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Biological flow networks: Antagonism between hydrodynamic and metabolic stimuli
as driver of topological transitions
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A plethora of computational models have been developed in recent decades to account for the morphogenesis
of complex biological fluid networks, such as capillary beds. Contemporary adaptation models are based on
optimization schemes where networks react and adapt vessel conductance toward given flow patterns. Recent
numeric studies on network morphogenesis, incorporating uptake of metabolites by the embedding tissue, have
indicated this conventional approach to be insufficient. Here, we systematically study a hybrid model intended
to generate space-filling perfusion as well as optimal filtration of metabolites. As a result, we find hydrodynamic
stimuli (wall-shear stress) and filtration based stimuli (uptake of metabolites) to be antagonistic as hydrody-
namically optimized systems have suboptimal uptake qualities and vice versa. We show that a switch between
optimization regimes is typically accompanied with a transition between topologically redundant meshes and
spanning trees. Depending on the metabolite demand and uptake capabilities of the adapting networks, we further
demonstrate the existence of nullity reentrance as a function of dissipation and the development of compromised
phenotypes such as dangling nonperfused vessels and bottlenecks.
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I. INTRODUCTION

Physiological organization, like gravitation, is a “stubborn
fact” and it is one task of theoretical physiology to find
quantitative laws, which describe organization in its various
aspects.–C. D. Murray, in [1].

The physiological organization referred to here by C. D.
Murray nearly a hundred years ago is the morphogenesis of
vascular networks. And true to his statement, Murray de-
rived a theoretical framework based on simple hydrodynamic
assumptions, which would account for branching patterns
emerging in the arteriole regime, now known as Murray’s
law. By minimizing the overall shear stress for a volume
constrained lumen of a model network, he would determine
the flow of scientific inquiry in this field for the rest of the
century. And yet, recent studies on metabolite transport in
flow networks [2–4] have demonstrated, along with similar
studies on flow homogeneity [5], that purely shear stress based
morphogenesis models of the capillary bed may be in dire
need of revision.

Biological flow networks do not grow fully developed and
matured in their final and functional form, but seem to self-
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organize bit by bit in the context of their surrounding tissue,
perfusion and other stimuli over a long time span (compared
to hydrodynamic time scales) [6,7]. Most interestingly, it has
been repeatedly shown that this development is mechanotrans-
ductional in nature, coupling complex biochemical signaling
to mechanical cues such as wall-shear stress [8–11]. This has
been demonstrated to be the case in a variety of vertebrate
model organisms [10,12,13], for endothelium and epithelium
alike. Stress based adaptation seems universally present in
the biosphere, as it has further been observed in plants [14]
and slime mold [15]. A recurring problem in these studies
however is to identify stimuli causing the complex topol-
ogy of capillary networks, i.e., resilient, space-filling meshes
containing hydrodynamically favorable “highways”, defying
Murray’s law [16–18]. Subsequently, more complex stimuli
such as growth, noisy flow patterns, and hemodynamical com-
plications have been rigorously discussed in computational
studies, and have been found to account for complex topo-
logical changes in the respective networks [19–24].

Although these abstract schemes have been very successful
in accounting for the topological complexity of biological
flow networks, most disregard the physiological aspect en-
tirely: It is general consensus that any major exchange of
metabolites between vasculature and tissue, such as oxygen,
salts, glucose, proteins etc., is performed on the capillary
level and poses a valid stimuli for morphogenesis [25,26].
Subsequently, identifying remodeling mechanisms and effi-
cient network architectures has become crucial to address
vasculature pathology, e.g., tumor angiogenesis [27–29], or
the intelligent design of synthetic supply systems [30,31].
Yet, to our knowledge, only a handful of suggestions have
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been made for heuristic stimuli models ensuring perfusion
of vascular networks with metabolites [32,33]. These initial
approaches have been lacking a thorough discussion of the
actual uptake capabilities of the embedding tissue as well as
an incorporation into the current discussion of flow network
optimality. Recently two frameworks have been re-visited to
advance this inquiry: the Taylor dispersion model [34] and
the Krogh model [35]. Taylor dispersion models consider
metabolite transport to be a nontrivial interplay between the
flow pattern and diffusion while incorporating a concentra-
tion dependent solute uptake along the vessel surfaces. This
dispersion model was initiated as an appropriate metabolite
transport model during slime mold morphogenesis [36,37],
but has since been utilized to account for the adaptation phe-
nomena found in plants and vertebrate capillaries [2,3]. On the
other hand, Garvrilchenko et al. [4] suggested an adaptation
model on the grounds of the Krogh model to account for
the explicit supply of discrete service elements in the tissue.
This transport model also incorporates the convection of so-
lute along idealized vessels in combination with metabolite
diffusion from the channel surface into the surrounding tissue
environment.

Inspired by these studies we propose a minimal hybrid
model that takes into account stimuli in the form of the ac-
tual metabolite uptake of the surrounding tissue together with
the conventional wall-shear stress approach, and incorporate
these into the cost function scheme. We begin in Sec. II
by giving a brief illustration of the model framework, in-
cluding the Kirchhoff network approach and introduction of
cost functions for capillary flow networks. Next we present
the numeric results, displaying the antagonistic interplay of
uptake and shear stress driven morphogenesis as well as the
topological ramifications and frustrated network formations,
such as dangling branches and bottlenecks, see Sec. III. We
conclude and discuss these results in Sec. IV, pointing out the
limitations of our model and parameter space search as well as
the emerging phenomena of redundancy re-entrant behavior
and plexus dependencies.

II. METABOLITE TRANSPORT AND
NETWORK ADAPTATION

In this section we give a brief overview on the theoretical
framework of fluid advection and metabolite transport Kirch-
hoff networks. Readers already familiar with these concepts
may skip forward to Sec. III.

A. Approximating capillary beds as Kirchhoff networks

We model capillary networks of interest as a composition
of thin fluid conducting channels, abstracted as a graph of E
edges and N vertices. These vertices will represent branching
points of the real biological system and are assumed to hold
no fluid volume on their own. Each edge e carries a current
fe such that at any vertex the sum of all currents is equal to
a nodal source sn. Further, every edge is characterized by a
conductivity Ke relating the flow to the potential difference

�pe according to Ohm’s Law. One may write these relations
using the graph’s incidence matrix B as

sn =
∑

e

Bne fe, (1)

fe = Ke�pe, (2)

where (1) is also referred to as a “Neumann boundary con-
dition”, fixing the peripheral currents [38]. The resulting
equation system determines the networks flow and pressure
landscape, for further details see [39,40]. Here, we consider
a system of Hagen–Poiseuille flows, which allows one to
express the current as the volume flow rate f = πR4

8ηL �p [41].
This ansatz considers the approximation of thin cylindrical
vessels of radius R and length L being perfused laminarly by
a fluid of viscosity η. Such a vessel system can be directly
described via the presented Kirchhoff network by setting the

conductivity on each link to be Ke = πR4
e

8ηLe
. Here, we do not

incorporate any non-Newtonian fluid properties though they
may arise, for example, in blood.

B. Metabolite transport in lumped network models

Next, we incorporate the metabolite transport of a single
species of molecules across the network. To do so, we take an
approach inspired by Heaton et al. [42].

Solute is transported by means of diffusion and advection
along a quasi-one-dimensional vessel, neglecting lateral per-
turbations or any dependencies of the flow velocity on the
concentration levels. While molecules are drifting down the
channel they are absorbed at constant rate by the channel
walls, which form the periphery to the embedding tissue,
see Fig. 1. Subsequently, we formulate the dynamics of the
concentration c̄(z, t ) along any channel’s symmetry axis (z
axis) by using the continuity equation,

∂t c̄ = D∂zzc̄ − ū∂zc̄ − β c̄. (3)

Here, the diffusion constant is D, the advection velocity is ū
and the surface absorption rate is β. We use the notation ¯(·)
to identify cross section averages, which denote the relevant
factors in our deduction. Although we will soon discuss the
dynamics of an adapting network, we would like to point
out here that the hydrodynamic time scales are consider-
ably shorter than the time-scales of adaptation. Therefore,
we consider the system to reach a stationary regime between
adaptation steps and calculate solutions only for ∂t c̄ = 0. The
resulting ordinary differential equation may readily be solved
(using the notation z∗ = z/L),

0 = D

L2
∂zz∗ c̄ − ū

L
∂z∗ c̄ − β c̄ (4)

⇒ c̄(z∗) = X0eλ0z∗ + X1eλ1z∗
(5)

with λ0/1 = ūL

2D
±

√(
ūL
D

)2 + 4βL2

D

2
(6)

= 1

2
(Pe ±

√
Pe2 + β∗). (7)

One may deduce from the channel’s boundaries c̄(z = 0) =
c̄0, c̄(z = L) = c̄L that X0 = c̄L−c̄0eλ1

eλ0 −eλ1
and X1 = c̄0eλ0 −c̄L

eλ0 −eλ1
. Here
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FIG. 1. Toy model for metabolite transport [43]. (Top) A species
of metabolites is transported via convection (advection-diffusion)
along the (quasi-) one-dimensional vessel segments while being ab-
sorbed on by the vessels’ surfaces. (Middle) Seeing the vessel system
as a compound of single channels, one may compute the stationary
concentration profile given the boundary concentrations c0, cL at the
vessel’s endings. (Bottom) The vessel network will be abstracted as
a (arbitrarily) directed graph, with branching points as vertices n and
vessel segments in between as edges e. Subsequently each edge has
individual boundary concentrations cα(e), cω(e).

we define the Peclet number Pe and the dimensionless absorp-
tion rate β∗ as

Pe = ūL

D
, (8)

β∗ = 4βL2

D
. (9)

Now we solve these equations for arbitrarily directed edges e,
whose starting and end points we label as α(e), ω(e). As every
edge e is a channel with concentrations ce(z), we use a nodal
notation as c̄e(0) = c̄α(e), c̄e(L) = c̄ω(e). Each link is further
assigned its cross section area as Ae = πR2

e , and we introduce

the abbreviation xe =
√

Pe2
e + β∗. Using this notation we may

rewrite the profiles c̄e(z) along each link e,

c̄e(z∗) = e
Peez∗

2

sinh
( xe

2

){
c̄ω(e) sinh

(
xez∗

2

)
e− Pee

2

− c̄α(e) sinh

(
xe[z∗ − 1]

2

)}
. (10)

Therefore we may calculate the solute flux on each link as

Ie(z) = Ae[ūec̄e(z) − D∂zc̄e(z)] (11)

= qe[Peec̄e(z∗) − ∂z∗ c̄e(z∗)]. (12)

To increase readability we introduce the dimensionless flux
parameter qe = AeD

L and use the notation Ie(0) = Iα(e), Ie(L) =
Iω(e). Then we formulate the boundary conditions for the flux

analog to the Kirchhoff conditions of flow (1). In particular
we have a balance of solute in- and outflux J at each vertex,

Jn =
∑

e∈out (n)

Iα(e) −
∑

e∈in(n)

Iω(e), (13)

where out (n), in(n) indicate the index sets of directed edges
pointing outwards or inwards of a vertex n. We solve these
equations in accordance to the method described in [44], see
Appendix A for more detail. Sorting the equations (12) and
(13) for the concentration terms one can rewrite the entire
equation system as

M · c = J (14)

with an asymmetric matrix M whose entries are dependent
only on Pe and β∗. Having done so we are effectively com-
puting the stationary solution of e equations of the form (3)
with n boundaries, which are for us to define [see Kirchhoff
problem (1)]. As in previous studies we choose a system
with absorbing boundaries, setting a subset of nodes c0 = 0
at the network’s sinks, while setting Jn > 0 for any node with
sn > 0 and Jn = 0 otherwise. One may calculate the nodal
concentrations c̄n, as well as the total solute uptake per edge
e, as 
e = βL

∫ 1
0 c̄e(z∗)dz∗ and get


e = qe

{
c̄α(e)

[
xe coth

(
xe

2

)
− xee

Pee
2

sinh
( xe

2

) + Pee

]

+ c̄ω(e)

[
xe coth

(
xe

2

)
− xee− Pee

2

sinh
( xe

2

) − Pee

]}
. (15)

Note that the effective uptake 
e of a vessel is entirely de-
termined by the landscape of Peclet numbers Pe and local
uptake rates β. We shall capitalize on this phenomenon in the
next sections to construct an adaption scheme, which enables
a regulation of effective metabolite uptake on the grounds of
flow.

C. Multi-target driven radius optimization

In order to model the dynamic adaptation of rudimentary
flow networks we follow the ansatz of characterizing such
a transport system with a cost function �. Any minimiza-
tion of � may be performed via the radial (and topological)
adaptations of the flow network, and therefore determine
its long-term pruning behavior. Hence one may formulate a
generic cost for vessel systems as proposed before by Bohn
et al. [45],

� =
∑

e

(
f 2
e

Ke
+ α0K1/2

e

)
, (16)

where the first term ( f 2
e

Ke
) is the power dissipation of the flow

and the second is a conductance cost (α0LeK1/2
e ), with propor-

tionality factor α0. Minimizing the first term encapsulates the
notion of reducing the overall wall shear stress imposed on
the tubal cells [46]. The second term formulates a constraint
on the conductance the biological organism may deploy or
sustain. In particular, for Hagen-Poiseuille flows this can be
seen as a radial constraint, preventing arbitrarily large vessel
volumes. These functions may be tailored for a variety of
biological flow networks [5].
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In this study we consider a dissipation-volume minimizing
system in combination with the metabolic needs of the sur-
rounding tissue. To reduce the problem’s complexity we will
consider the special case of constant channel lengths through-
out the system Le = L. Similar to previous setups studied in
Refs. [3,32,35] we will focus here on a vessel network embed-
ded in a tissue environment, where each vessel is surrounded
by the service volume it supplies. Generally speaking these
service volumes are ensembles of cells forming a bulk envi-
ronment, signaling affiliated vessels to adjust supply properly,
e.g., by downstream signaling (via convection) or up-stream
signaling (via conduction) [7]. Here, individual vessels are
supposed to act as fair players by adapting toward a specific
metabolite need. This may correspond to cases were tissues
are able to prevent over-saturation, e.g., actively avoid toxic
overdosing.

We consider each vessel to be surrounded by tissue to
which it supplies a metabolite, as described in Sec. II B. Fur-
ther, every such element of tissue i demands a basic influx
of solute 
0,i possibly mismatching the current uptake 
e

provided by the embedded vessels. We expand the cost (16)
by defining a mismatch cost S(�,�0) � 0 and write

� = S(�,�0) +
∑

e

(
α1

f 2
e

Ke
+ α0K1/2

e

)
. (17)

We construct S(�,�0) in such a way that deviation from the
demand �0 is penalized. We minimize the cost (17) using a
gradient descent approach where vessels are allowed to adjust
their individual radii. Subsequently one will have the channel
conductivities and local Peclet numbers changed. The impact
of the simultaneously given dissipation-volume constraints, as
in (16), is tuned via the coupling parameters α0, α1. Increased
volume penalties α0 naturally lead to smaller vessel structures,
simultaneously increasing Pe and therefore hindering solute
uptake. On the other hand, increasing the dissipation factor
α1 will generally increase vessel size for perfused vessels and
decrease local Pe, thereby increasing uptake.

D. Measuring topological network redundancy
and metabolite filtration

In order to quantify the topological changes occurring in
an adapting system, we monitor the amount of cycles in a
network [47],

Z = E − (N − 1). (18)

We use this metric in the following way: The network is first
initialized for a densely reticulated system, a so-called plexus.
Links are no longer updated when their radius falls below
a critical threshold rc. We call such edges pruned, which
corresponds to the biological phenomenon of having a vessel
degenerate and collapse. At the end of each optimization we
remove all pruned edges and disconnected vertices from the
graph and recalculate the remaining number of cycles. We
then define the relative nullity of an equilibrated network,

� = E − N + 1

Z0
(19)

as an order parameter, where Z0 is the initial number of cycles
before adaptation. Hence � = 0 corresponds to a treelike net-

FIG. 2. Uptake models [43] and network plexi (with edge
thickness representing radii and nodal concentrations color-coded):
(a) Link-wise demand model, with edge-wise demand 
0,e and
responding supplies 
e. The planar plexus is initialized with mul-
tiple sources and absorbing boundaries on opposing graph sides.
(b) Volume-demand model, with enclosed tiles having a demand 
0,v

responded to by affiliated edges with supply 
e. The plexus is initial-
ized with periodic boundaries and a dipole source-sink configuration.
Transparent, marked links indicate periodic boundaries.

work while � > 0 captures the relative amount of redundancy
in comparison to the initial plexus. Further we monitor the
relative solute uptake rate, or rather filtration rate, of the
network as

σ = log10

[ ∑
e 
e∑

n,Jn�0 Jn

]
. (20)

Hence we get σ → 0 if the network’s vessel surface absorbs
the entire injected solute and σ → −∞ if there is no ab-
sorption whatsoever. Generally we intend to construct the
mismatch S(�,�0) such that a certain value of σ is reached,
reflecting the notion that the supplied tissue needs to meet a
certain total solute demand.

III. SIMULATING DEMAND-SUPPLY ADAPTATION IN
CAPILLARY BEDS

In this section we present the simulation setup and nu-
meric results as well as the implications of the hybrid model
framework presented in the previous sections. In particular
we will interrogate Eq. (17) for two uptake scenarios: Link-
wise demand-supply and volume-wise demand-supply, see
Fig. 2. For each case we define individual mismatch functions
S(�,�0). We minimize the metabolic cost (17) using a gra-
dient descent approach identifying local minima for random
plexus initializations. In Appendix B we give a detailed ac-
count of the derivation of the respective dynamical systems
for �, which define the equations of motion ∂t re for the vessel
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radii. These equation systems are solved until a stationary
state is reached and subsequent evaluation, according to the
measures in Sec. II D, is performed.

A. Linkwise demand-supply model

We first consider a vessel system as shown in Fig. 2(a),
where each vessel supplies exactly one service volume. Each
such service volume demands an optimal influx of solute 
0,e

possibly mismatching the current uptake 
e provided by the
embedded vessel. The metabolite transport is computed as
discussed in Sec. II B. We formulate the uptake mismatch as a
cost that reads

S(�,�0) =
∑

e

(
e − 
0,e)2. (21)

Hence we write for the system’s total cost (17),

� =
∑

e

[
(
e − 
0,e)2 + α1

f 2
e

Ke
+ α0K

1
2

e

]
. (22)

In fact if the service volume demands are identical for the
entire network we recreate the optimization framework stud-
ied in [3] extended by wall-shear stress driven pruning. We
impose sources sn > 0 and solute influx Jn > 0 on all vertices
of one side of the graph and sinks and absorbing boundaries
on the opposing side. We refer to these vertices also as termi-
nal or peripheral nodes. Internal vertices are set source- and
influx-free, i.e., sn = 0, Jn = 0. In this study we are concerned
with four essential model parameters: absorption rate β∗, de-
mand 
0, dissipation feedback α1, and volume penalty α0.
We initialize the system for selected absorption rates β∗ and
demand 
0 combinations, while scanning systematically for
wide ranges of the dissipation feedback α1 and the volume
penalty α0. We set all vessels to correspond to a demand 
0,e

such that the network’s demanded filtration rate corresponds
to

σ0 = log10

[ ∑
e 
0,e∑

v,Jv>0 Jv

]
. (23)

For the presented simulations, we initialize 
0,e homoge-
neously across the network, as well as β∗. From here on
we will discuss the demand in terms of the total network’s
demand σ0. Following the adaptation algorithm, as described
in the previous section, we find the system’s stationary states
and analyze those for their nullity � and actual filtration rate
σ . The columns in Fig. 3 display these metrics, while Fig. 4
depicts stationary network formations for three significant
(σ0, β

∗) variations.
The first case, σ0 = 0 and β∗ = 10−3, depicted in Figs. 3(a)

and 4(a), represents the unfavorable case of high demand
paired with low absorption capability, prone to undersupply.
As depicted in Fig. 4(a) we can show that increasing α1 will
generally result in a nullity transition, displaying frustrations
for the reticulated case as well as the formation of dangling
branches not connected to any sinks. Nevertheless, we find
the reticulated states in good agreement with a network-wide
adjustment toward the demand σ0.

For small α1, we observe that the majority of vessels in
the network are dilated while most peripheral connections
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(a) σ0 = 0, β∗ = 10−3
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(b) σ0 = −1, β∗ = 10−2
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(c) σ0 = −2, β∗ = 10−1
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FIG. 3. Stationary states for the link-wise demand-supply prob-
lem (22): Color-coded state diagrams indicate the network nullity �

(left column) and accumulated filtration σ (right column) for selected
(σ0, β

∗).

to the sinks are degenerated and seemingly near to collapse,
see Appendix C. Hence by dilating the bulk of vessels one
minimizes the Peclet numbers Pe in the system(boundary
conditions dictate a constant volume throughput), which max-
imizes individual vessel uptake. In order to guarantee high
filtration, as many vessels as possible have to stay open, nat-
urally resulting in a reticulated network state. Note, that no
significant concentration gradient is present in the bulk, see
Appendix C.

At the periphery, incident to outlet nodes, decreasing the
size of vessels leads to a sudden increase of the Peclet number
Pe and allows for rapid solute clearance in accordance with
the boundary conditions. These small vessels experience dra-
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2 · 10−5

(a) σ0 = 0, β∗ = 10−3, α0 = 4.5 · 10−5

2 · 10−5

(b) σ0 = −1, β∗ = 10−2, α0 = 4.5 · 10−5

2 · 10−5

(c) σ0 = −2, β∗ = 10−1, α0 = 8 · 10−4

FIG. 4. Stationary network formations for the linkwise demand-
supply problem. Depicted are formations for selected demands σ0,
absorption rates β∗, volume penalties α0, and dissipation feedbacks
α1 after minimizing (22). All systems were initialized with peripheral
sink-source vertices. The nodal concentrations are color coded and
link thickness is indicating edge radii.

matically higher wall-shear stress than the rest of the system,
but due to small α1 no significant growth feedback is posed.
Subsequently, increasing α1 breaks this patterning, as it will
open up exactly these high-shear stress vessels, which subse-
quently decreases Pe at the periphery. This in turn changes
the concentration landscape into a network-wide gradient. We
further observe the break down of weakly perfused vessels,
which are not anymore stabilized by the uptake mechanism.

The second case, σ0 = −1 and β∗ = 10−2, depicted in
Figs. 3(b) and 4(b), features reduced demand paired with in-
creased absorption capability. Here we see once again a nullity
breakdown due to increase of α0 and α1, yet the corresponding
filtration diagrams and concentration profiles are considerably
different. As shown in Fig. 4(b), even for marginal α1 a sys-
tem spanning concentration gradient is readily abundant, see

also Appendix C, and no degeneration of peripheral vessels
takes place, as previously observed. The filtration diagrams
in Fig. 4(b) illustrate that a seeming match of metabolite
uptake is achieved in good approximation, yet deviates for
large volume penalties α0. Further, we see that dissipation
feedback dominated regimes, where spanning trees emerge
as the distinct graph topology, still reasonably well fulfill the
initial filtration demand. One should keep in mind that a match
in overall filtration σ does not necessarily imply an actual
match of all absorbing vessels, nor does it ensure laterally
extended supply.

The third case, σ0 = −2 and β∗ = 10−1, depicted in
Figs. 3(c) and 4(c), poses another unfavorable scenario where
low demand is paired with high absorption rates, prone to
oversupply. Naturally we should observe general vessel de-
generation in order to increase Pe, which in turn diminishes
solute uptake. Subsequently we would operate in a system
that minimizes the number of vessels and experiences high
wall-shear stress for the remaining vessels in the network.
That is indeed the case and may be observed for the network
plots in Fig. 4(c) at low α1. Nevertheless we observe the
emergence of reentrant behavior in the nullity diagram in case
of increasing dissipation feedback α1. The sharpness of this
transition is sensitive to the choice of rc. To our knowledge
such reentrance has not been previously encountered in other
network morphogenesis models. As the phenomenon of reen-
trant phase behavior can be caused by underlying antagonistic
interactions, we hypothesize the transition to occur in the
following way: Approaching the nullity transition from the
left-hand flank for small α1, we find the system “loaded” with
high wall-shear stresses as high Peclet numbers are abundant
with a minimal set of channels, which are not allowed to grow
and redistribute load due to the small dissipation feedback.
Increasing α1 further, one is able to stabilize previously col-
lapsing vessels and the system encounters a nullity transition.
This process is still overshadowed by the fact that Peclet
numbers have to be kept high by reducing overall vessel
sizes. Increasing α1 pushes the system once again to the
wall-shear stress dominated regime. Subsequently we observe
the emergence of large conducting channels and a topologi-
cal transition back towards spanning trees. Although we find
poor adjustment of the system toward low filtration rates we
observe this relaxation to push the filtration rate up, as Peclet
numbers decrease, see Fig. 3(c).

B. Volume-element demand-supply model

So far we have shown that demand-supply models are ca-
pable of rich phase behavior due to the antagonistic interaction
of hydrodynamic and metabolic adaptation. Yet the current
approach dictates only one supplying vessel for any service
element, meaning that pruned vessels result in entirely non-
supplied regions. Thus, in a real system no plexus could ever
be pruned without killing multiple service elements. In this
section, we alter the previous setup and focus our studies on a
system defined by shared volume elements rather than single
vessel service volumes. Here, each service volume element
v is in contact with a set of vessels supplying individually
a fraction of their uptake 
e, see Fig. 2(b). Each volume v

demands an influx of solute 
0,v potentially mismatching the
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summed uptake
∑

e∈Ev

e, provided by the attached vessel set

Ev . We do so following a similar model by Gavrilchenko et al.
[4], which allows us to introduce redundancy and coopera-
tive metabolite supply in the overall demand-supply scheme.
Similar to the previous section’s setup, we propose a cost for
volume-service of the form

S(�,�0) =
∑

v

{

0,v −

∑
e∈V

we
e

}2

. (24)

Here we denote supply weights we, which encapsulate the ef-
fective share that a supplying vessel provides, enabling further
tuning of essential and redundant vessels in the adjustment
process. Hence we formulate the system’s overall metabolic
cost function,

� =
∑

v

⎧⎨
⎩
0,v −

∑
e∈Ev

we
e

⎫⎬
⎭

2

+
∑

e

(
α1

f 2
e

Ke
+ α0K

1
2

e

)
.

(25)

To reduce complexity we set we = 1, granting each ves-
sel the same supply effectiveness. It should be noted that
in this particular model framework, each absorbing volume
only needs to be in touch with at least one supplying ves-
sel to ensure supply, in principal. In order to ensure the
same amount of initial vessels per service volume and vice
versa, we impose periodic boundaries on the system. For
the moment, we define each independent, shortest cycle in
the graph as a service volume. Given a hexagonal lattice
this means each volume is to be affiliated with six edges.
In any system with periodic boundaries we impose a single
source with solute influx on a random position and a single
sink with absorbing boundary on one of the topologically
most distant sites, see Fig. 2(b). We set the volume demands

0,v such that the network’s demanded filtration rate would
correspond to

σ0 = log10

[ ∑
v 
0,v∑

v,Jv>0 Jv

]
. (26)

For the presented simulations, we initialize 
0,v homoge-
neously across the network, as we do for β∗. As described in
the previous section, we find the system’s stationary states and
analyze those for their nullity � and actual filtration rate σ , as
defined in the previous Sec. II D. Note that nonzero nullity,
for periodic boundaries, may correspond to the existence of
topological generators (cycles created by walking through the
periodic boundaries) [48].

Once again we focus on three significant (σ0, β
∗) varia-

tions as depicted in Figs. 5 and 6. Surprisingly we find that
the nature of topological transitions and filtration regimes is
mostly preserved with regard to link-wise supply: As before,
in the case of σ0 = 0 and β∗ = 10−3, we observe the for-
mation of dilated bulk vessels with collapsing peripheries,
dangling branches as well as shunting for high demand and
low absorption rates, see Figs. 5(a) and 6(a). The emergence
of flow bottlenecks seems to be a recurring motif due to
the choice of Neumann boundaries. Note that the resulting
network redundancy becomes more sensitive to the plexus
random radii initialization as well as the fact that full plexus
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(b) σ0 = −1, β∗ = 10−2
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(c) σ0 = −2, β∗ = 10−1
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FIG. 5. Stationary states for the volume-wise demand-supply
problem (25). Color-coded state diagrams indicate network nullity �

(left column) and accumulated filtration σ (right column) for selected
(σ0, β

∗).

recovery becomes unlikely. Further we find the topological
transition once again to correlate with the breakdown of
filtration. Turning toward the regime featuring reduced de-
mand paired with increased absorption capability, σ0 = −1
and β∗ = 10−2, one again observes the emergence of reentrant
behavior, see Figs. 5(b) and 6(b). Nevertheless, the filtration
demand is met in good agreement with the target unless in-
creased α0 is considered. Note that the redundancy during
this reentry is mostly generated due to vessel paths enclosing
multiple merged tiles. Finally, we consider the case of low
demand and high absorption rates, see Figs. 5(c) and 6(c). We
notice the emergence of nullity re-entrance and considerable
mismatch of the resulting filtration with its initial demand in
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2 · 10−5

(a) σ0 = 0, β∗ = 10−3, α0 = 2.4 · 10−5

2 · 10−5

(b) σ0 = −1, β∗ = 10−2, α0 = 2.4 · 10−5

2 · 10−5

(c) σ0 = −2, β∗ = 10−1, α0 = 10−3

FIG. 6. Stationary network formations for the volume-wise
demand-supply problem: Depicted are formations for selected de-
mands σ0, absorption rates β∗, volume penalties α0, and dissipation
feedbacks α1 after minimizing (25). All systems were initialized
with a single sink-source dipole and periodic boundaries. The nodal
concentrations are color coded and link thickness is indicating edge
radii.

case of the unfavorable parameter combinations σ0 = −2 and
β∗ = 10−1.

IV. DISCUSSION

In this study we have shown that demand-supply driven
remodeling can be severely perturbed by wall-shear stress
driven adaptation and vice versa. Given the particular
demand-supply mismatches S(�,�0), e.g., weakly absorbing
vessels paired with high demand service volumes, we have
shown the existence of a nullity transition in combination with
the formation of frustrated structures, such as bottlenecks and
dangling branches.

Further we observed the emergence of nullity re-entrant
behavior for strongly absorbing, low demand service vol-

umes, and find its existence for both link- or volume based
mismatch scenarios S(�,�0). Neither periodic boundaries
nor the restructuring of injection points seem to alter the
qualitative behavior of the adaptation process, i.e., the oc-
currence of topological transitions. Generally we find the
establishment of homogeneous uptake patterns in the net-
work for negligible dissipation feedback α1, see Appendix C,
in accordance to studies on purely metabolite optimized
systems [3]. Overall we find wall-shear stress based adap-
tation and metabolite uptake optimization to be competing
mechanisms leading to hydrodynamically unfavorable vessel
formations, when absorption rates β∗ are poorly adjusted
with regard to the supply-demand mismatch S(�,�0). It
seems unlikely although that real biological systems op-
erate in this regime unless forced to do so, e.g., due
to pathological ramifications. One may argue that these
phenomena arise due to the shortcomings of the model frame-
work, as we consider (incompressible) Hagen-Poiseuille flow
with Neumann boundaries. Due to these model character-
istics arbitrarily large pressure gradients and shear stresses
may be present without leading to catastrophic failure of
the actual network. At the very least it indicates a limit
of the applicability to Kirchhoff network based adaptation
schemes.

As was demonstrated in [3,4], optimizing a flow network
for homogeneous solute uptake alone will not spark topolog-
ical transitions or pruning events whatsoever. Yet, we do not
find the metabolite uptake mechanism to ensure stabilization
of space-filling, robust vessel systems in case of increased
volume penalties. On the contrary, we found that without any
dissipation feedback considered, large network sections can
collapse and fracture. This seems to hold true for either
demand-supply scenario, as even in the case of volume supply
we do not find the uptake mechanism to necessarily stabilize
the minimal amount of vessels in contact with each service
volume. Future studies should therefore consider diverging
penalties in case of degeneration of all affiliated vessels to
avoid catastrophic outcomes, similar to previous heuristic
models [32].

Further, assuming homogeneous demand and absorption
rates, we find a transition between metabolic zonation sce-
narios, as previously discussed by Meigel et al. [3], see
Appendix C. Hence, in comparison to real capillary systems,
we find our model to account for homogeneously supplied
structures, e.g., as found in zebrafish vasculature, where flow
uniformity was considered as a crucial factor in development
[5,24]. On the other hand, it appears that wall-shear stress
driven adaptation worsens the demand-supply mismatch as
the bulk of absorbing vessels is pruned down to a few con-
ducting channels corresponding to a set of linear channel
solutions. The emergence of dangling branches and bottle-
necks seems more relevant as these correspond to formations
found in pathological vessel development, e.g., in cases of
tumor driven sprouting or stenosis.

We nevertheless come to the conclusion that the adjustment
of flow landscapes via radial adaptation alone poses very lim-
ited potential to ensure metabolite uptake and hydrodynamic
efficiency simultaneously. That is, if the demand-supply mis-
match is unfavorable with regard to σ0 and β∗. Which gives
rise to a set of potential new questions:
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How effective may tissue elements regulate β∗ as to ad-
just local uptake given a flux, i.e., by modifying membrane
porosity, density of transporters, internal enzyme levels for
clearance or storage capabilities? How effectively are tissues
able to regulate their responses and readjust volume penal-
ties and dissipation feedback for quickly altering metabolite
demands, e.g., in case of organism growth or tumor angiogen-
esis? Are corresponding elements of σ0, β∗ regulated by cells
in order to prevent frustrated formations? Is the appearance
of unfavorable demand-supply scenarios symptom of a real
pathological state?

We think that the current models of antagonistic adaptation
mechanisms, flux or demand-supply based, are in need of
further improvement. In terms of cost-optimization models
we propose a leap-frog-style adaptation where a solute up-
take optimization follows a conventional dissipation-volume
optimizing system. Considering the conventional stress driven
adaptation schemes with cost rescaling [45] and stochas-
tic flow patterns [22,49] one may still generate topological
complex, space-filling structures, or reach those by different
dynamic environments [21,50]. Yet, instead of readjusting
radii directly given the tissue’s metabolic demands in terms
of oxygen, glucose etc., we suggest that once a space-filling
perfusion is reached, a secondary optimization takes place
adjusting β∗. Unlike changing the flow pattern, and therefore
clashing with shear stress adaptation, regulation of 
e would
take place locally at the membrane-tissue interface. We think
this ansatz to be promising in particular in the case of complex
embedded networks with metabolic zonation, such as found
in the liver lobule [51], where elaborate membrane dynamics
and clearance mechanisms ensure the transport of metabolites
between multiple flow networks and mediating cell layers
[52].

It has further been argued that the metabolic dynamics in
such a system would be dependent on the concentration gra-
dients of various metabolites [53], which would correspond to
sophisticated β∗(c) in our current framework. Such elaborate
attempts would likely have to take into account the clearance
capacities and kinetics of the surrounding tissues. Vessel size
dependencies might be considered as well as for absorption
rates, e.g., β∗(r) = β∗

0 + β∗
1 r + β∗

2 r2 + ..., in order to account
for alteration of the membrane characteristics of growing
or shrinking vessels. Eventually we envision this class of
models to create a better understanding of the formation and
maintenance of these complex intertwined systems, ultimately
illuminating the relevant transport mechanism in these organs.

Note added. We became aware of related work by Gounaris
et al. [54].
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APPENDIX A: METABOLITE TRANSPORT IN CHANNELS
AND ARBITRARY KIRCHHOFF NETWORKS

Our model can be seen as the limit case of a class of more
elaborate transport models used for organ level metabolite
processing [55,56], which we will discuss in the following
on the basis of [57]. Consider the blood vessel (B) evenly
surrounded by a relevant section of tissue (e.g., hepatocytes,
H), see Fig. 7. The solute is distributed over the length of the
vessel such that we only care for its axial dependency. The
actual uptake process is here split into three main components:
diffusion across the membrane with effective permeability
pBH , active transport α by membrane proteins and tissue clear-
ance μ. With clearance we refer to metabolic processing of the
particular chemical species as well as transport, i.e., diffusion
or secretion, into different parts of the organ. Considering
these processes, one could formulate the concentration dy-
namics, resulting continuity equations for the tissue cH and
the blood cB as

∂t cH (z) = pBH [cB(z) − cH (z)] + αcB(z) − μcH (z), (A1)

∂t cB(z) = D∂zzcB(z) − v̄∂zcB(z)

− pBH [cB(z) − cH (z)] − αcB(z). (A2)

While the solute clearance is only linearly dependent in this
representation, one should be reminded that metabolic pro-
cessing often is enzyme dependent. On the same note one
can assume that transporter proteins in the membrane have
an upper capacity. Hence first approximations capturing this
behavior are usually Michaelis–Menten like kinetics of the
form

α → α1

α0 + cB
= α(cB), (A3)

μ → μ1

μ0 + cH
= μ(cH ). (A4)

Hence active transport and clearance is pending between two
limit cases of unsaturated linear behavior and a constant ca-
pacity limit. We focused in this study on the special case of
unsaturated kinetics with α→α1 =const and μ→μ1 =const .
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Formulating the ODE systems for their steady states with that
in mind we get

∂t cH (z) =0 ⇒ cH (z) = cB(z)
pBH + α

pBH + μ
, (A5)

∂t cB(z) = 0 ⇒ 0 = D∂zzcB(z) − u∂zcB(z)

− μ
pBH + α

pBH + μ
cB(z). (A6)

We may rewrite this in the form of the transport equations we
were discussing all along by setting

∂zz∗cB(z) = Pe∂z∗cB(z) + β̄∗cB(z) (A7)

with β̄∗ = μ

(
pBH + α

pBH + μ

)
L2

D
. (A8)

Which is the model we actually followed up on here. Now,
different behavior such as metabolite backflow and tissue
saturation could also be captured by using the “Michaelis-
Menten like” coefficients approach, but is currently beyond
the scope of this study. The rest of this section is dedicated
to a detailed derivation of the equation systems and solutions
relevant to Sec. II B. Recall that the continuity equation in
nondimensional form is

c̄(z∗) =X0eλ0z∗ + X1eλ0z∗
, (A9)

with λ0/1 = 1
2 (Pe ±

√
Pe2 + β∗), (A10)

with channel boundaries c̄(z = 0) = c̄0, c̄(z = L) = c̄L and
X0 = c̄L−c̄0eλ1

eλ0 −eλ1
and X1 = c̄0eλ0 −c̄L

eλ0 −eλ1
. In order to calculate the so-

lute flux and the corresponding equation system for a complex

network one writes (using xe =
√

Pe2
e + β∗

e )

Ik (z) = Ak[ūk c̄k (z) − D∂zc̄k (z)] (A11)

= AkD

L
[Pek c̄k (z) − ∂z∗ c̄k (z)]

⇒ Ik (0) = Iα(k) (A12)

= AkD

2L

{
c̄α(k)

[
Pek + xk coth

(
xk

2

)]
− c̄ω(k)

xke− Pek
2

sinh
( xk

2

)}

⇒ Ik (L) = Iω(k)

= AkD

2L

{
c̄ω(k)

[
Pek − xk coth

(
xk

2

)]
+ c̄α(k)

xke
Pek

2

sinh
( xk

2

)}
.

(A13)

Now we utilize the boundary conditions for solute flux on
every node, using AkD

L = qk , so that we may write for in- and
outflux of solute of a vertex,

Ji =
∑

k

BikIk =
∑

k∈out(i)

Iα(k) −
∑

k∈in(i)

Iω(k)

=
∑

k

qk

[
BikPek + |Bik|xk coth

(xk

2

)]
c̄i

−
∑

k∈out(i)

qk
xke− Pek

2

2 sinh
( xk

2

) c̄ω(k)

−
∑

k∈in(i)

qk
xke

Pek
2

2 sinh
( xk

2

) c̄α(k). (A14)

We rewrite this equation system according to [44] in vectorial
form

M · c = J, (A15)

which also allows us to efficiently solve for c for any given J,

Mi j =
∑

k

qk

2

[
BikPek + |Bik|xk coth

(
xk

2

)]
δi j

−
∑

k∈out(i)

qk
xke− Pek

2

2 sinh
( xk

2

)δω(k), j

−
∑

k∈in(i)

qk
xke

Pek
2

2 sinh
( xk

2

)δα(k), j . (A16)

As we generally utilize mixed boundary conditions with cn =
0 on the outflux periphery and Jn > 0 on the influx periphery
of the network we can calculate the complementary missing
values and subsequently calculate the linkwise metabolite ab-
sorption,


 =
∑

i

Ji (A17)

=
∑

k

qk

2

{
c̄α(k)

[
xk coth

(xk

2

)
− xke

Pek
2

sinh
( xk

2

) + Pek

]

+ c̄ω(k)

[
xk coth

(xk

2

)
− xke− Pek

2

sinh
( xk

2

) − Pek

]}

⇒ 
k = qk

2

{
c̄α(k)

[
xk coth

(xk

2

)
− xke

Pek
2

sinh
( xk

2

) + Pek

]

+ c̄ω(k)

[
xk coth

(xk

2

)
− xke− Pek

2

sinh
( xk

2

) − Pek

]}
. (A18)

In Fig. 8 we display an example solution for a single channel
with absorbing boundary. One finds the concentration profile
in general to become linear in the case of small Peclet num-
bers, corresponding to the maximal possible decline in solute
flux, see Fig. 8(a). Further to get a quantitative and qualitative
perspective on the metabolite uptake in this system one may
consider the effective uptake, see Fig. 8(b). As depicted one
finds the uptake to vary drastically with the Peclet numbers
as well as the effective absorption rate. Note that increased
Peclet numbers generally correspond to a decreased uptake
while entering the diffusive regime for Pe → 0 displays clear
saturation behavior in dependence of β∗.

APPENDIX B: DEMAND-SUPPLY BASED ADAPTATION
ALGORITHM

We formulate a dynamical system, which describes the
adaptation of a vessel network in order to minimize the
metabolic cost function �,

� = S(�,�0) +
∑

e

(
α1

f 2
e

Ke
+ α0Kγ

e

)
. (B1)
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FIG. 8. Single channel solutions with absorbing boundary.
(a) Concentration and solute flux profiles for β∗ = 10−2. (b) Effec-
tive metabolite uptake.

Following the gradient-descent approach in order to reach
Lyapunov stable states we formulate the equations of motions
as

∂t r j = −χ∂r j �

⇒ d

dt
� = ∇�T · ∂t r � 0, ∀χ � 0. (B2)

Subsequently this leads to

∂t r j = −χ∂r j � (B3)

= −χ
∑

k

∂
k S(�,�0)∂r j 
k + ∂r j

∑
e

(
α1

f 2
e

Ke
+ α0Kγ

e

)
.

(B4)

The last term in Eq. (B5), concerning the derivatives of the
dissipation-volume costs, has been discussed in previous stud-
ies, e.g., [50]. Subsequently we proceed with the metabolic
uptake problem. First, we rewrite the uptake term 
k for an
arbitrary link k as


k = qk

2
(c̄α(k)Gk + c̄ω(k)Hk ) (B5)

with subfunctions defined as

Gk =
[

xk coth

(
xk

2

)
− xke

Pek
2

sinh
( xk

2

) + Pek

]
, (B6)

Hk =
[

xk coth

(
xk

2

)
− xke− Pek

2

sinh
( xk

2

) − Pek

]
, (B7)
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FIG. 9. Radii, effective uptake and concentration profiles from
source (χ = 0) to sink (χ = 1) for high demand and low absorption
rates σ0 = 100, β∗ = 10−3, α0 = 4.5 × 10−5, referring to the link-
wise demand-supply scenario in hexagonal grids.

and partial derivatives (using notation ∂r j [·] = ∂ j[·]) calcu-
lated to be

∂ j
k = ∂ j
qk

2
(c̄α(k)Gk + c̄ω(k)Hk )

+ qk

2
(∂ j c̄α(k)Gk + ∂ j c̄ω(k)Hk )

+ qk

2
(c̄α(k)∂ jGk + c̄ω(k)∂ jHk ), (B8)

∂ jqk = 2πRkδ jk, (B9)

∂ jci = ∂ j
(
eT

i · c
) = eT

i · ∂ j (M†J) (B10)

= −eT
i · (M†∂ jMM†J) (B11)

= −eT
i · (M†∂ jMc). (B12)
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2 · 10−5
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FIG. 10. Radii, effective uptake and concentration profiles from
source (χ = 0) to sink (χ = 1) for mediocre demand and mediocre
absorption rates σ0 = 10−1, β∗ = 10−2, α0 = 4.5 × 10−5, referring
to the linkwise demand-supply scenario in hexagonal grids.

2 · 10−5
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FIG. 11. Radii, effective uptake and concentration profiles from
source (χ = 0) to sink (χ = 1) for low demand and high absorption
rates σ0 = 10−2, β∗ = 10−1, α0 = 8 × 10−8, referring to the link-
wise demand-supply scenario in hexagonal grids.

Subsequently we can calculate the derivatives of M and the subcomponents as

∂ jMi j =
∑

k

∂ j
qk

2

[
BikPek + |Bik|xk coth

(
xk

2

)]
δi j +

∑
k

qk

2
Bik∂ jPekδi j +

∑
k

qk

2
|Bik|

⎧⎨
⎩coth

( xk
2

)
xk

−
[

coth
( xk

2

)
cosh

( xk
2

)
]2

⎫⎬
⎭∂ jPekδi j

−
∑

k∈out(i)

∂ j
qk

2

xke− Pek
2

sinh
( xk

2

)δω(k), j +
∑

k∈out(i)

qk

2

e− Pek
2

sinh
( xk

2

)[
Pek

xk
− xk

2
− Pek

2
coth

(xk

2

)]
∂ jPekδω(k), j

−
∑

k∈in(i)

∂ j
qk

2

xke− Pek
2

sinh
( xk

2

)δα(k), j +
∑

k∈in(i)

qk

2

e− Pek
2

sinh
( xk

2

)[
Pek

xk
+ xk

2
− Pek

2
coth

(xk

2

)]
∂ jPekδα(k), j, (B13)

∂ jGk = ∂ jPek

sinh
( xk

2

){
Pek

xk

[
cosh

(
xk

2

)
− e

Pek
2

]
+ sinh

(xk

2

)
− Pek

2 sinh
( xk

2

) + e
Pek

2

[
Pek

2
coth

(xk

2

)
− xk

2

]}
, (B14)
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. (B15)

Finally we calculate the derivatives of the local Peclet num-
bers as

∂ jPek = Lk

D
∂ j ūk (B16)

= 1

8ηLk

(
2δ jkRk�pk + R2

k∂ j�pk
)

with ∂ j ūk = ∂ j

(
R2

k�pk

8ηLk

)
. (B17)

We compute the pressure derivatives from the Kirchhoff solu-
tions as

∂ j�pk = ∂ j
[
eT

k BT (BCBT )†s
]

(B18)

= −eT
k BT [BCBT ]†B∂ jC�p (B19)

= −eT
k BT [BCBT ]†B

[
4Cj

Rj
(e j ⊗ e j )

]
�p (B20)

= −4Cj�p j

R j
(BT [BCBT ]†B) jk, (B21)

which closes the system derivatives for ∂t ri and allows us to
evaluate the flow landscape as well as the occurring gradients
accordingly.

APPENDIX C: CONCENTRATIONS, UPTAKE, AND
RADIAL PATTERNS IN OPTIMIZED FLOW NETWORKS

In this section we present additional material on the
systematic parameter scan of linkwise demand-supply adap-
tation, as described in the results Sec. II. The diagrams depict
the nodal concentrations, uptake effectiveness, and radial
distributions for the selected σ0, β

∗, α0, and α1 variations de-
picted in Figs. 3 and 4, i.e. high demand and low absorption
rates (Fig. 9), mediocre demand and mediocre absorption rates
(Fig. 10), and low demand and high absorption rates (Fig. 11).
The χ notation depicts the relative distance of the respective
vertex, or link center of the nearest source node, i.e., χ = 0
corresponds to a source node while χ = 1 describes sink-
sided positions.
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