PHYSICAL REVIEW RESEARCH 8§, 023110 (2023)

Kaleidoscopes of Hofstadter butterflies and Aharonov-Bohm caging from 2"-root topology in
decorated square lattices

A. M. Marques ®,"" J. Mogerle ®,>* G. Pelegri,’ S. Flannigan,’ R. G. Dias,' and A. J. Daley ®°
'Department of Physics & i3N, University of Aveiro, 3810-193 Aveiro, Portugal
2[nstitute for Theoretical Physics Il and Center for Integrated Quantum Science and Technology, University of Stuttgart,
70550 Stuttgart, Germany
3Department of Physics and SUPA, University of Strathclyde, Glasgow G4 ONG, United Kingdom

® (Received 4 January 2023; accepted 2 March 2023; published 18 May 2023)

Square-root topology describes models whose topological properties can be revealed upon squaring the
Hamiltonian, which produces their respective parent topological insulators. This concept has recently been
generalized to 2"-root topology, characterizing models where n squaring operations must be applied to the
Hamiltonian to arrive at the topological source of the model. In this paper, we analyze the Hofstadter regime
of quasi-one-dimensional and two-dimensional 2"-root models, the latter of which has the square lattice (SL)
(known for the Hofstadter Butterfly) as the source model. We show that upon increasing the root-degree of the
model, there appear multiple magnetic flux insensitive flat bands, and we analytically determine corresponding
eigenstates. These can be recast as compact localized states (CLSs) occupying a finite region of the lattice.
For a finite flux, these CLSs correspond to different harmonics contained within the same Aharonov-Bohm
cage. Furthermore, as the root-degree increases, a kaleidoscope of butterflies is seen to appear in the Hofstadter
diagram, with each butterfly constituting a topologically equivalent replica of the original one of the SL. As such,
the index n, which uniquely identifies the root-degree of the model, can be seen as an additional fractal dimension
of the 2"-root model present in its Hofstadter diagram. We discuss how these dynamics could be realized
in experiments with ultracold atoms, and measured by Bragg spectroscopy or through observing dynamics of

initially localized atoms in a quantum gas microscope.
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I. INTRODUCTION

Topological insulators (TIs) [1,2], describing models with
insulating bulk properties and topologically protected metallic
surface states, have been one of the most active research topics
of the past two decades in condensed matter physics. An
interesting recent development has been that of square-root
TIs (+/TIs) [3-15] and square-root topological semimetals
[16,17]. These systems require the application of nonlin-
ear algebraic operations in order for them to manifest their
topological nature. In simpler terms, one has to square the
Hamiltonian of a \/’ﬁ to find the original TI as one of its
diagonal blocks, from which the +/TI inherits its topologi-
cal properties, leading to new phenomena such as fractional
topological weight on their finite energy states. This process
is illustrated in Fig. 1 where, anticipating part of our results
below, we schematically demonstrate how the Lieb lattice is
the square-root model of the square lattice (SL), and how the
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squaring operation remarkably relates the Hofstadter spec-
trum of both models.

Several experimental realizations of these models are
already available, whether on acoustic [18-20], electrical
[21,22], or photonic [4,23,24] lattices. The intriguing pos-
sibility of addressing supersymmetry in a condensed matter
context through square-root topology has also started to be
explored [25]. At the same time, related work on multi-
plicative topological phases which, analogously to +/TIs,
require two parent systems from which a child topological
insulator is derived following a novel procedure, is already
underway [26].

Other recent studies have already discussed higher-root
generalizations of square-root topology [27-30], includ-
ing in Floquet systems [31,32] and for fractional powers
of Bogoliubov-de Gennes Hamiltonians [33]. In particular,
2"-root TIs ( m) [27-29], with n € N, are a direct general-
ization of +/TIs, since for these models 7 successive squaring
operations have to be performed on the Hamiltonian to arrive
at the original TI. A proliferation of edge states at different
energy gaps was seen to occur for these 3/TIs, each of which
exhibiting a diluting overlap with the topological state of the
TI with increasing 7.

However, up to now the effects of introducing magnetic
flux on these high-root topological systems have not been
addressed. In this work, we will fill this gap by address-
ing the Hofstadter diagram of both a quasi-one-dimensional
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FIG. 1. Illustration of the squaring process applied to the Lieb
lattice with a ¢ magnetic flux per plaquette. On the level of the
Hamiltonian (top) squaring leads to two diagonal blocks, correspond-
ing to the Hamiltonians of two decoupled lattices. This corresponds
(middle) to the SL on the sublattice shown in blue on the original
Lieb lattice, and a residual lattice on the remaining green sublattice
sites, with both keeping the ¢ flux per plaquette, as well as a global
energy shift of 4/. Below this, we show the corresponding Hofstadter
spectra with periodic boundary conditions, with / = 1 as the energy

unit and the dispersive (flat) bands are colored in blue (green).

(quasi-1D) VTIs, whose original TI is the Creutz ladder (CL)
[28], and a two-dimensional (2D) lattice, whose original TI
is the SL, well-known for its Hofstadter butterfly [34,35],
recently observed experimentally in photonic lattices [36] and
electrical circuits [37]. We will provide three main results
related to the Hofstadter diagram of these VTIs: (i) the ex-
istence of multiple flux insensitive flat bands, all inert with
respect to their strong topological indices; (ii) an analytical
derivation of all flat band eigenstates, with or without flux,
also in the form of compact localized states (CLSs), which
are shown to share a common Aharonov-Bohm (AB) cage
when flux is applied; and (iii) the replication of the butterfly
of the SL, with the exact same topological properties, in the
Hofstadter diagram as n increases, which introduces a second
fractal dimension to the problem, which also determines the
number of butterflies in the kaleidoscope.

We point out that a different scheme for replicating the
Hofstadter butterfly has also been proposed for monolayer
[38] and bilayer [39] graphene under periodic modulations
of the magnetic field. Our work is further stimulated by the
renewed interest shown as of lately in the Hofstadter regime
of different models, including dimerized topological lattices
[40,41], models with fractal defects [42], Weyl semimetals
[43], twisted bilayer and trilayer graphene [44—49], non-
Hermitian systems [50], or quasicrystals [51].

Beyond the experimental platforms mentioned before, neu-
tral atoms manipulated with light fields are an excellent
candidate to implement the 2"-root models that we discuss
in this work. Ultracold atoms in optical lattices have already
been used to realize the Hofstadter Hamiltonian (the SL with
a finite synthetic magnetic flux per plaquette) [52-54], and
the tools that were used in these settings to implement fluxes,
such as Raman-assisted tunneling processes [55], could be
applied to the more sophisticated geometries required for

2"-root topology. Neutral atoms manipulated with optical
tweezers and excited to Rydberg states have also been used to
study topological models [56,57] and allow for the realization
of synthetic fluxes [58]. With these exciting perspectives in
mind, we propose a protocol based on Bragg spectroscopy of
noninteracting atoms in optical lattices to probe the repeating
band structure that arises in 2D 2"-root models. Furthermore,
we show how the Fourier analysis of the dynamics of single
atoms prepared in specific lattice sites can reveal information
about the multiple flat bands and the AB caging effect [59,60].

The rest of the paper is organized as follows. In Sec. II,
we motivate the main results appearing later on by addressing
first the topological properties, the analytical derivation of the
flat band subspace and the Hofstadter diagram of a 2"-root
family of quasi-1D models. In Sec. III, we introduce a 2D
family of 2"-root models, whose parent model is given by
the SL, and study the fluxless regime, similarly providing an
exact analytic treatment of the flat band subspace. In Sec. 1V,
the Hofstadter spectrum of these 2D models is provided, and
the Chern topology at each energy gap is determined. Still
in this section, we derive the general form of the CLSs of
the different flat bands for an arbitrary flux, which are shown
to originate from an AB caging mechanism. In Sec. V, we
describe experimental schemes that can be implemented to
both realize these 2"-root models and probe their distinctive
features, focusing in particular on optical lattices due to their
high versatility. Finally, we present our conclusions in Sec. VI.

II. DECORATED DIAMOND CHAIN WITH FLUX

We begin by considering a quasi-1D model, namely the
2"-root version of the CL (Z\”/E), depicted in Fig. 2, first
introduced in the Appendix A of Ref. [28]. Note that an
alternative construction method, outlined in the main text of
Ref. [28], and which relies on adding extra sites after each
square-root process, is also available and leads to the same
results (apart from the appearance of extra topologically inert
flat bands). However, the method followed here is simpler, as
it does not require adding more sites, but relies only on renor-
malizing the hopping strength of certain hopping parameters
(the dashed blue hoppings in Fig. 2, which gain a +/2 factor).
It will be convenient for our discussion below to work with
two different bases for the Hilbert space,

By:= {lj k), j=1,2,...,2"" 1, (1)

Bg := {{BS}, {GS}}, 2

where B, is the site ordered basis (shown in the zoomed unit
cell in Fig. 2) and Bp is the manifestly chiral-symmetric basis,
with BS (GS) labeling the ordered sites within the blue (green)
sublattice of the unit cell. Under periodic boundary conditions
(PBC), the bulk Hamiltonian for each n, written in the 34 basis
and with lattice constant set to a = 1, is given by

. g Vo (k) v, (k)
Hzf/ﬁ,A (k) = qu;zr(k) HLCi]r;kage,T’ C02”—1 , 3
L
Vo (k) Oy H, Linkage,2"

where the subscript i = A, B indicates the basis 53, used,
an (k)= —=3J(1,0,...,0,e " **t®) s a vector of size
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FIG. 2. Illustration of the %/CL. The four green sites in the linker
are shared with the adjacent linkages. The blue sublattice for a given
n constitutes both sublattices of the n — 1 chain.

2" — 1, Oj is the zero square-matrix of size j, and Hfi];kageﬁzn
is the tridiagonal Hamiltonian of an open linear chain of
2" — 1 sites and uniform nearest-neighbor couplings /2 ¥/J.
Note that the entire Peierls phase is accumulated in the last
element of the first row, that is, in the hopping between the
last site 2"+! — 1 and the spinal site 1. We set J as the en-
ergy unit for the rest of the paper and the reduced Planck’s
constant to /i = 1. As an example, the energy spectrum for
n = 3, obtained from diagonalization of Eq. (3), is shown in
Fig. 3(a), where eight dispersive bands are seen to interca-
late with seven flat bands, with triple band touching points
occurring at the inversion-invariant momenta k = 0, 7 in
alternation.

In Fig. 3(b), we show the energy spectrum of the same
periodic +/CL, but with a finite size of N,. = 30 unit cells and
as a function now of the flux per plaquette. Its most promi-
nent feature is the persistence of the seven flux insensitive
flat bands, which are gapped for ¢ # 0 and whose energies
coincide with the eigenvalues of the linear chain described by

HEY s in Eq. (3),
¢ = —Zﬁcos(%j>, (4)

with j =1,2,...,2" — 1. This behavior strongly indicates
that these flat bands form a subspace whose eigenstates span
over the linkages, which include the shared green sites with
the linker, but have nodes at the spinal site of the linker (see
Fig. 2). Following [61], the proof of the shared eigenvalues

between H{i . »» and the flat band subspace of H (k) re-

lies on the existence of a nontrivial rectangular matrix Gf,, (k)

3
2
1
EO
-1
-2
-3
- 0 m0 m 2m
k ¢
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FIG. 3. (a) Bulk energy spectrum of the ~/CL for zero magnetic
flux per plaquette. (b) Energy spectrum of a periodic ~/CL with
Ny = 30 unit cells, as a function of the flux per plaquette. Dispersive
(flat) bands are colored in blue (green).

of size (2" — 1) x (2" — 1), called the intertwiner [62,63],
such that the following identity holds,

sz/CT(k)G(;" (k) = G‘;” (k)HI?]r;kage,Z" ’ (5)

and the matrix resulting from the multiplication is nontrivial.
It readily follows from this identity that the eigenvalues of
the linkage given in Eq. (4), whose correspondent eigenstates
satisfy

CL . )
HLinkage,Z" Qonj = €jPon j, (6)

are also eigenvalues of H 2m(k), since applying G?n (k) on
both sides of Eq. (6) from the left leads to

G5, (k)HLCiIHkage,zn P = €,Go (),
H o (k)(GS, (k)par j) = €;(Gh (k) ),
H oy (k) j(k) = € j(K), @)

where Eq. (5) was used in the second line, @2 ; & ker G?n (k)
is assumed and

Yo (k) = G5, (k)2 (8)

J.(k)

is the jth eigenstate within the flat band subspace (since ¢;
is k-independent) of the bulk Hamiltonian H zf@(k), with

zjn (k) the respective normalization constant. An intertwiner
that satisfies all these conditions can be found to read as

" 62”—1
G2n (k) = aIZ”—l + VJZ"—I ) (9)
ﬂlzn,] + 8.’2»1,1
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where O i, I;, and J; are the zero vector, the identity and the
exchange matrix of size j, respectively, and the coefficients
are given by

y =8 =k — g ikt0), (10
o = e K] o7y — 2, (11)
B=2—e 21 4. (12)

In particular, when ¢ = 0 mod 27 these coefficients simplify
toy=6=0anda = - = 2(e~%* — 1), which is an overall
constant that can be factored out (and in fact it is convenient to
do so, otherwise the intertwiner is ill-defined for £ = 0), such
that one arrives at

62n+1 —1
Ly |, 13)

—12»l+l -1

0 _
G2’l -

which is k-independent, reflecting the fact that the eigenstates
of each band j in Eq. (8) can be linearly combined, for a
periodic chain with N, unit cells, to form CLSs occupying
a single unit cell [64], whereas the CLSs for a finite flux per
plaquette spread over two adjacent unit cells [5,65,66], as a
consequence of the irremovable k-dependence in G?,l (k) for
¢ # 0. However, regardless of the flux value, the zero vector
at the first row of the intertwiner in Eq. (9) shows that all flat
band states in this subspace have a node on the component at
the spinal site, which acts as a dark site [67] with zero weight.

2"-root topology

The relation between the different root-degree versions of
the 3/CL can be more easily understood by working with the
Bp basis, where the two sublattices are separated. The bulk
Hamiltonian of the 3/CL has a block antidiagonal form when
written in Bp,

" Oy haye(k)
Hoe (k) = — -ﬁ( i ) a9
LB h', ﬂ(k) 0,
where hzf@(k), given in Appendix A, is a (2" —1) x 2"
matrix with the entire Peierls phase accumulated, as before,
in the hopping between site 2"*! — 1 and the spinal site 1.
The model has chiral-symmetry, defined as

C: CHuyg ,(KC™ = —Huye y(K), (15)

C = diag(lpn_1, —Ipn). (16)
The square of this model reads as
H -1 (k)
HY o ()=—v2[ = Yo
JCT,B Hzfx—m(k)

+C2quIzn+l,1, n 2 2, (17)

— Il
Hat posi(k) = (cyribn — Wy erh o)/ V2, (18)

where the off-diagonal blocks in Eq. (17) are zero matrices,
cyn =4 /7 is a constant energy shift and the minus sign
was introduced to keep the sign convention for the hopping
parameters as in Eq. (14). The squared Hamiltonian is block

diagonal, with the top block H Y-VEL. 4(k) corresponding to
the lower root-degree version of the model, occupying the
blue sublattice and written in its B, basis (since, in itself,
the lower-root degree version is bipartite, with its own blue
and green sublattices), and the lower block H 2H\/r—(k)

es, 2"
corresponding to a residual chain with weight on the green
sublattice only and a degenerate spectrum with the other block
[7,28,29], apart from an extra band with energy E = cyu-1/ ﬁ
coming from sublattice imbalance, in agreement with Lieb’s
theorem [68-71].

Upon changing the basis as qum’A (k) —> qum,B(k),
Eq. (17) can be iteratively applied until the diamond chain is
reached, which has been shown to model a A/TI for finite flux
with nonquantized Zak phase for the top and bottom bands
[4], as a consequence of having a noncentered inversion axis
within the unit cell [72]. In turn, the diamond chain derives its
topological features from the topological block of its squared
Hamiltonian, which describes a CL with a = Zak phase for
both its bands as the original TI [4]. Concretely, each of the 2"
edge states appearing for an open 3/CL has 1/2" of its weight
on the topological state of the CL [28]. In particular, when
¢ = m, an all-bands-flat [73] bulk energy spectrum is found
due to an AB caging effect [5,60,74—78]. Recently, it has
been shown that introducing modulated weak interactions in
systems with an all-bands-flat spectrum, such as the diamond
chain (ﬂ) [79] and the CL [80], can induce the appear-
ance of many-body topological states and interaction-driven
dynamics [81]. In the opposite limit, that is, that of strong in-
teractions, many-body subspaces exhibiting an all-bands-flat
spectrum due to AB caging were shown to appear in a CL
[82], even when the single-particle spectrum is dispersive.

III. 2"-ROOT SQUARE LATTICE

We now turn our attention to a family of lattices that can
be understood as the 2D generalization of the 3/CLs analyzed
above, namely the family of X/SL models depicted in Fig. 4.
It is clear that the /SL is nothing more than the well-known
Lieb lattice, a correspondence that will be further explored
below. In fact, following recent interest in decorated Lieb
lattices [67,83-85], the VSL can be viewed as a specific
type of Lieb-(2"*! — 1) lattice [86,87], where 2"+ — 1 is the
number of sites per unit cell, also labeled £(2" — 1) [88],
where the argument is the number of sites in the linkage. As
before, we will distinguish between the two bases 34 and Bpg
for the Hilbert space defined in Egs. (1) and (2), with BS
(GS) labeling now the ordered sites within the blue (green)
sublattice of the unit cell of the 3/SL in Fig. 4.

In the B4 basis, the bulk Hamiltonian of the 2/SL without
flux and lattice constants set to a, = a, = 1 is written as

0 wiky)  up(ky)
Hor (&) = [0()  Hipen O ;
u;u (k) Oy Hlfi]ﬁkage, 2n

19)

where uy (k) = — VJ(1,0,...,0, e ) is a vector of size

2" — 1 and Hfil;]kage o 1s the tridiagonal Hamiltonian of an
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FIG. 4. Illustration of the X/SL. The four green sites in the linker
are shared with the adjacent linkages. The blue sublattice for a given
n constitutes both sublattices of the n — 1 chain.

open linear chain of 2" — 1 sites and uniform nearest-neighbor
couplings +/2 ¥/J. As an example, the bulk energy spectrum
of the ~/SL along the high-symmetry lines of the Brillouin
zone is shown in Fig. 5, which has similar features to that of
the ~/CL in Fig. 3(a), particularly with regard to the formation
of seven flat bands, placed now at the eigenvalues of HI?i%kage,S
in Eq. (19). Another remarkable feature of these models, as
highlighted in Fig. 5, is the appearance of 2" — 1 spin-1 Dirac
cones in the spectrum, with a particle-hole symmetric one
centered at zero-energy and 2" — 2 particle-hole asymmetric
others centered at either the I' or M point of the finite energy
flat bands.

To prove that the energies of the flat bands of the 3/SL cor-

respond to the eigenergies of Hfi&kage o« one needs, similarly to

3 R —
2
1
EO
-1
-2
-3 - -
r=(0,0) X=(1,0) M=(tr,m) r

FIG. 5. Bulk energy spectrum of the ~/SL along the high-
symmetry lines of the Brillouin zone. An open green square (red
circle) indicates a particle-hole symmetric (asymmetric) spin-1 Dirac
cone centered at a high-symmetry point.

Eq. (5), to find an intertwiner that satisfies
Hoyp 1 (K)Gou(K) = Gl (K)Higge, - (20)

It can be readily checked that the intertwiner can be written in
this case as

=

Oy
Doy +y'Im_y |, 21
ﬂ/12n,1 + 8’.’2]1,1

h(k) =

with the coefficients given by

y/ =8 = e*ikx _ e*iky’ 22)
o =2 — e 2k _ pitkthy) 23)
‘B/ — efi(kaFk,v) + e*Ziky — 2. (24)

Then, the eigenvalues of the linkage, whose correspondent
eigenstates satisfy

HI?i];lkage,Z" (pé",j = Ej(pé”,j’ (25)
T
¢; = —24/2cos (2— j), (26)

withj=1,2,...,2" — land (pé,,’j & ker G, (k) assumed, are
also eigenvalues of H /L. 4(k), following the same reason-
ing as in Eq. (7). Finally, the jth eigenstate within the flat
band subspace of the bulk Hamiltonian H /L. A(k) can be
written as

Yy (k) = 2 (K)o ;, 27

1
N3 ()
with {"’(k) the normalization constant.

The form of the CLS of each flat band of the 3/SL cannot
be found directly with the intertwiner G5, (k) in Eq. (21),
since its irremovable k-dependence indicates that the CLSs
span more than one unit cell. However, starting from the
well-know form of a CLS in the Lieb lattice (the +/SL), which

constitutes a chiral CLS of a linear flat band Hamiltonian
[89], it is straightforward to generalize it to find all CLSs
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FIG. 6. (a) Map of the zero-energy CLS in the +/SL (Lieb lat-
tice), for zero flux, onto the CLS of the jth flat band of the an/ﬁ,
withn > 2and j=1,2,...,2" — 1 the index of the linkage eigen-
state in Eq. (25). The components at the green sites at the left
translate as global phases for the linkages at the right, dependent
on the oddness of the jth harmonic. (b) Gauge choice, away from
the boundaries, for the introduction of a ¢ reduced flux per plaquette
in the X/SL, where only the red couplings have finite Peierls phases,
positively accumulated along the direction of their arrows, and / € N.
(c) Same as in panel (a), but for a finite ¢ flux per plaquette.

of the 3/SL. This generalization is schematically depicted in
Fig. 6(a) where, from the CLS of the Lieb lattice at the left
[90], occupying a single plaquette by virtue of having nodes
at the blue sites connecting it to the adjacent ones, the CLS
offlatband j = 1,2,...,2" — 1 of the 2\n/S_L, with an energy
given in Eq. (26), is directly inferred at the right. The finite
components at the right correspond to a global phase factor
applied to the jth-harmonic of the respective linkage [see @5, j
in Eq. (25)], with site index increasing from bottom to top for
the vertical linkages and from left to right on the horizontal
linkages. While the phase factors for odd j are the same as for
the Lieb lattice, the top and right ones are inverted for even
J, due to the fact that even harmonics have opposite signs at

their end sites. Note, however, that the CLSs cannot be used
to define an orthonormal basis, since each CLS has a finite
overlap with the CLSs lying in the adjacent plaquettes.

Hierarchy of different root-degree versions

Turning now to the manifestly chiral-symmetric g basis,
the bulk Hamiltonian of the 3/SL can be rewritten as

” Oy hag(K)
Hy— (k)= — ﬁ( i , (28)
VSL,B h' SL(k) Oy

where h zﬁ/sT(k) is a (2" — 1) x 2" matrix explicitly given in
Appendix A. The chiral-symmetry is defined as

. -1 _
C: CHug ((K)C™ = —Hur ,(K), 29
C = diag(lpn—1, —Ion). (30)
Upon squaring the Hamiltonian in Eq. (28) one arrives at

H%m L) = il

Ho_ (k)
VSL,A
—ﬁ( J7

3D

’ _ / +

Hzn,m(k) = (huilpn — o 2/57) /N2, (32)
where the off-diagonal blocks in Eq. (31) are zero matrices,
Chn =4 /7 is a constant energy shift and the minus sign
was introduced to keep the sign convention for the hop-
ping parameters as in Eq. (28). The squared Hamiltonian is
block diagonal, with the top block H »_ VRT.A (k) corresponding
to the lower root-degree version of the SL, occupying the
blue sublattice and written in its 3} basis, and the lower
block H’, (k) corresponding to a residual lattice with

-1
A/ res,2n !

weight on the green sublattice only and a degenerate spec-
trum with the other block [7,28,29], apart from an extra band
with energy £ = C/zn—l / V2 coming from sublattice imbalance,
corresponding to the £ = 0 band of the starting H /5L 5K
Note that the same relations hold for n = 1 (squaring the Lieb
lattice to arrive at the SL in one of the blocks) upon dropping
the +/2 factor. After changing the basis as H Y-USTA k) —
H Y-ler 5(K), Eq. (31) can be iteratively applied until the
SL Hamiltonian is reached and, in the process, n additional
residual lattices with degenerate spectra (apart from bands
originating from sublattice imbalance) will appear, assuming
their Hamiltonians are squared, shifted in energy by c%., with
successive m=n—1,n—2,...,0 [28,29], and renormal-
ized by —1/+/2 in parallel at each step, except for the last
one where no renormalization is needed.

Due to the hierarchy of root-degree versions of our model,
connecting the 3/SL to the SL by n successive applications
of the squaring operation in Eq. (31), whose process was seen
elsewhere to generate a rooted tree graph directed from the
former to the latter [28], the energies of the dispersive bands

023110-6



KALEIDOSCOPES OF HOFSTADTER BUTTERFLIES AND ...

PHYSICAL REVIEW RESEARCH §, 023110 (2023)

g “"ﬂ\“ ‘P‘ wEi; - !!::u

N

kX

.

"-‘.“ m'.h_‘ \

o

2 %
i ﬁl\\ /’ lllﬂlul\m\I|!HI|||"NIIIM
o "/ i, - i By 14
o :‘l!. \l \‘\_,1 @!ﬂﬂl'f /i ‘!E!E!,E..!:lﬂi|I|l||u::!.!. . o
;':"."Il /dmﬁ .ﬂi@‘& i biab . ‘ @é; il I\Ilumm.
1 E:'." - 0
o 4 i\ 1 \ﬁ ‘lmul -
/ 0 ,jﬂg !!Hih\ ‘*{’ ™~ :H}:IIIW‘Iliulhi"m:llﬂ.l,'
\:3 ‘,..mul\lli‘liHI"!uMIIIHu.,m“ ;;;;:::'::j :}::;'lliiiﬂi
E 0 i‘ -: il [
Ny
X 0 o . ,#” wmﬁwm e ] 011}
grtf“\ ‘:QQPD#!'I e HE o 3 lsmees
ST 3% ot e
3 \q : .‘ ti!b"‘“‘"ﬁ é@i
) W ,/ . -liﬁé Wi O s e e
fu\ Z 17 ‘ "“*«':K !}1:'5?!!:\m\lllHlllluu\:::11:!!: . ||| e

ﬂ%gw -4 g

s
||IH|||" e

' ""mﬂuﬁih 7 "'ﬂ! o ﬁ; | |||u|u||m§ii:1!5""‘ w : |
- EE! =t !I Wi "mma\|\:mmms\||u|unn||um|\||\|“‘
Sl = T 2n0 PSR | S
@ (ﬂj) o @ (i_’)

FIG. 7. Hofstadter spectrum of the periodic 2:/ SL scanned over the rational fluxes ¢ = Zné, with [ =0,1, ...

,q, for (a) n=1 and

g=141,(b)n=2and g =131, (c) n =3 and ¢ = 83, (d) n =4 and ¢ = 53, and (¢) n = 5 and g = 41. Each spectrum displays 2" blue
butterflies intercalated with 2" — 1 flux insensitive green flat bands. The Chern numbers at some representative gaps are indicated in panels

(a) and (b).
of the 3/SL can be compactly written as

2/SL
I ( )

n

=% ifz\/c;,,l iﬁ\/--. V2, et — eStik),

(33)

with €3%(k) = —2J(cos k, + cos ky) the energy band of the
SL. Setting J =1 simplifies all constant energy shifts to
chn — 4. This type of compact notation was used by some
authors in the context of certain linear 1D models, la-
beled sine-cosine models, exhibiting self-similar properties
upon successive squaring operations [27]. The full (2" —
1)-bands energy spectrum of the 3/SL results from the com-
bination of the 2" dispersive bands coming from Eq. (33) with
the 2" — 1 energy bands within the flat band subspace found
in Eq. (26).

IV. HOFSTADTER SPECTRUM OF THE */SL

In this section, we will study the behavior of the /SL
when a ¢ magnetic flux per plaquette is applied. The gauge
choice for the introduction of the flux is shown in Fig. 6(b),
where only the red vertical hoppings have a finite Peierls

phase. If periodic boundary conditions are applied in one
or both directions, modifications to the gauge configuration
along the boundary plaquettes are in order which, however,
do not change the physical picture. As such, we will focus on
the bulk plaquettes when discussing the CLSs below, which
applies both to OBC and PBC.

In Fig. 7, we show the Hofstadter spectrum of the 3/SL, for
n=1,...,5, scanned over the rational reduced fluxes ¢ =
Zné =2r d;%’ with ¢ the flux quantum, ¢ a prime number,
[=0,1,...,q, P = f;(po the magnetic flux per plaquette and
assuming periodic boundary conditions along both directions,
with Ny = 3 unit cells in the x direction and N, = ¢ unit cells
in the y direction. For n = 1, in Fig. 7(a), we recover the
Hofstadter spectrum of the Lieb lattice, displaying two
symmetric butterflies separated by a zero-energy flat band
[91-94]. Its relation to the spectrum of the SL is revealed
in Fig. 8, which corresponds to squaring the spectrum of
Fig. 7(a) with a global downshift of ¢ = 4J, that is plotting
Ef/sT((ﬁ) — ¢}. As also shown in the bottom panel of Fig. 1,
this spectrum can be decomposed in a butterfly coming from
the SL diagonal block on the blue sublattice one arrives at by
squaring the V/SL Hamiltonian, while both the other degener-
ate butterflies and the flat band at E = —c¢| are originated by
diagonalization of the residual block built on the green sub-
lattice. The one-time squared Hofstadter spectrum of Fig. 8
confirms that the Lieb lattice can indeed be understood as
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FIG. 8. Hofstadter spectrum of the n-times squared A/SL, with a
global energy downshifting and renormalization after each squaring
operation, as detailed in Sec. III A. The expressions in parentheses
indicate the global degeneracy of the top and bottom green flat bands
placed at E = %¢; and of the middle blue butterfly, with f(n) = 0(1)
for n even (odd). The Chern numbers at some representative gaps are
indicated.

the square-root version of the SL. In a similar fashion, the
Hofstadter spectrum of the honeycomb-kagome or superhon-
eycomb lattice (see Fig. 4(a) of Ref. [91]) displays the same
qualitative features as the Lieb lattice in Fig. 7(a), namely a
pair of symmetric butterflies separated by a zero-energy flat
band which, when squared, retrieves the doubly degenerate
spectrum of the honeycomb lattice, limited below by the flat
band. Thus, the superhoneycomb lattice is the square-root
version of the honeycomb lattice, as was also highlighted in
recent studies [6,16,29].

Concerning the spectra in Figs. 7(b)-7(e), as n increases a
kaleidoscope of 2" butterflies is seen to appear, each separated
by the adjacent ones by a flux insensitive flat band, which form
a subspace of 2" — 1 flat bands adiabatically connected to the
flat band subspace at zero flux [compare the n = 3 case of
Fig. 7(c), for ¢ = 0, with the corresponding bulk spectrum in
Fig. 5]. It should be stressed that, to the best of our knowledge,
the 3/SL with n > 2 is the first example of a lattice (or family
of different root-degree versions of the same model, the SL)
exhibiting multiple flux insensitive flat bands in its Hofstadter
diagram, generalizing for two-dimensional (2D) systems the
behavior found in the diagram of the quasi-1D X/CL for
n > 1 [see Fig. 3(b) for the n = 3 case]. In our view, the main
reason for this gap in the literature is that most systems with
multiple flat bands in their bulk spectrum, that is, for zero flux,
see the flat band states go from localized to extended when a
finite magnetic flux is applied, rendering the flat bands disper-
sive. In contrast, we will show in the next section that, for a
finite flux per plaquette in the 3/SL, two plaquettes sharing
a corner site can serve as a common AB cage that is able to
accommodate the CLSs of all the flat bands in a locally or-
thogonal basis, such that these survive the introduction of flux.

A. Topological characterization of the %/SL

The relevant strong topological index at each gap of the
Hofstadter spectrum is the Chern number [1], which can be

computed through the Streda formula [95],

dp

c= ,
¢0dB .

(34
where Efp is the Fermi level placed inside the considered
energy gap, p = Ngap /A is the density of occupied states, with
Ngap the total number of occupied states and A = Naqa,
the area of the lattice (since we set N, = ¢g), and B the mag-
netic flux. Given that we are restricted to a discrete grid of
rational magnetic fluxes per unit cell, ® = Ba.a, = é¢0 with

1=0,1,...,q9— 1,itis convenient to work with a discretized
version [96,97] of Eq. (34),
ANy, ANy,
C=g¢p—F =2mr—2, (35
AAB NygA¢

where the 277 factor comes from the definition of the reduced
flux, ¢ =27 q;%, and ANg,, is the variation of the number of

occupied states as the flux is varied by A¢ = 27”, which leads
finally to the simple formula
C= %. (36)
Ny
Using Eq. (36), the values for the Chern number at some
representative gaps is shown for the Lieb lattice [92] in
Fig. 7(a), where it can be seen that each butterfly reproduces
the well-know behavior of the butterfly of the SL [98] at
equivalent energy gaps. The same behavior is observed for
each butterfly on the Hofstadter spectrum of the 3/SL for all
n. In Fig. 7, the Chern number at the gaps between the flat
bands and the butterflies connected from above and below at
¢ = 0 is zero for all cases. Focusing on the Lieb lattice, both
these results can be straightforwardly derived as follows:
(i) Apart from the flat band, the two diagonal blocks in
Hjﬁ share the same spectrum [7,28,29]. As such, both the

top and bottom butterflies in Fig. 7(a) square to the Hofstadter
butterfly and, thus, share with it the same topological charac-
terization. The same reasoning can be extended to all 3/SL
where, after n squaring, energy downshifting and renormal-
ization operations, as detailed in Sec. III A, one arrives at a
2"-fold degenerate Hofstadter butterfly, as illustrated in Fig. 8.
One can also conclude from this degeneracy that all successive
residual lattice models are Chern insulators.

(ii) Since, on the one hand, the Chern numbers at the gaps
of any given butterfly sum to zero at every ¢ and, on the other
hand, it has been proven [99] that flat bands in systems with
local hoppings, as is our case, have trivial Chern numbers (or
total Chern numbers for degenerate bundles), it follows that all
the gaps between flat bands and butterflies in the 3/SL have
trivial Chern numbers.

As an example, the Hofstadter spectrum of the ~/SL with
10 x 10 plaquettes and periodic (open) boundaries in x (y) is
plotted in Fig. 9. The edge states are seen to appear only at
the gaps within each butterfly, in agreement with the Chern
numbers of Fig. 7(b), and the flat bands are confirmed to be
inert with regard to Chern topology. A comparison between
the lower butterfly zoomed in on the inset and the two middle
ones highlights that, for each ¢, the number of edge states is
the same at equivalent gaps of the butterflies, since they all
share the same topological features.
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FIG. 9. Hofstadter spectrum of the ~/SL depicted in Fig. 4 with
10 x 10 plaquettes, periodic in x and open in y. The inset shows a
zoomed version of the bottom flat band and butterfly. The energy
gaps between the flat bands and the butterflies at ¢ = 0, 27 are an
artifact of the finite size of the lattice.

B. Multiple Aharonov-Bohm caging

Contrary to the 3/CL studied in Sec. II, where the mag-
netic and structural unit cells were of the same size, the
magnetic unit cell of the 3/SL can only be defined for rational
values of the flux and is larger than the structural unit cell
depicted in Fig. 4. Furthermore, its size varies with the flux
value considered, as shown in Fig. 10. However, the analytical
expression for the flat band eigenstates, which relies on find-
ing a generalized version of the intertwiner in Eq. (21), can
still be derived from the bulk Hamiltonian, as we demonstrate
in Appendix B.

Here we are interested, however, in the question of whether
the flat band eigenstates of the 3/SL can be analytically
written as CLSs. We have shown in Sec. III that, for the zero
flux case, one can construct the CLSs of all the flat bands

FIG. 10. Magnetic unit cell of the 2/SL with a flux ¢ =2m g per
plaquette, with p and ¢ coprime integers, consisting of ¢ structural
unit cells. The form of the light blue linkages for different »n and the
values of the hopping parameters are the same as in Fig. 4, while the
gauge configuration follows the scheme indicated in Fig. 6(b). Open
sites at the edges belong to adjacent unit cells.

of the 3/SL, corresponding to the different harmonics of the
linkage eigenstates, by directly generalizing the known form
of the CLS of the Lieb lattice, as illustrated in Fig. 6(a).
The same reasoning can be applied for the case of a finite
magnetic flux per plaquette. First, we start by noticing that the
CLSs of the Lieb lattice have already been shown to survive
the introduction of flux by extending over two plaquettes
instead of one [100,101]. For the gauge configuration defined
in Fig. 6(b), these CLSs have the form shown at the left in
Fig. 6(c). Then, as before for the zero flux case, all CLSs of
the %/SL can be constructed by simply translating the phases
of the finite components at the eight sites with equal weight
in the green sublattice of the Lieb CLS into global phases
for the different harmonics of the respective linkages of the
V/SL, as exemplified by the left— right passage in Fig. 6(c)
where, again, the parity of the jth harmonic has to be taken
into account, since odd (even) harmonics are (anti)symmetric
in relation to the inversion-axis of the linkage.

It is important to underline that the perpendicular CLS is
also a solution for the cases shown in Fig. 6(c), that is, each
CLS can be made to occupy instead the top left and bottom
right plaquette only (notice that this perpendicular solution
will have a different phase configuration). Finally, Fig. 6(c)
also highlights the trivial Chern topology of the flat bands,
since varying the flux affects the phase configuration of the
CLSs along the lattice but not their global cardinality, such
that C = 0 from Eq. (36) for each flat band.

V. EXPERIMENTAL IMPLEMENTATION IN
OPTICAL LATTICES

In this section, we describe different schemes to produce
the lattice structures described previously in experimental im-
plementations and subsequently probe their novel signatures.
Since it is easier to implement in an experiment, we assume
throughout this section that the hopping terms are uniform and
equal to J across the linker and linkage sites of the different
2"-root lattices, but all the discussion below would also be
applicable to the case with nonuniform couplings as in the
sections above.

Optical potentials can be manipulated in different ways
to obtain the decorated lattices studied in this article. One
possibility is to use digital micromirror devices [102] or spa-
tial light modulators [103] to directly implement the desired
structure. As we detail in Appendix C, this usually involves
introducing potential offsets in targeted sites of each unit cell
of an existing square lattice, to effectively remove them from
the lattice potential experienced by the atoms.

Optical lattice implementations offer the possibility to de-
tect the repeating structure of the energy bands for the 2"-root
lattices by measuring the dynamical structure factor (DSF)
via Bragg spectroscopy. These types of measurements have
been experimentally demonstrated for a BEC [104] and for
free fermions [105], where it is possible to extract the spec-
tral information directly in frequency and momentum space.
In our numerical simulations we begin in the single-particle
ground state and perform unitary time evolution. We then
compute time-separated density-density correlation functions
(n7, +n7,.0) and Fourier transform them in time and space to
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FIG. 11. Dynamical structure factor S(w, I?) for finite lattices
with different configurations in a logarithmic plot. The dashed gray
lines are the energy spectrum obtained from exact diagonalization in
an infinite periodic lattice. (a) n =1, ¢ =0, L, =L, =30, (b) n =
2,0=0,L,=L,=20,(c)n=3,¢=0,L, =L, =10,(d)n=2,
¢=mn,L =L,=10.

obtain the DSEF,

S, k)= " F T s ). (37
t

F1. 72

For each value of 75, we expect S(w, ié) to have peaks at
values of w that correspond to energy differences between
the ground state and one of the single-particle energy bands.
In Appendix D, we provide more details of how we perform
these calculations in finite lattices with unit cells of more than
one site. In Fig. 11, we plot the results of our simulations
for different lattices with open boundary conditions, with the
logarithmic color scale indicating the DSF values and the
dashed lines signaling the theoretical values of the energy
bands shifted by the ground state energy. In particular, the
plots in Figs. 11(a), 11(b) and 11(c) correspond respectively
to the fluxless modified (due to the uniform couplings) VSL,
iz/i, and 2:/@ lattices. In all cases, we observe that the
regions in the k-w space where the maxima of S(w, k) occur
agree very well with the shape of the different energy bands,
whose periodic structure is clearly revealed. In Fig. 11(d),
we also compare for the 2\Z/S_L lattice to the case with flux
¢ = m, which can be realized in these experimental architec-
tures by employing Raman-assisted tunneling processes [55].
We again observe that the DSF can be used to reconstruct the
repeating band structure with high accuracy.

Even though the plots in Fig. 11 have been produced with
600 equally spaced values of @ and up to 50 values of the
momentum £, in an experiment it would suffice to sample
only a few points in k, ) space to detect the repeating nature
of the band structure and the presence of multiple flat bands.
Another possibility to probe the multiple flat band structure
is to prepare single particles in one of the linkage sites and
observe the time evolution of the probability that the par-
ticle remains in that site. The initial state wave function at

(@) £ (c)
0.3
0.08
= L & r
3 a3
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0.00 1 1 1
(b) : (d)
0.06 - wiy 03
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FIG. 12. Fourier transform of the time evolution of the survival
probability of a single atom prepared in a linkage site of panel (a) a
%/SL and panel (b) a Z\S/ST lattice. In each case the positions of the
atom at time r = 0 inside a unit cell are marked in the insets as a blue
square. The dashed colored lines mark the energy difference of two
flat bands corresponding to the colored arrows in plots (c) and (d),
which show the overlaps |d;|* of the initial state shown respectively
in panels (a) and (b) with the eigenstates of each lattice as a function
of their energy. The largest overlaps correspond to CLSs localized at
the AB cage where the particle is prepared.

site i can be written as a superposition of the single-particle
eigenstates |¢;),

W)= dilg). >l =1. (38)
J J

Thus, the probability that the particle is found at the initial site
after a time ¢ can be expressed as

Pit) = (W[ W ) > = D 1dj1Pe ™ . (39)
J

Since |W;) is completely localized in a linkage site, its over-
laps |d;|* with the flat band CLSs are very large compared to
the overlaps with the dispersive states. Thus, after preparing a
single particle in a linkage site a macroscopic fraction of the
wave function remains in the AB cage defined by the CLSs
with which it overlaps, and the probability P;(¢) of finding the
particle in the initial site is dominated by terms which oscillate
at angular frequencies w; = |E; — E;| that correspond to the
energy differences between the flat bands. To illustrate this
effect, in Fig. 12(a) we plot the Fourier transform of P;(¢) for

an initial state prepared in a linkage site of the bulk of a VSL
lattice, as shown in the left inset. As discussed previously, this
lattice has three flat bands of energies E = iﬁj , 0 (note
that we have omitted the +/2 factor in the linkage hopping
terms). As shown in Fig. 12(c), where we plot the overlap of
the localized state shown in the inset of Fig. 12(a) with the
different eigenstates as a function of their energies, the initial
state has much larger components on the flat band CLSs than
on the rest of the states. Therefore, the dominant (nonzero) os-
cillation frequencies of P;(¢) are wy = (v/2 = 0)J = +/2J and
w] = («/E — (—ﬁ))J = 24/2J, as can be seen in Fig. 12(a).
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In Fig. 12(b), we show the Fourier transform of P;(¢) for
an initial state prepared in the central site of a linkage chain

in the bulk of a 2i'/S_L lattice, as shown in the left inset. In
Fig. 12(d), we show the overlaps of this initial state with all
the eigenstates of the lattice as a function of their energy. Even
though this system has seven flat band states as discussed
in the previous sections, because the initial state is prepared at
the center of the linkage chain it only overlaps with four of the
flat band CLSs, since the three even j harmonics in Eq. (27)
have nodes at the central site of the linkage. Since these
overlaps are again much larger than those with the rest of the
eigenstates, the Fourier spectrum of the survival probability
is dominated by the four possible combinations of frequency
differences between the flat bands wq, i, w;, w3, as shown in
Fig. 12(d).

Besides making it possible to explore the multiple flat band
structure, the analysis of the time evolution of single particles
can also be used to probe topological properties of the lattice
such as the existence of protected edge states. If such states
exist along one of the edges of the lattice, then the wave func-
tion of a particle initially prepared on one of the central sites of
a linker along that edge has a large overlap with them. Thus,
in this scenario we expect a large fraction of the probability
distribution to remain confined along the edge during time
evolution. In contrast, a particle initially prepared on a central
site of a linker in the bulk has no overlap with any of the
flat band CLSs or edge states, and thus its wave function gets
delocalized over time. Therefore, the comparison between the
dynamics of single particles prepared in linker sites on the
bulk and the edges can be used to detect the presence of edge
states.

This type of real-space measurement of survival probabil-
ities could be performed in different experimental platforms.
One possibility would be to use Rydberg atom arrays, which
allow for the simulation of single-particle dynamics in a wide
range of lattice geometries and offer single-site resolution
of the excitations [56-58,106]. Alternatively, one could use
a quantum gas microscope to image individual atoms in an
optical lattice [107,108]. In either case, to obtain frequency
spectra with sufficient resolution to identify the peaks corre-
sponding to the flat bands it would be necessary to evaluate
the survival probability at ~100 different times, which would
require ~100 measurements per probability evaluation.

VI. CONCLUSIONS

We have studied the Hofstadter regime of 2"-root topo-
logical insulators. We started by considering a quasi-one-
dimensional model, whose square-root version is the diamond
chain, and showed that, as 7 is increased, several flux insensi-
tive flat bands appear in the Hofstadter spectrum. The relation
between the spectrum of a 2"-root chain and its lower root-
degree versions, obtained by a scheme centered on successive
squaring operations on the starting Hamiltonian, was derived
and analyzed.

Then, we proceeded to study the 2"-root versions of the
two-dimensional square lattice, whose square-root version
was shown to correspond to the Lieb lattice. Analogously
to the case of the lower dimensional chain, the Hofstadter
spectrum revealed here that, for n > 1, a subspace composed

of multiple flat bands at different energy levels was seen to
survive the introduction of an arbitrary flux per plaquette. The
compact localized states of these flat bands respond to the
introduction of flux by spreading from one to two plaquettes,
diagonally connected by a shared corner site with a node in the
wave function, which constitutes a common Aharonov-Bohm
cage within which each of these states corresponds to a differ-
ent harmonic, with regard to its decoupled linkage chains.

The Hofstadter diagram of the 2"-root square lattice was
shown to display 2" vertically placed Hofstadter butterflies,
with each pair separated by a flux insensitive flat band, for
a total of 2" — 1. Each of the butterflies in the kaleidoscope
has been found to be a topologically equivalent replica of
the original Hofstadter butterfly, in what concerns the Chern
number at each of the energy gaps. Therefore, the n index
identifying the root-degree of the lattice can be understood as
another fractal dimension, where the Hofstadter spectrum is
replicated along the vertical energy direction with increasing
n, as shown in Fig. 7, in a way that resembles a film roll with
an in-depth bent where each “frame,” delimited by successive
flat bands, is a copy of the same butterfly.

We also have seen that the repeating structure of the spec-
trum can, in principle, be resolved in experimental realizations
of the 2"-root square lattice, such as ultracold atoms in op-
tical lattices, by measuring the dynamical structure factors.
Furthermore, the flat bands can be studied in more detail in ex-
perimental systems that allow for site resolved measurements,
e.g., neutral atoms in optical tweezers. This can be performed
by time evolving single excitations that have large overlaps
with the flat band states. By looking at the oscillation of the
single particle one can then infer the relative energies of the
different flat band states.

As for future work, our 2"-root square lattice can be readily
generalized to a hypercubic lattice of dimension d > 2, by
substituting the +/2 factor appearing in the hopping terms
of the linkage (see Fig. 4) with +/d. However, it is not yet
clear if an analytical expression for the eigenstates of the
flat bands, based on the generalization of the intertwiner re-
lation in Eq. (20), is available for these higher-dimensional
systems, and therefore remains an open question. At the same
time, for d > 2 there is an additional degree of freedom for
producing the Hofstadter spectrum, related to the choice of
direction along which the magnetic flux pierces the lattice.
This may lead to new phenomena, such as direction dependent
Aharonov-Bohm caging for the flat band subspace. We note
that recent developments that can be related to this line of
inquiry have already been made in certain types of three-
dimensional decorated Lieb lattices [109—-111]. Our work can
also be developed in another direction, namely that of gen-
eralizing our results in 2"-root topological lattices to simply
n-root systems, for any n € N. This requires, as we will show
elsewhere, the introduction of non-Hermiticity in the models
in a very specific way, and therefore falls outside the scope of
the present study.
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In both cases, all entries not shown are zeros.

APPENDIX B: INTERTWINER OF THE %/SL WITH FLUX

Considering the 3/SL with a rational reduced flux per
plaquette given by ¢ = 2n§, with p and g assumed to be co-
prime integers, the magnetic unit cell has the form of Fig. 10,
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0
HPD () = | ul(ky, 1)
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from i3N through the work Contract No. CDL-CTTRI-46-
SGRH/2022.

APPENDIX A: OFF-DIAGONAL HAMILTONIAN BLOCKS

Here, we give the explicit matrix expression for the off-
diagonal block of the quasi-1D Hamiltonian in Eq. (14),

1 o—ik+)
>, (A1)
V2 V2
V2 V2
V22
1 ek
. n>1 (A2)
V2 V2
V2 V2
NN

(

which is ¢ times the size of the structural unit cell in Fig. 4.
For this choice of unit cell and gauge configuration, the bulk
Hamiltonian of the model can be written in the generalized B,
basis, with the site ordering following Eq. (1) within each of
the g structural unit cells and increasing from left to right, as
a block tridiagonal matrix with nontrivial antidiagonal corner
blocks enforcing PBC along the x direction,

S(ky)
(ky)
, (B1)
HS@Hj%k) R
( 1)
RT HZZ‘L‘IA (ky)
i (ky, 1) Vo
Hf'l‘,;kdge » Owy : (B2)
O Hlfilflkage,Z”
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o 0 ... 0 O
0 0
R=1: ,
0 0
1 0 0 O
ontl_]

where wyn(ky, ) = — ¥/J(e?™4,0,...,0,e7%) and vy =
—3J(1,0,...,0,0) are vectors of size 2" — 1, HLs]l;kage o
is defined in Eq. (19) and all entries not shown are zeros.
(p q) (k) is a g2 — 1) x g(2"*! — 1) matrix, such that
its dlagonahzatlon yields g(2"*! — 1) energy bands.
Our goal is to find an intertwiner that satisfies

Hg{f 4) (k)Ggf Vk) = GV H e - (BY)
We assume the intertwiner generalizes Eq. (21) as

O_
aohn_1 + yoJon_y
ﬁo]zn_L+ 8().[211_1

Oy
(r.0) _ a4+ yiJag
Gz;x (k) - ,3112'1—] =+ (S]JZ”—] ’ (BS)
62"—]

g1l + Yy1Jon g
By—1ln—1 + 84—1J211

which is a rectangular matrix of size g(2""' — 1) x (2" — 1)
and where the zero rows impose nodes at the blue sites in
Fig. 10 with coordination number of four. Inserting Eq. (BS)
back in Eq. (B4) leads to a system of equations,

ag+e Py + o+ e 8,1 =0

' ) , B6
V0+€_lk)‘ao+50+e_lkxﬁq*1:0 B0
and
127'rlq iky =
12711 al+ezkyl+ﬁl+811 0 l=172""7q_1’
iy +e ™o+ 8+ -1 =0
(B7)

where Egs. (B6) and (B7) are recursive due to the last term
on the left-hand side of each equation. Upon setting all B; =
8; := 1, the other coefficients can be determined to read as

Bi=8:=1 i=01,...,q—1,

_ __ lder
% =Y = Tms (B3)
0612)/12—#, l=1,2,...,q—1,

7 4eiky

where ky, # 7 v (1l — 215) mod 27 is assumed, and differ-
ent choices for §; and §; have to be made at these points to
avoid singularities. Finally, the jth eigenstate within the flat
band subspace of the bulk Hamiltonian H3; (p q) (k) can be

written as

w(ﬁ l])( ) G(P l])( )(pé”’j’ (B9)

NJ (P, l])(k) 2"

0 0 ... 0 ek
0 0
Slke) =1 : N (B3)
0 0
0 0 0 0
o+l _q

(

with N2 79 (k) the normalization constant and @y ; defined
in Eq. (29).

APPENDIX C: POSSIBLE EXPERIMENTAL REALIZATION

In this Appendix, we want to discuss one possibility to im-
plement a 2"-root lattice in optical potentials. For simplicity,
we will only consider the n = 2 case.

We start with a square optical lattice with lattice spacing
a. To obtain the 3/SL lattice we have to adiabatically remove
the nine inner sites for each unit cell [see Fig. 13(a)]. This can
be achieved by applying additional beams (e.g., via a spatial
light modulator) onto the lattice to obtain a potential offset
at these sites. Due to symmetry considerations, it is best to
apply four beams for each unit cell, which are symmetrically
displaced from the center with the distance d and have a

a —
(a) -
Fx x x x x =
FSFX X*5O%
2k |x X =
::! * 8
1F|[x X 955 (d)
® ® -

60
1 [ 1 ’; 40 —
01234 50 [ g
x [a] . 20 &
(b) , , —0
. 50 _I T T T T (e) > 20
=251 sE X 5
8 = -
- 2, o
8 0 =50 F 10 2
00.5 z
A O O 25 =
0.0 & 1 1 1 o 0
0 1 2 3 4 0.4 0.6
z [a] o [d]

FIG. 13. (a) Additional optical potential at one unit cell to re-
move the inner sites and create an effective Z\Z/ST lattice. (b) The
potential offset for the sites belonging to the Z«Z/E lattice (y = 0) and
the adiabatically removed sites (y = a). (c) Optimized displacement
d as function of the beam width ¢ to minimize the variance of
the three linkage sites to 0. (d) The potential offset between the
linkage sites and the adiabatically removed sites and (e) the potential
variance between the linkage sites and the corner sites as function of
the beam width o and the light intensity A. The black cross denotes
an example point to minimize the variance while maximizing the
offset.
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Gaussian intensity profile

I(r) = Aes. (@)

One can apply the beams in such a way that all inner
sites get an as large as possible energy offset, while the sites

belonging to the V/SL lattice are only shifted minimally; see
Fig. 13(b).

In fact, for all beam widths of interest (o &~ 0.5a) one
can find a displacement d, such that the sites at y =0 and
x/a = 1,2, 3, marked by red circles in Figs. 13(a) and 13(b),
have the exact same energy offset. This optimized displace-
ment d as a function of the beam width ¢ can be seen in
Fig. 13(c). Therefore, the flat band states, which only live
on these linkages, do not get disturbed by such an additional
optical potential.

Furthermore, we now look at the energy offset of the inner
sites compared to the linkage sites [Fig. 13(d)] as well as the
variance of the energy offset on the sites of the 22@ lattice
[Fig. 13(e)]. For simplicity, we define the variance as maximal
difference of the optical potential at the corner site to the
linkage sites. To get the best effective V/SL lattice, we want
to maximize the offset while keeping the variance as small as
possible. This can be done for example by choosing ¢ = 0.4a
and A = 80J, which is marked by a black cross in Fig. 13(d)
and 13(e). We checked for these parameters, as well as for a
small displacement of the grid (~0.1a), that the energy bands
of the system only get disturbed slightly and all results of
Sec. V are still observable.

To go to n > 2, the same procedure followed in this
section can be applied, only now more inner sites have to
be removed by the beams. For example, for n = 3, an inner
square of 7 x 7 sites has to be removed. One possibility to do
so is by applying 6 x 6 beams per unit cell.

APPENDIX D: DETAILS ON THE DYNAMICAL
STRUCTURE FACTOR

The dynamical structure factor S(w, 75) in Eq. (37) can be
obtained by calculating the time and space Fourier transform
of the density-density correlation functions (nz, ;nz, o). How-
ever, this does not use any information about the lattice and
its unit cells. For the square lattice (power n = 0) a unit cell
consists only of one site and therefore the distance between
two unit cells is the same as between two sites: a. Therefore,

SaE]

ky
V]
8l

1

I

I

I

4l
o

IS}
LAt

2
k

8

FIG. 14. Sketch of the folding process of the Brillouin zone for
n = 1. Since our unit cell has the size 2a, we are interested in the
effective Brillouin zone up to momenta k; = % However, to avoid
losing any information of the points outside this effective Brillouin
zone we fold the outer parts into the effective Brillouin zone and
thus identify the marked points. To calculate the dynamical structure
factor at one point in the effective Brillouin zone we therefore sum up
all the dynamical structure factors that identify with a given k-point.

the momentum space for such a lattice is defined as —7 /a <
ki < 4w /a.

If we now consider the +/SL lattice, its unit cell consists
of two sites in x (and also y) direction. Therefore, the shift
between two unit cells is now 2a and in the case of an in-
finite periodic lattice the eigenstates will be labeled by their
momentum ranging from —m /2a to 4+ /2a.

Nevertheless, we still can resolve the atom by each indi-
vidual site (and not just the unit cell). Naturally the dynamical
structure factor calculation will still obtain momentum values
in the range of —m /a to +m /a. But all momentum states with
|k| > m /2a correspond to wavelengths inside a single unit
cell. To map these results of the dynamical structure factor to
the results of an infinite periodic lattice we can fold the range
from 4+ /2a to +m /a back to the range +7 /2a to 0.

For the exemplary high-symmetry (I' — X — M — I') path
this is shown in Fig. 14. For the result of the dynamical
structure factor on the high-symmetry path all the results of
the four mirrored paths inside the big Brillouin zone are added
together. This scheme can also be generalized for higher
square-root lattices (n > 1) and is implicitly done in Fig. 11.
Therefore, for each data point in Fig. 11, 4" dynamical struc-
ture factors are calculated and summed together.
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