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Quantum mechanics allows processes to be superposed, leading to a genuinely quantum lack of causal struc-
ture. For example, the process known as the quantum switch applies two operations A and B in a superposition of
the two possible orders, A before B and B before A. Experimental implementations of the quantum switch have
been challenged by some on the grounds that the operations A and B were implemented more than once, thereby
simulating indefinite causal order rather than actually implementing it. Motivated by this debate, we consider a
situation in which the quantum operations are physically described by a light-matter interaction model. While for
our model the two processes are indistinguishable in the infinite-energy regime, restricting the energy available
for the implementation of the operations introduces imperfections, which allow one to distinguish processes
using different numbers of operations. We consider such an energetically constrained scenario and compare
the quantum switch to one of its natural simulations, where each operation is implemented twice. Considering a
commuting-versus-anticommuting unitary discrimination task, we find that within our model the quantum switch
performs better, for some fixed amount of energy, than its simulation. In addition to the known computational
or communication advantages of causal superpositions, our work raises questions about their potential energetic
advantages.
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I. INTRODUCTION

In the standard view of both the classical and quantum
worlds, processes normally occur with a fixed causal order:
the order of successive operations is classically well defined.
Nonetheless, in quantum theory it is possible to consider
causally indefinite processes [1,2]. For example, by using a
quantum system in a superposition to coherently control the
order in which operations are applied, one can obtain quantum
processes in which the causal order is indefinite [2,3]. The
question of whether or not there is an advantage (of any kind)
in using superpositions of causal orders has been studied from
different points of view. It has been shown, in particular, that
the superposition of causal orders provides computational and
communication advantages over any standard quantum circuit
operating with a definite causal order [4–13].

The paradigmatic example of a quantum process with
indefinite causal order is the “quantum switch” (QS) [2].
In this process, a two-level quantum control system C is
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used to coherently control the order in which two quantum
operations—any two completely positive (CP) maps—A and
B are applied to a target system S. If C is in the state |0C〉
(|1C〉), then the order A before B (B before A) is realized.
When C is in a superposition of these two control states, how-
ever, the causal order between A and B is itself superposed
and hence indefinite.

Formally, the QS is defined as a quantum supermap [14]
that transforms the two operations A and B into a new one,
which applies the latter in a coherently controlled order.
When A : ρS �→ UAρSU †

A and B : ρS �→ UBρSU †
B are unitary

operations, then these are transformed into the new unitary
operation UQS : ρC ⊗ ρS �→ U QS(ρC ⊗ ρS )U QS† acting on the
control and the target systems, with

U QS = U QS(UA,UB)

= |0C〉〈0C | ⊗ UBUA + |1C〉〈1C | ⊗ UAUB. (1)

A more general definition valid for any CP maps A and
B (based on their Kraus decompositions) can be found in
Ref. [2]. In the case of a control system initially prepared in
the state |+C〉 = 1√

2
(|0C〉 + |1C〉)—which, for concreteness,

we henceforth restrict ourselves to—and for unitary opera-
tions A and B as above, the quantum switch then effectively
applies the transformation

|+C〉 ⊗ |ψS〉 �→ 1√
2

(|0C〉 ⊗ UBUA|ψS〉 + |1C〉 ⊗ UAUB|ψS〉)

(2)
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for any arbitrary initial target system state |ψS〉. The fact that
the evolution given by Eq. (2) is obtained using, or imple-
menting, each operation A and B only once is crucial for the
causal indefiniteness of the QS. Indeed, any quantum circuit
with a well-defined causal structure simulating the evolution
given by Eq. (2) would necessarily require at least two uses
(or “implementations”) of either A or B [2]. This difference is
behind many of the computational advantages offered by the
QS [4–7,11].

Over recent years, a number of experimental proposals
[3,5,15] and implementations [16–24] of the QS have been
presented. Depending on the details of the implementations,
and on which degrees of freedom were employed, a debate
emerged as to whether these experiments truly realized the
quantum switch, or whether they instead simply simulated
the evolution of Eq. (2) [25–30]. For example, for many of
the photonic demonstrations it has been argued that the imple-
mentations of the operations A and B differed depending on
which path the photon took (i.e., on the value of the control).
Hence, were A and B each really implemented once, rather
than twice?

Motivated by this debate, we investigate here a realistic
scenario in which both the quantum switch and a natural simu-
lation of it are applied to noisy operations. Indeed, simulations
exactly reproducing Eq. (2) for perfect unitary operations may
lead to different dynamics in the presence of imperfections. To
this end, we introduce an operational definition of a “box”—a
physical implementation of an abstract quantum operation—
in which a system physically interacts once with an auxiliary
quantum system in order to perform the desired operation.
This allows us to concretely compare the QS, in which two
boxes (realizing A and B) are used, with simulations, such
as the natural “four box” simulation (4B) in which four boxes
(realizing A0,A1 and B0,B1) are used to superpose the causal
orders “A0 before B0 and B1 before A1” rather than directly
“A before B and B before A.” We adopt a noise model—and
thus a model for a box—that is motivated by the (approxi-
mate) implementation of unitary operations via the interaction
with some auxiliary systems. Specifically, we consider a cav-
ity quantum electrodynamics (QED) setup, consisting of an
atom that passes inside a cavity containing a single-mode
quantum field. We employ the Jaynes-Cummings Hamiltonian
as a light-matter model of interaction for the implementation
of the unitary operations on the atomic qubit system. Due to
the quantum nature of the field, it can generally become entan-
gled with the system, effectively leading to a noisy operation
on the target system. Only when the field contains an infinite
amount of energy is the ideal unitary operation recovered.

With this noise model, we show that the QS and the 4B
lead to different dynamics and thus different final control-
target states, allowing measurements to distinguish between
these two setups. Furthermore, this allows us to assess the
performance of this implementation of the QS from an en-
ergetic perspective. Considering a modified version of the
commuting-versus-anticommuting discrimination task intro-
duced in Ref. [4]—for which the QS is known, in the ideal
case, to provide an advantage over all quantum circuits using
two boxes in a fixed causal order—we find that in our model
the QS also provides an energetic advantage over the 4B.
Beyond the computational and communication advantages

brought about by the causal indefiniteness of the QS, our work
paves the way to study some of its potential energetic advan-
tages as well. Thus, our results complement recent theoretical
[31–36] and experimental [37–39] interest in the potential
utility of causal indefiniteness in quantum thermodynamics.

Our paper is organized as follows. In Sec. II we introduce
the key concepts we work with in this paper, introducing first
our general definition of a box (Sec. II A) before presenting a
specific box implementation based on the Jaynes-Cummings
model (Sec. II B), which we will use to study the energetics
of the QS and 4B protocols that we define in Sec. II C. In
Sec. III A we define the discrimination task that we will use
to benchmark the performance of the QS and the 4B. We
then explain in Sec. III B how this allows us to compare the
QS and the 4B under finite-energy constraints on one of the
operations, and we describe in Sec. III C how we extend the
comparison to circuits with fixed causal orders. In Sec. IV we
present and discuss our numerical and analytical results. We
finally conclude in Sec. V.

II. PRELIMINARIES

We begin this section by first abstracting the notion of an
implementation of a quantum operation through the definition
of a “box.” Then, in the following section, we present the spe-
cific model of boxes as Jaynes-Cummings interactions that we
will use throughout the paper. These models are independent
of any particular experimental realization, which is beyond the
scope of the present work. Nonetheless, in Appendix A (see
also the caption of Fig. 1) we outline one possible realization
for the QS and 4B within our framework.

A. Implementing an operation: Our definition of a “box”

To clarify the differences between the QS and the 4B, let
us properly define what we mean by a “box.” We consider
a target system S on which one wants to implement a given
operation. First, we need to distinguish the ideal operation one
wishes to realize from its actual implementation. The ideal
operation can be, for instance, a rotation in the Hilbert space
while its implementation is how this is realized in practice.
Does this implementation perfectly realize a unitary operation
on the target system? Or does it effectively act as a trace-
preserving (CPTP) map, which only approximates the desired
dynamics?

In order to implement a given, but otherwise arbitrary,
operation A in a controlled way on a quantum system S, one
would typically couple S with some auxiliary system FA. The
global Hamiltonian describing the evolution of S and FA will
generally have an expression of the form H = HS + HFA +
H int

SFA
, where HS and HFA are the free Hamiltonians of S and FA,

respectively, and H int
SFA

is the interaction Hamiltonian. Here we
will assume that the free Hamiltonians are given and always
present, while the controllable quantities are H int

SFA
(choosing

FA appropriately), the time of interaction, and the initial state
of FA. We will consider that the operation A corresponds only
to the controllable part of the dynamics, i.e., without the free
evolution, by considering the interaction picture [40].

More formally, for the implementation of operation A
through the Hamiltonian H , the time evolution operator in
the interaction picture with respect to HS + HFA is given
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FIG. 1. (a) The implementation of an operation A by a “box”
consisting of the pair {UA,FA , |F i

A〉}, where UA,FA is a unitary operation
acting on the target system and an auxiliary system initialized in the
state |F i

A〉. Such an implementation is meant to approximate an ideal
operation UA (in the unitary case) on the target system (see Sec. II A).
In the more specific model of Sec. II B that we use in our study, the
auxiliary system is taken to be a field in a cavity, initially prepared
in a coherent state |F i

A〉 = |αA〉. General depiction of (b) the quan-
tum switch (QS) versus (c) its four-box (4B) simulation, employing
interferometric-like setups. In both cases, the control qubit starts in a
superposition of the states |0C〉 and |1C〉. The path taken by the target
system (solid or dashed lines), and thus the order of the operations, is
coherently controlled by the state of the control system. The coherent
splitting of the paths is generically depicted by orange squares akin to
polarizing beam splitters. The role of the depicted paths and orange
squares is to flip on which branch of the superposition the boxes act.
As these sketches illustrate, the basic conceptual difference between
the QS and 4B setups is the number of physical boxes needed to
obtain the final target state. A possible way to physically realize both
experiments (and in particular, the splitting by the orange squares) is
proposed in Appendix A.

by UA,FA = T exp{− i
h̄

∫ t
0 ds HI (s)}, where T is the time-

ordering operator, t is the interaction time, and HI (t ) =
e+ i

h̄ t (HS+HFA )H int
SFA

e− i
h̄ t (HS+HFA ) is the interaction Hamiltonian in

the interaction picture. The pair {UA,FA , |F i
A〉}, where |F i

A〉 is
the initial state of the auxiliary system, thus describes the
controllable quantities; this is what we take to define the “box”
implementing operation A [see Fig. 1(a)].

Throughout this article we will take the ideal operations
that one wishes to perform on the target systems to be unitary,
described by unitary operators UA (or UB). The goal of the in-
teraction considered above is, ideally, to induce the evolution

UA,FA

(|ψS〉 ⊗ ∣∣F i
A

〉) = (UA|ψS〉) ⊗ ∣∣F f
A

〉 ∀|ψS〉, (3)

where |F f
A〉 is some final state of FA which does not depend

on the target system’s initial state |ψS〉. However, in general,
one may only be able to approximate such an evolution, the
final state typically being entangled (at least for some initial
state |ψS〉). The operation effectively performed on the target
system will then be obtained by tracing out the auxiliary
system from the output state, and will be found to be a noisy
version of UA rather than its ideal implementation [41–44].

B. Energetic model

The model of a box described above is deliberately rather
general. In this paper, we will focus on a specific model
of such an interaction, in which the auxiliary systems are
electromagnetic fields with finite energy. The noise in the
operations will thus originate from the fact that these fields
become entangled with the system S; the less energy there is
in the fields, the noisier the operations will be.

We thereby consider an atomic system, and take S to a be
a two-level (i.e., qubit) system defined by two energy levels
of the atom with the free Hamiltonian HS = − h̄ω0

2 σz, where
ω0 is the frequency of the system S (and σz is the usual Pauli
matrix). The atom is coupled to a resonant electromagnetic
field through a Jaynes-Cummings interaction. Specifically, the
free Hamiltonian of the field and the interaction Hamiltonian
can be expressed using the bosonic annihilation (creation)
operator a (a†) and the lowering (raising) operator of the atom
σ− (σ+ = σ

†
−) as

HFA = h̄ω0a†a, (4)

H int
SFA

= h̄�0

2
(eiφ σ+ ⊗ a + e−iφ σ− ⊗ a†), (5)

respectively, where �0 is the vacuum Rabi frequency and
φ is a phase that will determine the axis of rotation of the
qubit (see below). Since the electromagnetic field is resonant
with the system qubit, it shares the same frequency ω0. In
the interaction picture with respect to HS + HFA , after having
performed the rotating wave approximation [40], the effective
Hamiltonian is simply that of the interaction, i.e., H = H int

SFA
,

with H int
SFA

as defined in Eq. (5).
We take the auxiliary system of the box in this model to be

an electromagnetic field initialized in a coherent state |F i
A〉 =

|α〉 = e− |α|2
2

∑+∞
n=0

αn√
n!

|n〉, where |n〉 are the Fock states (and
where we take α > 0 without loss of generality). The average
number of photons inside the coherent field is n̄ = |α|2, the
energy in the field simply being E = h̄ω0n̄. The energy con-
tained in the field defines the energy of the box, which we take
to quantify the energy invested to realize the corresponding
operation; the energy invested in a process using more than
one box will simply be the sum of the energies of each box.

As we show explicitly in Appendix B, for a time of interac-
tion t = θ/(�0

√
n̄) and in the infinite-energy limit n̄ → +∞,

such a Jaynes-Cummings interaction with such an initial co-
herent state for the field allows one to implement a perfect
rotation of angle θ around the axis 
u = (cos φ, sin φ, 0)x,y,z in
the Bloch sphere. In the finite-energy regime, this same choice
of interaction time only gives an approximation—i.e., a noisy
implementation—of the same rotation (see also Appendix C).
We note that in such a model not all rotations can thus be
approximated by means of this interaction, but only rotations
around an axis in the equatorial plane of the Bloch sphere.
This restriction is due (i) to the model of interaction we choose
and (ii) to the initial field state, and this scheme is standard
in light-matter experiments in cavity [40,45]. This restriction
will also motivate our choice of operations UA that we will
consider when benchmarking the QS and its 4B simulation in
Sec. III below.
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C. The quantum switch and its simulated implementation

As described in the Introduction, the QS induces, in the
ideal unitary case, the dynamics of Eq. (1) on a qubit “control”
system C and a “target” system S. The situation with noisy
operations A and B, implemented as boxes as per Sec. II A,
is, however, more subtle, and different implementations or
simulations of the QS will lead to different output states. To
be able to distinguish the different cases, we define the evo-
lution induced on the Hilbert spaces containing the control,
target, and auxiliary systems. The analysis here applies to the
general box model of Sec. II A, and we will comment on the
specific energetic model described in Sec. II B at the end of
this section.

A first natural possibility is to consider using a unique box
each for A and B, and hence having one auxiliary system for
box A (living in the space FA) and one auxiliary system for
box B (living in the space FB), as sketched in Fig. 1(b). In such
an implementation the (unitary) evolution induced by the QS
on C, S, FA, and FB becomes, following Eq. (1),

U QS
(
UA,FA ,UB,FB

) = |0C〉〈0C | ⊗ UB,FBUA,FA

+ |1C〉〈1C | ⊗ UA,FAUB,FB , (6)

where UA,FA (UB,FB ) makes S and FA (FB) interact through
the model of interaction considered above (and acts with the
identity on any other system, which for simplicity we do not
write explicitly). The final state of C, S, and the auxiliary
systems, recalling that for simplicity we take C to start in the
state |+C〉, is then

∣∣ψ f,QS
CSFAFB

〉 = 1√
2

(|0C〉∣∣
QS
0

〉 + |1C〉∣∣
QS
1

〉)
, (7)

with ∣∣
QS
0

〉 = UB,FBUA,FA |ψS〉
∣∣F i

A

〉∣∣F i
B

〉
, (8)∣∣
QS

1

〉 = UA,FAUB,FB |ψS〉
∣∣F i

A

〉∣∣F i
B

〉
(9)

(and with implicit tensor products). By tracing over the aux-
iliary degrees of freedom, one notices that the final density
matrix obtained on CS corresponds to the one obtained from
the general definition of the QS process for arbitrary CPTP
operations A and B [2]. Hence, our vision of using one box for
A and one box for B is consistent with the standard definition
of the quantum switch for noisy operations.

A second possibility is to try and implement the evolution
of Eq. (1) with what we call the “four box” (4B) setup, which
would require two boxes for A and two boxes for B, and hence
four auxiliary systems living in the spaces FA0 , FA1 , FB0 , FB1

[see Fig. 1(c)]. In this case, the induced (unitary) evolution of
C, S, and all F ′

X s is

U 4B
(
UA,FA ,UB,FB

) = |0C〉〈0C | ⊗ UB,FB0
UA,FA0

+ |1C〉〈1C | ⊗ UA,FA1
UB,FB1

. (10)

Here again, the UA,FAk
(k ∈ {0, 1}) only make S and FAk in-

teract, leaving any other degree of freedom intact, and we

assume that UA,FA1
and UA,FA2

have identical actions on their
respective spaces (with analogous behavior for the UB,FBk

).
For a control initially in |+C〉, the final state of C, S, and the
auxiliary systems is then

∣∣ψ f,4B
CSFA0 FB0 FA1 FB1

〉 = 1√
2

(|0C〉∣∣
4B
0

〉 + |1C〉∣∣
4B
1

〉)
(11)

with ∣∣
4B
0

〉 = UB,FB0
UA,FA0

|ψS〉
∣∣F i

A0

〉∣∣F i
B0

〉∣∣F i
A1

〉∣∣F i
B1

〉
, (12)∣∣
4B

1

〉 = UA,FA1
UB,FB1

|ψS〉
∣∣F i

A0

〉∣∣F i
B0

〉∣∣F i
A1

〉∣∣F i
B1

〉
. (13)

We thus observe a mathematical difference between the QS
and the 4B, even when the implementations of the operations
are perfect as one can see from Eqs. (6) and (10). Formally,
when including the description of the auxiliary systems, the
mathematical structure of the evolution induced by the QS
consists in taking the ideal evolution [when we can ignore the
auxiliary systems, as in Eq. (1)], and performing for this case
the mapping UA → UA,FA , UB → UB,FB , |ψS〉 → |ψS〉|F i

A〉|F i
B〉.

For the 4B, as two different boxes are used for the two im-
plementations of both A and B, there is no such mapping.
For instance, UA could be mapped to either UA,FA0

or UA,FA1
.

This remark highlights the fact that it is important to con-
sider the way the operations are implemented to distinguish
the QS from circuits that are simulating it, as our practical
definition of a box allows us to do. Note finally that, in a
noiseless scenario (i.e., in the infinite-energy regime, when
the auxiliary systems never become entangled with S), tracing
out the auxiliary systems would give the same final state, and
thus effective evolution, for both the 4B and the QS, thereby
rendering the two setups indistinguishable.

In order to study the energetics of the QS and the 4B,
we will naturally adopt the specific box model described in
Sec. II B. There, the target is hence a qubit system correspond-
ing to an atom flying through the setups of Fig. 1, while the
control system C is encoded in the spatial degree of freedom
of the atom. An explicit possible implementation for both
setups is outlined in more detail in Appendix A.

III. BENCHMARKING VIA A DISCRIMINATION TASK

As we saw above, the QS and 4B do not implement the
same evolution in the noisy case. This motivates the main
question we address in this work: Is there an advantage in
using one setup rather than the other when the energy we can
invest is limited? For a fixed amount of energy to implement
a given operation, should one concentrate all of it in one box
and exploit causal indefiniteness (as in the QS), or do we get
the same by distributing it in more boxes and only simulating
the quantum switch (as in the 4B)?

Here, we use the concrete energetic model we introduced to
study this question. To this end, we will benchmark the perfor-
mance of the QS and the 4B in a concrete scenario—namely,
at performing a commuting-versus-anticommuting discrimi-
nation task along the lines of Ref. [4]—when the available
energy in the fields is constrained. As a baseline performance
indicator, we will also compare these processes to the standard
model of quantum circuits with fixed causal order (FCO),
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where one looks for the optimal quantum circuit to solve the
same task [46].

A. The commuting-versus-anticommuting discrimination task

Reference [4] introduced the following unitary discrimina-
tion task, for which an advantage of the QS was found over all
FCO quantum circuits. Assume one is given two black boxes
implementing some unitary operations UA and UB, with the
promise that they either commute or anticommute. The goal
is to determine which of these two possibilities is the case. The
probability that a given strategy or process does so defines its
success probability.

Note that one only has “black-box” access to UA and UB,
meaning that one has no classical description of them. Here
we will adapt the task as follows: instead of having access to a
black box implementing UA perfectly, we assume one is given
access to a noisy implementation of UA, implemented as boxes
in the finite-energy regime following the model described in
Sec. II B. For simplicity we still assume, however, that UB can
be implemented perfectly (not through a Jaynes-Cummings
interaction). One is again asked to determine whether UA (the
ideal unitary that the black box is meant to approximate) and
UB commute or anticommute.

For concreteness, it is necessary to fix the sets S[,] and
S{,} of commuting and anticommuting unitaries that the pairs
(UA,UB) are drawn from, and how they are sampled: different
sets, with different distributions of the unitaries, will indeed
give different success probabilities for our task. Since we
consider a two-level target system, the unitaries UA and UB

are rotations on the Bloch sphere; we generically denote by
R
u(θ ) a rotation by an angle φ around an axis specified by
the unit vector 
u (irrespective of the global phase that it may
introduce, which is irrelevant in this paper). One can verify
that two such rotations with nontrivial rotation angles (i.e.,
with θ = 0 mod 2π ) commute if and only if their rotation
axes are collinear, and they anticommute if and only if their
rotation axes are orthogonal and the rotation angles are π .
To comply with the physical model we introduced for the
implementation of UA, we will take its rotation axis in the
equatorial plane (Oxy) of the Bloch sphere (see Sec. II B),
but we again do not impose any restriction on UB. This
leads us to define the sets S[,] and S{,} of pairs (UA,UB) as
follows:

S[,] = {(R
u(θA), R
u(θB)), 
u ∈ (Oxy)}, (14)

S{,} = {(
R
uA (π ), R
uB (π )

)
, 
uA ∈ (Oxy), 
uB ⊥ 
uA

}
. (15)

In our task we will take the pairs (UA,UB) to be drawn from
either S[,] or S{,} with equal probability. Furthermore, we take
the axes 
u and 
uA above to be uniformly distributed in (Oxy),

uB to be uniformly distributed in the plane orthogonal to 
uA,
and the rotation angles θA, θB to be uniformly distributed in
[−π, π ]. (Note that these sets of commuting or anticommut-
ing unitaries differ from those considered in Ref. [47], which
did not single out any particular orientation in the Bloch
sphere.)

With this in place, we can now benchmark how the QS
and 4B perform on this commuting-versus-anticommuting

discrimination task by looking at how the probability of
successfully guessing from which set, S[,] or S{,}, UA and UB

are drawn from depends on the energy available to approxi-
mate UA within the box model considered.

B. Formal description of the benchmark protocol

1. The QS and 4B strategies to perform the task

In the case of ideally implemented unitaries UA,UB, the QS
and 4B can perform the task perfectly [4]. To see this, note that
the state of Eq. (2) can be rewritten in the {|+C〉, |−C〉} basis
for the control as∣∣ψ f

CS

〉 = 1
2 (|+C〉{UA,UB}|ψS〉 − |−C〉[UA,UB]|ψS〉), (16)

where {·, ·} and [·, ·] are the anticommutator and commutator,
respectively. Recall that one has the promise that one of the
two is null; it then suffices to measure the control qubit in
the {|±C〉} basis to see which term survives in Eq. (16), and
thereby determine perfectly (i.e., with probability 1) whether
the unitaries commute or anticommute. Note that this strategy
works for any distribution of the unitaries, and any initial state
of the target system, |ψS〉.

In the finite-energy regime, we consider the same strategy
for the QS and the 4B: simply measure the control qubit at
the output in the {|±C〉} basis. If the result is |+C〉 (|−C〉), we
make the guess that UA and UB commute (anticommute). Here,
the noise induced by the entanglement between the target
qubit and the quantum field will make the success probability
lower than 1. In the situation we consider, where the operation
UB is ideal but the implementation of UA is not, the QS uses
one quantum field as an auxiliary system to approximate UA,
while the 4B uses two, so one may expect their probabilities
of correctly guessing the commuting-versus-anticommuting
property to also be different. The question of the energetic
costs associated to the QS and the 4B to solve this task is
then legitimate to ask, so as to see what the most efficient
way to invest the energy is. We will thus compare the two
processes under the constraint that they use the same total
amount of energy in the boxes implementing UA: an average
of n̄ photons in the single box of the QS, and n̄/2 in each of
the corresponding two boxes of the 4B (for simplicity we take
the natural choice of sharing the energy evenly between the
boxes).

2. Success probabilities of the QS and 4B

For (UA,UB) ∈ S[,], the task is thus successfully completed
if the outcome of the measurement on the control qubit is
|+C〉; for (UA,UB) ∈ S{,}, on the other hand, it is successfully
completed if one gets the result |−C〉. From Eqs. (7) and (11),
one easily finds that the probabilities for these events, for both
the QS and 4B—denoted below by ε ∈ {QS, 4B}—are

p[,],ε
success(UA,UB) = 1 + Re

[〈
ε

0(UA,UB)
∣∣ε

1(UA,UB)
〉]

2
,

(17)

p{,},ε
success(UA,UB) = 1 − Re

[〈
ε

0(UA,UB)
∣∣ε

1(UA,UB)
〉]

2
,

(18)
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where we made the dependency on (UA,UB) explicit, and with∣∣QS
0 (UA,UB)

〉 = UBUA,FA |ψS〉|αA〉, (19)∣∣QS
1 (UA,UB)

〉 = UA,FAUB|ψS〉|αA〉, (20)∣∣4B
0 (UA,UB)

〉 = UBUA,FA0
|ψS〉

∣∣αA0

〉∣∣αA1

〉
, (21)∣∣4B

1 (UA,UB)
〉 = UA,FA1

UB|ψS〉
∣∣αA0

〉∣∣αA1

〉
, (22)

in accordance with Eqs. (8), (9), (12), and (13), recalling that
UA is approximated through the application of UA,FA(k)

involv-

ing some auxiliary systems initialized in the states |F i
A(k)

〉 =
|αA(k)〉 (cf. Fig. 1) and that UB is assumed to be implemented
perfectly (without involving any auxiliary system). As men-
tioned before, we will ensure that the QS and 4B are provided
with the same total amount of energy h̄ω0n̄, so that we will
take αA = √

n̄ and αA0 = αA1 = √
n̄/2.

Averaging over the choice of unitaries (UA,UB), either
from S[,] or from S{,} with probability 1

2 , we thus find that
the average success probabilities in the commuting-versus-
anticommuting discrimination task are

〈
pε

success

〉 = 1

2

∫
S[,]

dμ[,](UA,UB) pε,[,]
success(UA,UB)

+ 1

2

∫
S{,}

dμ{,}(UA,UB) pε,{,}
success(UA,UB), (23)

where dμ[,] and dμ{,} are the measures on the sets S[,] and S{,}
that correspond to the way we chose to sample (UA,UB) as
described following Eqs. (14) and (15).

Note that the success probabilities in Eqs. (17), (18), and
(23) depend on the initial state |ψS〉 of the target system. In
fact, expanding these equations [using Eqs. (19)–(22)] it is
easily seen that these are linear in |ψS〉〈ψS|. Hence, from these
calculations we can also directly obtain the success probabili-
ties for any mixed initial state ρS , after replacing |ψS〉〈ψS| by
ρS . For concreteness, and in order not to favor any specific
orientation of the Bloch sphere, in the following we will take
ρS = 1/2 (see, however, Appendix D for calculations that
apply to any ρS).

From here we can now compute and compare the success
probabilities for the QS and 4B, for any fixed value of n̄. This
will allow us to see which of the two setups performs the best
at fixed energy—or reciprocally, for a fixed success proba-
bility that one targets, which process uses the least amount
of energy, i.e., is the most energy efficient. To gain more
insights about the performances of the two setups and relate
them to what is more commonly done in the literature, we also
compare these to general circuits with fixed causal order that
we now introduce.

C. Circuits with fixed causal order

The QS is a circuit with no definite causal order, using each
of the operations A and B once and only once. It is indeed
generally contrasted in the literature with quantum circuits
that apply A and B (once each) in a fixed causal order (FCO):
either with A before B, or with B before A.

Such circuits take the general form of Fig. 2, with the
operations A and B being inserted between an initial state

FIG. 2. A general circuit with FCO where A is applied before B.
The target qubit and (possibly) some entangled “memory” system
a are initially prepared in some state ρ. The target system then
undergoes operation A, after which the target and memory systems
evolve through some channel C. Operation B is then applied to the
target system, and a measurement is finally performed on the target
and new memory system b, described by a positive operator-valued
measure (POVM) (E+, E−). In our unitary discrimination task, the
result of this POVM is taken as a guess for whether UA and UB (the
unitaries that the operations A and B implement or approximate)
commute or anticommute.

preparation, a transformation and a final measurement. Using
the framework of quantum circuits [46,48], it is, however,
not necessary to look into the internal details of these circuit
operations. One can instead encode all the circuit elements
other than A and B in a single mathematical object, a so-
called quantum tester, namely, a pair of positive semidefinite
operators (W+,W−) acting on the input and output spaces of
the operations A and B (denoted AI , AO, BI , BO in Fig. 2).
Each operator W± corresponds to a possible outcome (a mea-
surement result “+” or “−”) of the circuit; its probability is
obtained via the generalized Born rule:

p(±|A,B) = Tr[W T
± (A ⊗ B)], (24)

where A and B are the Choi matrices of the operations A and
B [as defined in Eq. (C3) in Appendix C 2], and T denotes the
transpose. Hence, (W+,W−) can be seen as a generalization
for quantum processes of positive operator-valued measures
(POVMs, i.e., general quantum measurements on quantum
states). The fact that A and B are applied in a fixed order in
the circuit imposes some specific constraints on (W+,W−); the
details are provided in Appendix E 1.

In our task, associating the measurement outcome “+”
(“−”), with the guess that UA and UB—the unitaries that A
and B are meant to implement—commute (anticommute), one
can obtain the success probability of a circuit with FCO at
performing the task by integrating over the commuting and
anticommuting sets S[,] and S{,}, similarly to Eq. (23):

〈
pFCO

success

〉 = 1

2

∫
S[,]

dμ[,](UA,UB) p(+|A,B)

+ 1

2

∫
S{,}

dμ{,}(UA,UB) p(−|A,B)

= 1

2
Tr[W T

+ G+] + 1

2
Tr[W T

− G−] (25)
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with

G+ =
∫
S[,]

dμ[,](UA,UB) (A ⊗ B), (26)

G− =
∫
S[,]

dμ{,}(UA,UB) (A ⊗ B). (27)

To find the circuit with a given FCO that performs the best
at the task under consideration, one can directly maximize
the probability of success in Eq. (25) over all pairs (W+,W−)
satisfying the required constraints (see Appendix E 2).

As it turns out, by solving this optimization problem we
find that one can obtain a success probability of 1 when using
a FCO circuit with B before A in the ideal, unitary case. In-
deed there exists a quantum circuit with FCO that allows one
to perfectly discriminate between the sets of commuting or an-
ticommuting operations considered here (see Appendix E 3).
It is known, however, that for some other sets S[,],S{,} the
probability of success of the best circuit with FCO is strictly
lower than 1 (in contrast with the QS) [4,47]. The reason we
could obtain a probability 1 for FCO circuits here is that the
sets S[,] and S{,} we consider are too restrictive—restricted in
particular to unitaries UA with a rotation axis in the equato-
rial plane defined by the orientation of the z axis. The FCO
strategy giving a success probability of 1 for the sets we use
is optimized for this particular orientation: it would generally
give a strictly lower success probability for unitaries with
different rotation axes, i.e., for other more general sets of
commuting or anticommuting operations.

The strategies of the QS or 4B, on the other hand, are
oblivious to the specific choice of operations (UA,UB), and
therefore of the orientation used to define the sets S[,] and
S{,}. For a perhaps fairer comparison, and to obtain some
more insight, we will look below at how FCO circuits perform
when we moreover require that they should not single out
any particular orientation. Instead, we require that (just as
for the QS and the 4B) they act in the same way—giving
the same statistics—for all orientations of the axis used to
define the equatorial plane and the sets S[,] and S{,}, making
them “isotropic.” The restricted subset of such isotropic FCO
circuits is formally defined in Appendix E 4.

IV. RESULTS

A. Comparing success probabilities across strategies

In this part, we study quantitatively the energetic differ-
ences between using the QS or the 4B. We find that, in
the commuting-versus-anticommuting discrimination task we
considered and within our specific energetic model, the QS
is more efficient than the 4B for a fixed energy limitation.
We then compare the QS and the 4B to the ensemble of
all isotropic circuits with FCO. The energetic constraint is
quantified by the average total number of photons, n̄, that each
setup is given. We present numerical results for finite n̄ and
analytical results in the limit where n̄ is large enough.

In Fig. 3, the average success probabilities for the QS and
the 4B are shown for 1 � n̄ � 20. As expected, the success
probabilities of the QS and 4B tend to 1 for large n̄. All success
probabilities decrease when the amount of energy (i.e., n̄)
decreases, as the implementation of the operation A becomes

FIG. 3. Average success probabilities for our commuting-versus-
anticommuting discrimination task of the QS, the 4B, and the best
isotropic FCO circuit, for 1 � n̄ � 20. The connected points are
obtained numerically for different values of n̄, while the dashed lines
(for the QS and 4B) are the analytical first-order expansions in 1/n̄
[see Eqs. (28) and (29)].

noisier. For a finite number of photons, we observe a clear
advantage of the QS over the 4B, with its average success
probability being above that of the 4B for any given value of n̄.
We also observe that for n̄ large enough, the average success
probabilities of the QS and the 4B are above those of the best
isotropic FCO circuits, which are optimized (and in general
different) for each value of n̄, and whose limit for n̄ → ∞
is only � 0.93 (see Appendix E 4). In the lower n̄ regime,
we observe two crossings such that both the QS and the 4B
are outperformed by the optimized isotropic FCO circuits.
This can be understood by recalling that these FCO circuits
are optimized for each n̄, whereas the QS and the 4B use a
fixed strategy that becomes very poor for low n̄. (For n̄ lower
than the values shown in Fig. 3, the approximation of UA then
becomes too bad for the QS and 4B strategies to be judicious,
and for their analyses to be relevant.)

In Appendix D, we also perform perturbative expansions
of the behavior of the success probability for the QS and the
4B in the large-n̄ limit. For an initial target system in the state
ρS = 1/2, we found

〈
pQS

success

〉 = 1 − 3 + π2

32n̄
+ O

(
1

n̄2

)
, (28)

〈
p4B

success

〉 = 1 − 6 + 4π2/3

32n̄
+ O

(
1

n̄2

)
, (29)

〈
pQS

success

〉 − 〈
p4B

success

〉 = 3 + π2/3

32n̄
+ O

(
1

n̄2

)
, (30)

which indeed shows formally that in this limit, the QS outper-
forms the 4B. The success probabilities reach 1 at order zero
in 1/n̄, in agreement with Fig. 3, and with the fact that the QS
and 4B always succeed in the task when UA and UB are com-
muting or anticommuting unitaries [2,47]. Graphically, the
first-order approximation agrees well for n̄ � 8 (see Fig. 3).
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B. Connecting the success probability with entanglement

A natural question raised by these results is why the QS
outperforms the 4B in the presence of noise in our benchmark
task. We can gain some insight into this question by looking
more closely at how and why the success probabilities de-
crease in both setups. In particular, we will see here that the
success probabilities are directly related to a more fundamen-
tal quantity, the entanglement entropy between the control and
the other systems.

The entanglement entropy between the control C and
the other systems (SFAFB for the QS and SFA0 FA1 FB0 FB1

in the case of the 4B), for any fixed (UA,UB), is de-
fined as the von Neumann entropy S(ρε

C (UA,UB)) (with ε ∈
{QS, 4B}) of the reduced state of the control. As we saw
[see Eqs. (17) and (18)], for an initial pure state |ψS〉, the
success probabilities for the QS and 4B are directly re-
lated to Re[〈ε

0(UA,UB)|ε
1(UA,UB)〉]. One can easily show

that, in this same case, S(ρε
C (UA,UB)) is directly related to

|〈ε
0(UA,UB)|ε

1(UA,UB)〉| as

S
(
ρε

C (UA,UB)
) = H

(
1 + |〈ε

0(UA,UB)
∣∣ε

1(UA,UB)
〉∣∣

2

)
,

(31)
where H (x) = −x log(x) − (1 − x) log(1 − x) is the binary
entropy.

For the specific discrimination task we considered, the se-
ries expansions given in Appendix C 2 readily allow us to see
that Re[〈ε

0(UA,UB)|ε
1(UA,UB)〉] = ±(1 − cε

n̄ + O( 1
n̄2 )) for

some constants cε depending in general on (UA,UB). A sim-
ilar calculation shows that Im[〈ε

0(UA,UB)|ε
1(UA,UB)〉] =

dε

n̄ + O( 1
n̄2 ) for some other constants dε that again depend in

general on (UA,UB), from which we see

∣∣〈ε
0(UA,UB)

∣∣ε
1(UA,UB)

〉∣∣ = 1 − cε

n̄
+ O

(
1

n̄2

)
, (32)

for the same constant cε , independently of dε . We thus observe
that, at first order in 1

n̄ , there is a direct monotonous connection
between the success probability and the entanglement entropy
of the control: one has S(ρε

C (UA,UB)) � H (p·,ε
success(UA,UB)),

with p·,ε
success = p[],ε

success for each pair (UA,UB) in S[,] and
p·,ε

success = p{,},ε
success for (UA,UB) in S{,}.

In the large-n̄ limit (in which the QS and 4B induce the
same effective transformation), the control does not become
entangled with the other systems. The reduction in success
probability for finite n̄, i.e., when the operations become
noisy, can thus be explained by the loss of information due to
the control becoming entangled with the other systems (and,
notably, the inaccessible fields). Moreover, the difference in
performance for a given n̄ between the QS and the 4B can
hence primarily be attributed to the fact that less entanglement
is created by the QS [which effectively reduces the length
of the Bloch vector of ρε

C (UA,UB)], rather than, for example,
being due to an effective rotation of the Bloch vector, meaning
a measurement in the {|±C〉} basis may no longer be optimal.
Understanding why less entanglement is created by the QS in
this task, and whether this is a general feature beyond what
we consider here, is an intriguing open question that may
help to further understand the differences between the QS and
the 4B.

V. CONCLUSIONS

The quantum switch (QS), and causal indefiniteness more
generally, has attracted significant recent interest as a po-
tential computational resource. This has led to some debate
around different experiments striving to implement the quan-
tum switch as to whether they are faithful implementations or
just simulations [25–30]. Motivated by these questions, in this
paper we introduced a practical definition of an operation as
a “box” relating it to its physical implementation, and based
on which we investigated some of the physical differences
between the QS and a natural “four box” simulation of it (the
4B). We employed an energetic approach for this comparison,
modeling the implemented operations as an atom interacting
with a coherent state of light through the Jaynes-Cummings
model, and where the noise is a consequence of the limited
energy budget in the coherent state. We used this model to
study which of these processes is the most energy efficient in
performing a specific benchmark task, involving determining
whether two operations commute or anticommute.

More precisely, by considering a specific set of single-qubit
rotations around the equatorial plane as in Eqs. (14) and (15),
and assuming an ideal implementation of the unitary UB,
we showed numerically (and analytically in the high-energy
limit) that the QS performs better than the 4B for a fixed
amount of energy or, equivalently, that it requires less energy
to reach a desired success probability for the benchmark task.
We also showed that the QS and the 4B outperform (except
in the very low-energy regime) a natural class of quantum
circuits with fixed causal order (FCO) that, like both the QS
and the 4B, are “isotropic” and thus operate independently of
the reference frame used to define the operations of our bench-
mark task. We note, incidentally, that this class of isotropic
circuits with FCO that we introduced here may be of indepen-
dent interest beyond the context of this work.

In addition to shedding light on the differences between the
QS and its simulations, these results highlight the potential of
superpositions of causal orders as energy-efficient quantum
processes. We provided some initial insight into why this
might be the case, showing that the advantage of the QS in our
benchmarking task over the 4B is closely related to the amount
of entanglement the processes generate for a given energy
budget. Nonetheless, much work remains to understand the
generality of our results and the potential energetic advantages
that can be obtained: To what extent can they be generalized
beyond the specific physical model and task we considered
here? Do they still hold if both UA and UB are taken to be
noisy or if the energy is not required to be shared evenly
(i.e., n̄/2 photons per cavity) between the two “copies” of the
operation? Our work thus motivates a more systematic study
of the energetics of the QS, causally indefinite processes, and
their simulations.
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APPENDIX A: EXPERIMENTAL IMPLEMENTATION
UNDER CONSIDERATION

In the last decade, there has been a number of experimen-
tal investigations of the quantum switch, and more generally
the coherent control of unknown quantum operations, mainly
using photonic setups [16–24], but also spins in nuclear mag-
netic resonance [37] or superconducting circuits [39,49]. A
proposal with trapped ions was also presented [15]. Contrarily
to the model we considered, however, in these implementa-
tions the operations A and B are not implemented via the
Jaynes-Cummings interaction with a single bosonic mode
whose average number of excitations can be easily tuned. A
natural setup to implement an energy-constrained realization
of the QS and 4B, as we considered in this work, would be a
cavity quantum electrodynamics platform. Indeed, such cou-
pling is naturally realized by the electric dipole Hamiltonian
between atoms and field in the rotating wave approximation
[40]. We therefore propose an experimental implementation
of the QS and 4B in this platform.

More specifically, we consider a four-level atom on which
the control and target states are encoded. This atom interacts
via a Jaynes-Cummings Hamiltonian with a single two-mode

cavity in the case of the QS, and with two such two-mode
cavities in the case of the 4B. These interactions mediate the
implementation of the operations A and B.

The four-level atom can be mapped to two effective qubits,
encoding the target and control, respectively. By properly
addressing the different levels, it is possible to change the
state of one of them without affecting the other. Let us denote
by {|1〉, |2〉, |3〉, |4〉} these four atomic states. We consider the
subspace spanned by the two lower levels to encode the target
state when the control state is |0C〉, and the subspace spanned
by the two upper levels to encode the target state when the
control state is |1C〉. This defines the mapping {|1〉 = |0C0S〉,
|2〉 = |0C1S〉, |3〉 = |1C0S〉, |4〉 = |1C1S〉} between the Hilbert
space of the atom and the Hilbert space of the two qubits. The
initial state of the atom should be such that it corresponds to a
product state between the system and the control.

For the QS, as illustrated in Fig. 4(a), the passage of the
atom through the first half of the cavity will coherently im-
plement the operations A and B depending on the state of
the control, |0C〉 or |1C〉, respectively. When the atom reaches
the middle of the cavity, a fast electric pulse is applied, in-
verting the populations between the upper and lower atomic
subspaces and thus effectively implementing a Pauli σx gate
on the control qubit. In this way, the target state component
that underwent operation A (i.e., that was encoded in the
lower subspace) now becomes coupled to the field mode that
implements operation B (i.e., that is encoded in the upper
subspace). Similarly, the target state component previously
encoded in the upper subspace is now encoded in the lower
subspace. When the atom passes through the second half of
the cavity, the operations A and B are again implemented,
but to the target state component corresponding to the other
control state; i.e., B is implemented to the component that
underwent A in the first half, and vice versa. Just like the

FIG. 4. Proposed implementation for (a) the QS and (b) the 4B setups with two-mode cavities and a four-level atom. The four-level system
encodes both the target and the control qubits. Each mode of the two-mode cavity field extends over the whole interior of the cavity; for a
pictorial representation, however, we represent these modes in the upper and lower parts of the cavity. For each cavity, the field mode FA

couples to the lower atomic subspace {|1〉, |2〉} (corresponding to the control state |0C〉) while the field mode FB couples to the upper atomic
subspace {|3〉, |4〉} (control state |1C〉). The QS is implemented by the atom traversing a single cavity. The population inversion in the middle
enables the two operations A and B (or the “boxes” {UA,FA , |αA〉} and {UB,FB , |αB〉}; see Sec. II A) to be implemented sequentially in the same
cavity, with their order depending on the control state. For the 4B two such cavities are employed and the atom traverses sequentially the two
cavities.
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orange squares in Fig. 1, the role of σx is to flip on which
branch of the superposition the boxes act. When the atom exits
the cavity, its state corresponds to the bipartite control and
target qubit state after the operation of the quantum switch, as
in Eq. (7) (up to a flip of the control qubit).

In order to implement the 4B, two such cavities can
be used. The atom passes through the first cavity, coher-
ently implementing A on the upper subspace and B on the
lower subspace. In the passage through the second cavity, the
gates B and A are coherently implemented in the upper and
lower subspaces, respectively, thus implementing the 4B [see
Fig. 4(b)]. In contrast to the quantum switch, which employs
two quantum fields, one for each mode, the 4B employs four
quantum fields, in agreement with the description of Sec. II C.

The implementation described above provides a potential
means to experimentally observe an energy advantage of us-
ing superpositions of causal orders. We thereby challenge
experimental groups to realize this implementation.

APPENDIX B: APPROXIMATING UNITARY EVOLUTIONS
IN THE JAYNES-CUMMINGS MODEL

Recall the Hamiltonian in the Jaynes-Cummings model:

H = h̄�0

2
(eiφ σ+ ⊗ a + e−iφ σ− ⊗ a†) (B1)

with σ− = |g〉〈e| and σ+ = σ
†
− = |e〉〈g| (and with |g〉

and |e〉 denoting the ground and excited states of the
atom). Applying this Hamiltonian for a given time t , we
get the unitary U (t ) = e−i Ht

h̄ = e−i �0t
2 (eiφ σ+⊗a+e−iφ σ−⊗a† ).

Expanding the exponential, using the (easily verified) facts
that (eiφ σ+ ⊗ a + e−iφ σ− ⊗ a†)2k = |g〉〈g| ⊗ (a†a)k +
|e〉〈e| ⊗ (aa†)k and (eiφ σ+ ⊗ a + e−iφ σ− ⊗ a†)2k+1 =
eiφ |e〉〈g| ⊗ a(a†a)k + e−iφ |g〉〈e| ⊗ a†(aa†)k , and introducing
the photon number operator N = a†a(= aa† − 1), we can
write U (t ) in the {|g〉, |e〉} basis for the atom, as a block
operator:

U (t ) =

⎛
⎜⎝ cos

(
�0t

2

√
N

) −ie−iφa†
sin

(
�0t

2

√
N+1

)
√

N+1

−ie+iφa
sin

(
�0t

2

√
N

)
√

N
cos

(
�0t

2

√
N + 1

)
⎞
⎟⎠.

(B2)

Consider applying this unitary to a product state |ψ〉 ⊗
|α〉 of the atom-field system, with |ψ〉 = cg|g〉 + ce|e〉 and
|α〉 a coherent state with amplitude1 α > 0 and mean pho-
ton number n̄ = |α|2, i.e., written in the Fock basis, |α〉 =∑

n�0 c(n̄)
n |n〉 with c(n̄)

n = e−n̄/2
√

n̄
n
/
√

n!. Using the above ex-
pression, we get

U (t )|ψ〉 ⊗ |α〉 =
∑
n�0

c(n̄)
n

[
(cos

(
�0t

2

√
n

)
cg|g〉 + cos

(
�0t

2

√
n + 1

)
ce|e〉) ⊗ |n〉

− ie−iφ sin

(
�0t

2

√
n + 1

)
ce|g〉 ⊗ |n + 1〉 − ie+iφ sin

(
�0t

2

√
n

)
cg|e〉 ⊗ |n − 1〉

]

=
∑
n�0

[
c(n̄)

n (cos

(
�0t

2

√
n

)
cg|g〉 + cos

(
�0t

2

√
n + 1

)
ce|e〉)

− c(n̄)
n−1ie−iφ sin

(
�0t

2

√
n

)
ce|g〉 − c(n̄)

n+1ie+iφ sin

(
�0t

2

√
n + 1

)
cg|e〉

]
⊗ |n〉. (B3)

Assume now that |α〉 has a large mean photon number:
n̄ � 1. In that case the (Poissonian) distribution of the weights
|c(n̄)

n |2 is peaked around n̄, with a width of the order of
√

n̄;
beyond this peak, the weights c(n̄)

n are negligible. Expanding√
n around its value for n = n̄, we have

√
n ≈ √

n̄ + n−n̄
2
√

n̄
,

and we can thus write cos( �0t
2

√
n) ≈ cos( �0t

2

√
n̄ + n−n̄

4
√

n̄
�0t ).

Assuming now that the interaction time t is small enough
so that �0t � 1, then for all n whose corresponding weight
c(n̄)

n is non-negligible (for which n−n̄
4
√

n̄
is typically smaller than

1), the second term in the cosine above is negligible [and
so would be all higher-order terms in (n − n̄)]. We thus get,
in the relevant range of n, cos( �0t

2

√
n) ≈ cos( �0t

2

√
n̄), and

similarly, cos( �0t
2

√
n + 1) ≈ cos( �0t

2

√
n̄) and sin( �0t

2

√
n) ≈

sin( �0t
2

√
n + 1) ≈ sin( �0t

2

√
n̄).

1Taking any complex value for α would simply shift the angle
φ that defines the rotation axis: there is no loss of generality in
considering α > 0 here.

Notice now that c(n̄)
n−1 =

√
n√
n̄
c(n̄)

n and c(n̄)
n+1 =

√
n̄√

n+1
c(n̄)

n . Still

in the relevant range of n around n̄, we have
√

n√
n̄

≈
√

n̄√
n+1

≈ 1,

so that c(n̄)
n−1 ≈ c(n̄)

n+1 ≈ c(n̄)
n . All in all, we can then approximate

Eq. (B3) as [45]

U (t )|ψ〉 ⊗ |α〉 ≈
∑
n�0

[
cos

(
�0t

2

√
n̄

)
(cg|g〉 + ce|e〉)

− i sin

(
�0t

2

√
n̄

)
(e−iφce|g〉 + e+iφcg|e〉)

]

⊗ c(n̄)
n |n〉

≈ (Rφ (�0t
√

n̄)|ψ〉) ⊗ |α〉, (B4)

where Rφ (θ ) = e−i θ
2 (cos φ σx+sin φ σy ) denotes a rotation on the

Bloch sphere by an angle θ , around an equatorial axis
defined by its azimuthal angle φ [thus corresponding to
the notation R
u(θ ) introduced in the main text, with 
u =
(cos φ, sin φ, 0)x,y,z; σx and σy above are Pauli matrices].
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FIG. 5. Fidelity of the approximate rotations in the finite-energy
regime. Here the fidelity of an operation F with respect to a unitary
U is defined as the fidelity of the output state with respect to the ideal
one, averaged over all input states; for two-dimensional systems it
can be calculated as F = 1

2 + 1
12

∑
j=x,y,z Tr[Uσ jU †F (σ j )] [50]. The

connected points are obtained numerically for different values of n̄,
while the dashed lines are the analytical first-order expansions in 1/n̄

[namely, F = 1 − 1−cos θ+θ2/2
12n̄ + O( 1

n̄2 )].

One thus recognizes that in the large-photon-number limit,
and under the above assumptions, the joint unitary U (t ) ap-
plied to both the atom and the cavity initialized in a coherent
state effectively approximates a rotation Rφ (�0t

√
n̄) of the

state of the atom alone, while leaving the state of the cavity
essentially unchanged. If one aims at approximating a rotation
by a given angle θ , for a given (large enough) average number
of photons, n̄, in the cavity, one should thus choose the time of
interaction t such that �0t ≈ θ/

√
n̄ (which indeed is such that

�0t � 1 when n̄ � 1, as assumed above). Note that the some-
what hand-waving calculations and approximations presented
here can be made rigorous: we will see in Appendix C how
precisely the above choice approximates the desired rotations
in the asymptotic limit of large n̄.

In the finite-n̄ regime, U (t ) does of course not induce a
perfect rotation of the state of the atom only. The time of
interaction, t , could in principle be optimized, for each finite
value of n̄, so that the Jaynes-Cummings considered here gives
the best possible approximation of a given desired rotation.
However, for simplicity and as a rule of thumb we will simply
take this time of interaction to be �0t = θ/

√
n̄, as dictated by

the approximation in the large-n̄ limit.2 In Fig. 5 we show the
fidelity of the approximate rotation induced on the atom as
a function of n̄, for various values of θ , to see how well this
approaches the ideal unitary case. Note that the smaller (in

2We do not claim that this choice is necessarily optimal. E.g.,
choosing �0t = θ/

√
n̄ + 1 instead, or �0t = θ/

√
n̄ + δ for some

other value of δ, could give slightly larger fidelities in Fig. 5—and,
correspondingly, slightly larger success probabilities for the task
considered in the main text, shown in Fig. 3. However, this would
not qualitatively change our comparison between the QS and 4B
setups or any of our results [e.g., our first-order expansions in 1

n̄ of
the fidelity above, and of the success probabilities in Appendix D 2
would not depend on the (fixed) value of δ], so for simplicity we will
stick to the choice �0t = θ/

√
n̄.

absolute value) the angle θ , the better the approximation [for
a fixed value of n̄; in the large-n̄ limit, based on our analysis
in Appendix C below, we find F = 1 − 1−cos θ+θ2/2

12n̄ + O( 1
n̄2 )].

In particular, one loses the 2π periodicity for the approxima-
tions; in this paper we therefore consider all rotation angles to
be in the interval [−π, π ].

APPENDIX C: KRAUS OPERATORS AND ASYMPTOTIC
BEHAVIORS OF THE INDUCED LINEAR MAPS

1. Kraus operators

From Eq. (B2), we can obtain the reduced dynamics of the
two-level system induced by the Jaynes-Cummings Hamilto-
nian. For that, we consider as above that the field is initialized
in a coherent state |α〉 where α = √

n̄, n̄ being the average
number of photons in this field. We also consider a time
of interaction t = θ/(�0

√
n̄) (θ being the angle of rotation

we wish to perform), as prescribed in Appendix B, and
denote by U (n̄) the corresponding unitary operator: U (n̄) =
U ( θ

�0
√

n̄
). The reduced dynamics is then given by the map F (n̄)

such that, for any initial density matrix ρS for the two-level
system,

F (n̄)(ρS ) =
+∞∑
n=0

A(n̄)
n ρSA(n̄)†

n , (C1)

where the Kraus operators A(n̄)
n are defined as

A(n̄)
n = (1 ⊗ 〈n|)U (n̄) (1 ⊗ |α〉)

=
∑
m�0

c(n̄)
m (1 ⊗ 〈n|)U (n̄) (1 ⊗ |m〉)

=
⎛
⎝ c(n̄)

n cos
(

θ
2

√
n√
n̄

) −ie−iφc(n̄)
n−1 sin

(
θ
2

√
n√
n̄

)
−ie+iφc(n̄)

n+1 sin
(

θ
2

√
n+1√

n̄

)
c(n̄)

n cos
(

θ
2

√
n+1√

n̄

)
⎞
⎠.

(C2)

2. Asymptotic behaviors

We aim here at describing the dynamics in the regime of
large n̄. For this purpose, in order to make the calculations
more compact, we will describe the maps under consideration
by making use of their Choi representation [51]. The Choi
matrix of a linear map M : L(HI ) → L(HO), from some
“input” Hilbert space HI to some “output” Hilbert space HO

and where L(H) represents the set of linear operators acting
on the Hilbert space H, is defined as

M =
∑
i,k

|i〉〈k|I ⊗ M(|i〉〈k|I ) ∈ L(HI ) ⊗ L(HO), (C3)

where {|i〉I} is a fixed (“computational”) basis of HI . The Choi
matrix elements are thus 〈i, j|M|k, l〉 = 〈 j|M(|i〉〈k|)|l〉.

We will look below at the asymptotic behaviors for two
different linear maps, in the large-n̄ regime. For that, us-
ing the facts that c(n̄)

n−1 =
√

n√
n̄
c(n̄)

n and c(n̄)
n+1 =

√
n̄√

n+1
c(n̄)

n , it will
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be convenient to write the Kraus operators of Eq. (C2) above as

A(n̄)
n = c(n̄)

n

⎛
⎝ cos

(
θ
2

√
n√
n̄

) −ie−iφ
√

n√
n̄

sin
(

θ
2

√
n√
n̄

)
−ie+iφ

√
n̄√

n+1
sin

(
θ
2

√
n+1√

n̄

)
cos

(
θ
2

√
n+1√

n̄

)
⎞
⎠

= c(n̄)
n

⎛
⎝

∑∞
p=0

(−1)p

(2p)!

(
θ
2

)2p np

n̄p −ie−iφ
∑∞

p=0
(−1)p

(2p+1)!

(
θ
2

)2p+1 np+1

n̄p+1

−ie+iφ
∑∞

p=0
(−1)p

(2p+1)!

(
θ
2

)2p+1 (n+1)p

n̄p

∑∞
p=0

(−1)p

(2p)!

(
θ
2

)2p (n+1)p

n̄p

⎞
⎠. (C4)

a. Effective map applied to the atom, F (n̄) : ρ �→ ∑
n A(n̄)

n ρA(n̄)†
n

We first calculate the Choi matrix of the map F (n̄) defined through Eq. (C1). In order to keep this section short, we will detail
the calculations for a single coefficient of the Choi matrix only. All other coefficients are obtained in a similar way. This Choi
matrix will then be used in Appendix D 2 to estimate the success probability of the QS at the commuting-versus-anticommuting
task, in the large-n̄ limit.

Using Eq. (C4), we have

〈00|F (n̄)|00〉 = 〈0|F (n̄)
(|0〉〈0|)|0〉 =

∑
n�0

〈0|A(n̄)
n |0〉〈0|A(n̄)†

n |0〉 =
∑
n�0

(
c(n̄)

n

)2 ∑
p�0

(−1)p

(2p)!

(
θ

2

)2p np

n̄p

∑
q�0

(−1)q

(2q)!

(
θ

2

)2q nq

n̄q

=
∑
p�0

∑
q�0

(−1)p+q

(2p)!(2q)!

(
θ

2

)2p+2q 1

n̄p+q

∑
n�0

(
c(n̄)

n

)2
np+q, (C5)

where we used the fact that the triple series is absolutely
convergent3 to swap the sums in the last line.

In the last sum above we recognize the (p + q)th moment
of the Poisson distribution with mean value n̄, which can be
written as [52]

∑
n�0

(
c(n̄)

n

)2
np+q =

p+q∑
j=0

{
p + q

p + q − j

}
n̄p+q− j, (C6)

where
{ p+q

p+q− j

}
denotes a Stirling number of the second kind.

Inserting this into Eq. (C5) and taking the convention that{ p+q
p+q− j

} = 0 for j > p + q, we can then swap the sums again
so as to obtain

〈00|F (n̄)|00〉

=
∑
j�0

⎛
⎝∑

p�0

∑
q�0

(−1)p+q

(2p)!(2q)!

(
θ

2

)2p+2q{ p + q

p + q − j

}⎞
⎠ 1

n̄ j
.

(C7)

3Indeed, the summands sn,p,q = (c(n̄)
n )2 (−1)p

(2p)! ( θ

2 )2p np

n̄p
(−1)q

(2q)! ( θ

2 )2q nq

n̄q

satisfy |sn,p,q| � (c(n̄)
n )2 1

(2p)! ( θ

2 )2p np

n̄p
1

(2q)! ( θ

2 )2q nq

n̄q , so that
∑

p,q |sn,p,q|
� (c(n̄)

n )2 cosh2( θ

2

√
n√
n̄

) for each n. Using, for instance,
Stirling’s formula, it is then straightforward to see that
limn→+∞ n2[(c(n̄)

n )2 cosh2( θ

2

√
n√
n̄

)] = 0, which ensures that∑
n,p,q |sn,p,q| < +∞.

Evaluating the first two terms of the sum over j (using{p+q
p+q

} = 1 and
{ p+q

p+q−1

} = (p+q)(p+q−1)
2 ) and truncating the

higher-order terms in 1
n̄ , we obtain, after some algebraic ma-

nipulations,

〈00|F (n̄)|00〉

= 1

2
(1 + cos θ ) + 1

16n̄
(θ sin θ − θ2 cos θ ) + O

(
1

n̄2

)
.

(C8)

Beyond this first term, the other elements of the
Choi matrix are 〈i, j|F (n̄)|k, l〉 = 〈 j|F (n̄)(|i〉〈k|)|l〉 =∑

n〈 j|A(n̄)
n |i〉〈k|A(n̄)†

n |l〉, i.e., are obtained as sums over
n of products of two elements (one being conjugated)
of the Kraus operators of Eq. (C4) (from which we get
two more sums

∑
p

∑
q, as above). After exchanging the

sums
∑

n with the sums
∑

p

∑
q (as allowed by the fact

that the series are still absolutely convergent), we get
terms of the form

∑
n�0(c(n̄)

n )2nr (n + 1)s, which can now
be written [after expanding (n + 1)s, using Eq. (C6) and
rearranging the sums] as

∑r+s
j=0(

∑min(s, j)
k=0

(s
k

){r+s−k
r+s− j

}
)n̄r+s− j =

n̄r+s(1 + (r+s)(r+s−1)+2s
2n̄ + O( 1

n̄2 )). After swapping the sums
again, we can evaluate the leading terms (for j = 0, 1), as we
did above.
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For the case where φ = 0, these calculations lead to

F (n̄) = R0(θ ) + 1

16n̄

⎛
⎜⎜⎜⎜⎝

θsθ−θ2cθ −i(sθ−θ (2−cθ )+θ2sθ ) −i(sθ−θcθ+θ2sθ ) −θsθ−θ2cθ

i(sθ−θ (2−cθ )+θ2sθ ) −θsθ+θ2cθ −4(1−cθ )+θsθ+θ2cθ i(sθ−θcθ+θ2sθ )

i(sθ−θcθ+θ2sθ ) −4(1−cθ )+θsθ+θ2cθ 3θsθ+θ2cθ i(sθ+θ (2−3cθ )+θ2sθ )

−θsθ−θ2cθ −i(sθ−θcθ+θ2sθ ) −i(sθ+θ (2−3cθ )+θ2sθ ) −3θsθ−θ2cθ

⎞
⎟⎟⎟⎟⎠

+ O

(
1

n̄2

)
(C9)

with cθ = cos θ , sθ = sin θ , and where

R0(θ ) = 1

2

⎛
⎜⎜⎝

1+cθ isθ isθ 1+cθ

−isθ 1−cθ 1−cθ −isθ

−isθ 1−cθ 1−cθ −isθ

1+cθ isθ isθ 1+cθ

⎞
⎟⎟⎠ (C10)

is the Choi matrix of the map ρ �→ R0(θ )ρR0(θ )† that applies
a perfect rotation by an angle θ around the x axis of the Bloch
sphere. For some azimuthal angle φ = 0, one just has to mul-
tiply the second row and third columns of the Choi matrices
above by eiφ , and the third row and second columns by e−iφ

[in accordance with how φ appears in the Kraus operators A(n̄)
n ;

see Eq. (C2)4].
Thus, we clearly see from Eq. (C9) that, in the large-n̄

limit, the operation F (n̄) (obtained as described above from the
Jaynes-Cummings interaction, with the choice �0t = θ/

√
n̄)

indeed tends to a perfect rotation by an angle θ , which con-
firms the approximate calculations of Appendix B. One can
also see that the elements of the first-order correction matrix
in Eq. (C9) are null for θ = 0, and increase (up to a certain

point) with |θ |; in particular, as also noticed before, we lose
the 2π periodicity.

b. Induced map G (n̄) : ρ �→ G(n̄)ρG(n̄)† with
G(n̄) = (1 ⊗ 〈α/

√
2|)U (n̄/2) (1 ⊗ |α/

√
2)〉

In our calculations of the success probability of the 4B at
the commuting-versus-anticommuting task we consider, we
are also led to consider the linear map G (n̄) defined in the title
of this section. As we did for F (n̄) above, we will derive here
a perturbative expansion in the large-n̄ limit.

Contrary to F (n̄) that involved infinitely many Kraus oper-
ators A(n̄)

n , the map G (n̄) is defined in terms of a single Kraus
operator G(n̄). We can thus first consider the expansion of G(n̄)

in the large-n̄ limit. We do this in a similar way to what we
did for F (n̄) above, noting that G(n̄) = ∑

n (c(n̄/2)
n )

∗
A(n̄/2)

n and
starting from the form of Eq. (C4) for the operators A(n̄/2)

n ; the
difference with the previous calculations is that here we only
have single sums

∑
p (as opposed to double sums

∑
p

∑
q), to

be swapped with the sums
∑

n and then
∑

j .
For the case where φ = 0 we thus get

G(n̄) =
(

cos
(

θ
2

) −i sin
(

θ
2

)
−i sin

(
θ
2

)
cos

(
θ
2

)
)

+ 1

16n̄

(
2θ sin

(
θ
2

) − θ2 cos
(

θ
2

)
i
(
4 sin

(
θ
2

) − 2θ cos
(

θ
2

) + θ2 sin
(

θ
2

))
i
(
4 sin

(
θ
2

) − 2θ cos
(

θ
2

) + θ2 sin
(

θ
2

)) −6θ sin
(

θ
2

) − θ2 cos
(

θ
2

)
)

+ O

(
1

n̄2

)
, (C11)

from which we then easily obtain the Choi matrix of the linear map G (n̄):

G(n̄) = R0(θ )+ 1

8n̄

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

θsθ− θ2

2 (1+cθ ) −i
(
sθ−θ+ θ2

2 sθ

) −i
(
sθ−θ+ θ2

2 sθ

) −θsθ− θ2

2 (1+cθ )

i
(
sθ−θ+ θ2

2 sθ

) −2(1−cθ )+θsθ− θ2

2 (1−cθ ) −2(1−cθ )+θsθ− θ2

2 (1−cθ ) i
(
sθ+θ (1−2cθ )+ θ2

2 sθ

)
i
(
sθ−θ+ θ2

2 sθ

) −2(1−cθ )+θsθ− θ2

2 (1−cθ ) −2(1−cθ )+θsθ− θ2

2 (1−cθ ) i
(
sθ+θ (1−2cθ )+ θ2

2 sθ

)
−θsθ− θ2

2 (1+cθ ) −i
(
sθ+θ (1−2cθ )+ θ2

2 sθ

) −i
(
sθ+θ (1−2cθ )+ θ2

2 sθ

) −3θsθ− θ2

2 (1+cθ )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ O

(
1

n̄2

)
(C12)

(again with cθ = cos θ and sθ = sin θ ). As before, for φ = 0 one just needs to multiply the appropriate rows or columns of the
Choi matrices above by either eiφ or e−iφ .

4Note that F (n̄) thus remains Hermitian, and even positive semidefinite, as required for the Choi matrix of a completely positive (CP) map.
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APPENDIX D: SUCCESS PROBABILITIES
FOR THE QS AND 4B AT THE

COMMUTING-VERSUS-ANTICOMMUTING
DISCRIMINATION TASK

1. Exact expressions

Here we provide the exact analytic expressions for the
success probabilities of Eqs. (17) and (18), when averaged

following Eq. (23). For this purpose, we start by recognizing,
using Eqs. (19)–(22), that

〈


QS
0 (UA,UB)

∣∣QS
1 (UA,UB)

〉 = Tr(F (n̄)(UBρS )U †
B ), (D1)〈

4B
0 (UA,UB)

∣∣4B
1 (UA,UB)

〉 = Tr(G (n̄)(UBρS )U †
B ), (D2)

where F (n̄) and G (n̄) are the linear maps previously defined in Secs. C 2 a and C 2 b (which appear in the calculation after tracing
over the cavity fields), and where ρS = |ψS〉〈ψS|. Note that these expressions, as well as the success probabilities below, are all
linear in ρS , so that these remain valid for any mixed input states of the target system. The average success probabilities for the
QS and 4B in the commuting and anticommuting scenarios can then be written as

〈
p[,],QS

success

〉 = 1

2

(
1 +

∫
S[,]

dμ[,](UA,UB) Re[Tr(F (n̄,UA )(UBρS )U †
B )]

)
= 1

2

(
1 +

+∞∑
n=0

X [,],QS
n (n̄)

)
, (D3)

〈
p{,},QS

success

〉 = 1

2

(
1 −

∫
S{,}

dμ{,}(UA,UB) Re[Tr(F (n̄,UA )(UBρS )U †
B )]

)
= 1

2

(
1 −

+∞∑
n=0

X {,},QS
n (n̄)

)
, (D4)

〈
p[,],4B

success

〉 = 1

2

(
1 +

∫
S[,]

dμ[,](UA,UB) Re[Tr(G (n̄,UA )(UBρS )U †
B )]

)
= 1

2

(
1 +

+∞∑
m=0

+∞∑
n=0

X [,],4B
m,n (n̄)

)
, (D5)

〈
p{,},4B

success

〉 = 1

2

(
1 −

∫
S{,}

dμ{,}(UA,UB) Re[Tr(G (n̄,UA )(UBρS )U †
B )]

)
= 1

2

(
1 −

+∞∑
m=0

+∞∑
n=0

X {,},4B
m,n (n̄)

)
, (D6)

with

X [,]/{,},QS
n (n̄) =

∫
S[,]/{,}

dμ[,]/{,}(UA,UB) Re
[
Tr

(
A(n̄,UA )

n UBρSA(n̄,UA )†
n U †

B

)]
, (D7)

X [,]/{,},4B
m,n (n̄) =

∫
S[,]/{,}

dμ[,]/{,}(UA,UB) Re
[(

c(n̄/2)
m

)∗
c(n̄/2)

n Tr
(
A(n̄/2,UA )

m UBρSA(n̄/2,UA )†
n U †

B

)]
, (D8)

where we used the notations F (n̄,UA ), G (n̄,UA ), and A(n̄,UA )
n to indicate explicitly the ideal unitary operation UA that these correspond

to.
To evaluate these expressions further, we can use the following parametrization for the unitaries in the sets S[,], S{,} and for

their measures, in accordance with Eqs. (14) and (15):

S[,] : UA = R
u(θA) = Rφ (θA), UB = R
u(θA) = Rφ (θB),
∫
S[,]

dμ[,](UA,UB) =
∫ π

−π

dφ

2π

∫ π

−π

dθA

2π

∫ π

−π

dθB

2π
, (D9)

S{,} : UA = R
uA (π ) = RφA (π ), UB = R
uB (π ) = Rφ⊥
A ,ϕB

(π ),
∫
S{,}

dμ{,}(UA,UB) =
∫ π

−π

dφA

2π

∫ π

−π

dϕB

2π
, (D10)

where Rφ (θ ) = e−i θ
2 (cos φ σx+sin φ σy ) is again a rotation

(in the Bloch sphere) of angle θ around an equatorial
axis with azimuthal angle φ, while Rφ⊥

A ,ϕB
(π ) =

e−i π
2 (sin φA sin ϕB σx−cos φA sin ϕB σy+cos ϕB σz ) denotes a rotation of

angle π around an axis with zenithal angle ϕB and azimuthal
angle φA − π/2 (so that it is orthogonal to the equatorial
axis with azimuthal angle φA). In Eqs. (D7) and (D8), A(n̄,UA )

n
is then given by Eq. (C2), with the same angles (θ, φ) as
UA = Rφ (θ ) in the parametrizations above.

With this the terms of X [,]/{,},QS
n (n̄) and X [,]/{,},4B

m,n (n̄) in
Eqs. (D7) and (D8) can be evaluated analytically, for any
given state ρS .5 Their explicit forms are, however, rather te-

5Note that, as expected from the rotational symmetries of the two
sets of unitaries around the z axis of the Bloch sphere, the results

dious to write, so we omit them here, and we now focus on
the asymptotic regime.

2. Asymptotic regime

Using Tr[M(�)υ] = Tr[M · (�T ⊗ υ )] and Eqs. (C9) and
(C12) in Eqs. (D3)–(D6) [or using Eq. (C11) directly in
Eqs. (D5) and (D6)], and with the explicit parametrization of
the sets S[,] and S{,} as in Eqs. (D9) and (D10) above, we can
evaluate the average success probabilities in the large-n̄ limit.

only depend on the z component of the state ρS , Tr[σzρS] (as we see,
in particular, in the asymptotic regime below).
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We obtain

〈
pQS,[,]

success

〉 = 1 − 1

16n̄
+ O

(
1

n̄2

)
, (D11)

〈
pQS,{,}

success

〉 = 1 − 2 + π2

16n̄
+ O

(
1

n̄2

)
, (D12)

〈
p4B,[,]

success

〉 = 1 − 2 + π2/3 − Tr[σzρS]

16n̄
+ O

(
1

n̄2

)
, (D13)

〈
p4B,{,}

success

〉 = 1 − 4 + π2

16n̄
+ O

(
1

n̄2

)
, (D14)

from which we then get

〈
pQS

success

〉 = 1 − 3 + π2

32n̄
+ O

(
1

n̄2

)
, (D15)

〈
p4B

success

〉 = 1 − 6 + 4π2/3 − Tr[σzρS]

32n̄
+ O

(
1

n̄2

)
, (D16)

〈
pQS

success

〉 − 〈
p4B

success

〉 = 3 + π2/3 − Tr[σzρS]

32n̄
+ O

(
1

n̄2

)
.

(D17)

We thus see that for the task we considered, with the
prescribed sets of commuting or anticommuting operations
(UA,UB), the QS always performs slightly better than the 4B
in the asymptotic regime, whatever the initial state ρS of the
target system. The difference between the two is maximized
for ρS = |1〉〈1| and minimized for ρS = |0〉〈0|; for our com-
parison in the main text (and in Fig. 3 in particular) we take
the average situation with ρS = 1/2.

APPENDIX E: CIRCUITS WITH FIXED CAUSAL ORDER

1. Probabilistic circuits representation

The most general circuit that applies two operations (CPTP
maps) A and B in a fixed causal order with A preceding B
(each being applied once and only once), and that produces a
binary classical outcome, is depicted in Fig. 2 of the main
text. It consists in the composition of A and B with three
fixed operations. The first of these operations initializes the
target system as well as a “memory” system in some state
ρ ∈ L(HAI a), where HAI is the input Hilbert space of oper-
ation A, Ha is some memory Hilbert space, and where we
use the short-hand notation HXY = HX ⊗ HY . The second
fixed operation C is a channel (a CPTP map) that connects
the output space HAO of A and the memory space Ha to the
input space HBI of B and some other memory space Hb.
After operation B is applied, the output state of the target
and memory systems is finally measured by the third fixed
operation, namely, a POVM (E+, E−). The probabilities for
each outcome ± are, according to the Born rule,

p(±|A,B) = Tr[E± [(B ⊗ Ib) ◦ C ◦ (A ⊗ Ia)](ρ)], (E1)

where Ia/b is the identity channel on the memory space Ha/b.
It is easily verified that these probabilities can be written in
terms of the Choi matrices of the various maps [defined as in
Eq. (C3)] as in Eq. (24) of the main text, namely, as

p(±|A,B) = Tr[W T
± (A ⊗ B)] (E2)

with

W± = Trab[(ET
± ⊗ 1AI AOaBI )

× (CTab ⊗ 1AI BO )(ρ ⊗ 1AOBI BOb)] (E3)

and where Trab denotes the partial trace over the mem-
ory systems in Ha and Hb, superscript Tab denotes the
partial transpose,6 and 1X is the identity operator in the
spaces indicated as a superscript. More technically speak-
ing: W± is obtained as the so-called link product [46,48]
of the Choi matrices of the elements ρ, C, E± of the FCO
circuit.7

From Eq. (E3), and using the facts that all operators are
positive semidefinite (PSD), that E+ + E− = 1BOb and that
TrBI bC = 1AOa (which translates, into the Choi representation,
the fact that the channel C is trace preserving), one can easily
verify that the pair (W+,W−) satisfies

W± � 0, W+ + W− = W AI AOBI ⊗ 1BO ,

TrBIW
AI AOBI = W AI ⊗ 1AO , TrW AI = 1, (E4)

for some PSD matrices W AI AOBI (= Trab[(CTab ⊗ 1AI )(ρ ⊗
1AOBI b)]) and W AI (= Traρ). As it turns out, the converse is
also true: any pair (W+,W−)—a so-called quantum tester—
satisfying Eq. (E4) for some PSD matrices W AI AOBI ∈
L(HAI AOBI ) and W AI ∈ L(HAI ) can also be obtained from a
quantum circuit with fixed causal order of the form of Fig. 2,
for some appropriate choice of ρ, C, (E+, E−) [46,48]. Hence,
optimizing over all possible FCO circuits amounts to optimiz-
ing over pairs of operators (W+,W−) satisfying the constraints
above—or similar constraints for the order where B comes
before A.

2. Success probabilities at the commuting-versus-
anticommuting discrimination task

In the task under consideration, the outcomes ± of the
POVM (E+, E−), or equivalently of the quantum tester
(W+,W−), correspond to the guess that the ideal operations
UA and UB under consideration commute or anticommute,
which leads to the form of Eq. (25) for the success proba-
bility pFCO

success. Optimizing it over all circuits with fixed causal
order—i.e., over all testers (W+,W−) satisfying the relevant
constraints—is then a semidefinite programming (SDP) prob-
lem [47], which (for some fixed operators G±) can be solved
efficiently.

The operators G+ and G− from Eqs. (26) and (27) are ob-
tained from the Choi representations of the maps A and B, and
from the definitions of the sets S[,] and S{,} given in Eqs. (14)
and (15), which can be parametrized as in Eqs. (D9) and
(D10). Recall that in the scenario we consider, the operations
B are always taken to be unitary, of the form B : ρ �→ UBρU †

B .
On the other hand, in the finite-energy case the operations

6The transpose and partial transpose are taken in the “com-
putational basis,” used to define the Choi representation (see
Appendix C 2).

7For the familiar reader: in terms of the link product ∗,
p(±|A,B)=ET

± ∗ B ∗ C ∗ A ∗ ρ = (ET
± ∗ C ∗ ρ ) ∗ (B ∗ A) = W± ∗

(A ⊗ B), with W ± = ET
± ∗ C ∗ ρ.
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A are obtained from the Kraus operators A(n̄)
n of Eq. (C2),

according to A : ρ �→ ∑
n A(n̄)

n ρA(n̄) †
n . These are meant to ap-

proximate the unitary operations A : ρ �→ UAρU †
A , which are

reached only in the infinite-energy limit.
Let us derive the explicit forms of G+ and G− in

the infinite-energy limit, precisely. Writing [according to
Eqs. (26) and (27) and Eqs. (D9) and (D10), and in terms
of the Choi matrices Rφ (θ ) and Rφ⊥

A ,ϕB
(π ) of the CPTP maps

corresponding to the rotations Rφ (θ ) and Rφ⊥
A ,ϕB

(π )]

G+ =
∫ π

−π

dφ

2π

∫ π

−π

dθA

2π

∫ π

−π

dθB

2π
Rφ (θA) ⊗ Rφ (θB), (E5)

G− =
∫ π

−π

dφA

2π

∫ π

−π

dϕB

2π
RφA

(π ) ⊗ Rφ⊥
A ,ϕB

(π ), (E6)

after some calculations one finds [written in the space
L(HAI ) ⊗ L(HAO ) ⊗ L(HBI ) ⊗ L(HBO ), with implicit tensor
products]

G+ = 1
4

[(
11 + 1

2σxσx − 1
2σyσy

)(
11 + 1

2σxσx − 1
2σyσy

)
+ 1

8 (σxσx + σyσy)(σxσx + σyσy)

+ 1
8 (σxσy − σyσx )(σxσy − σyσx )

]
, (E7)

G− = 1
4

[(
11 − σzσz

)(
11 − 1

2σxσx + 1
2σyσy

)
− 1

4 (σxσx + σyσy)(σxσx + σyσy)

− 1
4 (σxσy − σyσx )(σxσy − σyσx )

]
. (E8)

With these operators G±, optimizing pFCO
success from Eq. (25)

under the constraints of Eq. (E4), i.e., for FCO circuits with A
before B, we found an optimal success probability pFCO

success �
0.9489.

However, for the analogous constraints corresponding to
FCO circuits with B before A, we found pFCO

success = 1. Indeed
there exists such a circuit that allows one to discriminate
perfectly commuting pairs (UA,UB) drawn from S[,], from
anticommuting pairs drawn from S{,}. This circuit can be
reconstructed from the results of the SDP optimization; it is
described in the next section.

The success probabilities for FCO circuits in the finite-
energy regime are shown in Fig. 6. For both fixed orders
between A and B, we see that these success probabilities
decrease when n̄ decreases, as the operation A is more and
more noisy. As in the ideal unitary case, the best FCO circuits
with B before A are found to outperform the best circuits with
A before B.

3. Optimal FCO circuit for unitary operations UA

and UB from S[,] or S{,}

As just claimed, one can find a FCO circuit with B before
A which correctly guesses whether UA and UB are drawn
from S[,] or S{,} (when both A and B implement UA and UB

perfectly, i.e., in the infinite-energy limit). This circuit is of
the form depicted on Fig. 2 of the main text, with the roles of
A and B being exchanged.

Specifically, the input state ρ can be taken to be a maxi-
mally entangled state

ρ = |+〉〈+|BI b (E9)

FIG. 6. Success probabilities at our discrimination task for FCO
circuits with A before B (A ≺ B) or B before A (B ≺ A), for 1 �
n̄ � 20.

with |+〉BI b = 1√
2
(|00〉BI b + |11〉BI b), where we introduced a

two-dimensional memory space Hb, while the channel C can
be taken to be an isometric channel C : ρ �→ CρC† with

C = |+〉AI a1 |0〉a2〈00|BOb + |+〉AI a1 |1〉a2〈11|BOb

+ |01〉AI a1 |2〉a2〈01|BOb + |10〉AI a1 |2〉a2〈10|BOb, (E10)

where we introduced two more memory spaces: a two-
dimensional space Ha1 and a three-dimensional space Ha2 .

Let us indeed check that these choices allow one to solve
the task perfectly. For any unitary operations UA and UB, the
output state of the circuit before the POVM is |ψ〉AOa1a2 =
(UA ⊗ 1a1a2 )C(UB ⊗ 1b)|+〉. Considering that either UA =
Rφ (θA),UB = Rφ (θB) if these are drawn from S[,], or UA =
RφA (π ),UB = Rφ⊥

A ,ϕB
(π ) if these are drawn from S{,} [see

Eqs. (D9) and (D10)], the corresponding output states are
easily calculated to be

|ψ[,]〉 = cos
θB

2

(
cos

θA

2
|+〉AOa1 − i sin

θA

2
|
φ〉AOa1

)
|+〉a2

− sin
θB

2

(
sin

θA

2
|+〉AOa1 + i cos

θA

2
|
φ〉AOa1

)
|2〉a2 ,

|ψ{,}〉 = − cos ϕB|
φA〉AOa1 |−〉a2 + i sin ϕB|−〉AOa1 |2〉a2 ,

(E11)

with |±〉AOa1 = 1√
2
(|00〉AOa1 ± |11〉AOa1 ), |
φ〉AOa1 =

1√
2
(e−iφ|01〉AOa1 + eiφ |10〉AOa1 ), and |±〉a2 = 1√

2
(|0〉a2 ±

|1〉a2 ). From these expressions we can clearly see (using in
particular that |−〉 is orthogonal to both |+〉 and |
φ〉)
that |ψ[,]〉 and |ψ{,}〉 are orthogonal (whatever the values
of φ, θA, θB, φA, ϕB), so that one can find a POVM that
discriminates the two states—and hence, the commuting and
anticommuting cases—perfectly.

4. Isotropic FCO circuits

Despite the previous finding, it is known that no FCO
circuit can perfectly discriminate between any general pairs of
either commuting or anticommuting unitaries [4,47]. The ex-
istence of a FCO circuit that discriminates perfectly between
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FIG. 7. Isotropic FCO circuits are required, for any fixed opera-
tions A and B, to provide the same measurement statistics whatever
the unitary operations V and V† inserted at each input and output
port.

pairs in S[,] or S{,} is due to the fact that these sets are restricted
to certain orientations of the unitaries (e.g., the rotation axes
of all U ′

As are in the equatorial plane of the Bloch sphere).
As discussed in the main text, it is also insightful to see

how “isotropic” FCO circuits, which cannot take advantage
of any specific orientation of the unitaries, perform at the
discrimination task. By such circuits, we mean circuits of the
form of Fig. 2 (or with B before A) which are required, for any
fixed operations (any CP maps) A and B, to act in the same
way on (A,B) as on any operations (V† ◦ A ◦ V,V† ◦ B ◦ V ),
for any unitary channels V : ρ �→ V ρV † and V† : ρ �→ V †ρV
(where V is some unitary operator): see Fig. 7.

Isotropic FCO circuits can most generally be obtained as
in Fig. 7, by starting from any FCO circuit and averaging
over the unitaries V sampled according to the Haar measure
dμHaar(V ). Technically speaking, in the case of circuits (or
testers) with binary outcomes as considered here, these are of
the form

W iso
± =TrA′

I A′
OB′

I B′
O
[(W A′

I A′
OB′

I B′
O± ⊗ 1AI AOBI BO )T H̃A′

I AI AOA′
OB′

I BI BOB′
O]

(E12)

for some tester (W A′
I A′

OB′
I B′

O± ) satisfying Eq. (E4) (in the primed
spaces, introduced as in Fig. 7) and with the Haar-randomized
operator

H̃A′
I AI AOA′

OB′
I BI BOB′

O

=
∫

dμHaar(V ) V A′
I AI ⊗ V †AOA′

O ⊗ V B′
I BI ⊗ V †BOB′

O ,

(E13)

where V and V † are the Choi matrices of the unitary maps V
and V† introduced above.8

The operator H̃A′
I AI AOA′

OB′
I BI BOB′

O can be calculated explicitly,
but is too long and too tedious to write here. It is, however,
possible to further simplify the characterization above: one
indeed finds that matrices of the form of Eq. (E12) are just
restricted to be in the (only 14-dimensional) subspace

Liso = span(1AI AOBI BO , |1〉〉〈〈1|AI AO ⊗ 1BI BO ,1AI AO ⊗ |1〉〉〈〈1|BI BO , |1〉〉〈〈1|AI AO ⊗ |1〉〉〈〈1|BI BO ,

|1〉〉〈〈1|AI BO ⊗ 1BI AO ,1AI BO ⊗ |1〉〉〈〈1|BI AO , |1〉〉〈〈1|AI BO ⊗ |1〉〉〈〈1|BI AO ,

|σy〉〉〈〈σy|AI BI ⊗ 1AOBO ,1AI BI ⊗ |σy〉〉〈〈σy|AOBO , |σy〉〉〈〈σy|AI BI ⊗ |σy〉〉〈〈σy|AOBO ,

(σxσyσz + σxσzσy + σyσxσz − σzσyσx − σzσxσy − σyσzσx )AI AOBI1BO ,

(σxσyσz + σxσzσy + σyσxσz − σzσyσx − σzσxσy − σyσzσx )AOBI BO1AI ,

(σxσyσz + σxσzσy + σyσxσz − σzσyσx − σzσxσy − σyσzσx )BI BOAI1AO ,

(σxσyσz + σxσzσy + σyσxσz − σzσyσx − σzσxσy − σyσzσx )BOAI AO1BI ) (E14)

with |1〉〉 = |00〉 + |11〉, |σy〉〉 = (1 ⊗ σy)|1〉〉 = i(|01〉 −
|10〉), and with implicit tensor products on the last four lines.

All in all, we thus find that isotropic FCO testers are sim-
ply required to satisfy Eq. (E4) (or the analogous conditions
for B before A), with the additional constraint that W iso

± ∈
Liso. Optimizing Eq. (25) under these constraints gives, in
the infinite-energy limit, an optimal probability of success
pFCO

success � 0.9288 for isotropic FCO circuits, for both orders
where A comes before B and where B comes before A. The
results for the finite-energy regime are shown in Fig. 3 of the
main text. As it turns out, we find here, for 1 � n̄ � 20, that
FCO circuits with B before A outperform slightly those with
A before B (with differences in the success probabilities of
the order of 10−2).

8Note that in general V † = (V )† = V .

Note, finally, that testing the performance of isotropic FCO
circuits at discriminating between pairs of unitaries (UA,UB)
in S[,] or S{,} is equivalent to testing the performance of gen-
eral FCO circuits at discriminating between pairs of unitaries
of the form (V †UAV,V †UBV ) with (UA,UB) in S[,] or S{,} and
with V a random unitary drawn according to the Haar measure
(as both cases correspond to the same physical situation of
Fig. 7). To analyze the latter situation, one can simply replace
the sets S[,], S{,} considered so far by the thus obtained sets
S ′

[,], S ′
{,} of such pairs, that include the Haar randomization.

Note that (V †UAV,V †UBV ) have the same commuting or an-
ticommuting property as (UA,UB), so that the interpretation
of the task in terms of a commuting-versus-anticommuting
discrimination problem is preserved; note also that both the
QS and 4B would give the same probabilities of success for
S ′

[,], S ′
{,} as for S[,], S{,} when the target system is initialized

in the state ρS = 1/2. However, by inserting the Haar-random
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V ′s we lose the physical motivation coming from the Jaynes-
Cummings model, which led us to restrict UA to rotations
around an equatorial axis.

Replacing S[,] and S{,} by S ′
[,] and S ′

{,} in Eqs. (26) and (27),
the G± operators calculated previously, in the infinite-energy
limit [cf. Eqs. (E7) and (E8)], become

G′
+ = 1

4

[
1 + 1

31
AI AOS

BI BO
1 + 1

3S
AI AO
1 1BI BO

+ 1
15S

AI AO
1 S

BI BO
1 + 1

15S
AI AOBI BO
2

]
, (E15)

G′
− = 1

4

[
1 − 1

31
AI AOS

BI BO
1 − 1

3S
AI AO
1 1BI BO

+ 1
5S

AI AO
1 S

BI BO
1 − 2

15S
AI AOBI BO
2

]
(E16)

with S1 = ∑
i=x,y,z σiσ

T
i , S2 = ∑

i, j=x,y,z σiσ
T
j σiσ

T
j +

σiσ
T
j σ jσ

T
i . (It can be verified that G′

± ∈ Liso, as expected.)
Optimizing Eq. (25) for these operators, over all pairs
(W+,W−) satisfying Eq. (E4), we indeed find again
pFCO

success � 0.9288 (for both orders between A and B), as
in the case where we restricted to isotropic FCO circuits
above.
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