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Quantum compiling with a variational instruction set for accurate and fast quantum computing
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The quantum instruction set (QIS) is defined as the quantum gates that are physically realizable by controlling
the qubits in quantum hardware. Compiling quantum circuits into the product of the gates in a properly defined
QIS is a fundamental step in quantum computing. We here propose the quantum variational instruction set
(QuVIS) formed by flexibly designed multiqubit gates for higher speed and accuracy of quantum computing.
The controlling of qubits for realizing the gates in a QuVIS is variationally achieved using the fine-grained time
optimization algorithm. Significant reductions in both the error accumulation and time cost are demonstrated in
realizing the swaps of multiple qubits and quantum Fourier transformations, compared with the compiling by
a standard QIS such as the quantum microinstruction set (QuMIS, formed by several one- and two-qubit gates
including one-qubit rotations and controlled-NOT gates). With the same requirement on quantum hardware, the
time cost for QuVIS is reduced to less than one-half of that for QuMIS. Simultaneously, the error is suppressed
algebraically as the depth of the compiled circuit is reduced. As a general compiling approach with high
flexibility and efficiency, QuVIS can be defined for different quantum circuits and be adapted to the quantum
hardware with different interactions.
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I. INTRODUCTION

Efficient compiling of quantum algorithms to physically
executable forms belongs among the fundamental issues of
quantum computing. A widely recognized compiling method
is to transform the circuit into the product of executable
elementary gates, which are named the quantum instruction
set (QIS) [1–5]. A QIS should be constructed according to
the fundamental physical mechanism of the quantum hard-
ware. For instance, a superconducting quantum computer can
adopt the quantum microinstruction set (QuMIS) [6] as the
instructive set; it is formed by several one- and two-qubit
gates including one-qubit rotations and controlled-NOT (CNOT)
gates. For quantum photonic circuits, the elementary gates
represent certain basic operations on single photons [7,8].
The efficiency of compiling a given quantum algorithm with
a chosen QIS can be characterized by the complexity (e.g.,
depth) of the compiled circuit.

A typical way to realize the elementary gates in a QIS is
by controlling the dynamics of the quantum hardware. Dif-
ferent quantum platforms are usually described by different
controlling process. For instance, superconducting circuits
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employ microwave-pulse techniques to manipulate the qubits
[9,10] through, e.g., cross resonance [11], parametric mod-
ulation [12], etc. Another typical type of quantum hardware
involves nuclear magnetic resonance (NMR) systems [13–21].
For such systems, a key issue in realizing quantum circuits
or algorithms, such as Shor’s factoring algorithm [22] and
Harrow-Hassidim-Lloyd-related algorithms [23], is to deter-
mine the tunable time-dependent pulses. The efficiency can
be characterized by the time cost of the controlling process.

For two-qubit gates, such as CNOT and SWAP gates, the
optimal time cost has theoretically given bounds [24–26]. For
N-qubit gates with N > 2, such bounds are not rigorously
given in most cases, and variational methods including ma-
chine learning (ML) techniques have recently been adopted
in such optimal-control problems [27–37]. Besides, quan-
tum many-body systems have also been used to implement
measurement-based quantum computation [38–44]. However,
most conventional methods concern the controlling of a few
qubits. The utilizations of the many-body dynamics for quan-
tum computing [29,32,33,36,45–47] are much less explored
due to the exponentially high complexity.

For all known quantum computing platforms, noise is in-
evitable and will induce computational errors that make the
results unstable or unreliable. One way to fight against errors
is to use error correction codes [48], such as Calderbank-Shor-
Steane codes [49], Reed-Muller quantum codes [50], and
toric codes [51]. However, the implementation of quantum
error correction codes will significantly increase not only the
number of qubits but also the complexity of circuits. This
issue is particularly important in the noisy intermediate-scale
quantum (NISQ) era, where the number of available qubits
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FIG. 1. (a) The nine elementary gates {Um} (m = 0, . . . , 8) in the three-qubit QuVIS for compiling the N-qubit QFT circuits for N � 9.
We use “H” to denote a Hadamard gate, two crosses connected by a vertical line to denote aSWAP gate, and “Rp” connected to a dot to denote a
controlled-phase-shift gate with the phase θ = π/2p. The error and the time used to implement each elementary gate are shown in Table I. By
adding necessarySWAP gates, the N-qubit QFT circuits compiled by the three-qubit QuVIS are shown in (b).

and the connectivity between them are limited. Besides, noise
will also lead to decoherence, meaning that the qubits will
gradually become less entangled, losing the supremacy over
classical computing. Prolonging the coherence time and re-
ducing the time cost so that the quantum computing tasks are
executed within the coherence duration belong to the signif-
icant and challenging issues for quantum computing in the
NISQ era (see, e.g., Refs. [52–56]).

Aiming at higher efficiency and accuracy, we here propose
the quantum variational instruction set (QuVIS) for compiling
the quantum circuits. A QuVIS is defined as the flexibly
designed multiqubit quantum gates that can be realized by
controlling the magnetic pulses imposed on the interacting
spins in quantum hardware. The pulse sequences are varia-
tionally determined using the fine-grained time optimization
(FGTO) algorithm [36], which manages to efficiently realize
the given multiqubit unitary transformations. We take QuMIS
[6] as an example to compare the performances (error and
time cost). Our results show that QuVIS significantly reduces
the number of elementary gates in the compiled circuit, thus
suppressing the accumulation of errors and the time cost.
These advantages of QuVIS are demonstrated by compil-
ing the circuits of N-qubit quantum Fourier transformation
(QFT) [57–59] and multiqubit SWAP circuits. We show the
elementary gates of the QuVIS designed for the N-qubit QFT
in Fig. 1(a) and the compiled circuits for N = 3, . . . , 9 in
Fig. 1(b). Thanks to the generality and stability of FGTO in
realizing unitary transformations, QuVIS can be adaptively

defined for different types of quantum hardware with various
interaction types (e.g., Ising or Heisenberg interactions), con-
nectivities, and strengths among the qubits, according to the
quantum hardware considered.

II. VARIATIONAL INSTRUCTION SET

To realize a target unitary transformation Û , we optimize
the adjustable parameters in the time-dependent Hamilto-
nian Ĥ (t ) so that the time-evolution operator in the duration
T optimally gives Û , i.e., Û � e−i

∫ T
0 Ĥ (t )dt . We take the

Planck constant h̄ = 1 for simplicity. In many of the exist-
ing types of quantum hardware, the adjustable parameters of
the Hamiltonian concern the one-body terms, i.e., the mag-
netic pulses [16,17,60,61]. We here take the Ising model with
time-dependent transverse fields for demonstration. The Ising
Hamiltonian can be written as

Ĥ (t ) =
∑
nn′

Jnn′ Ŝz
nŜz

n′ − 2π
∑

n

[
hx

n(t )Ŝx
n + hy

n(t )Ŝy
n

]
, (1)

with Ŝα
n being the spin operator in the α direction (α = x, y, z),

Jnn′ being the coupling constants between the nth and n′th
spins, and hα

n (t ) being the adjustable magnetic pulses along
the spin-α direction on the nth spin at the time t . The goal
becomes optimizing hα

n (t ) to minimize the difference

ε = |Û − e−i
∫ T

0 Ĥ (t )dt |, (2)
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where | ∗ | is the Frobenius norm. Such optimizations can be
efficiently implemented by the gradient-descent methods even
when Û concerns multiple qubits.

Due to the generality of the optimization scheme, we are
able to consider additional restrictions in the optimization
process. For instance, we may introduce the restriction that
only the magnetic field in either the x or y direction can be
imposed at each time, or that the strength of magnetic fields
should be limited to a certain range. Such restrictions (and
many restrictions in realistic hardware) will not break the
“automagical” differentiation chain and thus can be readily
considered in the optimization.

We utilize the fine-grained time optimization (FGTO) [36]
to optimize the pulse sequences for the target gates. The idea
is to avoid being trapped in local minima by gradually fine-
graining the time discretization. The validity of this strategy
has been demonstrated on the state-preparation tasks. We take
the Trotter-Suzuki form [62,63] and discretize the total time
T to K̃ identical slices. The evolution operator can be approx-
imated as

Û (T ) = e−iτ Ĥ (K̃ τ̃ ) · · · e−iτ̃ Ĥ (2τ̃ )e−iτ̃ Ĥ (τ̃ ), (3)

with τ̃ = T
K̃

controlling the Trotter-Suzuki error. To vary the
magnetic fields, we introduce τ = κτ̃ , with κ being a pos-
itive integer, and assume hα

n (t ) to take the constant value
hα

n (t ) = hα
n,k during the time (k − 1)τ � t < kτ (with k =

1, . . . , K and K = T
τ

). In other words, τ controls the maximal
frequency of the magnetic pulses, and the magnetic fields
are allowed to change K times in the controlling duration.
During the optimization, τ is reduced gradually to increase
the fineness of time discretization. We start from a relatively
large τ and reduce it to τ/2 when {hα

n,k} converge. The length
(i.e., the dimension of the index k) of the pulse sequences will
be doubled. At the beginning of the optimization with a new
(smaller) τ , the pulse sequences are initialized as hα

n,2k′−1 =
hα

n,2k′ ← hα
n,k′ .

The magnetic fields are updated as

hα
n,k ← hα

n,k − η
∂ε

∂hα
n,k

, (4)

where the gradients ∂ε
∂hα

n,k
can be obtained by, e.g., the au-

tomatic differentiation technique in PYTORCH [64]. We use
the optimizer ADAM [65] to dynamically control the learning
rate η.

The QuVIS for different quantum circuits can be defined
flexibly. Specifically, we call a QuVIS an Ñ-qubit QuVIS
when the elementary gates within it are at most Ñ-qubit gates.
Let us take the QFT as an example, which is one of the
most frequently used circuits in implementing quantum algo-
rithms including the Shor [66] and Grover algorithms [67].
Figure 1(a) gives the three-qubit QuVIS for the N-qubit QFT
with N � 9, and Fig. 1(b) shows the circuits after compiling.
The magnetic fields to realize each elementary gate are ob-
tained by the algorithm explained above.

The complexity of obtaining the magnetic fields on a
classical computer (i.e., optimization complexity) increases
exponentially with Ñ (the maximal number of qubits in the
elementary gates of QuVIS). This optimization complexity is
independent of the number of qubits N in the circuit that is to

be compiled. In comparison, we may consider the whole quan-
tum circuit as a large unitary transformation and use FGTO to
minimize the distance between this unitary transformation and
the time-evolution operator. We dub such a simple and brute-
force scheme “direct control,” which will be used later as a
baseline. In this case, we need to simulate the time evolution
of an N-qubit system; thus the optimization complexity of the
direct control scheme increases exponentially with N .

Here, we focus on the QuVIS with Ñ = 2 and 3, which
already exhibits significant advantages in terms of efficiency
and accuracy (see the benchmark results). Be aware that one
can use a desktop computer to access the QuVISs for Ñ � 6
without any problems. QuVIS can also be designed flexi-
bly for different quantum circuits or algorithms other than
QFT. More details on the optimization and the controlling
sequences for realizing the elementary gates of QuVIS can
be found in the Supplemental Material [68].

The elementary gates (or most of them) in a QuVIS
can be derived recursively. Taking the QuVIS for QFT
as an example, the elementary gates from U0 to U2 are
designed manually. Clear regularity appears to derive the
rest of gates recursively. For the definitions of the ele-
mentary gates in QuVIS, the mth gate Um is composed
of the rotational gate Rm+1 and a SWAP gate when m is
odd. For an even m, Um is composed of two rotational
gates (Rm+1 and Rm) and two SWAP gates; see Figs. 2(a)
and 2(b). When compiling the N-qubit QFT by QuVIS,
the circuit consists of U2,U4,U6, . . . ,UN−5,UN−3,UN−1 and
the (N − 1)-qubit QFT circuit, when N is odd [Fig. 2(c)].
When N is even, the N-qubit QFT circuit consists
of U2,U4,U6, . . . ,UN−4,UN−2,UN−1 and the (N − 1)-qubit
QFT circuit [Fig. 2(d)].

III. BENCHMARK RESULTS

Below, we take the Hamiltonian for time evolution to be
the nearest-neighbor Ising chain, where the coupling constants
satisfy

Jnn′ =
{

2π for n′ = n + 1
0 otherwise. (5)

In our demonstration, we fix the magnetic fields along the
spin-z direction as zero and allow the fields to be indepen-
dently adjusted along the spin-x and spin-y directions. Such a
case often appears in situations involving control using radio-
frequency pulses [17,69].

Table I shows the time cost T for realizing the elementary
gates {Ûm} (m = 0, . . . , 8) by FGTO (first row of data). For
comparison, we also estimate the time cost by compiling
each gate into the product of the elementary gates in QuMIS
(second row of data). To conveniently and fairly compare the
time cost, we take the T when the error [Eq. (2)] decreases to
about O(10−2). The time cost of implementing the elementary
gate in the QuVIS using FGTO is significantly lower than that
when compiling them into the product of the elementary gates
in QuMIS. Note that in general the loss function will decrease
as the total time duration T increases, until the limit of the
optimization scheme is reached. Such a limit is determined by
many factors including the gradient step (learning rate) and
other optimization tricks (such as the optimizer, for which we
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FIG. 2. The elementary gates for compiling the QFT circuits
with three-qubit QuVIS can be recursively derived. (a) and (b) show
the definitions of the mth elementary gate Um for m � 3 with odd and
even m, respectively. The circuit after compiling the N-qubit QFT
circuit can also be derived as illustrated in (c) for odd N and (d) for
even N .

choose adaptive moment estimation [70]). In our simulations,
the loss function eventually converges to about O(10−6) (see
Fig. S2 in the Supplemental Material).

In Fig. 3, we demonstrate the time costs T and the error ε

in realizing the circuits for N-qubit QFT. The direct control

TABLE I. The time cost T to implement the elementary gates
{Ûm} (m = 0, . . . , 8) of the three-qubit QuVIS [Fig. 1(a)] for QFT.
The first row of data shows the results obtained by directly taking
{Ûm} as the target gates in Eq. (2), and the second row of data shows
those obtained by compiling {Ûm} into the product of the elementary
gates in QuMIS.

T Û0 Û1 Û2 Û3 Û4 Û5 Û6 Û7 Û8

QuVIS 0.3 2.1 2.1 1.4 2.4 1.5 2.4 1.5 2.4
QuMIS 2.3 8.4 6.0 2.6 5.1 2.5 5.0 2.5 5.0

FIG. 3. (a) The time cost T and (b) the error ε in realizing
the N-qubit QFT using direct control, two-qubit QuVIS, three-qubit
QuVIS, and QuMIS. The various dashed lines give the linear fitting
of the time cost T vs N [Eq. (6)]. In the optimization for direct
control, the time cost is estimated under the condition that ε is no
more than 10−1. For the two-qubit QuVIS, three-qubit QuVIS, and
QuMIS, ε changes exponentially with N [Eq. (7)]. Note that the
fittings are performed using the data for N � 5.

scheme is used as a baseline method to compare with QuVIS
and QuMIS. Though it exhibits the lowest error, its disad-
vantage is that the computational cost increases exponentially
with the number of qubits N in the quantum circuit to be
compiled. Thus it is not feasible to apply it to circuits of large
size.

Compared with QuMIS, significant reductions in both the
time cost T and the error ε are demonstrated when using
the two- and three-qubit QuVISs for compiling. Since T is
determined by the number of elementary gates and the time
to realize each of them, it is approximately linear with the
number of qubits N . We have

T = γT N + βT , (6)

with the slopes γT � 17.41, 9.25, and 7.65 for QuMIS, Ñ-
qubit QuVIS with Ñ = 2, and Ñ-qubit QuVIS with Ñ = 3,
respectively.

Since each elementary gate inevitably introduces certain
error [fixed to be O(10−2) in our simulations], the error ε for
the whole circuit generally accumulates exponentially as N
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FIG. 4. The error ε(t ) [Eq. (8)] vs the evolution time t to realize
the controlled-phase-shift gate [Eq. (9)]. The dashed lines and the
solid lines with triangles show the ε(t ) obtained using QuMIS and
direct control, respectively. The colored shading indicates the time
cost for realizing the gates on the right-hand side of Eq. (10).

increases. We have

ε = βεeγεN , (7)

with the exponent coefficients γε = 0.22, 0.2, and 0.18 for
QuMIS, Ñ-qubit QuVIS with Ñ = 2, and Ñ-qubit QuVIS with
Ñ = 3. A reduction in γε indicates an algebraic improvement,
essentially because the number of elementary gates (i.e., the
depth) of the compiled circuit is reduced by increasing Ñ .

The key advantage of QuVIS is the “end-to-end” opti-
mization strategy for the magnetic pulses. When a unitary
transformation is compiled into the product of several gates,
the conventional schemes require accurate implementations
of all gates. However, we actually care about the unitary
transformation itself, not any intermediate results within the
compiled circuit.

An Ñ-qubit QuVIS is designed by dividing the target cir-
cuit into many subcircuits [Fig. 1(b)], where each subcircuit
has at most Ñ qubits and the total number of subcircuits
should be as small as possible. These subcircuits define the
elementary gates in the QuVIS [Fig. 1(a)]. The magnetic
pulses are optimized by directly finding the optimal path to
each elementary gate, without considering the intermediate
results within the corresponding subcircuit. Meanwhile, a
properly designed QuVIS will significantly reduce the num-
ber of elementary gates in a compiled circuit. For these
reasons, a circuit compiled by a QuVIS exhibits much less
error and lower time cost compared with one compiled by a
standard QIS.

To provide an explicit demonstration, we show in Fig. 4 the
error ε(t ) in the controlling duration

ε(t ) = |Û (θ ) − e−i
∫ t

0 Ĥ (t ′ )dt ′ |. (8)

This quantity gives the distance at a certain time point t with
0 � t � T , where the magnetic fields are still optimized by

minimizing ε(T ) [Eq. (2)]. As an example, we take Û (θ ) to
be the controlled-phase-shift gate

Û (θ ) =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiθ

⎤
⎥⎥⎦. (9)

For the phase shifts θ = π
8 , π

4 , and π
2 , Fig. 4 compares the

error ε(t ) [Eq. (8)] obtained when directly minimizing the
distance to the target gate (direct control) and when using
the standard compiling. Using QuMIS, Û (θ ) is decomposed
into the product of the single-qubit rotation gates R̂z and CNOT

gates Ĉ, which can be formally written as

Û (θ ) = Ŝ(α)R̂z(θ1)ĈR̂z(θ2)ĈR̂z(θ3), (10)

where R̂z(θ1), R̂z(θ2), and R̂z(θ3) are single-qubit rotations
along the spin-z direction satisfying R̂z(θ1)R̂z(θ2)R̂z(θ3) = I
and Ŝ(α) = eiα a phase factor [71]. Note that all single-
qubit gates in Eq. (10) act on the second qubit. In other
words, when the control qubit (the first one here) is in the
state |1〉, the target qubit (the second one) will be acted

FIG. 5. (a) The time cost T and (b) the corresponding error ε

for the N-qubit SWAP circuit using direct control with Ising and
Heisenberg interactions. The inset in (a) illustrates the circuit for a
four-qubit swap. The data for QuMIS with Ising interactions are also
given for comparison. The fitting functions of T and ε are given in
Eqs. (6) and (7), respectively.
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on by Ŝ(α)R̂z(θ1)X̂ R̂z(θ2)X̂ R̂z(θ3), with X̂ being the Pauli-X
operator.

The time costs of realizing the elementary gates in QuMIS
are illustrated by the colored shading in Fig. 4. The time cost
of direct control is indicated by the x coordinate of the last
triangle, which is about five times shorter than QuMIS. Note
that for a single-qubit rotation R̂α (θ ), it can be written as the
one-body evolution operator with the magnetic field along the
corresponding direction, i.e., R̂α (θ ) = e−iθ Ŝα ⇔ Û (hα, T ) =
e−iT hα Ŝα

. Therefore the time cost of R̂α (θ ) is estimated as
T = θ

hα . Without losing generality, we here take hα = 10 to
estimate the time costs of single-qubit rotations.

An important observation is that even the time cost of a sin-
gle CNOT gate (T = 0.5 theoretically given in Refs. [25,26]) is
larger than that of Û (θ ) obtained using direct control. Mean-
while, direct control also exhibits much lower errors with
ε ∼ O(10−2). For QuMIS, the error accumulates and finally
reaches O(10−1), which is about ten times larger than that
obtained using direct control. Therefore, from the perspec-
tive of QuVIS, it becomes less efficient and accurate when
decomposing the Û (θ ) into the product of CNOT gates and the
single-qubit rotations.

The pulse sequences can be optimized for the quantum
platforms with different interactions. Figure 5 shows the time
cost T and the corresponding error ε for the N-qubit SWAP

circuit using direct control with Ising and Heisenberg inter-
actions. The circuit swaps the first qubit with the last [see
the inset of Fig. 5(a)]. The time T is estimated by keeping
the error of each elementary gate to O(10−1) or less. Linear
scaling of T given by Eq. (6) is observed for both kinds
of interactions. Thanks to the flexibility of the optimization
algorithm, pulse sequences can be obtained for any type or

strength of the interactions, and the error of realizing the
elementary gates can be readily estimated.

IV. SUMMARY

We here propose the quantum variational instruction set
(QuVIS) for efficient quantum computing based on the dy-
namics of the interacting spin systems controlled by pulse
sequences of magnetic fields. The key idea of QuVIS is to
flexibly define the multiqubit elementary gates, where we
ignore the intermediate processes but optimize the magnetic
fields to directly realize the target unitary transformations.
By taking the N-qubit quantum Fourier transformation as an
example, significant reductions in the time cost and error
accumulation are demonstrated compared with the standard
quantum instruction set. QuVIS provides a flexible quan-
tum compiling scheme generally for quantum platforms with
known interactions. For cases where the interactions are un-
known, one can combine QuVIS with methods that estimate
the interactions using, e.g., machine learning of the local
observables and reduced density matrices [72–74].

ACKNOWLEDGMENT

This work is supported by NSFC (Grants No. 12004266,
No. 11834014, No. 12075159, and No. 12171044), Beijing
Natural Science Foundation (Grant No. 1232025), R&D Pro-
gram of Beijing Municipal Education Commission (Grant No.
KM202010028013), the key research project of Academy for
Multidisciplinary Studies, Capital Normal University, and the
Academician Innovation Platform of Hainan Province.

[1] A. S. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger, and B.
Valiron, Quipper: A scalable quantum programming language,
in Proceedings of the 34th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (ACM Press,
New York, 2013), pp. 333–342.

[2] D. Wecker and K. M. Svore, LIQUi| >: A software design
architecture and domain-specific language for quantum com-
puting, arXiv:1402.4467.

[3] A. JavadiAbhari, S. Patil, D. Kudrow, J. Heckey, A. Lvov,
F. T. Chong, and M. Martonosi, ScaffCC: Scalable compila-
tion and analysis of quantum programs, Parallel Comput. 45, 2
(2015).

[4] F. T. Chong, D. Franklin, and M. Martonosi, Programming
languages and compiler design for realistic quantum hardware,
Nature (London) 549, 180 (2017).

[5] T. Häner, D. S. Steiger, K. Svore, and M. Troyer, A software
methodology for compiling quantum programs, Quantum Sci.
Technol. 3, 020501 (2018).

[6] X. Fu, M. A. Rol, C. C. Bultink, J. Van Someren, N.
Khammassi, I. Ashraf, R. Vermeulen, J. De Sterke, W.
Vlothuizen, R. Schouten, C. G. Almudever, L. DiCarlo, and
K. Bertels, An experimental microarchitecture for a supercon-
ducting quantum processor, in Proceedings of the 50th Annual

IEEE/ACM International Symposium on Microarchitecture
(ACM Press, New York, 2017), pp. 813–825.

[7] J. L. O’Brien, A. Furusawa, and J. Vučković, Photonic quantum
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