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Stochastic systems that undergo random restarts to their initial state have been widely investigated in recent
years, both theoretically and in experiments. Oftentimes, however, resetting to a fixed state is impossible due to
thermal noise or other limitations. As a result, the system configuration after a resetting event is random. Here, we
consider such a resetting protocol for an overdamped Brownian particle in a confining potential V (x). We assume
that the position of the particle is reset at a constant rate to a random location x, drawn from a distribution pR(x).
To investigate the thermodynamic cost of resetting, we study the stochastic entropy production STotal. We derive
a general expression for the average entropy production for any V (x), and the full distribution P(STotal|t ) of the
entropy production for V (x) = 0. At late times, we show that this distribution assumes the large-deviation form
P(STotal|t ) ∼ exp{−t2α−1φ[(STotal − 〈STotal〉)/tα]}, with 1/2 < α � 1. We compute the rate function φ(z) and the
exponent α for exponential and Gaussian resetting distributions pR(x). In the latter case, we find the anomalous
exponent α = 2/3 and show that φ(z) has a first-order singularity at a critical value of z, corresponding to a
real-space condensation transition.
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I. INTRODUCTION

Stochastic processes with random restarts have been exten-
sively studied over the last decade [1,2]. In the typical setting,
the resetting dynamics induces a steady state with manifest
violations of detailed balance, driving the system out of equi-
librium. For this reason, stochastic resetting is very interesting
from both a dynamic as well as a thermodynamic perspective.
Perfect resetting, where the system is always restarted from
the same state, is an example of a process with unidirectional
transitions, which falls outside the normal scope of stochas-
tic thermodynamics. Yet there are several physical processes
where resetting in some form is known to play a role, such as
the erasure of a bit of information under thermal fluctuations
[3–5] or biological systems [6–10]. Hence, understanding
the thermodynamic properties of resetting and quantifying
its thermodynamic cost is a problem of general interest with
applications across fields.

Perfect resetting is a unidirectional process since it has
no time-reversed equivalent. The issue of how to compute
the thermodynamic cost for unidirectional processes (or ab-
solutely irreversible processes as they are called in [11])
has received some attention lately (see [12] as well as [13]
and references therein). The stochastic thermodynamics of
perfect resetting has been addressed for both discrete jump
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processes and diffusive systems in [14]. In both cases, an
average entropic contribution of resetting is identified. Taking
this contribution into account, stochastic resetting systems
have been shown to satisfy integral fluctuation theorems in
[15]. In addition, work fluctuations have been calculated for
a system with simultaneous particle and protocol resets [16],
though by ignoring the work required for the resetting pro-
cess. Thermodynamic uncertainty relations for systems with
a combination of unidirectional and bidirectional transitions,
including processes with stochastic resetting, have also been
studied [17]. However, none of the above provide a framework
for calculating the distribution of entropy production for a
process with instantaneous resetting.

In this paper, we revisit the issue of estimating the entropy
production of a resetting process. We look at a process that
mitigates the unidirectional character of resetting by restarting
from a variable position picked from a distribution pR (akin to
resetting with errors). However, resetting is still instantaneous.
For such a process, trajectorywise entropies can be defined as
usually done in stochastic thermodynamics [18].

We note that similar models have been studied before in
the context of steady states or other dynamical properties,
beginning with an early paper on stochastic multiplicative
processes with resetting [19] to more recent works on resetting
to random positions in the context of first passage times of
Brownian processes [20,21] as well as for steady states of
random walks on networks [22]. The steady state of a Brow-
nian particle undergoing resetting to random positions has
also been studied using a renewal approach in [2]. A resetting
distribution that is conditioned on the position of the particle
before resetting has also been considered [23].
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Resetting to a random position emerges naturally in ex-
periments on colloids [24,25], where the resetting events
are usually performed by switching on and off an external
potential (generated via optical tweezers). Reference [24]
demonstrated that a finite spread in the resetting position
in one dimension leads to a phase transition in the mean
first-passage time as a function of resetting rate/period. More
recently, this has been demonstrated in two dimensions as
well [25]. For such systems, the thermodynamic cost of re-
setting would be related to the work required to switch on
and off the potential. However, to the best of our knowledge,
the stochastic thermodynamics of this class of models has
not been considered before. It is interesting to note that the
energetic cost of resetting, the energy needed to trap a particle
and drag it back to its reset position, has been measured
experimentally in a context where the resetting takes a finite
amount of time [26]. The distribution of the work required to
reset the system under a noninstantaneous resetting protocol
has also been investigated theoretically, very recently in [27].

This paper is organized as follows. In Sec. II, we introduce
the model and derive expressions for the entropy produc-
tion rate per individual reset as a trajectorywise quantity.
In Sec. III, we detail how the full distribution of entropy
production can be obtained in this system, and in Sec. IV
we compute this distribution at late times for two specific
resetting distributions. We end with a discussion in Sec. V.
The Appendices carry further details of the calculations.

II. ENTROPY PRODUCTION OF RESETTING

We consider a one-dimensional overdamped Brownian par-
ticle in a potential V (x). We assume that the particle undergoes
stochastic resetting at a constant rate r and that after the reset-
ting event the new position of the particle is independently
drawn from the resetting distribution pR(x). In other words,
in a small time interval dt , the position x(τ ) of the particle
evolves according to the stochastic rule

x(τ + dt ) =
{

x(τ ) − V ′(x)dt + √
2Dη(τ )dt with probability 1 − rdt,

xres with probability rdt,

(1)
where D > 0 is the diffusion constant, η(τ ) is Gaussian white
noise with zero mean and correlator 〈η(τ )η(τ ′)〉 = δ(τ − τ ′),
and xres is a random variable drawn from the probability den-
sity function (PDF) pR(x). The diffusion constant is related to
the temperature T of the external bath by the Einstein relation
D = kBT/γ , where kB = 1 is Boltzmann’s constant and γ = 1
is the friction coefficient. For a schematic representation of
the process, see Fig. 1. Note that the case of resetting to a
fixed position is recovered by choosing pR(x) = δ(x − x0).
For instance, the resetting dynamics could be implemented by
switching on a different potential U (x) and letting the particle
reach thermal equilibrium, resulting in the Boltzmann weight
pR(x) ∼ e−U (x)/T . However, here we do not describe the re-
laxation of the particle in the resetting potential and assume
it to be instantaneous. This approximation corresponds to the
limit where the relaxation rate of the particle in the potential
U (x) is large compared to the resetting rate r.

The evolution of the PDF p(x, t ) of the position x of
the particle is described by the “augmented” Fokker-Planck

FIG. 1. Schematic representation of the resetting process with n
resetting events (red dashed lines) and total duration t . The position
of the process immediately before (after) the ith resetting event is yi

(xi). The time between the ith and the (i + 1)th resetting is denoted
by τi.

equation (FPE) [1,20]

∂t p(x, t ) = −∂x j(x, t ) − r p(x, t ) + r pR(x), (2)

where

j(x, t ) = −D∂x p(x, t ) − V ′(x)p(x, t ) (3)

is the local probability current. For late times, this process
reaches the nonequilibrium steady state (see Appendix A):

pst (x) = r
∫ ∞

0
dτ e−rτ

∫ ∞

−∞
dx0 G(x|τ, x0)pR(x0), (4)

where G(x|τ, x0) is the propagator of Brownian motion in the
presence of a potential V (x), i.e., the probability density that
the particle goes from x0 to x in a time τ . This steady state is
characterized by a nonvanishing local probability current:

jst (x) = −D∂x pst (x) − V ′(x)pst (x). (5)

As a consequence, the system is out of equilibrium.
The total entropy production rate for steady-state diffusive

processes is usually estimated as [28]

〈ṠLocal〉 = 1

D

∫ ∞

−∞
dx

j2
st (x)

pst (x)
. (6)

Equation (6) is motivated for systems satisfying a local
Langevin dynamics [29], where it can be shown to arise
from averaging over the entropy associated with each possible
microscopic trajectory [18]. However, this definition fails to
capture the total entropy production whenever the dynamics
of the system allows for nonlocal jumps [30], as in Eq. (1). A
more general characterization of the total entropy production
which relates it to time-reversal symmetry breaking is the
log ratio of the probability Pforward of a given trajectory of
duration t to the probability Pbackward of its time-reversed
counterpart [18]. This gives the total entropy production rate:

〈ṠTotal〉 = lim
t→∞

1

t

〈
ln

[ Pforward

Pbackward

]〉
. (7)

This identification of the entropy as quantifying the irre-
versibility of the dynamics is a cornerstone of the field of
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stochastic thermodynamics, but this expression becomes sin-
gular for fully irreversible processes, such as perfect resetting,
where Pbackward = 0.

For systems with local Langevin dynamics, the definitions
in Eqs. (6) and (7) are equivalent [18]. A natural question that
can arise is hence to what extent Eqs. (6) and (7) give different
results in the case of the FPE (2). This comparison cannot be
made in processes with perfect resetting since, as mentioned
above, the probability of the time reversal of any trajectory
containing a reset will be strictly zero. Perfect resetting hence
adds an essentially irreversible component [13], taking it out
of the framework of standard stochastic thermodynamics. We
are thus motivated to look at the reset mechanism in Eq. (1),
for which the entropy production rate as defined in Eq. (7)
can be calculated. Indeed, assuming that pR(x) 	= 0 for all
x, any resetting transition automatically has a time-reversed
counterpart.

Using the definition in Eq. (7) and applying a path-integral
technique, in Appendix B we split the total entropy production
into two contributions:

〈ṠTotal〉 = 〈ṠR 〉 + 〈Ṡm〉, (8)

where

〈ṠR〉 = r
∫ ∞

−∞
dy

∫ ∞

−∞
dx pst (y)pR(x) log

[
pR(x)

pR(y)

]
(9)

is the rate of entropy production due to the nonlocal resetting
dynamics and

〈Ṡm〉 = − 1

D

∫ ∞

−∞
dx V ′(x) jst (x) (10)

is the rate of entropy production associated with periods
between resetting events. We could now ask how 〈ṠTotal〉
compares with 〈ṠLocal〉. In what follows we show that in fact
〈ṠTotal〉 � 〈ṠLocal〉.

Following the standard procedure in [14,31], we consider
the time-dependent average system entropy:

〈S(t )〉 = −
∫ ∞

−∞
dx p(x, t ) log[p(x, t )]. (11)

Differentiating with respect to t , we obtain

〈Ṡ(t )〉 = −
∫ ∞

−∞
dx ∂t p(x, t ) log[p(x, t )]. (12)

By definition, this system entropy will vanish in the steady
state as t → ∞. Using the Fokker-Planck equation Eq. (2)
together with the definitions in Eqs. (6) and (10), we find that
in the steady state

〈ṠLocal〉 − 〈Ṡm〉 + r
∫ ∞

−∞
dx pst (x) log[pst (x)]

− r
∫ ∞

−∞
dx pR(x) log[pst (x)] = 0. (13)

Using the definition of the entropy production due to reset-
ting in Eq. (9), and writing the total entropy production as
〈ṠTotal〉 = 〈Ṡm〉 + 〈ṠR〉, we arrive at

〈ṠTotal〉 − 〈ṠLocal〉 = rDKL[pst||pR] + rDKL[pR||pst], (14)

FIG. 2. Entropy production as a function of the variance σ of the
resetting distribution pR(x) = e−x2/(2σ 2 )/

√
2πσ 2 for a system with

D = r = 1 and V (x) = 0. The limit σ → 0 corresponds to perfect
resetting to the origin. In this limit, the local entropy production
〈SLocal〉 [defined in Eq. (6)] converges to a finite value, while the total
entropy production 〈STotal〉 [defined in Eq. (8)] diverges.

where

DKL[p||q] =
∫ ∞

−∞
dx p(x) log

[
p(x)

q(x)

]
(15)

is the Kullback-Leibler divergence. Since the right-hand side
of Eq. (14) is always positive, we find

〈ṠTotal〉 � 〈ṠLocal〉. (16)

Note that when pR(x) = δ(x − xR) the right-hand side in
Eq. (14) diverges while 〈ṠLocal〉 remains finite (see Fig. 2).
Interestingly, the entropy production associated with the non-
local jumps, given in Eq. (14), can be written in terms of the
symmetrized Kullback-Leibler divergence between pst and
pR, a measure of the distance between the steady state and
the resetting distributions.

Equation (6) underestimates the total entropy production
since it only indirectly incorporates the effect of the non-
local resetting dynamics from Eq. (2) through the local
currents jst(x). The underestimate has exactly the form of the
Kullback-Leibler divergence because of the specific form of
the nonlocal jump term, that does not depend on the starting
position. Interestingly, a similar reasoning applies also to uni-
directional processes, of which resetting is a particular case,
where again it is nontrivial to write the rate of change of
system entropy in terms of a difference of total and medium
entropies. As explained in Appendix C, this can again lead to
an underestimate exactly as in Eq. (14). It is also known that
Eq. (6) can underestimate the total entropy production when
local or nonlocal currents are coarse grained over, indicating
the loss of information in the coarse-graining process [30,31].
Hence, the entropy production of both local and nonlocal
currents is correctly accounted for by Eq. (7) as long as these
are not unidirectional. However, correctly characterizing the
total entropy production rate, as well as higher moments of the
entropy production, of (seemingly) unidirectional transitions
remains an interesting open problem [13].
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For the model of resetting that we study here, which is not
unidirectional, we are able to describe correctly the entropy
production rate at the trajectory level. This allows us to com-
pute properties of the full distribution of entropy production
and to build an intuition on the mechanisms that lead to dissi-
pation in resetting systems. In particular, we will be able to (i)
characterize the typical fluctuations around the average value
of the entropy production, (ii) investigate the likelihood of rare
fluctuations away from the mean value, and (iii) identify the
features of the trajectories that lead to atypically high or low
entropy production.

III. DISTRIBUTION OF TOTAL ENTROPY

As we have seen above, describing the entropy produc-
tion directly at the trajectory level properly accounts for the
instantaneous resetting events. Being a function of a single
stochastic realization of the system trajectory, the entropy is a
random variable. Here, we present the framework for describ-
ing the full statistics of the entropy production, which takes a
large-deviation form at late times. In the following section, we
apply this technique to two concrete examples. It is relevant to
mention that the large deviations of different observables of
processes with perfect resetting have been previously inves-
tigated in [32–35], where dynamical phase transitions have
been observed.

We consider a long time series x(τ ) of total duration t ,
evolving in time according to Eq. (1). We assume that at
the initial time, the process is already in the steady state
(this assumption can be lifted when discussing the late-time
properties). We want to compute the distribution of the total
entropy production STotal, defined as

STotal = log

( P[x(τ )]

P[x(t − τ )]

)
, (17)

where P[x(τ )] is the probability of observing the x(τ ) (with
0 < τ < t), while P[x(t − τ )] is the probability to observe
the time-reversed trajectory x(t − τ ). In Appendix B, using
a path-integral formalism, we show that the total entropy
production can be written as the sum of the entropy production
SR due to resetting, the change of entropy �S of the particle,
and the medium entropy production Sm:

STotal = SR + �S + Sm. (18)

All the terms contributing to the total entropy are random vari-
ables that depend on the particular system trajectory. Between
resetting events, energy is dissipated by the particle into the
bath in the presence of a potential. The corresponding entropy
produced is

Sm = −
n+1∑
i=1

V (yi ) − V (xi−1)

T
, (19)

where T is the temperature of the thermal bath and n is
the number of resetting events. Here yi is the position of
the particle right before the ith resetting event, and xi is the
position of the particle right after the ith resetting event (see
Fig. 1). We use the notation x0 = x(0) and yn+1 = x(t ). The
entropy associated with resetting is governed by the transition

probability densities as before, namely,

SR =
n∑

i=1

log

(
pR(xi )

pR(yi )

)
. (20)

Moreover, the total change of entropy of the particle is given
by

�S = − log{pst[x(0)]} + log{pst[x(t )]}, (21)

where we used S = − log p(x(t ), t ), with p solving the FPE,
as the definition of the system entropy.

When the observation time t is large, we expect the system
entropy to approach a constant �S ∼ O(1) while the other en-
tropy terms will keep growing as SR ∼ O(t ) and Sm ∼ O(t ).
Therefore, we can approximate the total entropy as

STotal≈SR + Sm ≈
n∑

i=1

log

(
pR(xi )

pR(yi )

)
−

n∑
i=1

V (yi ) − V (xi−1)

T
.

(22)
It is useful to rewrite the right-hand side of Eq. (22) (for n �
2) as

STotal ≈
n−1∑
i=1

log

(
pR(xi )

pR(yi+1)

)
−

n−1∑
i=1

V (yi+1) − V (xi )

T
=

n−1∑
i=1

si,

(23)
where we have neglected order-1 terms corresponding to the
segment of the particle path before the first resetting and
after the last resetting, and we have defined the local entropy
variables:

si = log

(
pR(xi )

pR(yi+1)

)
− V (yi+1) − V (xi )

T
. (24)

Note that when expressed in this way, the variables
s1, s2, . . . , sn−1 correspond to time intervals separated by re-
setting events and hence appear uncorrelated. However, these
variables are not independent due to the constraint on the
total time. In other words, the fact that we are observing a
time window of fixed duration t constrains the fluctuations
of the local entropy variables. Moreover, the number n of
such variables, which corresponds to the number of resetting
events, is also random. Hence, although the mean value of
STotal can be simply related to the average of a local variable
si, the same is not true for its variance. This is a consequence
of the correlations between different si caused by the con-
straint that the time intervals they take place over add up to
a fixed total time t .

Let us denote by τi the duration of the time interval be-
tween the ith and the (i + 1)th resetting event. Since the
resetting events occur at a constant rate r, we have

p(τ ) = re−rτ . (25)

Then, the PDF of si, conditioned on the duration τi of the
corresponding interval, reads

p(si|τi ) =
∫ ∞

−∞
dx pR(x)

∫ ∞

−∞
dy G(y|τi, x)

× δ

[
si − log

(
pR(x)

pR(y)

)
+ V (y) − V (x)

T

]
, (26)
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where G(y|τ, x) is the propagator of Brownian motion, i.e.,
the probability density to go from position x to position y in
time τ , in the presence of the potential V (x). For instance, in
the case of free Brownian motion [V (x) = 0] one has

G(x|τ, y) = 1√
4πDτ

e−(x−y)2/(4Dτ ). (27)

The joint PDF of the local entropy variables s1, s2, . . . , sn−1

and of the number n of resetting events can be written as

P(s1, s2, . . . , sn−1, n|t )

=
n−1∏
i=1

∫ ∞

0
dτi re−rτi p(si|τi )δ

(
n∑

i=1

τi − t

)
. (28)

This expression manifestly shows that the fixed-time con-
straint introduces correlations among the si variables.

We can now write the probability distribution of the total
entropy production STotal as

P(STotal|t ) ≈
∞∑

n=2

n−1∏
i=1

∫ ∞

0
dτi

∫ ∞

−∞
dsi re−rτi p(si|τi )

× δ

(
n−1∑
i=1

si − STotal

)
δ

(
n−1∑
i=1

τi − t

)
, (29)

where the δ function constrains the values taken by the total
entropy production STotal and the total time t . Note that we
have approximated t = ∑n

i=0 τi ≈ ∑n−1
i=1 τi since t is large.

To decouple the variables si and τi, we insert the integral
representations of the δ function:

δ

(
n−1∑
i=1

si − STotal

)
= 1

2π i

∫
�1

dq exp

[
−q

(
n−1∑
i=1

si − STotal

)]

(30)
and

δ

(
n−1∑
i=1

τi − t

)
= 1

2π i

∫
�2

dλ exp

[
−λ

(
n−1∑
i=1

τi − t

)]
. (31)

Here �1 and �2 are Bromwich contours in the complex plane.
Plugging these integral representations into Eq. (29), we get

P(STotal|t ) ≈ 1

2π i

∫
�1

dq eqSTotal
1

2π i

∫
�2

dλ eλt

×
∞∑

n=2

[
r

∫ ∞

−∞
ds e−qs

∫ ∞

0
dτ e−(r+λ)τ p(s|τ )

]n−1

.

(32)

Performing the sum over n, we obtain

P(STotal|t ) ≈ 1

2π i

∫
�1

dq
1

2π i

∫
�2

dλ eqSTotal+λt p̃(q|r + λ)

1 − r p̃(q|r + λ)
,

(33)
where

p̃(q|λ) =
∫ ∞

−∞
ds e−qs

∫ ∞

0
dτ e−λτ p(s|τ ), (34)

and where p(s|τ ) is given in Eq. (26). In the case of free
diffusion [V (x) = 0], using the expression in Eqs. (26) and

(27), we find

p̃(q|λ) =
∫ ∞

−∞
dx pR(x)

∫ ∞

−∞
dy

1

2
√

λ
e−√

λ|x−y|

× exp

[
−q log

(
pR(x)

pR(y)

)]
. (35)

Before investigating two specific models, let us mention a
general aspect of the distribution of STotal. The natural choice
in our problem is to consider the total observation time t to
be fixed (letting the number n of resetting events fluctuate). In
analogy with the literature on run-and-tumble particles [36],
we will denote this setting as the fixed-t ensemble. Alterna-
tively, one could consider the (less natural) fixed-n ensemble,
where exactly n resetting events are observed and the total
time t fluctuates.

Since in the fixed-n ensemble the local entropy variables
are independent and identically distributed, it is usually easier
to perform exact computations. Moreover, several general re-
sults are available for the fixed-n ensemble [36,37]. The key
quantity to investigate in this case is the marginal PDF of the
local entropy variable:

p(s) =
∫ ∞

0
dτ re−rτ p(s|τ ). (36)

One important prediction, valid for the fixed-n ensemble, is
that, under specific conditions on p(s), the distribution of STotal

displays the signatures of a real-space condensation transition
[37]. In other words, above a threshold value Sc

Total of the total
entropy production, one single local entropy variable s∗ will
produce a finite fraction mc = s∗/STotal of the total entropy
(with 0 < mc < 1). This critical value Sc

Total usually corre-
sponds to rate events in the large-deviation tail of STotal. Below
the threshold, the different entropy variables s1, . . . , sn con-
tribute democratically to the total entropy production (mc = 0
in the thermodynamic limit t → ∞). The signature of this
transition is a singularity in the large-deviation function of the
distribution of the total entropy production at STotal = Sc

Total.
Real-space condensation has been observed in a wide range
of systems, including mass-transport models [37], financial
models [38], run-and-tumble particles [36,39,40], the discrete
nonlinear Schrödinger equation [41], and others [35].

In [37], a general criterion for condensation for a sum of
independent and identically distributed variables was derived
in the context of mass-transport models, predicting that con-
densation occurs if, for large s, the distribution p(s) decays
slower than any exponential and faster than 1/s2, i.e., if

e−cs � p(s) � A/s2, (37)

for any positive constants c and A. Even though this result was
derived for the fixed-n ensemble, we expect the criterion to be
valid for the fixed-t ensemble when the distribution p(τ ) of
the resetting times is exponential [36]. Note that an equivalent
criterion for condensation is valid for negative values of s.

Another general prediction for the fixed-n ensemble is that,
in the regime where STotal  〈STotal〉 (sometimes known as the
extreme large-deviation regime), the total entropy production
is dominated by a single local variable [36]. In other words,
when STotal is extremely large, one expects s∗ ≈ STotal (or
equivalently mc ≈ 1), where s∗ is one of the n local entropy
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variables. As a consequence, we expect that (for STotal 
〈STotal〉)

P(STotal|n) ∼ p(STotal ), (38)

where p(s) is the local entropy distribution in Eq. (36). Note
that this regime is approached either with a sharp phase transi-
tion [if p(s) satisfies the criterion in Eq. (37)] or with a smooth
crossover. As we will show, this prediction in Eq. (38) is not
valid in general in the fixed-t ensemble, as a consequence of
the constraint on the total time.

IV. EXACTLY SOLVABLE MODELS

In this section, we consider two models in which one can
exactly compute the distribution of the total entropy produc-
tion STotal at late times. In both cases, we assume that the
particle evolves freely in between resetting events, i.e., that
V (x) = 0. As a consequence, the medium entropy production
vanishes between resetting events, i.e., Sm = 0. For late times,
the distribution of the STotal assumes a large-deviation form.
Below we compute exactly the corresponding large-deviation
function for two different choices of the resetting distribution
pR(x). These large-deviation functions provide information
about the likelihood of (both typical and rare) fluctuations
around the average entropy production. Moreover, investi-
gating the large deviations of these models, we will also
understand which types of trajectories contribute to atypically
large values of STotal. In this section, we will only present
the main results. The details of the computations are given
in Appendix D.

A. Exponential resetting distribution

We focus now on the exponential resetting distribution:

pR(x) = 1

2a
e−|x|/a. (39)

There are two main length scales in the system: the resetting
length scale a, quantifying the typical position after reset-
ting, and the diffusive length scale b = √

D/r quantifying the
typical displacement during an interval between two reset-
ting events. The mean of the entropy can be calculated from
Eq. (22) as

〈Stotal〉 = rt

〈
log

pR(xi )

pR(yi )

〉
= rt

〈|yi|〉 − 〈|xi|〉
a

(40)

where we have used the fact that the entropy is a sum of n
terms with n = rt on average. We can now use the general
form of steady state, Eqs. (4) and (9), to compute the averages
in Eq. (40) as

〈Ṡtotal〉 = 〈ṠR〉 = r

[ ∫
dx pst (x) log [pR(x)]

−
∫

dx pR(x) log [pR(x)]

]

= D

a(ar + √
Dr)

r = r
ξ 2

1 + ξ
, (41)

where we have defined the ratio of the two length scales in the
system a and b as ξ = b/a. The entropy production rate 〈Ṡtotal〉

has a quadratic (linear) dependence on ξ for ξ << 1 (ξ  1)
and increases monotonically with ξ . There are thus two ways
to increase the entropy production rate of the process, by
either increasing the rate r or keeping r fixed but increasing
the ratio ξ .

As mentioned earlier, the above simple approach does not
work for the variance since the total variance is not a sum
of the individual variances, due to the total time constraint.
Hence, for simplicity, to compute the variance as well as the
full probability distribution we now consider the case ξ = 1,
leaving the further analysis of the interplay of the two length
scales in higher moments for future works.

Using Eq. (4) for this case, we find an explicit expression
for the steady-state distribution for the process as

pst (x) =
∫ ∞

0
dτ re−rτ

∫ ∞

−∞
dxR

√
r

4D
e−√

r/D|xR|

× 1√
4πDτ

e−(x−xR )2/(4τD)

= 1

4

√
r

D
e−√

r/D|x|
(

1 +
√

r

D
|x|

)
. (42)

It is easily seen from the more general expression in Eq. (41)
that the average rate of entropy production in this case is
simply r

2 , and hence

〈STotal〉 ≈
∫ t

0
dτ 〈ṠR〉 = rt

2
. (43)

In this case, the PDF of the local entropy production variables
can be computed using Eqs. (26) and (36) and reads

p(s) =
⎧⎨
⎩

2
3 e−s for s > 0,

2
3 e2s for s < 0.

(44)

This distribution does not satisfy the criterion in Eq. (43), so
we do not expect to observe a condensation transition.

Fluctuations around the average value in Eq. (43) can be
characterized by considering the full distribution of STotal.
Using the relation in Eq. (33), in Appendix D we show that the
distribution of STotal for late times assumes the large-deviation
form (valid for t → ∞, STotal → ∞ with STotal/t fixed)

P(STotal|t ) ∼ exp

[
−rt φ

(
STotal

rt

)]
, (45)

where the rate function reads

φ(z) = − min
λ>λ0

⎧⎨
⎩1

2

⎡
⎣1− sign(z)

√
1+ 4λ2

1+λ − √
1 + λ

⎤
⎦z+λ

⎫⎬
⎭

(46)
and

λ0 = 1

12

[
−2 − 23

(19 + 12
√

87)1/3
+ (19 + 12

√
87)1/3

]

≈ −0.120 97. (47)

This rate function φ(z) is shown in Fig. 3. We observe that
φ(z) has a unique zero at z = 1/2, which corresponds to the
average value 〈STotal〉 ≈ t/2 for large t [see Eq. (43)]. The rate
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FIG. 3. Rate function φ(z) ≈ − log[P(STotal|t )]/(rt ) as a func-
tion of z = STotal/(rt ). The rate function has a minimum at the typical
value z = 1/2, where φ(z) = 0.

function φ(z) satisfies the Gallavotti-Cohen theorem [42]:

φ(z) − φ(−z) = −z. (48)

Note that STotal should satisfy the fluctuation theorem [28,43]
for any t if we keep the system entropy contributions Eq. (21)
as well. Namely, the relation

log

[
P(STotal|t )

P(−STotal|t )

]
= STotal(t ) (49)

holds for any interval of time t when the total entropy pro-
duction is defined as a log ratio of the probabilities of forward
and backward trajectories, Eqs. (17) and (20). We however
only demonstrate this relation at large times (when we can
ignore system entropy contributions) and hence only refer to
the Gallavotti-Cohen symmetry. The expression for P(STotal|t )
in Eq. (45) is shown in Fig. 4 and is in good agreement with
numerical simulations.

FIG. 4. Probability density function P(STotal|t ) as a function of
the total entropy production STotal for the exponential resetting distri-
bution pR(x) = e−|x|/2. The continuous blue line corresponds to the
result in Eq. (45) (valid for large t) while the symbols display the
results of numerical simulations with r = D = 1 and t = 10 and 107

samples.

The rate function has the following asymptotic behaviors:

φ(z) ≈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
4 z2 − z, for z → −∞
4
9

(
z − 1

2

)2
, for z ≈ 1/2

1
4 z2, for z → ∞.

(50)

Thus, in the typical regime (close to the typical value z = 1/2)
the distribution of STotal converges for late times to the Gaus-
sian weight:

P(STotal|t ) ∼ exp

[
−4(STotal − rt/2)2

9rt

]
, (51)

which is a consequence of the central limit theorem (CLT).
From this result, we can also determine the late-time behavior
of the variance of STotal:〈

S2
Total

〉 − 〈STotal〉2 ≈ 9
8 rt . (52)

On the other hand, from the large-z behavior of φ(z) in
Eq. (50), the probability of observing an anomalously large
entropy production STotal  〈STotal〉 decays as

P(STotal|t ) ∼ e−S2
Total/(4rt ). (53)

In other words, the large-Stotal tail of P(STotal|t ) is still Gaus-
sian, but the decay to zero is slower than that predicted by
the CLT [see Eq. (52)]. Interestingly, one can show that this
Gaussian decay corresponds to configurations that are domi-
nated by a single local variable s∗, although there is no sharp
transition in this case [s∗ dominates only asymptotically for
z = STotal/(rt ) → ∞]. Moreover, it is possible to show that
the time interval τ ∗ associated with s∗ approaches asymptot-
ically the total observation time t (τ ∗ ≈ t). In other words,
in the extreme large-deviation regime where STotal  rt , the
large dissipation is associated with a very long time interval
τ ∗ ≈ t without resetting events. During this interval τ ∗, the
particle starts from some position x∗ ∼ O(1) and propagates
ballistically to the final position y∗ ≈ √

D/rSTotal ∼ O(t ), be-
fore resetting. Note that this extreme large-deviation tail in
Eq. (53) is manifestly different from the one that one would
expect in the fixed-n ensemble [see Eq. (38)], i.e., when the
number n of local entropy variables is fixed. This is a conse-
quence of the constraint on the total time (τ ∗ < t).

Similarly, the probability of observing configurations in
which the entropy production is large and negative decays as
(for |STotal|  rt)

P(STotal|t ) ∼ e−S2
Total/(4rt )+rSTotal , (54)

in agreement with the Gallavotti-Cohen theorem. The mech-
anism for such rare negative events is similar to that of their
positive counterparts. One still has a dominant local variable
s∗, with τ ∗ ≈ t . However, for negative values of STotal one has
x∗ ∼ O(t ) and y∗ ∼ O(1).

B. Gaussian resetting distribution

We next study a Gaussian resetting distribution

pR(x) = 1√
2πσ 2

e−x2/(2σ 2 ). (55)
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The resetting length scale is in this case σ and as before the
diffusive length scale is again

√
D/r. The mean of the total

entropy production can be calculated from Eq. (22) as

〈Stotal〉 = rt

〈
log

pR(xi )

pR(yi )

〉
= rt

〈
y2

i

〉 − 〈
x2

i

〉
2σ 2

= D

σ 2
t = ξ 2rt

(56)
where we have again defined ξ = (

√
D/r)/σ as the ratio of

diffusive and resetting length scales. As expected, the mean
entropy production diverges as the width of the resetting dis-
tribution is taken to zero. In the interest of simplicity, we
once more consider the case ξ = 1 for calculating the full
distribution. In this case, the steady-state distribution can be
computed using Eq. (4) and reads

pst (x) = 1

4

√
r

D
e1/2−|x|√r/D

[
1 + erf

( |x|√r/D − 1√
2

)

+ e2|x|√r/D erfc

( |x|√r/D + 1√
2

)]
, (57)

The average total entropy production follows from Eq. (56)
and reads

〈STotal〉 ≈
∫ t

0
dτ 〈ṠR〉 = rt . (58)

For this model, the PDF of the local entropy variables reads
(see Appendix D)

p(s) =
∫ ∞

−∞
dx

1√
2π

e−x2/2 1√
2s + x2

× 1

2
[e−|x−√

x2+2s| + e−|x+√
x2+2s|]. (59)

For large s, this distribution has the stretched-exponential tail:

p(s) ≈
√

e

2s
e−√

2s. (60)

Interestingly, this distribution satisfies the criterion in
Eq. (37), and hence we expect to observe a condensation
transition in the large-deviation regime.

In Appendix D, we compute the large-deviation function
that describes the likelihood of the fluctuations away from
the typical value 〈STotal〉 ≈ rt . In particular, we show that for
|STotal − 〈STotal〉| ≈ O(t2/3)

P(STotal|t ) ∼ exp

[
−(rt )1/3ψ

(
STotal − rt

(rt )2/3

)]
, (61)

where

ψ (z) =
⎧⎨
⎩

z2/12 for z < zc,

χ (z) for z > zc,

(62)

where zc = 35/3 = 6.240 25 . . . and the function χ (z) is given
in Eq. (D52). This rate function ψ (z) is shown in Fig. 5. The
function χ (z) has the following asymptotic behaviors (see
Appendix D):

χ (z) ≈
⎧⎨
⎩

1
2 31/3 (z − zc) for z → zc,

√
2z − 3

2z for z → ∞,

(63)

FIG. 5. Rate function ψ (z) ≈ − log[P(STotal|t )]/(rt ) as a func-
tion of z = (STotal − rt )/(rt )2/3. The rate function has a first-order
singularity at z = zc = 35/3 (vertical dashed line), corresponding to
a first-order condensation transition. We stress that the values of
z = (STotal − rt )/(rt )2/3 shown here correspond to positive values of
STotal only, as t  t2/3, and that the Gallavotti-Cohen symmetry is
verified for the full distribution of STotal.

where z = (STotal − t )/t2/3. At the critical point z = zc, the
slope of ψ (z) changes, corresponding to a first-order phase
transition. Moreover, for STotal → ∞, we find from Eq. (63)

P(STotal|t ) ∼ exp[−
√

2(STotal − rt )], (64)

corresponding to a configuration in which one single local
variable is responsible for the total entropy production. In this
case, the large-deviation tail with STotal  〈STotal〉 corresponds
to the fixed-n result in Eq. (38). The result for P(STotal|t ) in
Eq. (61) is shown in Fig. 6, where it is also compared with
numerical simulations finding good agreement.

Interestingly, for this model, a nontrivial large-deviation
regime is found for deviations at the scale STotal − 〈STotal〉 ∼
O(t2/3) [instead of the scale O(t ) that is usually observed

FIG. 6. Probability density function P(STotal|t ) as a function of
the total entropy production STotal for the Gaussian resetting distribu-
tion pR(x) = e−x2/2/

√
2π . The continuous blue line corresponds to

the result in Eq. (61) (valid for large t) while the symbols display the
results of numerical simulations with r = D = 1 and t = 103 and 105

samples. Deviations from the theoretical curve are finite-size effects.
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FIG. 7. Schematic representation of a system trajectory x(τ ) in
the subcritical phase (z < zc) along with the excess entropy produc-
tion. Here STotal (τ ) is the (trajectory dependent) entropy produced up
to time τ . Note that the different resetting events contribute to the
total entropy production by roughly the same amount.

in large-deviation theory [44]]. Moreover, we observe that
ψ (z) has a first-order singularity at the critical point z = zc,
i.e., the first derivative of ψ (z) is discontinuous at z = zc (see
Fig. 5). This singularity corresponds to a first-order condensa-
tion transition with z acting as a control parameter: for z < zc

the local entropy variables s1, . . . , sn contribute to the total
entropy by roughly the same amount (see Fig. 7), while for
z > zc a single resetting event dominates (see Fig. 8). In other
words, in the regime z > zc, where dissipation is atypically
large, the most likely configuration corresponds to a single
resetting event which contributes macroscopically to the ex-
cess entropy production. This transition is analogous to the
ones described in [35,37,39,40]. Note that the critical value
Sc = rt + zc(rt )2/3 of the entropy production depends only on
the nondimensional parameter rt .

FIG. 8. Schematic representation of a system trajectory x(τ ) in
the supercritical condensed phase (z > zc) along with the excess
entropy production. Here STotal (τ ) is the entropy produced up to time
τ . In this case a single resetting event dominates the excess entropy
production.

As explained in Appendix D, this type of transition arises
for quantities that can be decomposed into the sum of many
independent local variables with a stretched-exponential dis-
tribution [45,46]. In our case, the local variables describe the
entropy production associated with an interval between two
resetting events. Indeed, from Eq. (23), we have

STotal =
n−1∑
i=1

si, (65)

where

si = −x2
i /2 + y2

i /2. (66)

In the condensed phase, for z > zc, one of these local vari-
ables becomes anomalously large (s∗ ∼ t2/3) and dominates
the total entropy production. From Eq. (66), one can show
that this occurs in an atypically long period without reset-
ting events [τ ∗ ∼ O(t1/3)] with initial position x∗ ∼ O(1)
and y∗ ∼ O(t1/3) (see Fig. 8). However, at variance with the
exponential case where τ ∗ ≈ t , in this case the interval τ ∗ is
small compared to the total time t .

We make here a distinction between typical or “small-
dissipation” events, for excess entropy production STotal −
〈STotal〉 of order O(

√
t ) (i.e., fluctuation within the range of

validity of the CLT), and “large-dissipation” events, corre-
sponding to the rare events where the excess entropy scales
as O(t2/3). Then, the condensation transition allows us to
understand how extreme dissipation occurs during resetting.
Interestingly, this large-dissipation regime displays a very rich
behavior even in a simple model like the one considered here.
Rare events where dissipation is anomalously large occur
either as the result of many resetting events (as in Fig. 7) or
with a single dominant resetting event (as in Fig. 8) depending
on the value of the control parameter z = (STotal − t )/t2/3.
Note that this is not a thermodynamic phase transition, but a
dynamical phase transition where the rate function ψ (z) plays
the role of the free energy.

Interestingly, for z < zc we have ψ (z) = z2/12. Using this
result in Eq. (61), we find that for STotal − rt < zc(rt )2/3

P(STotal|t ) ∼ exp[−(STotal − rt )2/(12rt )]. (67)

In other words, the distribution of STotal remains Gaussian
well beyond the regime of validity of the CLT. Thus, for
late times, the distribution of STotal becomes Gaussian in the
typical regime, with variance〈

S2
Total

〉 − 〈STotal〉2 ≈ 6rt . (68)

Note that the large-deviation form in Eq. (61) only
describes positive values of STotal (since it characterizes fluc-
tuations around the typical value t of subleading order t2/3).
To describe configurations where STotal < 0 one can use the
Gallavotti-Cohen theorem [42]:

P(STotal|t ) = eSTotal P(−STotal|t ), (69)

yielding

P(STotal|t ) ∼ exp

[
STotal − (rt )1/3ψ

(
STotal + rt

(rt )2/3

)]
, (70)

for STotal < 0. Thus, an analogous phase transition is ob-
served for negative values of the entropy production. The rare
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configurations with STotal < −rt − zc(rt )2/3 are dominated by
a single local variable s∗, corresponding to a long interval
without resetting of duration τ ∗ ∼ O(t1/3). However, in this
case, one finds that the starting position x∗ ∼ O(t1/3) is atyp-
ically large while the final position y∗ ∼ O(1).

Finally, using Eq. (37), one can identify a general criterion
to determine whether a given resetting distribution pR(x) will
lead to a condensation transition. We consider the case V (x) =
0 and a class of resetting distributions such that

pR(x) ∼ e−axα

, (71)

for large x. Here a and α are positive constants. The cases
considered above correspond to α = 1 and 2. In Appendix E
we show that a condensation transition is observed if α > 1.

V. DISCUSSION

In this paper, we have investigated the thermodynamic cost
of resetting with errors. We have provided a framework to
compute the full distribution of the entropy production. The
proposed framework bypasses the issue of unidirectionality of
perfect resetting and allows several thermodynamic quantities
to be calculated. In particular, we have considered an over-
damped Brownian particle reset stochastically to a random
position. Using a path-integral technique, we have derived
exact expressions for the average rate of entropy production.
Moreover, we have computed the late-time distribution of
the total entropy production, both in the typical and in the
large-deviation regimes. We have considered two exactly solv-
able models corresponding to an exponential and a Gaussian
resetting distribution. In the latter case, we have shown that
the large-deviation function becomes singular at a critical
point, signaling a first-order condensation transition. We have
investigated the mechanisms that lead to atypical values of the
entropy production for both models.

Many interesting extensions are possible. In particular,
while the dynamics between resets was freely diffusive in
the present paper, one could easily generalize this to more
complex dynamics interrupted by resetting. Including mul-
tiple timescales or length scales could lead to interesting
phenomena. Different choices of the resetting distribution
could also lead to interesting results. As we have shown,
qualitatively different behaviors can emerge even in the two
simple cases studied here. Another relevant direction would
be to investigate the optimal resetting protocol that minimizes
the dissipation required to perform a given task. This could be
done using the optimal-control framework introduced in [47].

Further thermodynamic insights may be obtained by con-
sidering the dynamics of the resetting itself. So far, the
resetting events have been treated as instantaneous, while
realistic implementations would also take a finite amount of
time [24–26]. One approach for finite-time resetting explored
recently is to implement the reset by switching on a potential
and waiting for a first passage to the reset position [48].
Another approach is to model the resetting as ballistic motion
towards the initial state [49–51]. The effect of noninstanta-
neous resetting in the context of first-passage problems is
also by now well known [52]. The distribution of the work
required to reset the system under a noninstantaneous reset-
ting protocol has also been investigated very recently in [27].

Interestingly, introducing noninstantaneous resetting events
and describing the mechanism of resetting would avoid the
nonlocal jumps of the dynamics in Eq. (1).

For simplicity, in this paper we have considered time-
independent resetting distributions pR(x). This assumption
guarantees the existence of a steady state and simplifies the
analytical computations. A natural extension would be to
consider resetting protocols pR(x, t ) that explicitly depend on
time. This could be relevant in the context of optimal control
of resetting processes.

A framework that combines both resetting to random po-
sitions and noninstantaneous resetting is that of intermittent
potentials, where a confining potential is switched on and off
intermittently to model the resetting events and uninterrupted
motion respectively [27,48,53–57]. We note that using an
intermittent potential as an effective mechanism of resetting
is an approach where again the resetting process is no longer
strictly unidirectional [57]. As a consequence, the correct total
entropy production also accounts for currents induced by the
switching of the potential [57]. This is hence another scheme
to bypass the unidirectionality imposed by perfect resetting
and by this means correctly account for the total entropy pro-
duction. Indeed, in the case when a potential is switched on for
a time long enough for the particle to relax into a Boltzmann
state and the relaxation rate is large compared to the resetting
rate, predictions for the steady-state mean entropy production
based on local currents agree with our estimates [57]. This
shows that including a resetting mechanism in terms of local
dynamics will indeed take care of the discrepancy between
entropy production based on local currents and that based on
time-reversed paths. Furthermore, the inclusion of a resetting
distribution not only formally takes care of the problem of
absolutely time-irreversible trajectories, but it also enables
making physically meaningful predictions.

Finally, the presented results could be of relevance to ex-
periments. Experimental realization of resetting, for example
using optical tweezers, will generically have a finite spread in
the resetting position [24,25]. From knowledge about particle
trajectories, in particular the position within an optical reset-
ting trap, the dissipated heat can be estimated and compared
with the theoretical predictions.
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APPENDIX A: COMPUTATION OF THE STEADY-STATE
DISTRIBUTION

In this Appendix, we derive an exact formula for the
steady-state distribution of Brownian motion in a confining
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potential V (x) in the presence of constant-rate resetting to
the distribution pR(x). Assuming that the particle is initially
located at position xi, one can write the distribution of the
particle at time t using the renewal relation

p(x, t ) = e−rt G(x|xi, t ) +
∫ t

0
dτ re−rτ

×
∫ ∞

−∞
dx0 pR(x0)G(x|x0, τ ), (A1)

where r is the resetting rate and G(x|x0, t ) is the probability
density that the particle goes from position x0 to position x in
time t in the absence of resetting [the precise expression of
G(x|x0, t ) will depend on the particular form of the potential
V (x)]. The relation in Eq. (A1) can be interpreted as follows.
The first term on the right-hand side of (A1) corresponds to
the case where no resetting occurs up to time t (this event
occurs with probability e−rt ). The second term describes the
case when at least one resetting event occurs and the last
resetting event happens at time t − τ . Taking the limit t → ∞
in Eq. (A1), the first term can be neglected and we obtain the
following exact expression for the steady-state distribution:

pst (x) =
∫ ∞

0
dτ re−rτ

∫ ∞

−∞
dx0 pR(x0)G(x|x0, τ ). (A2)

APPENDIX B: DECOMPOSITION OF THE TOTAL
ENTROPY PRODUCTION

In this Appendix we derive an explicit expression for the
total entropy production:

STotal = log

( P[x(τ )]

P[x(t − τ )]

)
. (B1)

We will use the same notation as in the main text. We denote
by τi the duration of the time interval between the ith and
the (i + 1)th resetting event (see Fig. 1). We also define ti =
τ0 + τ1 + . . . + τi−1 as the time of the ith resetting event. We
denote by xi = x(t+

i ) [yi = y(t−
i )] the position of the system

right after (before) the ith resetting event. We assume that
the system has already reached a steady state at time τ = 0
and we observe the trajectory of the system up to time t . The
probability of observing a trajectory x(τ ) can be written, using
the Stratonovich convention, as [28]

P[x(τ )] = 1

N
1

r
pst[x(0)]re−rτ0

n∏
i=1

re−rτi pR[x(t+
i )]e−A[x(τ )],

(B2)
where N is a normalization factor and

A[x(t )] =
∫ t

0
dτ

[
1

4D
[ẋ + V ′(x)]2 − 1

2
V ′′(x)

]
(B3)

is the action of the trajectory. The last term in the integral in
Eq. (B3) is a consequence of the Stratonovich discretization.
Note that the integrand in Eq. (B3) is discontinuous at the
resetting times ti.

Plugging the expression in Eq. (B2) into the definition in
Eq. (B1), we find

STotal = ( log{pst[x(0)]} − log{pst[x(t )]})

+
n∑

i=1

[
log(pR(x(t+

i ))) − log(pR(x(t−
i )))

]
+ [A[x(t − τ )] − A[x(τ )]]. (B4)

The first term on the right-hand side of Eq. (B4) is the total
change of entropy of the system:

�S = log(pst (x(0))) − log(pst (x(t ))). (B5)

The second term is the entropy production due to resetting:

SR =
n∑

i=1

[log(pR(x(t+
i ))) − log(pR(x(t−

i )))]

=
n∑

i=1

[log(pR(xi )) − log(pR(yi ))]. (B6)

Finally, the last term is the medium entropy production:

Sm = [A[x(t − τ )] − A[x(τ )]], (B7)

which can be rewritten as

Sm =
∫ t

0
dτ [(ẋ(τ ) + V ′(x)(τ ))2/(4D) − V ′′(x(τ ))/2]

−
∫ t

0
dτ [

(
ẋ(t − τ ) + V ′(x(t − τ ))

)2
/(4D)

−V ′′(x(t − τ ))/2]. (B8)

Performing the change of variable τ → t − τ in the second
interval, we get

Sm =
∫ t

0
dτ [(ẋ(τ ) + V ′(x)(τ ))2/(4D) − V ′′(x(τ ))/2]

−
∫ t

0
dτ [(−ẋ(τ ) + V ′(x(τ )))2/(4D) − V ′′(x(τ ))/2].

(B9)

Therefore, we find

Sm = − 1

D

∫ t

0
dτ ẋ(τ )V ′(x(τ )). (B10)

Since the integrand is continuous in the intervals [ti, ti+1], we
obtain

Sm = −
n+1∑
i=1

V (yi ) − V (xi−1)

D
, (B11)

where we have used the notation x0 = x(0) and yn+1 = x(t ).
Finally, let us derive expressions for the average rates of

entropy production corresponding to different terms. The av-
erage change of the system entropy vanishes in the steady
state:

〈�S〉 = 〈log(pst (x(0))) − log(pst (x(t )))〉 = 0. (B12)
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Using Eq. (B6), the average rate of entropy production due to
resetting can be written as

〈ṠR〉 = 1

t

〈
n∑

i=1

[log(pR(x(t+
i ) − log(pR(x(t−

i )]

〉

= 1

t

∫ t

0
dτ

〈
n∑

i=1

δ(τ−ti )[log(pR(x(τ+)− log(pR(x(τ−)]

〉
.

(B13)

In the steady state, the integrand is independent of τ , yielding

〈ṠR〉 =
〈

n∑
i=1

δ(τ − ti )[log(pR(x(τ+))) − log(pR(x(τ−)))]

〉
,

(B14)

where 0 < τ < t is some arbitrary instant in time. When τ

coincides with the time of a resetting, which occurs at a
constant rate r, the position x(τ−) is distributed according to
the steady-state distribution, while x(τ+) is drawn from the
resetting distribution. Therefore, we obtain

〈ṠR〉 = r
∫ ∞

−∞
dx pR(x)

∫ ∞

−∞
dy pst (y)[log(pR(x)) − log(pR(y))]

(B15)

= r
∫ ∞

−∞
dx pR(x) log(pR(x)) − r

∫ ∞

−∞
dy pst (y) log(pR(y)).

(B16)

Using Eq. (B10), the average rate of medium entropy produc-
tion reads

〈Ṡm〉 = −1

t

1

D

∫ t

0
dτ 〈ẋ(τ )V ′(x(τ ))〉 = − 1

D
〈ẋV ′(x)〉.

(B17)

The last average can be evaluated as done in [28], yielding

〈Ṡm〉 = − 1

D

∫
dx V ′(x) jst (x). (B18)

APPENDIX C: ENTROPY PRODUCTION FOR
UNIDIRECTIONAL TRANSITIONS

Perfect resetting is a particular case of a system with uni-
directionality, where, in addition, the transitions are nonlocal.
As mentioned in the main text, we will here show how an
inequality similar to Eq. (16) can be derived for systems with
unidirectional transitions before making connections with the
particular case of resetting. For simplicity, we take the ex-
ample of a discrete state-space system. Let the system have
two different rates w j→i and y j→i taking it between the same
two mesostates i and j. The two different sets of rates can
correspond for example to two different physical mechanisms.
For now, we assume that the y transitions are unidirectional.
Namely, y j→i 	= 0 does not imply yi→ j 	= 0 for all states {i, j},
as is the case for the bidirectional w transitions. In the case of
the present paper, for example, the w transitions correspond
to local diffusive jumps while the y transitions transitions
describe perfect resetting to a predefined position. A generic

master equation for such a system is

d pi

dt
=

N∑
j=1

(w j→i p j − wi→ j pi ) +
N∑

j=1

(y j→i p j − yi→ j pi ).

(C1)
For such an equation, the system entropy production rate can
be found by taking the time derivative of the Shannon entropy
〈S〉 = − ∑

i pi log pi and inserting the above master equation.
The result can be written as [13]

〈Ṡ(t )〉 =
∑
i, j

w j→i p j log
w j→i p j

wi→ j pi
−

∑
i, j

w j→i p j log
w j→i

wi→ j

+
∑
i, j

y j→i p j log
p j

pi
. (C2)

The first term in Eq. (C2) is the total entropy production rate
only due to the w transitions and the second is the medium
entropy generation rate, again only due to the w transitions.
The last term is due to the unidirectional transitions, which
cannot be written in the same form as the bidirectional ones
due to some transition rates being zero. It is also worth noting
that the y transitions do play a role in all the terms, via p.
As argued in [13], in steady state, when 〈Ṡ(t )〉 = 0, the total
entropy production rate of the system can be taken to be〈

Ṡuni
Total

〉 ≡
∑
i, j

w j→i p̃ j log
w j→i p̃ j

wi→ j p̃i

=
∑
i, j

w j→i p̃ j log
w j→i

wi→ j
−

∑
i, j

y j→i p̃ j log
p̃ j

p̃i
, (C3)

where p̃ is the steady-state probability distribution.
This estimate for the entropy production is analogous to the

entropy production in Eq. (6), in the sense that it is the contri-
bution that comes only from the bidirectional transitions [13].
In fact, if the w transitions describe diffusion, the continuum
limit would lead to exactly Eq. (6).

However, when the y transitions are not unidirectional,
similar to how the resetting transitions are no longer unidi-
rectional after introducing a resetting distribution pR(x), the
standard expression for entropy production due to Schnaken-
berg holds [58]:〈

Ṡbi
Total

〉 ≡
∑
i, j

w j→i p j log
w j→i p j

wi→ j pi
+

∑
i, j

y j→i p j log
y j→i p j

yi→ j pi
,

(C4)
which is also what one would get from Eq. (7) by considering
individual trajectories. In this case, substituting Eq. (C4) into
Eq. (C2) and taking the steady-state limit, the total entropy
production rate in the steady state becomes〈

Ṡbi
Total

〉 =
∑
i, j

w j→i p̃ j log
w j→i

wi→ j
+

∑
i, j

y j→i p̃ j log
y j→i

yi→ j
.

(C5)
This is analogous to Eq. (8) in the case of resetting. The

case studied in this paper corresponds to the case where the
transitions y j→i do not depend on the initial state, y j→i = y→i.
In this case, the y transitions become nonlocal, in the sense
that transitions may occur between two states at arbitrarily
large distance in the state space. One can then make the
correspondence y→i = r pR(i) and p̃ j = pst ( j), in which case
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the two estimates for the total steady-state entropy production
rate Eqs. (C3) and (C5) differ exactly by the Kullback-Leibler
divergence as in Eq. (14).

The above derivations hence show that a similar problem
arises in the more general case of systems with unidirec-
tional transitions, where certain time-reversed paths also have
zero probability. By estimating entropy production using only
currents that correspond to (statistically) time-reversible dy-
namics one always finds an underestimate of the entropy
production.

APPENDIX D: COMPUTATION OF THE
LARGE-DEVIATION FUNCTION OF THE ENTROPY

PRODUCTION

In this Appendix, we present the computation of the large-
deviation function of the entropy production STotal for the two
exactly solvable cases presented in the main text.

1. Exponential resetting distribution

We first consider the exponential resetting distribution:

pR(x) = 1
2 e−|x|. (D1)

To compute the distribution of STotal in Eq. (33) we need
to evaluate p̃(q, λ), i.e., the Fourier (with respect to s) and
Laplace (with respect to τ ) transform of the distribution
p(s|τ ). Plugging the distribution pR(x), given in Eq. (39), into
Eq. (35), we find

p̃(q|λ) = 1

λ − q2

[
1 − q√

λ

1

1 − q + √
λ

]
. (D2)

Plugging this expression into Eq. (33), we obtain

P(STotal|t ) ≈ 1

2π i

∫
�1

dq
1

2π i

∫
�2

dλ eqSTotal+λt

× λ

λ2+q(1+λ−√
1 + λ) + q2(

√
1 + λ − λ − 1)

.

(D3)

We next compute the integral over q. The integral has two
poles, at

q±(λ) = 1

2

⎡
⎣1 ±

√
1 + 4λ2

1 + λ − √
1 + λ

⎤
⎦. (D4)

Performing the integral over q and keeping only the exponen-
tial part of the integrand, we obtain

P(STotal|t ) ∼ 1

2π i

∫
�

dλ eq−(λ)STotal+λt

+ 1

2π i

∫
�

dλ eq+(λ)STotal+λt , (D5)

where q−(λ) and q+(λ) are given in Eq. (D4). We are in-
terested in the large-deviation regime where STotal ∼ O(t ),
therefore we introduce the order-1 variable z = STotal/t

yielding

P(STotal = zt |t ) ∼ 1

2π i

∫
�

dλ et (q−(λ)z+λ)

+ 1

2π i

∫
�

dλ et (q+(λ)z+λ). (D6)

The integral over λ can be computed by saddle-point approxi-
mation (since t is large). In the case STotal > 0, it turns out that
this expression in Eq. (D6) is dominated by the unique real
saddle point of the second integral, yielding

P(STotal|t ) ∼ exp[t min
λ>λ0

(q−(λ)z + λ)], (D7)

where the minimization is performed over real values of λ and

λ0 = 1

12

[
−2 − 23

(19 + 12
√

87)1/3
+ (19 + 12

√
87)1/3

]

= −0.120 972 . . . . (D8)

The minimization is performed over λ > λ0 because the in-
tegrand in Eq. (D6) has a branch cut for λ < λ0 [due to the
square root in q−(λ)]. Thus, the distribution of STotal can be
written in the large-deviation form

P(STotal|t ) ∼ exp [−tφ(STotal/t )], (D9)

where, for z > 0,

φ(z) = − min
λ>λ0

[q−(λ)z + λ]. (D10)

On the other hand, for STotal < 0, the integral is dominated by
the unique positive saddle point of the first integral, yielding

φ(z) = − min
λ>λ0

[q+(λ)z + λ], (D11)

valid for z < 0. Thus, the rate function can be written in the
compact form

φ(z)= − min
λ>λ0

⎧⎨
⎩1

2

⎡
⎣1− sign(z)

√
1+ 4λ2

1+λ−√
1+λ

⎤
⎦z+λ

⎫⎬
⎭.

(D12)
We next compute the asymptotic behaviors of the rate func-

tion φ(z). We first focus on the typical regime where z ≈ 1/2.
It is useful to define the function

g±(λ, z) = q±(λ)z + λ. (D13)

The typical regime corresponds to small values of λ; therefore,
expanding g−(λ, z) in this limit, we find

g−(λ, z) ≈ (1 − 2z)λ + 9
2 zλ2. (D14)

Minimizing both sides with respect to λ and using Eq. (D10),
we obtain

φ(z) ≈ 1 − 4z + 4z2

18z
, (D15)

which is only valid for z ≈ 1/2. Finally, setting z = 1/2 + ε

and expanding to leading order for small ε, we obtain

φ(z) ≈ 4
9ε2 = 4

9 (z − 1/2)2. (D16)
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Plugging this expression back into the large-deviation form in
Eq. (D9), we find

P(STotal|t ) ∼ exp

[
−4(STotal − t/2)2

9t

]
, (D17)

which is just a consequence of the CLT. From this expression,
we can also infer that the variance of STotal grows at late times
as 〈

S2
Total

〉 − 〈STotal〉2 ≈ 9
8 t . (D18)

Finally, we also investigate the asymptotic behavior of φ(z)
for large (positive or negative) z. Let us consider the case
z > 0. The large-z limit corresponds to λ → ∞. Expanding
g−(λ, z), defined in Eq. (D13), for large λ, we get

g−(λ, z) ≈ λ − z√
λ

. (D19)

Minimizing with respect to λ and using the definition of φ(z)
in Eq. (D10), we find that for large z

φ(z) ≈ 1
4 z2. (D20)

The z → −∞ behavior can be obtaining by using the symme-
try in Eq. (48), yielding

φ(z) ≈ 1
4 z2 − z. (D21)

To summarize, we have shown that the rate function φ(z) has
asymptotic behaviors:

φ(z) ≈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
4 z2 − z for z → −∞
4
9

(
z − 1

2

)2
, for z ≈ 1/2

1
4 z2 for z → ∞.

(D22)

2. Gaussian resetting distribution

We next consider the Gaussian resetting distribution:

pR(x) = 1√
2π

e−x2/2. (D23)

Let us first investigate the asymptotic behaviors of the distri-
bution p(s) of a local entropy variable, defined as

p(s) =
∫ ∞

0
dτ p(τ )p(s|τ )

=
∫ ∞

0
dτ re−rτ

∫ ∞

−∞
dx

1√
2π

e−x2/2

×
∫ ∞

−∞
dy

1√
4πτ

e−(x−y)2/(4τ )δ(s − y2/2 + x2/2),

(D24)

where we have used the definition of p(s|τ ) in Eq. (26).
Performing the integral over τ and setting r = 1, we find

p(s) =
∫ ∞

−∞
dx

1√
2π

e−x2/2
∫ ∞

−∞
dy

1

2
e−|x−y|δ(s − y2/2+x2/2).

(D25)

We first consider the case s > 0. When s is positive, we can
immediately compute the integral over y, yielding

p(s) =
∫ ∞

−∞
dx

1√
2π

e−x2/2 1√
2s + x2

× 1

2
[e−|x−√

x2+2s| + e−|x+√
x2+2s|]. (D26)

Expanding the integrand to leading order for large s, we find

p(s) ≈ 1√
2s

∫ ∞

−∞
dx

1√
2π

e−x2/2 1

2
[e−√

2s+x + e−x−√
2s]

=
√

e

2s
e−√

2s. (D27)

Therefore, for large s, the distribution of the local entropy
variable s has a stretched exponential tail. Remarkably, since
the total entropy production STotal can be written as a sum
of (a random number of) stretched exponential random vari-
ables, we expect a condensation transition to occur in the
large-deviation regime STotal, as observed in [39] (see also the
criterion for condensation in [36]).

We now consider the case s < 0. Performing the change of
variable y → z = y − x, we rewrite Eq. (D25) as

p(s) =
∫ ∞

−∞
dx

1√
2π

e−x2/2
∫ ∞

−∞
dz

1

2
e−|z|δ[s − z(z + 2x)/2]

= 1√
2π

∫ ∞

−∞
dz

e−|z|

2|z| e−(s/z−z/2)2/2

= es/2 1√
2π

∫ ∞

−∞
dz

e−|z|

2|z| e−s2/(2z2 )−z2/8. (D28)

From the last expression, we immediately obtain the relation

p(s) = es p(−s), (D29)

in agreement with the Gallavotti-Cohen theorem [42]. Finally,
using Eq. (D27), we find that for s → −∞

p(s) ≈
√

e

2|s|es−√
2|s|. (D30)

We conclude that for large negative values of s, the PDF p(s)
decays exponentially fast.

To compute the distribution of STotal, we first need to
compute the expression for p̃(q|λ) for this choice of pR(x).
Plugging the distribution pR(x), given in Eq. (55), into
Eq. (35), we find

p̃(q|λ) =
√

π

2
eλ/(2q(1−q)) 1√

λq(1 − q)
erfc

⎡
⎣

√
λ

2q(1 − q)

⎤
⎦,

(D31)

valid for 0 < q < 1. It is also relevant to consider the Fourier
transform of the distribution p(s). This quantity is related to
p(s|τ ) by

p(s) =
∫ ∞

0
dτ re−rτ p(s|τ ). (D32)
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Taking a Fourier transform on both sides with respect to s, we
find

p̃(q) ≡
∫ ∞

−∞
ds e−qs p(s)

=
∫ ∞

−∞
ds e−qs

∫ ∞

0
dτ re−rτ p(s|τ ) = r p̃(q|r). (D33)

Using the expression for p̃(q|r) in Eq. (D31) and setting r =
1, we find

p̃(q) =
∫ ∞

−∞
ds e−qs p(s) = √

πe1/(2q(1−q))

× 1√
2q(1 − q)

erfc

⎡
⎣

√
1

2q(1 − q)

⎤
⎦. (D34)

Interestingly, this Fourier transform in Eq. (D34) coincides
with the Fourier transform of the jump distribution of the
run-and-tumble particle model considered in [39]. The equiv-
alence between these two models is quite nontrivial and
unexpected. Note that the main difference with the computa-
tion done in [39] is that here we are fixing the total time, while
the number n of local entropy variables can fluctuate. On the
other hand, in [39], the number of local variables (the jumps
in the language of [39,40]) is fixed. The two ensembles are
usually called “fixed-t” and “fixed-n” respectively in the lit-
erature of run-and-tumble particles. A condensation transition
in the fixed-t ensemble has been observed in [36] (second- or
higher-order transition) and [35] (first-order transition).

Plugging the expression for p̃(q|λ), given in Eq. (D31), into
Eq. (33), we obtain

P(STotal|t )

≈ 1

2π i

∫
�1

dq
1

2π i

∫
�2

dλ eqSTotal+λt

×
√

π
2 e(λ+1)/(2q(1−q)) 1√

(λ+1)q(1−q)
erfc

[√
(λ+1)

2q(1−q)

]
1 − √

π
2 e(λ+1)/(2q(1−q)) 1√

(λ+1)q(1−q)
erfc

[√
λ+1

2q(1−q)

] .

(D35)

For late times, we expect the distribution of STotal to be
peaked around the average value t , with Gaussian fluctuations
around this value, as a consequence of the CLT. We are inter-
ested in computing the large-deviation regime outside of the
range of validity of the CLT. We will consider the two cases
STotal > 0 and STotal < 0 separately. We anticipate that the first
case corresponds to the limit q → 0 in Eq. (D35), while the
second case corresponds to the limit q → 1. In both cases,
we will only consider the late-time regime, corresponding to
λ → 0.

We start by investigating the first case, corresponding
to rare events with the entropy production much larger
than the typical value. Expanding the integrand for q → 0,

we find

P(STotal|t )

≈ 1

2π i

∫
�1

dq
1

2π i

∫
�2

dλ

× eqSTotal+λt

√
π
2 e(λ+1)/(2q) 1√

(λ+1)q
erfc

[√
(λ+1)

2q

]
1 − √

π
2 e(λ+1)/(2q) 1√

(λ+1)q
erfc

[√
λ+1
2q

] .

(D36)

Performing the change of variable q → q′ = q/(λ + 1), we
obtain

P(STotal|t ) ∼ 1

2π i

∫
�1

dq′ 1

2π i

∫
�2

dλ eq′STotal+λt f (q′ )
λ+1− f (q′ ) ,

(D37)

where we have expanded the right-hand side for small λ and
we have defined

f (q) =
√

π

2
e1/(2q) 1√

q
erfc

⎡
⎣

√
1

2q

⎤
⎦. (D38)

Computing the integral over λ, we find

P(STotal|t ) ∼ 1

2π i

∫
�1

dq f (q)eqSTotal−t+ f (q)t . (D39)

It is useful to introduce the integral representation of f (q)
(which can be verified using MATHEMATICA):

f (q) =
∫ ∞

0
dτ e−τ−qτ 2/2. (D40)

Moreover, we also introduce the small-q expansion (valid for
q > 0):

f (q) ≈ 1 − q + 3q2. (D41)

Using Eqs. (D40) and (D41), the expression in Eq. (D39) can
be rewritten as

P(STotal|t ) ∼ 1

2π i

∫
�1

dq
∫ ∞

0
dτ e−τ−qτ 2/2eqSTotal−t+(1−q+3q2 )t

= 1

2π i

∫
�1

dq
∫ ∞

0
dτ e−τ−qτ 2/2eqSTotal+(−q+3q2 )t .

(D42)

Since we are investigating positive large deviations above the
average values, we introduce the variable z, defined as

STotal = t + ztα, (D43)

where we recall that t is the average value of STotal and α is a
positive constant to be determined. This constant α determines
the scale at which the large deviations are observed. Thus,
Eq. (D42) becomes

P(STotal|t ) ∼ 1
2π i

∫
�1

dq
∫ ∞

0 dτ e−τ−qτ 2/2+qztα+3q2t .(D44)

Performing the integral over q, we find

P(STotal|t ) ∼ ∫ ∞
0 dτ e−τ−(τ 2−2tαz)2/(48t ). (D45)
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It is useful to perform the change of variables τ → τ ′ = τ t−β ,
where β > 0 is a constant to be determined, yielding

P(STotal|t ) ∼ ∫ ∞
0 dτ ′ e−τ ′tβ−(τ ′2t2β−2tαz)2/(48t ). (D46)

To determine α and β, we impose that all the terms in the
exponent must grow with the same power in t , yielding the
conditions α = 2β and 2α − 1 = β. Solving these equations,
we obtain α = 2/3 and β = 1/3. Thus, Eq. (D46) reads

P(STotal|t ) ∼
∫ ∞

0
dτ e−t1/3[τ+(τ 2−2z)2/(48)]. (D47)

Finally, performing the integral by saddle-point approxima-
tion, we get

P(STotal|t ) ∼ exp

[
−t1/3ψ

(
STotal − t

t2/3

)]
, (D48)

where

ψ (z) = min
τ�0

[
τ + 1

48
(τ 2 − 2z)2

]
. (D49)

It turns out that for z < zc, where zc = 35/3 = 6.240 25 . . ., the
expression in Eq. (D49) is minimal at τ = 0, corresponding to

ψ (z) = z2/12. (D50)

On the other hand, for z > zc this expression is minimized by
some τ ∗ > 0. Thus, the rate function ψ (z) can be rewritten as

ψ (z) =
⎧⎨
⎩

z2/12 for z < zc,

χ (z) for z > zc,

(D51)

where zc = 35/3 = 6.240 25 . . .. The function χ (z) can be
computed exactly by minimizing analytically the expression
in (D49), yielding

χ (z) = τ ∗ + 1
48 [(τ ∗)2 − 2z]2, (D52)

where τ ∗ is a function of z and reads

τ ∗(z) = 61/3a(z)2 + 62/3z

3a
, (D53)

where

a(z) = (
√

3
√

243 − 2z3 − 27)1/3. (D54)

We next compute the asymptotic behaviors of χ (z). The
variable τ ∗(z) satisfies the equation

τ 3 − 2zτ + 12 = 0. (D55)

Solving this equation for large z, we find

τ ∗(z) ≈ √
2z − 3

z
. (D56)

Plugging this approximation into the expression for χ (z) in
Eq. (D52), we find

χ (z) ≈ √
2z − 3

2z
. (D57)

By expanding χ (z) close to the critical point zc, we find

χ (z) ≈ 1

2 31/3
(z − zc). (D58)

To investigate the large-deviation behavior STotal < 0, we
perform the change of variable q → (1 − q) in Eq. (D35),
yielding

P(STotal|t )

≈ eSTotal
1

2π i

∫
�1

dq
1

2π i

∫
�2

dλ eq(−STotal )+λt

×
√

π
2 e(λ+1)/(2q(1−q)) 1√

(λ+1)q(1−q)
erfc

[√
(λ+1)

2q(1−q)

]
1 − √

π
2 e(λ+1)/(2q(1−q)) 1√

(λ+1)q(1−q)
erfc

[√
λ+1

2q(1−q)

]
= eSTotal P(−STotal|t ). (D59)

This relation is the Gallavotti-Cohen theorem [42]. Using this
result, we find that for STotal < 0

P(STotal|t ) ∼ exp

[
STotal − t1/3ψ

(
t − STotal

t2/3

)]
. (D60)

APPENDIX E: CRITERION FOR CONDENSATION

In this Appendix, we identify a general criterion to de-
termine, given a distribution pR(x), whether a first-order
condensation transition occurs in the large-deviation regime
of the total entropy production STotal. To do this, we will first
estimate the large-s tail of the distribution p(s) of the entropy
production during a single interval between two resetting
events and then we will apply the criterion for condensation
in Eq. (37). This criterion tells us that condensation occurs if,
for large s,

e−cs � p(s) � A/s2. (E1)

We will focus on the case V (x) = 0 and we will consider the
class of resetting distributions

pR(x) ∼ e−a|x|α , (E2)

with α > 0. The cases investigated in the main text correspond
to α = 1 and 2. For simplicity, we set a = r = D = 1. From
Eq. (26), we have

p(s) ∼
∫ ∞

0
dτ e−τ

∫ ∞

−∞
dx e−|x|α

∫ ∞

−∞
dy

× 1√
4πτ

e−(x−y)2/(4τ ) δ(s + |x|α − |y|α ). (E3)

Computing the integral over τ , we find

p(s) ∼
∫ ∞

−∞
dx e−|x|α

∫ ∞

−∞
dy e−|x−y| δ(s + |x|α − |y|α ).

(E4)
When s is large and positive, the integrals are dominated by
y∗ = s1/α and x ≈ 0, yielding

p(s) ∼ e−s1/α

. (E5)

Thus applying the criterion in Eq. (E1), a condensation tran-
sition will be observed for α > 1.
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