structural genes of the boson peak
in amorphous solids, regardless of the size of the glasses. Moreover, a higher boson peak relates to a more
disordered atomic arrangement with lower peaks and shallower basins in the PDF. The obtained knowledge
sheds light on rationalization of the boson peak in amorphous solids from pure structural information.

DOI: 10.1103/PhysRevResearch.5.023113

I. INTRODUCTION

The thermal properties of disordered materials such as vit-
reous SiO2, polymer glasses, confined water solid, amorphous
alloys, and strain glass usually present a hump of reduced
specific heat C(T )/T 3 and a plateau in the temperature de-
pendence of thermal conductivity κ (T ) at low temperatures
[1–6], which are strikingly different from those of the crys-
talline solids. Such anomalous properties are believed to be
controlled by the vibrational spectra in the corresponding low-
terahertz-frequency regime, where amorphous solids exhibit
an excess of the vibrational density of states (VDOS) over
the Debye model (a peak in the ω2-reduced density of states
g(ω)/ω2), the so-called boson peak [7]. Of great concern has
been the origin of the boson peak since its discovery. Though
tremendous efforts have been devoted to this controversial
but fascinating phenomenon, its nature is still far from fully
understood.

Various models have been proposed to interpret this vibra-
tional anomaly. Some ascribe it to structural disorder; others
believe that it is an extension of the well-known phenomenon
in crystals—the van Hove singularity appearing in the phonon
dispersion relationship. These interpretations include the so-
called quasilocalized acoustic transverse vibrational modes
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[8,9] originating from soft anharmonic potentials [10–12],
elastic heterogeneity [13–18], local breaking of inversion
symmetry [19,20], phonon-saddle transition in the energy
landscape [21], the orientational order parameter [22], and
broadened van Hove singularity shifted to lower frequencies
[23–25]. Despite all this progress, determining a microstruc-
tural feature that governs the boson peak due to the complex
and disordered atomic arrangement in glasses remains elu-
sive, let alone quantitatively predicting it from pure structural
information.

Under this circumstance, data-intensive scientific discov-
ery, known as the fourth paradigm, provides a research
framework alternative to the physics-based methodologies
[26–29]. For glass science, it has been applied to develop
accurate interatomic potentials [30], accelerate the design of
glasses [31,32], and construct structure-property relationships
[33–41] (e.g., plasticity, relaxation, stiffness), playing a grow-
ing important role in the field of amorphous materials.

Inspired by these advancements, in this paper, we refrain
from debating the origin of the boson peak but try to resolve
the quantitative prediction of it from a data-driven perspective,
within either the configurational or dynamic space. Specif-
ically, we select a prototypical binary metallic glass (MG)
Cu50Zr50 as our research object and generate 1629 glass
samples through molecular dynamics (MD) simulations to
construct the dataset requisite for machine learning (ML). In
this protocol, the total and partial pair distribution functions
(PDFs) of the glass samples with different cutoff radius are
calculated to depict the local static structure. After diago-
nalizing the Hessian matrix of the inherent structures, the
vibrational spectra, the participation ratio of each normal
mode, and the intensity of the boson peak are computed
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subsequently. Finally, we turn to the artificial neural network
model for regressive predictions and find that the partial PDF
yields the best results of all four kinds of feature inputs.
Indeed, we roughly succeed in quantifying the intensity of
boson peak with the mean absolute error (MAE) equivalent
to 7.98 µTHz−3. It is demonstrated that the first three or four
neighbor shells together with specific atom distributions are
of vital importance in rationalizing the boson peak, implying
a characteristic length scale, also validated at atomic level, that
needs to be considered when uncovering the structural nature
of properties in amorphous solids.

II. METHODS

A. MD

Altogether, 1800 binary Cu50Zr50 MG samples with dif-
ferent cooling rates spanning four orders of magnitude are
prepared through classical MD simulations, implemented
by the open-source LAMMPS code [42]. Each sample con-
tains 4000 atoms with periodic boundary conditions applied
in all three directions. An optimized Finnis-Sinclair-type
embedded-atom-method potential is utilized to describe the
interatomic interaction [43]. The integration time step of MD
is set to 2 fs. Under the NPT ensemble, a Nosé-Hoover
thermostat [44,45] is used to control the temperature, and
the external pressure in each direction is maintained at zero
with the Parrinello-Rahman barostat method [46]. The model
preparation process can be divided into four steps: heating,
relaxation, quenching, and energy minimization from liquid
to glassy solid. Each model with randomly distributed atoms
in the face-centered cubic (fcc) lattice is first heated from 0 to
2000 K and maintained for 2 ns to ensure it is thermodynam-
ically equilibrated. Then the melt is quenched to 0.1 K with
desired cooling rates ranging from 1010 to 1014 K/s. Finally,
energy minimization with a conjugate gradient algorithm is
performed to fully relax the system and obtain an inherent
configuration of the glass-forming liquid corresponding to a
local energy minimum in the potential energy landscape. To
regress the single-atom boson peak intensity, 10 extra larger
Cu50Zr50 glass samples each containing 19 652 atoms are also
simulated with cooling rate 1010 K/s, among which nine sam-
ples are used for training and the remaining one for testing. In
this case, the training set contains 176 868 data points and the
testing set 19 652.

B. Feature input

A typical ML process includes several systematical steps,
such as data collection, feature extraction, model training and
validation, and model evaluation. For a supervised learning
task, the completeness of the feature and the quality of the
supervisory signal cooperatively determine the predictive per-
formance of the specific ML model as well as the model itself.

1. Partial PDF as feature input

For amorphous solids lacking long-range order, character-
ization of its structure has long been challenging. Here, to
depict the local configuration of a glass, the simplest PDF is

employed. The partial PDF is defined as

gαβ (r) = 1

Nαρβ4πr2�r

Nα∑

i=1

Nβ∑

j=1

δ(r − ri j ), (1)

where ρβ and Nα represent the number density and number
of atoms of the corresponding species in the subscripts. For
the continuity of gαβ calculated at intervals of �r = 0.1Å, we
leave this descriptor as it is without feature selection.

As for the atomic structural descriptor, Gaussian-type
approximation [47] is adopted to guarantee a smooth and
continuous particle-level partial PDF:

gi
αβ (r) = 1

ρβ4πr2�r

Nβ∑

j=1,ri j�rc

exp [−(r − ri j )
2/σ 2] (2)

that exhibits better performance than the original scattered
one. Here, ri j is the distance between atoms i and j, rc is the
cutoff radius, and σ is a broadening coefficient.

2. Participation ratio as feature input

There are reports of another kind of quasilocalized excess
mode at frequencies lower than the boson peak frequency,
whose density of states obeys a quartic law with respect to
frequency [48–53]. To some extent, this phenomenon is be-
lieved to be connected to the boson peak [49,53,54], though
it does not affect its intensity mathematically. Thus, we try to
construct a connection between them by quantifying the boson
peak from the perspective of vibrational localization in the
present ML model. Following the common practice [49,52],
the participation ratio is utilized to divide normal modes into
two categories: quasilocalized and extended. The participation
ratio of the normal mode l is defined as

P(ωl ) =
(∑N

i=1

∣∣ei
l

∣∣2)2

N
∑N

i=1

∣∣ei
l

∣∣4 , (3)

where N and ei
l denote the total number of atoms and the

polarization vector of atom i under the eigenfrequency ωl . Of
all the normal modes sorted by the vibrational frequency with
ascending order, the first 724 modes within the boson peak
frequency region are selected (ω � 10 THz), the participation
ratios P(ω) of which are then used as the feature input, i.e.,
a 724-dimensional vector P = {P1, P2, . . . , P724}�. We also
tried a modified version of P. Based on some threshold P0,
P is binarized: if Pi < P0, Pi ← 1; else Pi ← 0. Thresholds
between 0.02 and 0.42 with intervals of 0.02 are tested, and
the best results are obtained when P0 lies between 0.24 and
0.30 (see Appendix A).

C. Supervisory signal

Normal mode analysis is implemented by directly diago-
nalizing the dynamic matrix of the inherent structure to obtain
the VDOS, as shown in Fig. 1(a). The intensity of the boson
peak is characterized by the maximum of ω2-reduced VDOS
g(ω)/ω2, which serves as the supervisory signal. The sam-
pling interval of the power exponent of the cooling rate is first
uniformly set to 0.005 from 1010 to 1014 K/s. As illustrated
in Fig. 1(b), the intensity of boson peak IBP enhances, and
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FIG. 1. Relevance between cooling rate and the intensity of boson peak. (a) Vibrational density of states (VDOS) of the glass samples with
different cooling rates ranging from 1010 to 1014 K/s. The inset shows that higher cooling rate leads to increasing soft modes, corresponding to
higher boson peak intensity in (b). (b) ω2-reduced VDOS in (a). The dashed line indicates the Debye level. The inset illustrates that the boson
peak intensity enhances when cooling rate increases. (c) Distribution of the boson peak intensity.

the corresponding frequency ωBP shifts to lower frequencies
with the increase of the cooling rate, but this relation levels
off gently when the cooling rate is <1013 K/s. To acquire
a well-distributed IBP, detailed data points between 1013 and
1014 K/s with interval 0.001 K/s are supplemented; thus, a

FIG. 2. The architecture and training procedure of a 4-layer neu-
ral network model n − p − q − 1 which contains two hidden layers
with p and q neurons, respectively. The model takes discrete pair
distribution function (PDF) as feature inputs, with the boson peak
intensity as the final output (supervisory signal).

total of 1800 model glasses are prepared. When the cooling
rate is >1013 K/s, the g(ω)/ω2 − ω curve of some glass sam-
ples shows a monotonic decreasing about ω; thus, the boson
peak intensities of these samples defined by max[g(ω)/ω2]
become unreliable. After eliminating such irrational data, a fi-
nal dataset with 1629 MG samples is constructed [see Fig. 1(c)
for the IBP distribution], 1304 (80%) of which are randomly
picked for training.

In terms of the single-particle intensity of the boson peak,
the VDOS contributed by each atom is first calculated ac-
cording to the relative amplitude of a certain vibrational
mode:

gi(ω) = 1

3N

N∑

j=1

δ(ω − ω j )
∣∣ei

j

∣∣2
, (4)

where ei
j represents the eigenvector of atom i corresponding

to the intrinsic frequency ω j . Subsequently, the boson peak
contribution of atom i is defined as the maximum of its ω2-
reduced particle VDOS, like that of the whole system, i.e.,
I i
BP = max[gi(ω)/ω2].

D. Neural network model

The artificial neural network (ANN) is a mathematical
computing system which simulates the working mechanism
of the biological neurons that constitute human brains. Here,
we adopt ANN in dealing with the seemingly unsolved issue
in directly connecting atom positions to vibrational properties
without turning to detailed atomic interaction.

Figure 2 illustrates the workflow of model learning with
the architecture of a four-layer neural network n − p − q − 1
included. The leftmost layer, known as the input layer, con-
tains n neurons x = {x1, x2, . . . , xn}�, representing the feature
inputs. For a training process, neurons in each hidden layer
receive the information transmitted from the previous layer
with weighted linear summation hin = ∑npre

j=1 w
j
prehout

pre and pass
this information to the next layer after processing them hout =
f (hin ). Connection weights refer to the weighting coefficients
between neurons, and the way these neurons process the
weighted summation f : hin → hout is called the activation
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×

×

FIG. 3. Predictive performance of the artificial neural network (ANN) model. (a) Mean absolute error (MAE) and R2 score of four different
feature inputs: participation ratio (PR), binary PR, total pair distribution function (PDF), and partial PDF. (b) The predicted intensity of
boson peak as a function of the true IBP value in the testing dataset at sample level. The white dashed line represents a perfect prediction:
IBP-pre = IBP-true, while the scattered blue circles represent numerically coarse-grained values with bin size of 10 samples. (c) The testing MAE
of IBP as a function of the cutoff radius. (d) The predicted intensity of atomic-scale boson peak as a function of the true I i

BP value in the testing
dataset.

function. Neurons in the output layer also have activation
functions that transform the received values into the final
outputs. Based on the error between the predicted and actual
values, the connection weights are updated by the error back
propagation algorithm to adjust predictions. Such a loop con-
tinues until the model tends toward convergence.

Except the quality of the dataset, the predictive perfor-
mance of the neural network model is also affected by many
factors termed hyperparameters, such as learning rate, the
number of layers, the number of neurons in each layer, and
the optimizer. Before formal learning, we tested a series of
parameter combinations to approach the best prediction as
far as possible and finally selected Adadelta as the optimizer
[55]. The original learning rate is set to 0.01, and methods in-
cluding early stopping, dropout and regularization are adopted
to avoid overfitting. The training and testing processes are
implemented by the Keras API on top of the TensorFlow
backend [56].

III. RESULTS AND DISCUSSION

As introduced in the Methods section, we try to quan-
tify the origin of the boson peak in glass both dynamically

and structurally by means of the ANN model, with differ-
ent feature inputs employed: participation ratio, binarized
participation ratio, total PDF, and partial PDF, respectively.
Particulars of these models are described in Appendix B, and
their predictive powers are plotted in Fig. 3(a). Note that all
four cases share the same training and testing set to fairly
compare their expressive power. Interestingly, the binarized
participation ratio which outlines the degree of vibrational lo-
calization yields results like that of the total PDF, emphasizing
the connection between the boson peak and the quasilocalized
modes. The ML model prediction agrees with the physical
understanding from direct normal mode analysis by Wang
et al. [53]. The partial PDF manifests the best results of the
four kinds of feature input and obviously outperforms the total
PDF in MAE by 12.6% (7.98 vs 9.13 µTHz−3), indicating
that the boson peak is relevant to specific distributions of
component atoms and their interactions [57]. The predictive
performance of the partial PDF is illustrated in Fig. 3(b),
where the background shows the raw data colored by number
density, and the scattered blue circles represent numerically
coarse-grained values with bin size of 100 atoms. All the
data points roughly lie along an ideal prediction: IBP-pre =
IBP-true except for some deviation at high IBP. The MAE is
equivalent to 7.98 µTHz−3, which accounts for 8.67% of the
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whole IBP-true span (maximum: 285.30 µTHz−3, minimum:
193.21 µTHz−3) of the testing set.

To go a step further, the partial PDFs with different cutoff
radii are utilized as feature inputs to train the ANN model.
Figure 3(c) illustrates the corresponding MAE. Because the
optimization may converge to a local minimum, the training
and testing procedure is repeated 9 times for each case (red
error bars). Note that all these results are obtained by the ML
models trained on the same dataset and under the same hyper-
parameter setting without optimization, so they indeed portray
the influence of cutoff radii on the predictive performance,
though they are not the best for each case. With the increase of
cutoff radius, MAE gradually decreases and tends to stabilize
when it reaches 6.85 Å. For the partial PDFs of Cu-Cu and
Cu-Zr, the length scale of 6.85 Å corresponds to the fourth
coordination shell, while for the partial PDF of Zr-Zr, it is the
third one. This implies a nonlocal attribute of the boson peak
with a characteristic subnanometer length scale that needs
to be considered when deciphering its structural origin, as
uncovered in many other structure-property relationships of
amorphous solids [12,35,40,58–61]. Note that predictions of
the glasses with the highest 12.31% IBP > 249.34 µTHz−3

exhibit more deviation from true values than average. For one
thing, the dataset here contains only 1629 configurations in
total, resulting in a lack of data points with, in particular,
high IBP. Furthermore, the one-dimensional PDF providing
only statistical structural information cannot portray accu-
rately how the atoms are arranged in the three-dimensional
(3D) space. The two reasons stated above result in perfect
predictions being impossible and therefore point out direc-
tions toward accurate quantification of the boson peak from
3D complete structures in glass.

To evaluate whether the ANN model is applicable to dif-
ferent atoms in quantifying the boson peak, we also test
the ML model at atomic level following the same proce-
dure as detailed above except for some differences in the
supervisory signal and the feature input. Here, the feature
input of specific atoms contains four channels: Cu-Cu, Cu-Zr,
Zr-Cu, and Zr-Zr, respectively. For Cu atoms, Zr-centered
channels are correspondingly set to zero and vice versa.
The extension of the ANN model to atoms is displayed in
Fig. 3(d). Though the atomic-scale predictive performance
is inferior to that of the whole sample, the predicted I i

BP
and the true values correlate positively and exhibit consid-
erable linearity when I i

BP is <0.00186 µTHz−3 (accounting
for 89.10% of the testing set). Similarly, in Appendix C,
the atomic partial PDF exhibits a characteristic length scale
close to that of the samples, indicating that the boson peak
shares the same structural origin regardless of length scales of
glasses.

For atoms with the highest and lowest 10% I i
BP, both the

predicted and real values, we plot all four partial PDFs. Fig-
ure 4 illustrates the differences to unveil the key structural
fingerprints underneath the boson peak. It is observed that
atoms with higher peaks and shallower basins tend to display
lower boson peak intensity. For atoms with the highest 10%
I i
BP, the first peak of their PDF shifts closer to the central

atom, while the second peak moves farther, resulting in a
wider trough between them. This wider trough with gener-

ally larger intensity than that of the other group, along with
those lower peaks, demonstrates a more liquidlike, disordered
structure with more mobility. These differences are obvious
for the first three or four neighbor shells and soon wear off
beyond some scale, explaining the predictive performance
trend in Fig. 3(c). Additionally, the highest I i

BP group exhibits
a larger first peak intensity ratio of the two PDF channels,
g(r)α-β/g(r)α-α (α can be either Cu or Zr and β is the other
element). Such a larger deviation from the system component
ratio (50 : 50) implies the influence of chemical disorder on
the boson peak. Except that the partial PDFs of Zr atoms
with extremely low I i

BP display some quantitative errors, all
the other ones exhibit a good overlap between the solid lines
(real) and the scattered data points (predicted), revealing the
power of the ANN model in qualitatively predicting boson
peak intensity based on structural information.

Although the ML model usually indicates a numerical
solution with sort of black-box information, the present pro-
tocol allows one to interpret it since the learning feature
is the PDF which can recognize key short- to medium-
range structural morphology. As shown in Fig. 5(a), the
overall difference in the total PDF of these samples is
so trivial that it is difficult to quantify the IBP based on
the PDF with a simple function mapping, while ANN
makes a difference. To illustrate the mapping ability of
the ANN model, we compress the hidden layer block
into a single neuron for simplicity without detracting from
representativeness. As illustrated in Fig. 5(b), the 120 trained
connection weights between the first input layer and the hid-
den neuron are extracted, which correlate well with the PDF
difference, taking negative or positive values as the difference
undulates. Note that, for partial PDFs, these weights of dif-
ferent channels interact in a complex manner and may not
be fully consistent with the partial PDF difference. Through
the training process, the hidden neurons adjust them recur-
rently to recognize the seemingly negligible difference in
the PDF until approaching the final output. The excellent
mapping capability of ANN just lies in the combination of
such neurons together with the activation functions which
introduce nonlinearity into the model. In other words, the
ANN model recognizes subtle structural features of the boson
peak which points to a scenario of short- to medium-range
disorder-induced phonon damping in glass.

The reasons why ANN fails at predicting the data points
with high I i

BP possibly include (1) heavy-tailed distribu-
tion of I i

BP that spans four orders of magnitude (minimum:
0.004657 µTHz−3, maximum: 2.8310 µTHz−3), which results
in less statistically meaningful data for the high-I i

BP regime.
The data imbalance issue may be solved further by enlarging
the dataset or through standardization of the raw data. (2) As
a structural descriptor, the particle-level partial PDF is inade-
quate. More detailed 3D coordinate information is required
in the learning process. (3) There is no one-to-one causal
relationship between atomic-scale structure and function of
disordered materials [61,62]. Statistical information of local
structures is more relevant for the boson peak. (4) The boson
peak has a collective nature, which should include a group
of neighboring atoms that can constitute some vibrational
pattern like the acoustic transverse localized model [9]. Such
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FIG. 4. Four partial pair distribution functions (PDFs) of two groups of atoms with the highest and lowest 10% atomic boson peak intensity
I i
BP. Solid lines represent the real I i

BP, while scattered points represent the predicted ones.

circumstances again appeal for more representative datasets
and better descriptors.

IV. CONCLUSIONS

In summary, we present a preliminary attempt to quantify
the boson peak by virtue of possible local structure and from
the perspective of vibrational localization in a Cu50Zr50 binary
glass-forming system through a ML strategy. The binary par-
ticipation ratio can yield results comparable with that of the
total PDF, implying the connection between quasilocalized
modes and the boson peak phenomenon. The partial PDF
provides the best predictive performance of all four kinds of

feature inputs, a prediction with MAE equal to 7.98 µTHz−3.
The model recognizes several subtle structural features in the
first several neighbor shells of the partial PDF responsible for
the boson peak. By adjusting the cutoff radius of the partial
PDF as the feature input, we demonstrate that there exists
a subnanometer length scale that is strongly associated with
the boson peak, at both sample and atomic level regardless of
the size of glasses. This length scale characterizes the elastic
heterogeneity of glass and indicates the spatial nature of the
Ioffe-Regal limit. The phonons become damped at such a
scale due to the appearance of structural patterns that hinders
the propagation of an elastic wave. Since the current predictive

TABLE I. Specific architecture of the ANN models utilized.

Architecture

Level Feature input 1 2 3

Sample PR 724-200-100-1 724-100-50-1 724-100-1
Binary PR 724-200-100-1 724-100-50-1 724-100-1

PDF 120-60-30-1 120-60-1 120-30-1
Partial PDF 360-100-50-1 360-50-1 360-20-1

Atom Partial PDF 480-100-50-1 480-50-1 480-20-1
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FIG. 5. Correlation between total pair distribution function
(PDF) and the learned weights of the neural network model. (a) PDFs
of the Cu50Zr50 metallic glass samples with the 5% lowest and the
5% highest intensity of boson peak. (b) Connection weights between
the input layer and the first hidden layer compared with the PDF
difference [ghigh(r) − glow(r)] of the two classes of glass samples
with extreme boson peak intensity mentioned in (a).

performance is obtained solely with PDFs, a one-dimensional
statistical structure descriptor, and a relatively small dataset
consisting of 1629 configurations, we believe that there is still
much room for improvement when a larger dataset is deployed
and more delicate structural descriptors are utilized. Thus, in
this paper, we shed light on accurate prediction of the boson
peak from pure structural information. Although the predic-
tive power of the ML model is still not fully satisfactory, it
presents a first step toward understanding the structural motif
responsible for this vibrational anomaly in amorphous solids,
which is a longstanding unsolved problem in condensed mat-
ter physics.
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APPENDIX A: PARTICIPATION RATIO AND THRESHOLD

As shown in Fig. 6, the participation ratio P(ω) measures
the degree of localization of a specific vibrational mode. The

FIG. 6. Participation ratio P(ω) as a function of intrinsic fre-
quency ω in a glass sample with 19 652 atoms. Red dashed line
represents the threshold P0 used to classify vibrational modes into
extended and quasilocalized categories.

more P(ω) approaches 1, the more equally all the atoms
participate in the vibrational mode. In turn, the more P(ω)
approaches N−1, the fewer atoms get involved in the vibration.
The choice of the threshold P0 (cutoff criterion for dividing
modes into extended or quasilocalized groups) is therefore
crucial to the final performance of ANN model when we use
the binary P(ω) as a feature input to quantify the boson peak
intensity. Here, to avoid arbitrariness, we have tested different
thresholds between 0.02 and 0.40 with intervals of 0.02. Natu-
rally, all the models behave the best when P0 ranges from 0.24
to 0.30 as shown in Fig. 7. This trend emphasizes the intrinsic
connection between the low-frequency quasilocalized modes

FIG. 7. For the binary participation ratio (PR) as feature input,
mean absolute error (MAE) and R2 score as a function of the thresh-
old P0. The results here are obtained similarly in Appendix B. The
solid, dashed, and dotted lines represent the architectures 1, 2, and 3
in Table I, respectively.
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FIG. 8. The testing mean absolute error of log10(I i
BP × 109) as a

function of the cutoff radius of the partial pair distribution functions
(PDFs). For each cutoff radius, the training and testing procedure is
repeated 9 times.

and the boson peak phenomenon. We finally choose P0 = 0.28
as the threshold of the binary P(ω).

APPENDIX B: PARTICULARS OF DIFFERENT
ANN MODELS

For each feature input, we have tried three ANN archi-
tectures (in Table I) with different numbers of hidden layers
and hidden neurons to obtain a better representative result,
though there are only small differences. We also repeat the
training and testing procedure 9 times for each architecture to
eliminate contingency. The best average results of the three
architectures are selected and illustrated in Fig. 3(a).

APPENDIX C: ABOUT THE LENGTH SCALE
AT ATOMIC LEVEL

Following the practice in Fig. 3(c), we test the influence
of the cutoff radius on the model performance when using
the partial PDF to regress I i

BP. As illustrated in Fig. 8, we get
similar results to that of the samples. Both stabilize at the same
length scale of 6.85 Å.
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