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Many-body cavity QED experiments are established platforms to tailor and control the collective responses
of ensembles of atoms, interacting through one or more common photonic modes. The rich diversity of
dynamical phases they can host calls for a unified framework. Here we commence this program by showing
that a cavity QED simulator assembled from N-level bosonic atoms can reproduce and extend the possible
dynamical responses of collective observables occurring after a quench. Specifically, by initializing the atoms
in classical or quantum states, or by leveraging intralevels quantum correlations, we craft on demand the
entire synchronization/desynchronization dynamical crossover of an exchange model for SU(N) spins. We
quantitatively predict the onset of different dynamical responses by combining the Liouville-Arnold theorem
on classical integrability with an ansatz for reducing the collective evolution to an effective few-body dynamics.
Among them, we discover a synchronized chaotic phase induced by quantum correlations and associated to
a first-order nonequilibrium transition in the Lyapunov exponent of collective atomic dynamics. Our outreach
includes extensions to other spin-exchange quantum simulators and a universal conjecture for the dynamical
reduction of nonintegrable all-to-all interacting systems.
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I. INTRODUCTION

Tailoring light-matter interactions is at the root of numer-
ous technological and experimental applications in quantum
optics, and it has generated a persistent drive for better control
of atoms and photons since the advent of modern molecu-
lar and atomic physics. For instance, the pursuit to create
precision clocks and sensors has led to the development of
cavity QED systems in which a cold gas couples to few
or several electromagnetic modes in an optical cavity [1–6].
Such systems can be brought out of equilibrium to gener-
ate reproducible many-body dynamics which show complex
behavior including self-organization [4,7–15] and dynami-
cal phase transitions [1,6,12,16–20], quantum squeezed and
non-Gaussian entangled states [21–27], time crystals [28–31],
and glassy dynamics [10,13,32,33]. This rich phenomenology
comes from a high degree of tunability in such systems, al-
lowing control over local external fields, detunings between
cavity mode and applied drive fields, the ability to couple
multiple atomic levels to the cavity field [5,10,34–39], and,
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more recently, the realization of programmable geometries for
light-matter interactions [40–42].

Recently, the theoretical and experimental investigation
of multilevel cavity systems has gathered increasing atten-
tion. Current progress includes dissipative state preparation
of entangled dark states [43–45], multicriticality in gen-
eralized Dicke-type models [46,47], incommensurate time
crystalline phases [35,48,49], correlated pair creations and
phase-coherence protection via spin-exchange interactions
[37,50,51], spin squeezing, and atomic clock precision en-
hancement [52–54]. Yet, the quenched dynamics in multilevel
cavity systems is widely unexplored and the few individual
results lack an organizing principle.

In this paper, we propose a unifying framework for the
dynamics after a quench of all-to-all connected multilevel sys-
tems. We show that the flexible control endowed by bosonic
multilevel atoms is sufficient to reproduce established dy-
namical phases and beyond. We explain how the dynamical
response can be crafted into these dynamical phases by in-
troducing a reduction of dynamics to a few-body effective
classical evolution, valid regardless of the underlying integra-
bility of the model. Of particular note, we demonstrate how
quantum correlations in the initial state can drive a transition
between a regular and chaotic synchronized phases.

Our analysis extends the established phenomenology of the
two-level Tavis-Cummings model with local inhomogeneous
fields. This two-level model is integrable [55], and allows for
the emergent collective many-body dynamics to be exactly de-
scribed through an effective few-body Hamiltonian [56–66].
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In particular, the few-body model yields predictions for the
dynamical responses of collective observables S(t ), such as
the collective spin raising operator, given by the macroscopic
sum of several individual constituents [56,59,60,63–67]. The
resulting dynamical phases are best presented in terms of
the possible synchronization between the local atomic de-
gree of freedoms (DOFs) (spins-1/2) which evolve with a
frequency set by the competition of their local field and col-
lective photon-mediated interactions. In the desynchronized
phase, which we call phase I as shorthand, all the spins evolve
independently as a result of dominant classical dephasing
processes imprinted by the local inhomogeneous fields, thus
S(t ) relaxes to zero. In the synchronized phase, collective
interactions lock the phase precession and we can distinguish
three different scenarios in which S(t ) either relaxes to a
stationary value (phase II), up to a phase of a Goldstone mode
[56] associated to a global U(1) symmetry, or its magnitude
enters self-generated oscillatory dynamics, corresponding to
a Higgs mode [56], either periodic (phase III) or aperiodic
(phase IV). While phases I and II describe relaxation to a
steady state up to an irrelevant global phase, phases III and
IV are instead examples of a self-generated oscillating syn-
chronization phenomenon without an external driving force
[68–71].

A. Summary of results

In this paper, we investigate dynamics beyond two-level
approximations by considering Na bosonic atoms, each host-
ing N levels which realize SU(N) spins. The additional
structure due to the bosonic statistics allows us to natu-
rally consider both classical and quantum initial states (cf.
Sec. II C). Using this flexibility in the initial state, and also
the tunability of Hamiltonian parameters, we show how to
craft not only the dynamical responses present in the two-
level integrable setup (from phase I up to phase IV), but also
how to access a chaotic dynamical response. This chaotic
response, which we refer to as phase IV�, again has all atoms
synchronized but with the dynamics of the average atomic
coherences characterized by exponential sensitivity to initial
conditions. The self-generated chaotic phase IV� emerges
from the interplay of initial quantum correlations and the col-
lective interactions mediated by the cavity field. It is therefore
qualitatively different from chaos induced by other mecha-
nisms as due to additional local interactions [72] or external
pump [30,73–76].

To show how to craft and control these dynamical re-
sponses, we introduce a generalization of the reduction
hypothesis used for two-level systems. Specifically, we pro-
pose that the different dynamical phases (phase I up to
phase IV∗) all correspond to a different effective few-body
Hamiltonian that depends on the global symmetries of the
many-body system, degree of inhomogeneity, W , number of
atomic levels N , and degree of quantum correlations in the
initial state, quantified by a parameter p (cf. Sec. IV B).
Then, by considering an appropriate classical limit arising
in the limit of large system size (cf. Sec. II B), we apply
the Liouville-Arnold theorem to the effective Hamiltonian to
identify a correspondence between the dynamical phases and
the effective Hamiltonians. Using physical arguments for the

FIG. 1. Cartoon of the possible dynamical responses of intralevel
phase coherence in a photon-mediated spin-exchange model between
SU(3) spins as a function of the degree of inhomogeneity of the local
fields W and of quantum correlations in the initial state parameterized
by p. At p = 0, each site is initialized in the same bosonic coherent
state. For p > 0, there are finite quantum correlations in the system.
The parameter p tunes from bosonic coherent states (p = 0) to a
multimode Schrödinger cat state (p > 0) initialized on each site. The
susceptibility of the dynamical response to quantum correlations is
strictly linked to having SU(N) spins with N > 2, and thus cannot
be achieved considering two-level systems. Up to inhomogeneity
W/(χNa) ≈ 1, the system is in the synchronized phase. At larger
inhomogeneities, the system enters in the desynchronized phase and
all phase coherence is washed (phase I). In the synchronized phase,
phase coherence relaxes asymptotically to a nonzero value up to a
phase associated to a global U(1) symmetry (phase II), or its mag-
nitude enters a self-generated oscillatory dynamics, either periodic
(phase III) or aperiodic (phase IV), as well as potentially chaotic
(phase IV�). In this last case, dynamics are exponentially sensitive
to changes in initial conditions.

nature of the effective Hamiltonian, we then predict how to
tune between different dynamical responses. The result is an
intuitive control over the rich dynamical response possible in
multilevel cavity QED. See Fig. 1 for a cartoon of the different
dynamical responses for N = 3 level atoms, using as a proxy
the synchronized (or desynchronized) evolution of the mag-
nitude of the average intralevel coherences in the ensemble.
We conclude by discussing the potential universality of the re-
duction hypothesis. In particular, we conjecture it applies not
only for state-of-the-art cavity QED experiments (cf. Sec. VI),
but could find potential applications in other fields. Following
Refs. [77,78], where cavity QED platforms are proposed to
model the dynamics of s-wave and (p + ip)-wave BCS su-
perconductors, our results could find potential applications to
lattice systems with local SU(N) interactions, such as SU(N)
Hubbard models [79–82]. Another possible outreach of our
results could consist of noticing that the N levels of the atoms
could be used as a synthetic dimension, with the geome-
try fixed by the photon-mediated processes, as, for instance,
in a synthetic ladder system [83,84]. Furthermore, since we
consider bosonic systems, our results could potentially find
applications in spinor Bose-Einstein condensates [85,86] or
in molecules embedded in a cavity, where bosons could be
identified as their vibrational modes [87,88].
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B. Organization of the paper

The paper is organized as follows. In Sec. II, we introduce
the model and initial states we investigate and discuss the
cumulant expansion we use to capture quench dynamics. In
Sec. III, we present the dynamical reduction hypothesis and
discuss the different classes of effective dynamics that can re-
sult from it. In Sec. IV, we show that in the homogeneous limit
our hypothesis is exact and demonstrate how local quantum
correlations in SU(3) atoms can induce a chaotic dynamical
phase with finite Lyapunov exponent. In Sec. V, we show
that the dynamical responses observed in the homogeneous
limit are robust against moderate inhomogeneity in the local
fields, and we provide numerical evidence that an effective
few-body Hamiltonian is able to capture the dynamical peri-
odic response of collective observables in the three-level case.
We conclude this section with a discussion on the impact of
inhomogeneity in the dynamical responses of the system. In
Sec. VI, we propose an experimental implementation poten-
tially accessible in state-of-the-art cavity QED systems.

II. PRELIMINARIES

A. The model

We consider a system of Na bosonic atoms interacting via
a single photonic mode of a cavity. The atoms are cooled
to the motional ground state and evenly distributed among L
different atomic ensembles labeled by a site index j. Within
each site (ensemble), the atoms are indistinguishable and
can occupy N different atomic levels with energies that are
site and level dependent. We consider the atoms sufficiently
far apart for interatomic interactions to be negligible. The
photon-matter interaction mediates atom number conserving
processes where the absorption and/or the emission of a
cavity photon results in an atom transitioning from level n
to levels n ± 1 within the same site, with a rate generally
dependent on the specific level n. The associated many-body
light-matter Hamiltonian reads

Ĥ = ω0â†â +
L∑

j=1

N∑
n=1

h( j)
n b̂†

n, j b̂n, j

+
L∑

j=1

N−1∑
n=1

[gn(b̂†
n+1, j b̂n, j â + H.c.)

+ λn(b̂†
n+1, j b̂n, j â

† + H.c.)], (1)

where â(†) is the bosonic annihilation (creation) operator of
the cavity photon; b̂(†)

n, j is the bosonic annihilation (creation)
operator on site j ∈ [1, L] and level n ∈ [1, N], with energy
splitting h( j)

n ; gn and λn are the single-particle photon-matter
couplings which controls rotating and corotating processes,
respectively. Tuning gn and λn enables us to pass from a
generalized multilevel Dicke model, when gn, λn �= 0, to the
multilevel Tavis-Cummings model, when λn = 0. In our pa-
per, we consider dynamics on timescales where dissipative
processes are subdominant compared to coherent evolution
(cf. Sec. VII A).

When the cavity is far detuned from the atomic transitions,
the photon does not actively participate in dynamics of Eq. (1)

but instead mediates virtual atom-atom interactions [89]. This
occurs in the limit ω0 � max{h( j)

n , gn
√
Na, λn

√
Na}, where

the factor
√
Na comes from the cooperative enhancement

given by the Na atoms [90,91]. The mediated interaction
results in an effective atoms-only Hamiltonian of the form

Ĥ =
L∑

j=1

N∑
n=1

h( j)
n �̂( j)

n,n −
N−1∑

m,n=1

[
χn,m�̂n+1,n�̂m,m+1

+ ζn,m�̂n,n+1�̂m+1,m + νn,m�̂n+1,n�̂m+1,m

+ νm,n�̂n,n+1�̂m,m+1
]
, (2)

where χn,m ≡ gngm/ω0; ζn,m ≡ λnλm/ω0; νn,m ≡ λngm/ω0.
For convenience, we have written the Hamiltonian in Eq. (2)
as a function of the operators

�̂( j)
n,m = b̂†

n, j b̂m, j, (3)

�̂n,m =
L∑

j=1

�̂( j)
n,m. (4)

The operators {�̂( j)
n,m} are generators of the SU(N)

group [92,93] and they obey the commutation relations
[�̂(i)

n,m, �̂
( j)
k,l ] = δi, j (�̂

(i)
n,lδm,k − �̂

( j)
k,mδn,l ), and (�̂( j)

n,m)† = �̂
( j)
m,n.

The regime we are mostly interested in is νn,m = ζn,m = 0,
which translates to λn = 0. In this limit, the Hamiltonian in
Eq. (2) turns into a spin-exchange interaction Hamiltonian
between SU(N) spins with rates {χn,m} and inhomogeneous
fields, h( j)

n . In the following, we set the collective spin-
exchange rate χNa = Na

∑N−1
n=1 χn,n as our energy scale, such

that the timescales of our results are independent of the num-
ber of atoms Na in the system. An implementation of the spin
exchange model in Eq. (2) is offered in Sec. VI.

Below, we consider both situations when the energies of
the atomic levels are homogenous and when they are inho-
mogenous. In the latter situation, we expect our results to
hold for various forms of inhomogenities, but we will, in
particular, focus on the situations when the atomic levels on
each site are in an evenly spaced ladder configuration with
spacing 
h j ≡ (h( j)

n+1 − h( j)
n ) sampled from a box distribution

with zero average and width W . In this case, the Hamiltonian
is spatially homogeneous for W = 0 and spatially inhomoge-
neous for W > 0. At W = 0, we can make precise predictions
of the dynamical responses as a function of the features of
the initial state and multilevel structure. Then, we show nu-
merically their robustness against many-body dynamics due
to inhomogenities (W > 0), in a fashion reminiscent of a
synchronization phenomenon.

Given an evenly spaced ladder configuration within each
site, the Hamiltonians in Eqs. (1) and (2) can, for certain
values of the couplings gn and λn, be written in terms of
the generators of a subgroup of SU(N). For instance, in the
N = 3 level case, if gn = g and λn = λ, the Hamiltonian
can be written as a function of the generators of a SU(2)
subgroup of SU(3). Specifically, only the SU(2) operators
Ŝ−

j = √
2(�̂( j)

1,2 + �̂
( j)
2,3), Ŝ+

j = (Ŝ−
j )†, and Ŝz

j = (�̂( j)
3,3 − �̂

( j)
1,1)

are required to represent the Hamiltonian and, as a conse-
quence, the dynamics can be more simply described by the
dynamics of these SU(2) spins. For instance, we recover the
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spin-1 Dicke model for λ = g and the spin-1 Tavis-Cummings
model for λ = 0 in Eq. (1). Since we aim to explore the impact
of genuine interactions between SU(N) spins, we fix gn and λn

such that the dynamics cannot be restricted to a subgroup of
SU(N) if not otherwise specified. An important exception is
the three-level case, where the system can enter in a chaotic
phase upon passing from interactions between SU(2) to SU(3)
spins (see Sec. IV B). We highlight that while the interactions
considered lead to nontrivial effects in the SU(N) DOFs, they
are not SU(N) symmetric.

B. Mean-field limit

Given a generic interacting Hamiltonian, the dynamics
of any n-point correlation function depends on higher order
correlation functions—a structure known as the BBGKY hi-
erarchy [94]. In fully connected systems, as in our case, the
hierarchy can be efficiently truncated starting from separable
states or, in other words, from a Gutzwiller-type ansatz [95]

|�〉 = ⊗L
j=1|ψ j〉 ⊗ |α〉, (5)

where |ψ j〉 is a generic state on the jth atom and |α〉 is
a bosonic coherent state describing the cavity field. Given
|�〉 in Eq. (5), the hierarchy can be truncated as 〈�̂( j)

n,mâ〉 =
〈�̂( j)

n,m〉〈â〉 and 〈�̂( j)
n,m�̂r,s〉 = 〈�̂( j)

n,m〉〈�̂r,s〉 up to 1/L correc-
tions [55,90,96–98]. Here and from now on, we assume all
expectation values are taken with respect to the state |�〉,
i.e., 〈ô(t )〉 ≡ 〈�|ô(t )|�〉. In the limit L → ∞, no additional
quantum correlations build up in time, hence the equation of
motions of one-point and two-point correlation functions are
exactly closed at all times and the state |�〉 remains an exact
ansatz of the many-body state.

Combining the large L limit and the nature of the inter-
action in the Hamiltonian, the dynamics of 〈�̂( j)〉 and 〈â〉
can be accordingly obtained in the mean-field limit of the
Hamiltonians in Eqs. (1) and (2). This is achieved replacing
the operators �̂

( j)
n,m and â(†) by classical SU(N) spins and

photon amplitude given by

�( j)
n,m = 〈

�̂( j)
n,m

〉
/(Na/L), a = 〈â〉/

√
Na, (6)

with Na/L the average number of bosonic excitations per site
and by substituting the commutators with Poisson brackets.
The same dynamics can be obtained starting from the Heisen-
berg equation of motions and then taking the expectation value
on the state |�〉 in Eq. (5) [93], truncating the hierarchy as
discussed above.

The hierarchy can be further truncated at first order in
the bosonic operators if the one-body reduced density matrix
�( j), with matrix elements �

( j)
n,m, is pure (Tr[(�( j) )2] = 1),

namely, there are no quantum correlations on a given site j.
For instance, if the state |ψ j〉 in Eq. (5) is a bosonic coherent
state on each level of site j, the matrix �( j) is pure and
straightforwardly factorized as �

( j)
n,m = 〈b̂†

n, j〉〈b̂m, j〉. The trun-
cation at first order in the bosonic operators well approximates
the full dynamics up to corrections which are suppressed [99]
in both the number of sites L and the occupation on each
site Na/L. Therefore, in the limit Na → ∞, the hierarchy
is exactly truncated at first order in the bosonic amplitudes
〈b̂(†)

n, j〉 and 〈â〉 at all times. In this limit, their dynamics can be

equivalently obtained in the classical limit of the Hamiltonians
in Eqs. (1) and (2) by replacing the bosonic operators b̂(†)

n, j and
â by the classical fields

bn, j = 〈b̂n, j〉/
√
Na/L, a = 〈â〉/

√
Na, (7)

and replacing commutators with Poisson brackets.
In the following sections, we will investigate the collective

dynamical response of multilevel atoms in both mean-field
limits. We will show that the dynamical response could be
highly susceptible to quantum correlations in the multilevel
atom case, while it is insensitive in the two-level case.

C. Initial states

In this paper, we derive general results which can be ap-
plied to any state of the form given in Eq. (5). As discussed in
Sec. II B, we distinguish two different classical limits, arising
in the large L limit, corresponding to the one-body reduced
density matrix �( j) on site j being pure or mixed, respectively.
For the sake of concreteness, we now present a few states
corresponding to the two cases discussed above. The first two
states are a bosonic coherent state and a SU(N) spin-coherent
state, both having no quantum correlations and a one-body
reduced density matrix that is pure. While the other is a
multimode Schrödinger cat state, whose one-body reduced
density matrix on a given site is mixed, reflecting the presence
of quantum correlations.

1. Coherent states

The most general bosonic coherent state |ψ j〉 on a given
site j reads

|ψ j〉 = exp(γ j · b̂†
j − H.c.)|0〉 ≡ |γ̃ j〉,

γ j ≡ (γ1, j, γ2, j, . . . , γN, j ),

b̂†
j ≡ (b̂†

1, j, b̂†
2, j, . . . , b̂†

N, j ), (8)

with γn, j ∈ C the amplitude of the bosonic coherent state on
the nth level and site j, so the average number of particles
per site is

∑N
n=1 |γn, j |2 = Na/L. We highlight that the state in

Eqs. (8) does not have an exact number of particles. Nonethe-
less, since the fluctuations of the number of particles are
subleading with respect to the mean in the limit we consider
(Na/L → ∞), the mean-field treatment is unaffected. Such
a state has a pure one-body reduced density matrix, and will
have an evolution captured by a mean-field limit characterized
by the classical variables bn, j and a.

2. SU (N) spin-coherent states

The second example of state with pure one-body re-
duced density matrix is given by the superposition: |ψ j〉 =∑N

n=1 γn, j b̂
†
n, j |0〉, which has one excitation per site. Once

again, in this case, the mean-field limit applies. Furthermore,
the choice to truncate to one particle per site is insensitive
of particles’ statistics: either a fermion or boson could be
the single particle occupying the site, as we further elaborate
in the concluding section, Sec. VII B. Such a state is the
single-particle limit of the more general Na/L particle SU(N)
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spin-coherent state [92] defined by

|ψ j〉 = 1√
(Na/L)!

(
N∑

n=1

γn, j b̂
†
n, j

)Na/L

|0〉, (9)

which again has a pure one-body reduced density matrix re-
flecting a lack of quantum correlations. Thus, the dynamics
of the classical variables bn, j and a perfectly describe the
dynamics of both the bosonic and SU(N) spin coherent states
in the limit of a large number of bosons Na. Below we will
present numerical results simulating these classical dynamics;
they can be interpreted as describing the evolution of either of
these two states. For the sake of simplicity, we will explicitly
refer to these states as coherent states.

3. Schrödinger cat states

To consider a state in which the full two-point correlations
of the bosons, �

( j)
n,m, must be considered, we add quantum

correlations on site j. This ensures that the one-body reduced
density matrix is not pure and cannot be written in the mean-
field approximation, �

( j)
n,m �= b∗

n, jbm, j . As an example, we
consider a state where each site is initialized in a multimode
Schrödinger cat state [100,101], which are the multimode
generalizations of entangled coherent states [102–104], given
by the superposition of two bosonic coherent states |γ̃ (m)〉 with
average occupation Na/L, defined in Eq. (8), with m = {1, 2}

|ψ j〉 = 1

D
(∣∣γ̃ (1)

j

〉 + ∣∣γ̃ (2)
j

〉)
. (10)

Here D is a normalization constant. If |〈γ̃ (1)
j |γ̃ (2)

j 〉| = 1, the
state in Eq. (10) reduces to the one in Eqs. (8). Instead,
if |〈γ̃ (1)

j |γ̃ (2)
j 〉| < 1, the one-body reduced density matrix is

mixed, reflecting the presence of quantum correlations on site
j (〈b̂†

n, j b̂m, j〉c ≡ 〈b̂†
n, j b̂m, j〉 − 〈b̂†

n, j〉〈b̂m, j〉 �= 0). We anticipate
that the collective dynamical response could be highly sus-
ceptible to quantum correlations in the multilevel atom case,
while they do not play a role in the two-level case. As an
instance, we discover the onset of chaos as |〈b̂†

n, j b̂m, j〉c| in-
creases in the N = 3 levels case (cf. Sec. IV B). We highlight
that quantum features of the state can only enter in initial
conditions since dynamics are incapable of building quantum
correlations in the mean-field limit (cf. Sec. II B).

III. CLASSIFICATION OF DYNAMICAL RESPONSES

The main purpose of this paper is to investigate and classify
the dynamical response of collective observables in multilevel
cavity QED systems in the long-time limit. Specifically, we
investigate the dynamics of the magnitude of the intralevel
average coherences, defined as |∑L

j=1 �
( j)
n,m|/L (for n �= m).

To this end, we formulate the dynamical reduction hypothesis,
which generalizes a similar procedure used for the integrable
SU(2) limits of Eqs. (1) and (2). The hypothesis conjectures
that the dynamics of collective observables can be captured by
the Hamiltonian dynamics of a few effective collective DOFs.
In the integrable case, the effective Hamiltonian has been used
to quantitatively predict the dynamical responses observed,
which include relaxation and persistent oscillations either pe-
riodic or aperiodic [56–66,105]. Despite lack of integrability,

FIG. 2. Sketch of Na atoms, each one hosting N levels (panels
on the side), distributed over L sites (black dots), interacting via
a common cavity field (red area). In the cartoon below, we show
the effective X -body system towards which the original many-body
system is attracted in the long time t � t∗. We show a single-body
effective model (X = 1), since it is the one explicitly considered
throughout our paper. We also show the internal structure of the
single site both in the original many-body system and in the effective
few-body description.

we still obtain in our case not simply relaxation but also the
persistent oscillatory responses present in the integrable case,
together with the possibility to develop chaos (see Fig. 3 for
example) [105–107]. Due to the generic nonintegrable nature
of multilevel systems, an exact procedure for extracting the
effective model is not available (see Ref. [51], where the
authors have attempted to extend the technique of the SU(2)
case to a SU(N)-symmetric interacting spin system).

Here, we conjecture that, if an effective model exists, it
is solely determined by the symmetries of the microscopic
many-body problem and the relevant effective DOFs. Once
the effective Hamiltonian is fixed, we show that the classifi-
cation of dynamical responses follows from the combination
of (1) the Liouville-Arnold theorem [108], which sets the cri-
teria to distinguish a regular from an irregular (likely chaotic)
regime, and (2) of the number of symmetries under which a
given observable of interest is not invariant. Analogously to
the integrable cased mentioned above, we offer a classifica-
tion of dynamical responses richer than the mere distinction
between desynchronization and synchronization.

A. Dynamical reduction hypothesis

In Sec. II B, we argued that, in the L → ∞ limit and for
an initial state of the form given in Eq. (5), the dynamics
of the cavity field and multilevel atoms are described by the
equations of motion generated from a classical Hamiltonian
composed of an extensive number (in the size L) of classical
SU(N) spins. The dynamical reduction hypothesis conjectures
that the dynamics of collective observables are effectively
described by a classical Hamiltonian composed of a finite
number, X , of effective SU(N) systems (cf. Fig. 2) or, in other
words, the emergent collective dynamics can be effectively
captured by a few-body macroscopic system. Specifically, we
conjecture that a fully connected many-body system with L
sites, each with local DOFs s j = {s j,1, s j,2, ...}, and classical
Hamiltonian H ({s j}L

j=1) will, after a sufficiently long time
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t � t∗ and in the thermodynamic limit L → ∞, possess an
X -site effective model describing the collective dynamics.
The hypothesis supposes that the effective model will have X
finite, even when L → ∞, and that the effective local DOFs
{̃s j}X

j=1 will be governed by a classical effective Hamiltonian

H̃ ({̃s j}X
j=1). Hence, to predict dynamics of a collective ob-

servable S(t ) = f ({s j (t )}L
j=1), we will assume the existence

of a function f̃ of the effective DOFs, which will effectively
reproduce the dynamics of S(t ). Note that, in general, f̃ is
not necessarily of the same functional form of f . We can then
compactly formulate the dynamical reduction hypothesis as

lim
L→∞

H
({s j}L

j=1

) t�t∗
−−→ H̃

({̃s j}X
j=1

)
,

lim
L→∞

S = f
({s j}L

j=1

) t�t∗
−−→ f̃

({̃s j}X
j=1

)
. (11)

The effective Hamiltonian H̃ is of the same functional form
in the integrable case [56,63,105], while it is not generally
expected to be so for nonintegrable systems [105]. Impor-
tantly, we assume that the effective Hamiltonian obeys the
same global symmetries as the many-body Hamiltonian.

In the following, we apply the dynamical reduction hypoth-
esis Eq. (11) to craft various dynamical responses associated
to the problem of synchronization in bosonic multilevel cavity
QED summarized in Fig. 1. We believe that our conjecture has
universal flavor and is applicable to several other settings, as
we elaborate further in the concluding section.

B. Classification of dynamical responses

We construct a classification of dynamical phases by con-
sidering the different dynamics collective observables can
display in the many-body system. In the case of cavity
QED, we consider the magnitude of the intralevel average
coherence |�n,m(t )| = |∑L

j=1 �
( j)
n,m(t )|/L with n �= m. These

observables can distinguish between cases when the atoms are
synchronized (|�n,m(t )| �= 0) or desynchronized (|�n,m(t )| =
0), and in the case of synchronization we distinguish four
dynamical responses.

Desynchronized phase:
(i) Phase I: In the long-time limit |�n,m(t )| → 0, as a re-

sult of classical dephasing processes in the microscopic model
due to inhomogeneities in the local fields.

Synchronized phases:
(ii) Phase II: |�n,m(t )| relaxes to a stationary nonzero

value.
(iii) Phase III: |�n,m(t )| displays self-generated Floquet

dynamics (i.e., periodic oscillations) characterized by a spec-
trum with well-resolved commensurate frequencies.

(iv) Phase IV: |�n,m(t )| displays aperiodic oscillations
characterized by a spectrum with well-resolved incommensu-
rate frequencies.

(v) Phase IV�: |�n,m(t )| displays chaotic oscillations expo-
nentially sensitive to small changes in the initial conditions
and characterized by a spectrum with multiple broad peaks.

While phases I and II are quite generic in the presence
of inhomogeneous dephasing, phases III, IV, and IV� are
examples of self-generated nonrelaxing responses in the ab-
sence of an external drive. As previously mentioned, the

dynamical responses from phase I to phase IV were already
observed in the integrable two-level case [56,59,60,77], while
the chaotic phase IV� is accessible only in nonintegrable
systems [107].

To predict and control when such phases occur, we use
the dynamical reduction hypothesis, and arguments based on
symmetry and the Liouville-Arnold theorem. The Liouville-
Arnold theorem [108] states that given a system with M DOFs
and Q conserved quantities, there exists a canonical trans-
formation through action-angle variables, such that Q actions
are constant, and Q angles evolve periodically at a frequency
imposed by the value of the corresponding conserved quantity
[108–110]. Thus, if 2Q � M, the dynamics is solely along
tori and the system is said to be classically integrable. If
instead 2Q < M, there will be (M − 2Q) DOFs which evolve
without any constraint and can, in principle, display chaotic
behavior. Notice that Q � 1 since the effective Hamiltonian
always obeys time translation symmetry such that the effective
energy is always a conserved quantity.

To apply this theorem to describe the different phases with
different effective models, we assume that an X site effec-
tive model has in total M DOFs. Phase I can be described
by an effective model with X = 0 sites, thus M = 0 DOFs,
since no effective degree of freedom is necessary to capture a
vanishing observable. In the microscopic models, the synchro-
nized phases generally occurs when the all-to-all coupling is
large enough with respect to the inhomogeneities in the local
fields, and it can be captured by an effective model with X � 1
sites, thus, M � 1 DOFs, since we need at least one DOF
for describing nontrivial behavior. Combining the number of
DOFs M, the number of symmetries Q, and the number of
symmetries under which the specific observable is invariant,
it is possible to predict the specific synchronized dynamical
response. We show that, in SU(N) systems, an effective single-
site Hamiltonian (X = 1) is already sufficient for observing all
the dynamical responses from phase I up to phase IV�. This
is in contrast to the SU(2) integrable case in which an X -body
effective Hamiltonian is necessary to capture phase (X + 1)
[56,59,60,66,77].

To apply this classification to multilevel cavity QED, we
must identify the global symmetries present in such systems
and the number of DOFs that could occur in the effective mod-
els. We identify the global symmetries and number of DOFs
in Sec. III C, present a few examples of effective models in
Sec. III D, and give the predictions for the allowed dynamical
responses for different N-level systems in Sec. III E.

C. Counting DOFs and symmetries

Given a generic product state, as in Eq. (5), we conjecture
an effective classical model composed of effective DOFs de-
scribing the matter and the cavity field separately. We assume
that the effective cavity field is given by a bosonic amplitude
ã specified by two real numbers. As the detuning from the
atomic transitions increases, the contribution from such DOFs
becomes suppressed, and consequently can be neglected in the
far detuned limit [66]. The effective matter’s DOFs are either
SU(N) spins or bosonic amplitudes, depending on whether the
collective observables �n,m(t ) can be factorized or not.
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If �n,m(t ) cannot be factorized, the emergent effective clas-
sical model is composed of X SU(N )-spins with elements
�̃(k)

n,m where n, m ∈ [1, N] and k ∈ [1, X ]. Such an effective
model has M = X × N2 matter DOFs, corresponding to the
N2 matrix elements for each effective spin �̃(k). Since the
effective DOFs are SU(N) spins, the number of independent
parameters is reduced due to the Casimir charges

∑N
n=1 �̃(k)

n,n

and
∑N

n,m=1 �̃(k)
n,m�̃(k)

m,n, which are the conservation of the num-
ber of bosons and length of the SU(N) spin on each site k. As
a consequence, the number of independent matter DOFs is
M = X × (N2 − 2).

Instead, if �n,m(t ) can be factorized, then the effective
model in the SU(N) spins further simplifies and involves
only X × N effective bosonic amplitudes b̃n,k with k ∈ [1, X ]
and n ∈ [1, N]. In this case, the number of matter DOFs is
M = X × 2N , being each bosonic amplitude specified by two
real parameters. Assuming that the effective SU(N) spins and
effective bosons are related analogously to the microscopic
ones via �̃k

n,m = b̃∗
n,kb̃m,k , the two Casimir charges defined

above are still conserved. In this case, they are dependent one
from the other and can be linked to the local U(1) symmetry
b̃n,k → eiφk b̃n,k of the bilinears b̃∗

n,kb̃m,k . Since the number of
bosons is conserved, the corresponding conjugate variable, the
sum of the phases of the bosonic amplitudes, is irrelevant and
the number of nontrivial matter DOFs is M = X × (2N − 2).

Once the effective DOFs are identified, we can construct
the effective Hamiltonian which governs their dynamics im-
posing the same symmetries of the many-body Hamiltonian
in Eqs. (1) and (2) in the classical limit. The first symmetry
is time translation invariance, which implies the conservation
of the energy, while the second is a global U(1) symmetry
present solely in absence of corotating processes. Specifi-
cally, for λn = 0 the Hamiltonian in Eq. (1) is invariant under
(�n,n+1, a) → (eiθ�n,n+1, eiθ a) and thus conserves the num-
ber of total excitations, which in the two-level case is [(�2,2 −
�1,1)/2 + |a|2] while in the generic multilevel case is a linear
combination of {�n,m} and |a|2 [88,111]. Analogously, for
νm,n, ζn,m = 0 the atom-only model in Eq. (2) is invariant
under �n,n+1 → eiθ�n,n+1, which leads to the conservation of
the number of atomic excitations (e.g., (�2,2 − �1,1) in the
two-level case).

Combining the effective DOFs and symmetries, we can
now propose a possible set of effective models and predict the
dynamical responses of collective observables via arguments
based on symmetry and the Liouvile-Arnold theorem.

D. Effective models

To make concrete the above picture, here we present a
set of possible effective models for multilevel cavity QED
systems described by Eq. (1). As mentioned above, an exact
derivation is not available in the generic multilevel case (see
Refs. [56,63,105], where the effective few-body Hamiltonian
can be derived from the Richardson-Gaudin integrability of
the SU(2) case). Nonetheless, considering the initial state to
be a generic product state [cf. Eq. (5)], the effective DOFs are
SU(N) spins, and the simplest effective theory is given by the
microscopic Hamiltonian in Eq. (1) with L = 1 (thus, X = 1

effective sites)

H̃ (�̃n,m, ã) = ω̃0̃a∗̃a +
N∑

n=1

h̃n�̃n,n +
N−1∑
n=1

[̃gn(�̃n+1,ña + H.c.)

+ λ̃n(�̃n+1,ña∗ + H.c.)]. (12)

Analogously, in the far-detuned cavity mode limit described
by the Hamiltonian in Eq. (2), we propose the effective Hamil-
tonian

H̃e(�̃n,m) =
N∑

n=1

h̃n�̃n,n −
N−1∑

m,n=1

[χ̃n,m�̃n+1,n�̃m,m+1

+ ζ̃n,m�̃n,n+1�̃m+1,m + ν̃n,m�̃n+1,n�̃m+1,m

+ ν̃m,n�̃n,n+1�̃m,m+1]. (13)

Additionally, if the collective observables �̃n,m can be factor-
ized, we conjecture effective models for the boson DOFs of
the form

H̃ (̃bn, ã) = H̃ (�̃n,m = b̃∗
nb̃m, ã), (14)

H̃e (̃bn) = H̃e(�̃n,m = b̃∗
nb̃m), (15)

where we conjecture that the effective one-body reduced den-
sity matrix factorizes as �̃n,m = b̃∗

nb̃m. These effective models
are trivially exact when the Hamiltonians in Eqs. (1) and (2)
are spatially homogeneous for h( j)

n = hn at W = 0. Indeed,
at W = 0 the many-body Hamiltonians trivially reduces to a
few-body one due to the permutation symmetry under swap-
ping of any pair of sites. Despite their apparent simplicity,
the effective models here introduced allow us to obtain quan-
titatively the whole set of dynamical responses described in
Sec. III B. Furthermore, we show in Sec. V that these models
describe correctly the dynamics of collective observables also
at moderate inhomogeneity, with a quantitative matching in
the case of SU (3) spin-exchange interactions.

E. Classification for multilevel cavity QED

We are now in the position to discuss the possible dy-
namical phases for the X = 1 effective models introduced
in Sec. III D for different number of levels N . As already
anticipated, we consider as collective variable the magnitude
of the intralevel average coherences, which in the effective
models are given by |�̃n,m(t )| with n �= m. The results of this
section are summarized in Table I.

For a generic multilevel atom with N � 4 levels, the num-
ber of DOFs M is always larger than the 2Q � 4 symmetries
identified. Thus, generically, the effective model can show
aperiodic oscillations (phase IV) and may even display chaotic
behavior (phase IV�).

1. N = 2 level atoms

The case of N = 2 levels has been well studied
[96,112,113] and in this section we discuss how our ap-
proach reproduces known results. The number of matter DOFs
is M = 2, either considering an effective bosonic model or
with SU(2) spins. Thus, it is not possible to access different
dynamical responses upon introducing quantum correlations
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TABLE I. Summary of the dynamical responses of the mag-
nitude of the intralevel average phase coherence captured by the
effective Hamiltonians in Eqs. (12) and (13). The number of matter
DOFs is either (2N − 2) or (N2 − 2), depending on whether �̃ can
be factorized or not, respectively (cf. Sec. III C). If the cavity field
detuning ω̃0 is finite, we need two additional DOFs to describe the
modulus and phase of the actively participating cavity field. The
presence of a U(1) symmetry increases the number of conserved
quantities Q by 1. For the N = 3 spin exchange model (last row),
the system can display from phase I to either phase III or phase IV�,
depending on whether �̃ can be factorized or not, respectively. In all
cases, all the responses with less order than the one reported could be,
in principle, accessed tailoring the initial state and the parameters of
the Hamiltonian. The same table holds in the case the Hamiltonian is
spatially homogeneous, since the effective models are trivially equal
to the microscopic ones (cf. Sec. IV).

Q N = 2 N = 3 N � 4

g̃, λ̃ �= 0 and ω̃0 finite 1 IV� IV� IV�

g̃, λ̃ �= 0 and ω̃0 → ∞ 1 III IV� IV�

λ̃ = 0 and ω̃0 finite 2 III IV� IV�

λ̃ = 0 and ω̃0 → ∞ 2 II III or IV� IV�

in the mean-field limits considered. If the cavity field ac-
tively participates to dynamics, we need to keep track of two
additional DOFs given by the real and imaginary part of its
amplitude.

Let us consider the two-level system with a photon actively
participating in dynamics. We can identify the two regimes
corresponding to either the generalized Dicke model (̃λ, g̃ �=
0) or the Tavis-Cummings model (̃λ = 0). Both models have
M = 4 DOFs, but a different number of conserved quantities.
The generalized Dicke model conserves only the energy be-
yond the total spin (which we already taken into account),
opening the option of chaos (phase IV�), as seen, for instance,
in Refs. [114–122]. Instead, the Tavis-Cummings model has
one additional conserved charge (total number of excitations),
is therefore integrable, and in fact shows regular dynamics
[112,123–125]. Under change to action-angle variables, the
dynamics are seen as the evolution on a three-tori, with three
independent frequencies. Thus, a general observable might
show phase-IV oscillations. Nevertheless, the magnitude of
the mean coherence |�̃1,2(t )| only shows periodic oscillations
(phase III) since it is invariant under two of the symmetries,
specifically the U(1) symmetries (�̃1,2, ã) → (eiθ �̃1,2, eiθ ã)
and b̃n → eiθ b̃n, with n = {1, 2}, linked to the conservation of
the total number of excitations and spin, respectively.

In the limit where the cavity mode is far detuned from
the atomic transitions, the Tavis-Cummings model becomes
a simple spin-exchange model with M = 2Q = 2 (the conser-
vation of energy and of the total number of excitations are
dependent). Since this model can only have two independent
frequencies corresponding to the precession of the U(1) angle
variables, the observable |�̃1,2(t )| is constant, yielding phase
II. If the additional U(1) symmetry is broken, one recovers
the Lipkin-Meshkov-Glick (LMG) model, and the observable
|�̃1,2(t )| can again oscillate with a single frequency and dis-
play phase III, as it is generically observed [99,126–130].

2. N = 3 level atoms

In the three-level case, M depends on whether the model
reduces to a bosonic model or to a SU(3) spin system. In
the bosonic case, the atomic sector is described by M =
2N − 2 = 4 real DOFs. In the generic SU(3) case, the mat-
ter is described by M = N2 − 2 = 7 DOFs. If the photon
is an active DOFs, its additional DOFs lead to M � 6
in either the bosonic or spin model, and since Q � 2 for
any set of parameters, the dynamics can enter the chaotic
phase IV�.

The case of the spin-exchange model, corresponding to
ζ̃n,m = ν̃n,m = 0 in Eq. (13), is perhaps the most interesting,
since depending on whether the model reduces to a bosonic
model or a SU(3) spin model, the dynamics can be either in
phase III or phase IV (possibly IV�). Indeed, the three-level
bosonic model H̃e (̃b) has M = 4 DOFs and Q = 2 conserved
charges, corresponding to the total energy and number of
excitations (�̃3,3 − �̃1,1), and is therefore integrable. Again,
two of the frequencies are absorbed in the invariance of |�̃n,m|
under the two U(1) symmetries, and thus all oscillations must
be periodic, yielding phase III. If instead the initial state
has �̃nm �= b̃∗

nb̃m, we must consider the SU(3) spin model
H̃e(�̃n,m), and the extra number of DOFs leads to M > 2Q =
4, allowing the dynamics to be either phase IV or phase IV�. If
ζ̃n,m, ν̃n,m �= 0, the system loses a U(1) symmetry, associated
to the conservation of (�̃3,3 − �̃1,1), and consequently can
display chaotic behavior for both bosons or SU(3) spins.

IV. HOMOGENEOUS SYSTEMS

In this section, we consider the homogeneous case (W =
0) of Eq. (2), where the dynamical reduction hypothesis is true
due to the permutation symmetry, and we test the predictions
of Table I. In Sec. IV A, we consider permutation invariant
coherent states, discussing the role of the interactions. In
Sec. IV B, we discuss the consequences of classical and quan-
tum correlations in the initial state, focusing on the N = 3
level spin-exchange Hamiltonian, where we observe the onset
of a chaotic phase.

For W = 0, both the Hamiltonians in Eqs. (1) and (2)
are permutationally invariant under swapping of any pair
of sites, and they can be written as a function of the
collective operators in Eq. (4). Thus, we can immediately
achieve the thermodynamic limit L → ∞ considering a single
large SU(N) spin. As a consequence, in the mean-field limit
we exactly obtain the classical Hamiltonians H̃ (�̃n,m, ã) or
H̃e(�̃n,m), depending on whether the cavity field is an active
DOF or not, respectively. Here, unlike in the general case,
the effective DOFs trivially relate to the original collective
DOFs being �n,m = f̃ (�̃n,m) = �̃n,m, and the parameters of
the effective Hamiltonians are equal to the original ones (e.g.,
ω̃0 = ω0). As discussed in Sec. II B, the choice of reducing
the model to spin DOFs, i.e., H̃e(�̃n,m), or to bosons, H̃e (̃bn),
depends only on the purity of the effective one-body reduced
density matrix �̃, i.e., whether its elements �̃n,m can be factor-
ized as the product of bosonic operators. In the next sections,
we investigate both scenarios and confirm the prediction sum-
marized in Table I.
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FIG. 3. Left plot: Dynamics of the magnitude of the average
phase coherence |�1,2(t )| in the homogeneous limit (W = 0) for
the N-level spin-exchange model [Eq. (2) with νn,m = ζn,m = 0] with
N = {2, 3, 4}. The initial state is a permutation invariant (in space)
coherent state with the same average occupation on each level n ∈
[1, N]. The couplings χn,m are chosen such that we have genuine
SU(N) spins. For N = 2, |�1,2(t )| is constant (phase II); for N = 3,
|�1,2(t )| displays periodic oscillations (phase III); for N = 4, there
are not enough conserved quantities to constrain the space of acces-
sible states and therefore |�1,2(t )| displays oscillations exponentially
sensitive to small changes in initial conditions (phase IV�). Right
plot: Magnitude of the Fourier spectrum of |�1,2(t )|. For N = 2,
the only nonzero component is at ω = 0, being |�1,2(t )| a constant;
for N = 3, the spectrum has two well-resolved peaks; for N = 4,
there are multiple broad peaks. Due to the permutation invariance
under swapping of any pair of sites, the thermodynamic limit can
be achieved by simulating a single site (L = 1) in the microscopic
model in Eq. (2) or, equivalently, the effective model of Eq. (15).

A. Homogeneous coherent states

We set as the initial state a permutationally invariant (in
space) coherent state with equal average occupation on each
level [γn, j = γ in Eqs. (8)]. Since the state is homogeneous
in space, the average one-body reduced density matrix is
pure and can be factorized in the bosonic amplitudes as
�m,n = b∗

mbn. Therefore, the effective model describing col-
lective observables is either H̃ (bn, a) or H̃e(bn) (notice that
we interchanged the effective bosonic amplitudes with the
microscopic ones being equal in this case). We show results
only in the case where the photon is not an active DOF.
Generally, we expect that an active photon leads to a change of
dynamical response from phase Y , displayed in its absence, to
phase (Y + 1), due to the additional DOFs [66]. Nonetheless,
this effect is suppressed as the detuning of the cavity field
frequency with respect to the atomic transitions increases,
making our results approximately valid also for large but finite
detunings.

In Fig. 3, we show the dynamics of the magnitude of the
phase coherence |�1,2| in the spin-exchange model [Eq. (2)
with νn,m = ζn,m = 0] in the homogeneous limit (W = 0) for
different number of atomic levels N ∈ {2, 3, 4}. As predicted
in Table I, upon changing the number of levels, the system can

display markedly different dynamical responses: for N = 2,
|�1,2| displays phase II; for N = 3, |�1,2| displays phase III;
for N = 4, |�1,2| displays chaotic behavior (phase-IV�). We
also observe the onset of aperiodic oscillations (phase IV)
in the N = 4 case for different sets of parameters and initial
states. This is a simple signature of the importance of con-
sidering multilevel atoms, although the model has all-to-all
interactions.

B. Chaos induced by quantum correlations

In this section, we discuss the impact of quantum corre-
lations in the initial state in the spin-exchange model [Eq. (2)
with νn,m = ζn,m = 0]. We show that the subsequent dynamics
is susceptible to quantum correlations, with particularly strik-
ing effects in the SU(3) case, where we can craft a specific
dynamical response by manipulating the initial state, from
phase III up to phase IV� (chaos).

We set on each site the same multimode Schrödinger
cat state [cf. Eq. (10)]. As discussed in Sec. II C, when
|〈γ̃ (1)|γ̃ (2)〉| < 1, the one-body reduced density matrix is
mixed, the phase coherences do not factorize (�n,m �= b∗

nbm),
and we have to keep track of all the bilinears �n,m. Thus,
the effective model passes from the one in the bosonic DOFs
defined in Eq. (15) to the one in the SU(N) spins defined in
Eq. (13). Due to quantum correlations, the number of effective
DOFs passes from 2N to N2 and the constraint imposed by
the conserved quantities no longer ensures classical integra-
bility for N > 2. This is particularly striking in the SU(3)
case, where quantum correlations in the initial state can lead
to a transition from a regular regime to a chaotic one. For
this reason, we focus on the SU(3) case in the following.
Specifically, we consider as initial state a family of multimode
Schrödinger cat state [cf. Eq. (10)] parameterized via a param-
eter p ∈ [0, 1/3] as

γ (1) =
√
Na

L
· (

√
1/3 + p,

√
1/3,

√
1/3 − p),

γ (2) =
√
Na

L
· (

√
1/3,

√
1/3 − p,

√
1/3 + p). (16)

The overlap |〈γ̃ (1)|γ̃ (2)〉| is exponentially suppressed both in
p and Na/L, so 〈γ̃ (1)|γ̃ (2)〉 = 0 for any p > 0 in the limit
Na/L → ∞. We quantify quantum correlations by the con-
nected two-point functions (�n,m − b∗

nbm). Given the state in
Eq. (16), the connected two-point functions are null at p = 0
and increase polynomially with p. As a consequence, the
number of effective DOFs M needed is expected to increase
with p. Based on our classification, we thus expect a change of
the collective dynamical response displayed. This is manifest
looking at the Fourier spectrum of |�1,2| [cf. Fig. 4(a)], where
as p increases we observe a crossover from a regime with
few commensurate peaks (phase III) to a regime with multiple
incommensurate one (phase IV), analogous to period doubling
phenomena, and eventually the onset of chaos (phase IV�) for
p � p�. The value p� generally depends on the parameters
of the Hamiltonian. We locate p� computing the maximum
Lyapunov exponent σ , which is the largest exponential rate at
which nearby trajectories diverge and it is finite and positive
in chaotic system and zero for regular Hamiltonian dynamics
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FIG. 4. Dynamical response in the N = 3 level spin-exchange
model starting from a multimode Schrödinger cat state [cf. Eq. (16)]
as a function of initial quantum correlations parameterized via p. We
set Na → ∞, g1/g2 ≈ 2, and W = 0. (a) Magnitude of the Fourier
spectrum of the magnitude of the average coherence |�1,2| (the
other |�n,m| behaves similarly) as a function of p, which displays a
crossover from few commensurate peaks (phase III) to a regime with
multiple incommensurate ones (phase IV), and eventually signals
the onset of a chaotic phase (phase IV�). (b) Maximum Lyapunov
exponent σ/(χNa) as a function of p, which enables us to locate
the transition from a regular regime to a chaotic one at p� ≈ 0.3.
(c) Dynamics of |�1,2(t )| starting from three nearly sampled initial
states at two different values of p ≈ {0.299, 0.306} [marked in (b)],
showing exponential sensitivity to changes in initial conditions in
phase IV�.

[131,132]. We find p� ≈ 0.3 for g1/g2 ≈ 2 [cf. Fig. 4(b)]. We
refer to Appendix A for the details of the calculation of the
Lyapunov exponent and p�.

We highlight that the interactions between SU(3) spins
are an essential ingredient for observing chaos. Indeed, for
g1 = g2 (and thus χ1,1 = χ2,2 = χ1,2), dynamics take place in
a SU(2) subgroup of SU(3), thus the number of DOFs reduces
and there cannot be chaos as a consequence of the Arnold-
Liouville theorem. While deep in the SU(3) regime we have
chaos for any p � p�, instead near the SU(2) limits we observe
regions in p of chaotic behavior embedded in regular ones
(specifically, phase IV). In Appendix B, we provide details
on the Lyapunov exponent as a function of p and the ratio
g1/g2, passing from the SU(2) (g1 = g2) to the SU(3) spin
case (g1 �= g2 �= 0).

In the absence of interference effects (〈γ̃ (1)|γ̃ (2)〉 = 0), as
it is for any p > 0 in the limit Na/L → ∞ considered, the
equations of motion of the collective observables �n,m are the
same starting either from the Schrödinger cat state in Eq. (10)
or from a state with half sites in the state |γ̃ (1)〉 and the other
half in the state |γ̃ (2)〉. In this context, p effectively controls

the ‘sharpness’ of a ‘kink’ in the initial spatial configuration
of the SU(3) spins, in analogy with domain walls in the SU(2)
case [77]. The primary difference is that in Ref. [77] it is
only possible to generate phase III by considering an inho-
mogenous configuration of the local fields. Specifically, they
consider a configuration such that the local fields are positive
in half the sites and negative in the other half, and initializing
the z component of the spins along their corresponding local
field, which is equivalent to a spatial kink. In analogy, we
can notice that embedding a Schrödinger cat state is similar
to the insertion of an internal quantum kink: the word quan-
tum highlights the presence of multiparticles entangled states,
while kink refers to the phase-space representation of the
state, which would be given by two coherent states pointing
in opposite directions, but now in the internal Hilbert space of
the atom.

The sharp feature in the Lyapunov exponent as a function
of p in Fig. 4(b) looks similar to a first-order phase transition.
A field theory investigation of this phenomenon is ongoing
and it represents a natural and fruitful direction of outreach of
our results.

C. Chaotic seeds in initial states

We now explore the option to induce a chaotic phase by
initializing a fraction of the sites in a Schrödinger cat state,
while keeping the other sites in a coherent state. We con-
sider |ψcat〉 ∼ (|γ̃ (1)〉 + |γ̃ (2)〉) as defined in Eq. (16) with
p ∈ [0, 1/3]. We initialize a fraction F ∈ [0, 1] of sites in
|ψcat〉 such that the initial state is

|�〉 = ⊗�FL�
j=1 |ψcat〉 ⊗L

j=�FL�+1 |γ̃ (1)〉, (17)

where �x� returns the least integer greater than or equal to
x. The region initialized in |ψcat〉 could favor phase IV�,
while the region initialized in a coherent state would favor
a regular dynamical response (phase III). We observe that the
chaotic region proliferates and drives the whole system into
the chaotic phase IV� for F � F �, where F � depends on the
details of the initial state and parameters of the Hamiltonian.
For the state in Eq. (17), F � ≈ 0.5 at p ≈ 1/3. In Appendix C,
we offer a more detailed analysis.

V. EFFECTS OF INHOMOGENEOUS FIELDS

Upon introducing inhomogeneous local fields (W > 0),
the permutation symmetry is broken and the Hamiltonians
in Eqs. (1) and (2) cannot be straightforwardly written as
a function of collective DOFs. Regardless, the dynamical
responses observed in the homogeneous case (W = 0) are
generally robust against finite inhomogeneity (W > 0), and
we provide numerical evidence that the simple effective
Hamiltonians defined in Sec. III D describe quantitatively the
many-body collective dynamics of the full model in a regime
of moderate inhomogeneity W . In particular, we focus on the
spin-exchange Hamiltonian in Eq. (2) for νn,m = ζn,m = 0:

H =
L∑

j=1

N∑
n=1

h( j)
n �( j)

n,n −
N−1∑

m,n=1

χn,m�n+1,n�m,m+1. (18)
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FIG. 5. Dynamics of the magnitude of the average phase co-
herence |�m,n(t )| in the N = 3 level spin-exchange model at fixed
g2/g1 ≈ 10−2 and W/(χNa) = 0.1. The initial state is a permuta-
tionally invariant (in space) coherent state. The continuous lines are
obtained simulating the full many-body dynamics with L = 104 sites.
The dashed black lines are obtained simulating the effective model
in Eq. (13) with parameters numerically obtained by the optimization
of the cost function in Eq. (19).

To demonstrate the validity of the effective Hamiltonian,
we numerically identify the parameters of the simple ansatz
in Eq. (13) that reproduce the dynamics of collective observ-
ables. Our procedure can be summarized as follows:

(i) We compute the time evolution of the collective ob-
servables �n,m(t ) from the full many-body dynamics obtained
via the Hamiltonian in Eq. (18).

(ii) We set the initial conditions {�̃n,m(t = 0)} and give a
numerical seed to the parameters {̃hn, χ̃n,m, ζ̃n,m, ν̃n,m} in the
effective model in Eq. (13).

(iii) We compute the time evolution of the collective ob-
servables using the effective model in Eq. (13).

(iv) We vary the initial conditions and effective Hamil-
tonian parameters to minimize the average norm-1 distance
between �(t ) computed in (i) and �̃(t ) computed using the
effective model in (iii), i.e., we set as cost function

ε1 = 1

T

∫ T

0

N∑
n,m=1

∣∣�̃n,m(t ) − �n,m(t )
∣∣ dt . (19)

In Appendix D, we discuss the details of steps (ii) and (iv).
Since the dynamical reduction hypothesis has been ex-

tensively demonstrated to hold exactly for two-level atoms
through integrability [56,63,105], we focus on the N = 3 level
case. In Fig. 5, we show the results obtained in the spin-
exchange model at W/(χNa) = 0.1 by simulating the full
many-body dynamics given by Eq. (18) (continuous line). We
initialize the system in a permutation invariant coherent state
[cf. Eqs. (8)] which displays phase III at W = 0, and we con-
sider photon-matter couplings g1 �= g2, so χ1,1 �= χ2,2 �= χ1,2

in Eq. (18). The black dashed lines are obtained from the nu-
merically optimized single-body effective Hamiltonian. The
dynamics of collective observables obtained via the effective
Hamiltonian match well the dynamics obtained via the full
many-body mean field Hamiltonian; this suggests not only

that the dynamical response observed in the homogeneous
case is robust but also that the dynamical reduction hypothesis
holds at finite W .

Due to exponential sensitivity to initial conditions, the
procedure described above does not converge with high
enough accuracy in the SU(3) system in the chaotic phase of
Sec. IV B, which, however, persists also for weak inhomogen-
ities.

A. Robustness of dynamical responses to inhomogeneities

Inhomogeneities in the local fields are generally expected
to have an impact on the dynamics of collective observ-
ables. One could argue that for W/(χNa) � 1 the local fields
{h( j)

n } will dominate dynamics, and phase coherences would
be washed out (phase I). Here, we explore the dynamical
responses at moderate inhomogeneity in the spin-exchange
Hamiltonian of Eq. (18) for N = 3 and N = 4 level atoms. In
the N = 3 level case, we initialize a multimode Schrödinger
cat state on each site for which the dynamical response is
chaotic (phase IV�) at W = 0. On the contrary, in the N = 4
level case, we consider a coherent state for which the dynam-
ical response is aperiodic (phase IV) at W = 0. In both cases,
|�n,m| displays dynamical responses different from phase I
and phase II (relaxation) for W/(χNa) � 1.

First, let us consider the N = 4 spin-exchange model in
Eq. (18). In Fig. 6, we show the dynamics of |�2,3| for differ-
ent values of inhomogeneity W/(χNa). We fix as the initial
condition a permutation invariant (in space) coherent state
with different amplitudes on each level. The intralevel phase
coherences |�n,m| displays phase IV up to a finite value of
inhomogeneity W/(χNa). Upon increasing W/(χNa), |�n,m|
displays phase III, phase II, and eventually phase I. The differ-
ent dynamical responses are divided by regions (not shown in
Fig. 6) where the distinction between the different dynamical
responses becomes more blurry.

Similarly, in the SU(3) case, the dynamical response gen-
erally passes from phase Y to phase (Y − 1) as W/(χNa)
is increased (at fixed initial state), and with the dynamics
eventually entering phase I due to the dominant inhomoge-
neous local fields (bottom panels in Fig. 7). Instead, as initial
quantum correlations in the initial state increase with p, the
dynamical response generally passes from phase Y to phase
(Y + 1) (top panels in Fig. 7). Additionally, we highlight that
the dynamical responses are generally robust against small
breaking of the permutation symmetry in the initial state.

The robustness of the various dynamical responses against
inhomogeneous local fields for W > 0 can be ascribed to the
many-body gap ∝ χNa that suppresses local spin flips and
favors spin alignment. This mechanism has been shown to
protect phase coherence in the spin-exchange model between
SU(2) spins [18,50,133] and is likely present also in our N-
level case. As W increases, this many-body gap protection
is less effective and dephasing processes between the SU(N)
take over. As a result, within the framework of the dynamical
reduction hypothesis, the number of effective sites required to
describe dynamics is reduced and accordingly the dynamical
responses change.

For instance, in the SU(4) case (cf. Fig. 6), at moderate in-
homogeneity the system has M > 2Q effective DOFs, which
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FIG. 6. Dynamics of the magnitude of the average phase coher-
ence |�2,3(t )| in the N = 4 level spin-exchange model for χ1,2 �=
χ2,3 �= χ3,4. The initial state is a permutation invariant (in space)
coherent state. As W/(χNa) increases, the system displays different
dynamical responses, passing from phase IV to phase III, then to
phase II and eventually to phase I. The different phases are sepa-
rated by crossover regions where the dynamical responses cannot
be sharply identified (not shown here). In the inset, we show the
magnitude of the Fourier spectrum in the late time dynamics. The
results shown are obtained with L = 104 sites and are not appreciably
affected upon increasing L.

lead to to phase IV observed in the W = 0 case. As W be-
comes sizeable, dephasing starts to affect dynamics and, since
M � 2Q, the system displays phases III, II, and eventually I,
upon increasing the degree of inhomogeneity. The effects of
dephasing are apparent in the Fourier spectrum of |�n,m(t )|
(cf. inset of Fig. 6), where the various Fourier components are
depleted as W increases until the whole spectrum becomes flat
in phase I. Similarly, in the SU(3) case, inhomogeneity leads
to a loss of effective phase-space, a reduction of the effective
DOFs and, correspondingly, leads to a loss of chaos (the
Lyapunov exponent vanishes). Along the same argument, the
number of effective DOF M increases as initial correlations
in the initial state increase, thus the system could enter in a
regime with different dynamical responses and eventually dis-
play chaotic behavior, as observed in the homogeneous case
of Fig. 4. We highlight that the dynamical response displayed
does not necessarily have to pass smoothly from phase Y
to phase (Y ± 1), but there can be a jump, as in the SU(3)
case where phase IV turns into phase I (see Fig. 7), without
displaying phases III and II. This has been also reported in the
integrable SU(2) case [77].

VI. EXPERIMENTAL IMPLEMENTATION

A possible experimental scheme to implement the cou-
plings of Hamiltonian Eq. (2) is sketched in Fig. 8. Ensembles
of Na/L atoms are trapped at L fixed positions and collec-
tively coupled to a single mode of a high finesse optical cavity
with resonance frequency ωc. At the same time, the atoms
are subject to a multifrequency laser field. The atoms are
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0.3

III

(b) |Σ1,3|
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p = 0.32

0.0
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(d) |Σ1,3|
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FIG. 7. Dynamical response in the N = 3 level spin-exchange
model [Eq. (18)] with inhomogeneity W/(χNa) and g1/g2 ≈ 2
(χ1,1 �= χ1,2 �= χ2,2), initializing a multimode Schrödinger cat state
parameterized by p [cf. Eq. (16)] on each site. We focus on |�1,3|;
the other phase coherences behave similarly. In the top panels,
we show the magnitude of the Fourier spectrum and dynamics of
|�1,3|, starting from two close-by initial states, changing p at fixed
W/(χNa) = 0.08. Instead, in the bottom panels we change W/(χNa)
keeping p = 0.32 fixed. As p increases, and W/(χNa) is fixed, we
can infer from the Fourier spectrum in (a) crossover from a regime
with well-resolved peaks with commensurate frequencies (phase III)
to multiple peaks with incommensurate frequencies (phase IV) and
eventually to spectrum with multiple broad peaks typical of chaotic
dynamics (phase IV�). In (b), we show three examples of the different
dynamical responses at p = {0.15, 0.299, 0.32} (marked in the plot
of the Fourier spectrum). As W/(χNa) increases, the system passes
from phase IV� to phase IV and eventually phase I. In the (d) panel,
we show the dynamics at W/(χNa) = {0.5, 1.8}, corresponding to
phases IV and I (marked in the plot of the Fourier spectrum), respec-
tively. The results shown are obtained with L = 104 sites and are not
appreciably affected upon increasing L.

assumed to have a manifold of ground-state sublevels which
can be coupled using Raman transitions. If one leg of such a
Raman transition is driven by a classical field while the second
leg is coupled to the resonator mode, cavity-assisted Raman
transitions can be implemented [20,37,38]. In a microscopic
description, a photon from the laser field is scattered into the
cavity, while the internal state of an atom in one of the en-
sembles is changed. The photon is delocalized over the cavity
mode and can subsequently drive a second Raman transition
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(a) (b)

FIG. 8. Suggested experimental implementation. (a) Ensembles
of 3-level atoms in L traps (black dots) are coupled to a single
mode of an optical cavity (red) and transversely illuminated by a
two-frequency laser field (blue, green). (b) The applied magnetic
field B leads to a non-degenerate atomic level splitting allowing to
selectively drive cavity-assisted Raman transitions. Coupling via the
transverse laser fields (the cavity) are shown as solid (wiggly) arrows.
If additional frequency components (grey arrows) are introduced, co-
and counter-rotating terms can be engineered.

in another atomic ensemble. In this process, the photon is
absorbed by an atom and then emitted into the driving laser
field via bosonic stimulation.

As an example, we consider 87Rb atoms, where the
F = 1 ground-state hyperfine manifold has N = 3 magnetic
sublevels mF = (0,±1). A sufficiently strong applied mag-
netic field leads to a nondegenerate level splitting due to
linear and quadratic Zeeman shifts, as sketched in the figure.
In combination with a two-frequency transverse laser field,
this allows us to drive state-selective, cavity-assisted two-
photon Raman transitions between these states, as indicated in
Fig. 8(b). The laser field is far detuned from atomic resonance
to avoid any spontaneous decay of the excited atomic state.
The frequencies ω+ and ω− of the transverse laser field are
chosen to match the different atomic level splittings when a
photon is absorbed from or emitted into the cavity mode. For
example, an atom at a specific site can be transferred from
mF = 0 to mF = −1 by absorbing a photon from the laser
field at frequency ω− and emitting a photon into the cavity.
The very same cavity photon can then drive a transition at a
different site where an atom in mF = 0 absorbs that photon
and undergoes a transition to mF = +1 while emitting into
the laser field at frequency ω+. These two-photon Raman
transitions correspond to the processes proportional to gn in
Hamiltonian Eq. (2), where the coupling strengths gn can be
engineered via the single-photon Rabi frequencies �+ and
�−.

The corotating terms proportional to λn in Hamiltonian
Eq. (2) can be implemented if additional laser frequencies are
added to the transverse laser field. Such couplings are indi-
cated by the grey arrows in Fig. 8(b). The relative strengths of
the co- and counterrotating terms can be independently tuned
via the respective Rabi rates of the driving laser fields [38].

This scheme can further be extended to N > 3 by choos-
ing atomic states with larger magnetic sublevel manifolds as
can be found, for example, in lanthanide atoms. Finally, site-
dependent energies h( j)

n of the atomic modes can be introduced
by applying a magnetic-field gradient along the cavity axis

in addition to the homogeneous magnetic field [40,134]. In a
realistic scenario, also cavity decay due to losses at the mirrors
has to be taken into account. Its influence can, however, be re-
duced by introducing a detuning between the cavity resonance
and the frequency of the field scattered into the cavity mode.

VII. DISCUSSION

A. Role of dissipation

In our analysis, we have considered the system completely
isolated from the environment. In cavity-QED systems, there
are two main sources of dissipation, free-space emission of
single-atom excitations and loss of the cavity field. Let us
denote the rates of the two processes with η and κ , respec-
tively, and their jump operators with L̂( j)

n = √
η�̂

( j)
n,n+1 and

L̂ = √
κ â, where j ∈ [1, L] and n ∈ [1, N − 1]. The relevant

timescales for the coherent dynamics are set by the collective
photon-matter couplings λn

√
Na and gn

√
Na. The different

dynamical responses can be dominantly ascribed to Hamilto-
nian dynamics if λn

√
Na, gn

√
Na � κ, η.

We provide a more accurate estimate in the far detuned
cavity mode regime, where all the results of this paper have
been derived. Focusing on the SU(N) spin-exchange case
for simplicity, the photon effectively induces elastic all-to-
all interactions of strength χn,m = gngmω0/((ω2

0 + (κ/2)2);
in addition, the collective atomic transitions are radiatively
broadened by the coupling to the cavity, leading to col-
lective decays with rate per-atom �n = g2

nκ/(ω2
0 + (κ/2)2)

[135–139]. The coherent dynamics are fast with respect to
the timescales of the dissipation if Naχn,m � {Na

√
�n�m, η},

which translate to ω0 � κ and Naχn,m � η (see Appendix E
for the complete derivation). In this parameter regime, dynam-
ics are basically ruled only by coherent evolution, at least up
to times parametrically large in ω0/κ and Naχn,m/η.

B. Connection with SU(N) fermionic systems

As already anticipated in Sec. II C, the number of atoms
per site Na/L is a conserved quantity in our system and our
results can be extended to a large class of systems which can
be mapped to the Hamiltonians in Eqs. (1) and (2). As an
example, let us consider an N-level fermionic system with
annihilation (creation) operators ĉ(†)

n, j with n ∈ [1, N] and site

index j. We can define the pseudospins �̂
( j)
n,m ≡ ĉ†

n, j ĉm, j [92],
which in turn can be expressed in terms of Schwinger bosons
as �̂

( j)
n,m = b̂†

n, j b̂m, j . If via this procedure the fermionic Hamil-
tonian as a function of the Schwinger bosons is identical to
one of the Hamiltonians here investigated, our results ob-
tained via coherent states could be applied straightforwardly.
Indeed, the mean field at the level of the Schwinger bosons is
mathematically equivalent to simulating pure single-particle
states |ψ j〉 = ∑N

n=1〈b̂n, j〉|n j〉, with the caveat of interpreting
the bosonic amplitudes as probability amplitudes [51].

C. Roadway towards a universal dynamical
reduction hypothesis

In this paper, we have formulated and tested a reduction
hypothesis for the dynamics of SU(N) cavity QED systems
with atoms in a multilevel ladder configuration. We found
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that the reduction hypothesis was a useful description for a
variety of systems with different initial states, levels, inho-
mogeneous fields, and light-matter interactions. This plethora
of applications calls naturally for a broader framework. Our
classification of dynamical responses based on the dynamical
reduction hypothesis and the Arnold-Liouville theorem might
posses the flavor of universality. It would be, in fact, extremely
interesting to encompass all the specific examples mentioned
above, under the lenses of the symmetries both of the local
DOFs and of the light-matter interactions. Similarly to renor-
malization group approaches, one could explore the basins of
attraction of the effective few-body models presented here.
Upon changing the symmetries and the conservation laws of
a given macroscopic model, one could expect to distinguish
a set of irrelevant perturbations in which the reduction hy-
pothesis remains valid, and set of relevant perturbations in
which the reduction hypothesis fails and no effective few-
body model describes the dynamics of collective observables.

From our numerical experiments, it seems natural that
perturbations that do not dramatically change the long-range
nature of the interactions would be irrelevant. We would there-
fore expect similar dynamical responses in the presence of
different photon-assisted transitions (e.g., from the nth level
to any mth level level via a single-photon process) or of
squeezed terms [e.g., ∝ (b†b†a + h.c.)[, where the informa-
tion about the state cannot be retrieved solely by the SU(N)
coherences but would also require terms such as 〈b†b†〉 [39].
Investigations into the latter perturbations might disclose con-
nections between multimode squeezing and the generation of
universal dynamical responses. It is also completely natural
to investigate the impact of different level configurations, for
instance, studying the case of two degenerate subspaces of
excited and ground states [43,44,140]. A preliminary analysis
suggests that they are also irrelevant perturbations and that
a reduction hypothesis still holds here. Finally, we note that
SU(N) generalizations of BCS models [79–82] would, under
a generalized Anderson pseudospin mapping, have a similar
form as to the models we study here and also be describable
by a reduction hypothesis.

In contrast, any perturbation that introduces short-range
interactions could be expected to be relevant to the effective
few-body Hamiltonian basin of attraction. This appears to
be the case in the context of time crystals [41,42,141–144],
where short-range interactions generally melt the time crystal
at late times and lead to generically asynchronous relaxation.
Separability of the interactions will also likely play a role:
systems with separable interactions seem describable by an
effective few-body model [66,145]; while models with insep-
arable interactions can lead to glassy relaxation [146–148] and
cannot be described by effective few-body models [145,149].
Furthermore, systems with a number of atomic levels compa-
rable to the number of sites, N ∼ L, may also pose obstacles
in defining an effective few-body theory but could be relevant
for experiments in synthetic dimensions [83,84]. Naturally,
the effects of dissipation would also not be captured by a few-
body Hamiltonian picture but instead potentially be described
by a few-body dissipative model such as a Lindbland master
equation.

The strong numerical-oriented approach we have taken
here has provided serious evidence of a description using an

effective few-body model, even demonstrating a near-perfect
ability to capture the dynamics of collective observables.
Still, an analytic approach could yield important insights and
provide a more solid ground for classifying different pertur-
bations as relevant or irrelevant to the few-body attractive
basin. Considering the variety of AMO systems modeled by
collective interactions, finding such a description would con-
stitute a significant step forward in understanding universality
out of equilibrium [150,151].
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APPENDIX A: COMPUTATION
OF THE LYAPUNOV EXPONENT

Here we give further details about the calculation of the
Lyapunov exponent referring specifically to the results in
Sec. IV B. We extract the Lyapunov exponent investigating
the divergence of R nearly sampled initial conditions. We use
as measure of the distance of two trajectories the Frobenious
norm of the difference of the average one-body reduced den-
sity matrices, namely,


�(i, j, t ) =
√√√√ N∑

n,m=1

|�n,m(i, t ) − �n,m( j, t )|2, (A1)

where i, j ∈ [1, R] label the trajectory and t is the time. The
R initial states are sampled such that 
�(i, j �= i, t = 0) ≈
10−8. Then, we compute the average distance over all the
trajectories


�(t ) = 2

R(R − 1)

R∑
i=1

R∑
j=i+1


�(i, j, t ). (A2)

The dynamics is regular when 
�(t ) grows polynomially in
time, while it is chaotic if 
�(t ) grows exponentially in time,
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FIG. 9. (a) Dynamics of the average distance between R = 12
nearly sampled trajectories starting from two multimode Schrödinger
cat states parameterized by p [cf. Eq. (16)] in the N = 3
level spin-exchange model. We fix two different values of p =
{0.2994, 0.3064}. The continuous line is the polynomial fit. The
dashed line is the exponential fit. (b) Relative error between the
exponential fit and the polynomial fit. When ε > 1 (ε < 1), the poly-
nomial (exponential) fit better approximates the data. The horizontal
dashed gray line is at ε = 1. Notice the sharp change of ε around
p ≈ 0.3. The parameters of the simulations are the same as the one
in Fig. 4 in the main text.

with the largest Lyapunov exponent equal to the rate of the
exponential. In Fig. 9(a), we show two paradigmatic examples
in the regular phase and chaotic phase. Specifically, referring
to the results in Fig. 4, we fix p � p� and p � p� with p� ≈
0.3 to highlight the abrupt change of the behavior of 
�(t ). In
Fig. 9(b), we show the relative error ε between the exponential
fit and the polynomial fit. When ε > 1 (ε < 1), the polynomial
(exponential) fit better approximates the data. We checked that
our results are not affected by decreasing the time step.

APPENDIX B: CHAOS INDUCED UPON TRADING SU(2)
WITH SU(3) INTERACTIONS IN THREE-LEVEL SYSTEM

Here, we investigate the onset of a chaotic phase in the
three-level spin-exchange model starting from a separable
state in Eq. (5) with |ψ j〉 in a Schrödinger cat state pa-
rameterized by p via Eq. (16). In Fig. 10, we show the
maximum Lyapunov exponent as a function of the ratio
g1/g2 = tan(θ ) and p in the homogeneous case (W = 0).
For θ/π = {0, 0.25, 0.5}, the Hamiltonian can be written in
terms of a SU(2) subgroup of SU(3), and since dynamics
are therefore restricted to that subgroup there is no chaos
for any value of p. Furthermore, for θ/π = {0, 0.5} we have
g1 = 0 and g2 = 0, respectively, thus we recover the SU(2)
two-level system limit. As θ/π deviates from the SU(2) limits,
the system displays chaotic behavior for sufficiently large p.
Deep in the SU(3) limit, we observe chaos for any p � p�,
while near the SU(2) limit there are islands of chaotic be-
havior embedded in regular ones. We compute the Lyapunov
exponent following the procedure described in Appendix A.
Additionally, we manually set σ/(χN ) = 0 when it is less
than 0.01, since our procedure was signaling chaos in regions
where, by direct inspection, there were no signatures of it.
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FIG. 10. Lyapunov exponent as a function of p and θ in the N =
3 spin-exchange model. The initial state is a multimode Schrödinger
cat state parameterized by p via Eq. (16). We set Na → ∞ and
W = 0. The vertical dashed lines are along the SU(2) limit, where the
dynamics is effectively taking place in a SU(2) subgroup of SU(3).
The all-to-all couplings are parameterized such that χ1,1 < χ2,2 for
θ/π ∈ [0, 0.25), χ1,1 > χ2,2 for θ/π ∈ (0.25, 0.5], and χ1,1 = χ2,2

at θ/π = 0.25. In the SU(2) limits (θ/π = {0, 0.25, 0.5}), the dy-
namical response is regular for any value of p, since the couplings
constrict the dynamics to take place in a SU(2) subspace of SU(3).
Deep in the SU(3) limit (θ/π ≈ 0.1 and θ/π ≈ 0.4), |�n,m| displays
exponential sensitivity for any value of p � p�, with p� dependent
on θ . Near the SU(2) two-level limits (θ/π = {0, 0.5}), we observe
chaotic regions embedded in regular ones.

APPENDIX C: CHAOS INDUCED BY A FINITE FRACTION
OF SCHRÖDINGER CAT STATES IN SU(3)

SPIN-EXCHANGE HAMILTONIAN

Here, we provide additional details about the results dis-
cussed in Sec. IV C. We consider the Schrödinger cat state
|ψcat〉 ∼ (|γ̃ (1)〉 + |γ̃ (2)〉) defined in Eq. (16) and parameter-
ized via p, while we consider |γ̃ (1)〉 as coherent state. We
initialize a fraction F of Schrödinger cat states |ψcat〉, such
that the initial state is

|�〉 = ⊗�FL�
j=1 |ψcat〉 ⊗L

j=�FL�+1 |γ̃ (1)〉, (C1)

where �x� returns the least integer greater than or equal to
x. The evolution is governed by the SU(3) spin-exchange
Hamiltonian at W = 0 and g1/g2 ≈ 2 (in units adopted in
Fig. 10 it corresponds to θ/π = 0.36). In Fig. 11, we show
the Lyapunov exponent as a function of p and F . For F <

F � the system displays regular dynamics, while for F > F �

the system enters in a chaotic regime. The Lyapunov expo-
nent is computed following the same procedure discussed in
Appendix A.

APPENDIX D: OPTIMIZATION PROCEDURE

Here we give further details about the practical imple-
mentation of steps (ii) and (iv) in the optimization procedure
discussed in Sec. V. We set as initial guess for the initial state
�̃n,m(t = 0) = �n,m(t = τ ), with the time τ large enough,
such that the initial transient dynamics is neglected. We set
h̃n = ∑L

j=1 h(n)
j /L = 0 and χ̃n,m = χn,m, as initial guesses for
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FIG. 11. Lyapunov exponent for the N = 3 levels spin-exchange
Hamiltonian in the homogeneous case (W = 0) as a function of the
initialized fraction F of multimode Schrödinger cat states in the state
in Eq. (C1). The results were obtained simulating L = 100 sites at
fixed g1/g2 ≈ 2 (in the units adopted in Fig. 10 it corresponds to
θ/π = 0.36). The results are not affected upon increasing L.

the parameters. Throughout the procedure, we keep ζ̃n,m =
ν̃n,m = 0 since they control processes absent in the bare
model. Then, we numerically optimize both the initial state
{�̃n,m(t = 0)} and the parameters {̃hn, χ̃n,m} to minimize the
cost function in Eq. (19) in the main text. The optimiza-
tion procedure stops when the relative change between two
consecutive iterations of the guessed solutions is less than
≈ 10−2.

We also test the convergence of the optimization procedure
modifying the cost function. Specifically, we consider as cost
function the average norm-2 distance

ε2 = 1

T

∫ T

0

√√√√ N∑
n,m=1

∣∣�̃n,m(t ) − �n,m(t )
∣∣2

dt, (D1)

and compare with the one based on the norm-1 cost function
in Eq. (19). We test the two procedures using the same pa-
rameters and initial state of Fig. 5 in the main text, namely,
W/(χNa) = 0.1, g2/g1 ≈ 10−2 and a permutationally invari-
ant (in space) bosonic coherent state. Once the two procedures
converged, we compare them computing the norm-1 distance
between the optimized �̃(t ) and �(t ) obtained from the full
many-body dynamics. We obtain ε1/ε2 ≈ 0.6 [where ε2 is the
norm-1 computed at the end of the optimization procedure
based on the minimization of the norm-2 in Eq. (D1)] showing
a slight advantage of norm-1 over the norm-2 in the optimiza-
tion procedure.

APPENDIX E: DYNAMICS WITH CAVITY LOSSES

The dynamics of the matter-light system can be described
by the master equation for the density matrix:

d ρ̂

dt
= −i[Ĥ, ρ̂] + Lc[ρ̂] + La[ρ̂]. (E1)

Here, Ĥ is the Hamiltonian in Eq. (1), where now the photon
is an active DOF, and

Lc[ρ̂] = κ

2
(2âρ̂â† − â†âρ̂ − ρ̂â†â)

La[ρ̂] = η

2

L∑
j=1

N−1∑
n=1

(
2�̂

( j)
n,n+1ρ̂�̂

( j)
n+1,n − �̂

( j)
n+1,n�̂

( j)
n,n+1ρ̂

− ρ̂�̂
( j)
n+1,n�̂

( j)
n,n+1

)
(E2)

are the Lindbland terms that describe the cavity-photon loss
with decay rate κ and emission of single-atom excitation with
rate η. From now on, we set λn = 0 in the Hamiltonian Ĥ and
we consider the far detuned regime of the cavity mode as we
are mainly interested in the spin-exchange interaction case.
We perform adiabatic elimination such that [135–139]

â(t ) ≈ −
N−1∑
n=1

ign�̂n,n+1(t )

(iω0 + κ/2)
. (E3)

In this regime the dynamics of the density matrix of the matter
DOFs ρ̂m is given by the matter-only master equation:

d ρ̂m

dt
= −i[Ĥad, ρ̂m] + L�[ρ̂m] + La[ρ̂m]. (E4)

Here, Ĥad is the Hamiltonian given in Eq. (2), with νn,m =
ζn,m = 0 and all-to-all couplings per particle:

χn,m = gngmω0

ω2
0 + (κ/2)2

. (E5)

The dissipative part L�[ρ̂m] is given by

L�[ρ̂m] =
N−1∑

n,m=1

√
�n�m

2

(
2�̂n,n+1ρ̂m�̂m+1,m

−�̂n+1,n�̂m,m+1ρ̂m − ρ̂m�̂n+1,n�̂m,m+1
)
, (E6)

where

�n = g2
nκ

ω2
0 + (κ/2)2

(E7)

is the decay rate per particle of the collective DOFs. Imposing
Naχn,m � Na

√
�n�m and Naχn,m � η, we obtain the condi-

tions discussed in the main text.
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