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Experimental demonstration of optimal unambiguous two-out-of-four quantum state elimination
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A core principle of quantum theory is that nonorthogonal quantum states cannot be perfectly distinguished
with single-shot measurements. However, it is possible to exclude a subset of nonorthogonal states without
error in certain circumstances. Here we implement a quantum state elimination measurement which unambigu-
ously rules out two of four pure, nonorthogonal quantum states—ideally without error and with unit success
probability. This is a generalized quantum measurement with six outcomes, where each outcome corresponds
to excluding a pair of states. Our experimental realization uses single photons, with information encoded in a
four-dimensional state using optical path and polarization degrees of freedom. The prepared state is incorrectly
ruled out up to 3.3(2)% of the time.
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I. INTRODUCTION

Quantum state elimination (QSE) [1–6] aims to exclude
one or more quantum states from a given set. Just like for the
closely related task of quantum state discrimination [7–13],
QSE tasks can be optimized with regard to a number of com-
peting payoffs: For example, minimum-error measurements
always return an outcome but sometimes eliminate the wrong
state; unambiguous measurements on the other hand never ex-
clude the wrong state, but occasionally return an inconclusive
result [1,3,6]. Interestingly, for QSE there exist certain sets
of nonorthogonal states where it is possible to both always
return an outcome and never exclude the wrong state: This is
the regime our work focuses on.

A number of quantum information processing protocols
[4,5,14,15] and communication schemes [16,17] have been
developed based on QSE. Thus far, QSE-based schemes
have been realized using standard projective measurements.
For example, one-out-of-two quantum oblivious transfer—
where a sender has two bits and a receiver obtains either
the first or second bit in such a way that the sender does
not know which bit was received—has been demonstrated in
Ref. [18]. Additionally, quantum digital signatures provide
an information-theoretic secure method of verifying mes-
sage authenticity amongst users, where projective elimination
measurements remove the need for quantum memories [19].
Investigations into the fundamental properties of the wave
function also make use of projective exclusion measurements
[20]. Namely, the so-called Pusey-Barrett-Rudolph (PBR)
theorem introduces a no-go result which shows that quantum
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states cannot be regarded as purely statistical descriptions of
their underlying physical states.

Eliminating nonorthogonal sets of states is in general more
involved and often requires a generalized measurement. An
early related result was derived by Caves et al. [21], who
found the sufficient conditions for when it is possible to
unambiguously exclude one of three possible nonorthogo-
nal quantum states with zero failure probability, as well as
generalized exclusion of “trine” states—three states that are
nonorthogonal and symmetric [2,16,17]. In Ref. [16], elim-
ination measurements on trine states are used in a quantum
key distribution protocol.

In this paper, we derive and demonstrate an experimental
realization of the optimal quantum state elimination mea-
surement for the four nonorthogonal states considered by
Crickmore et al. [6]. Furthermore, this is an experimental
implementation of a generalization of the PBR measurement
[20]. A six-outcome positive operator-valued measurement
(POVM) is required where each outcome corresponds to elim-
inating a unique pair of states. The POVM is mapped onto
an optical platform and optimized by minimizing the number
of optical elements. Our states are encoded in the path and
polarization of single photons. We prepare each of the four
possible states, perform the state elimination measurement,
and compare the results with theoretical predictions.

II. THEORETICAL FRAMEWORK

Let us consider two qubits, each prepared in one of two
states, |±θ〉 = cos θ |0〉 ± sin θ |1〉 [6]. The four possible two-
qubit states are

|+θ,±θ〉 = cos2 θ |00〉 ± sin2 θ |11〉
± cos θ sin θ (|01〉 ± |10〉),

|−θ,±θ〉 = cos2 θ |00〉 ∓ sin2 θ |11〉
± cos θ sin θ (|01〉 ∓ |10〉). (1)
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This family of two-qubit states represent a generalization of
the PBR states [20], which are obtained for 2θ = 45◦ [6].
When cos 2θ �

√
2 − 1, it is possible to always exclude two

of the four states with success probability equal to 1. When
θ = cos−1(

√
2 − 1)/2, the states are the least distinguishable,

but still distinguishable enough such that two of them can
be perfectly ruled out [6]. This is the case we consider in
this paper. For completeness, when cos 2θ >

√
2 − 1, we can

eliminate two of four states with success probability less
than 1.

From the set of four states in (1), there are six ways to
choose a pair of states, each corresponding to a measurement
outcome. Using the shorthand notation “++” for the state
|+θ,+θ〉, “+−” for |+θ,−θ〉 and so on, we define the sets

A = {++,+−}, B = {++,−+},
C = {+−,−−}, D = {−+,−−},
E = {+−,−+}, F = {++,−−}. (2)

The measurement operators are formed from the six
nonorthogonal un-normalized states

|ψA〉 = 1√
2

(

√√
2 − 1|00〉 − |10〉),

|ψB〉 = 1√
2

(

√√
2 − 1|00〉 − |01〉),

|ψC〉 = 1√
2

(

√√
2 − 1|00〉 + |01〉),

|ψD〉 = 1√
2

(

√√
2 − 1|00〉 + |10〉),

|ψE 〉 = 1√
2

((
√

2 − 1)|00〉 + |11〉),

|ψF 〉 = 1√
2

((
√

2 − 1)|00〉 − |11〉). (3)

Each of these states are orthogonal to a pair of states in (1).
The measurement operators that exclude a pair are given by
�i = |ψi〉〈ψi|, with i ∈ {A, B,C, D, E , F }.

This generalized quantum measurement can be realized
by extending the four-dimensional Hilbert space to six di-
mensions and then making a projective measurement in the
six-dimensional extended space. The projective measurement
in turn can be realized by applying a particular unitary trans-
form U , followed by a projection in the computational basis
[22]. For details of this construction, see Appendix A. In
short, following Reck et al. [23], we decompose the unitary
transform as a set of 2 × 2 beam-splitter-like (BS) operations.
This decomposition is optimized by permuting the ordering
of the basis states through all possibilities, obtaining the de-
composition in each case, and choosing the decomposition
with the minimum number of BS operations. We denote these
BS operations by matrices Ti j with i, j ∈ {1, . . . , 6}. The Ti j

matrices can be physically implemented using beam splitters
and wave plates. The decomposition that needs the lowest
number of Ti j matrices will also result in the minimum number
of optical elements in the experiment. The decomposition of
the unitary operation is not unique, but other decompositions

FIG. 1. Two-out-of-four state elimination setup using linear
optics. We encode one of the four quantum states in Eq. (1), here de-
noted |ψ〉, using BS1, BS2, BS3 and φ1, φ2, φ3, which act on the four
path modes corresponding to the basis states |00〉, |01〉, |10〉, |11〉.
The state elimination POVM is realized by acting on the state en-
coded in the four path modes with the beam splitters Ti j as described
in the main text. Single-photon detectors monitor the six outcomes
A, B, C, D, E , and F .

would lead to a larger number of optical elements. One gener-
ally has UTM,M−1TM,M−2 · · · T2,1 = D, where M is the number
of outcomes, here 6, and D is a diagonal matrix.

We will present an optical implementation, as shown in
Fig. 1, but the method of constructing the physical realization
can be used also for other physical platforms such as atoms
or ions [22]. Here, the four basis states are realized using
four separable path modes. The four quantum states defined
in (1) are encoded using BS1,2,3 along with phase shifters
(φ1,2,3). After the optical network which realizes the unitary
transform U , a click in each of the detectors A–F corresponds
to a pair of states being eliminated. The states |00〉, |11〉, |01〉,
and |10〉 are represented by modes 5, 1, 2, and 3, respectively.
The auxiliary states, |aux1〉 and |aux2〉, with vacuum states as
input, are represented by modes 6 and 4.

III. EXPERIMENT

We encode the quantum states onto single photons pro-
duced by a heralded photon-pair source based on parametric
downconversion using a periodically poled potassium titanyl
phosphate (ppKTP) crystal [24]. Degenerate photon pairs are
produced at 1550 nm through using a 775-nm pump from a
80-MHz pulsed Ti-sapphire laser. The two down-converted
photons are generated with orthogonal polarization allowing
them to be separated by a polarizing beam splitter (PBS) and
subsequently coupled into single-mode fiber. As shown in
Fig. 2, one of these photons is immediately detected as the
herald photon, while the other is sent to the state preparation
stage.

We prepare the two-qubit states for the experiment by
encoding the four-dimensional Hilbert space onto a single
photon, effectively realizing a ququart. The ququart is en-
coded in the path-mode degree of freedom where colored
paths in Fig. 1 directly map to our experimental layout shown
in Fig. 2. The four path modes are realized using two calcite
beam displacers (BDs), each of which separates an input
optical mode into two copropagating paths depending on
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FIG. 2. Experimental layout. A Ti-sapphire (Ti-Sapph) laser pumps a ppKTP crystal to produce a source of single photons. After a dichroic
mirror (DM), single photons are coupled to single-mode fiber (FC) and sent to the state preparation stage. Four path modes are formed after two
BDs along with HWPs to implement BS1,2,3. A BD with a red circle indicates that it is rotated by 90◦, while the gray-shaded BD areas denote
paths that are vertically offset. The phases φ1,2,3, shown in the dashed box, are deferred to the measurement as described in the main text. The
measurement uses HWPs and BDs to implement variable BS operations, {T65, T64}, on the path modes. Additional HWPs compensate path
length differences. The remaining BS operations, {T51, T42, T63}, are realized in polarization through the use of a quarter-wave plate (QWP),
HWP, and PBS. Superconducting nanowire single-photon detectors (SNSPDs) detect the single photons in the six POVM output modes.

their polarization. BD interferometers generally have excel-
lent passive phase stability and are widely used in multipath
and polarization encoding in quantum optics setups [25–29].
By using half-wave plates (HWPs) on each path prior to
the BD we set the relative splitting ratios of BS1,2,3. In the
setup, the four paths copropagate in a square lattice, which is
achieved by rotating the second BD by 90◦ with respect to the
propagation path, such that the spatial walkoff is in the vertical
direction. In the figure, the gray shading indicates the top
two path modes, while the unshaded regions represent the
bottom two path modes. Ideally, the phase shifts (φ1,2,3) are
applied to the path modes directly as shown in Fig. 2 to
prepare the different states in (1); see Appendix B for details.
The unitary phase shifts φ commute with part of the unitary
operation forming the POVM. Hence, in the experiment, these
phases are implemented in the measurement stage, before the
projective measurements and detection.

The POVM involves implementing U on the path modes
followed by a projective measurement in the extended basis
spanned by the six outcomes. As per the Reck et al. [23]
decomposition of U , we implement the network of beam
splitters, denoted by Ti, j , using both path and polarization
degrees of freedom. We carry out part of the unitary transform
on the path modes using BDs and HWPs, similar to the state
preparation. Specifically, the BDs spatially combine two path
modes of orthogonal polarization, with specific ratios set by
the HWPs, into a single path mode. The combined path modes
retain orthogonal polarization components, which allows the
final part of the unitary to be implemented in polarization.
We use right-angle prism mirrors to direct the combined path
modes towards polarization measurement stages. These con-
sist of a QWP and HWP which implement the remaining Ti, j

operations in polarization, as well as φ1,2,3, followed by a PBS
for the projective measurement.

Finally, photons in each of the six path modes A–F , as
defined in (2), are detected with SNSPDs and a counting logic
with a 1 ns coincidence window. We conducted measurements
with up to 30 s integration time for each experimentally pre-
pared state.

IV. RESULTS

We prepared ∼2.3 × 105 copies for each of the four states
defined in (1) and measured the output statistics of the POVM.
This is done by recording the number of detection events in
each labeled path mode, A–F , which corresponds to elimi-
nating a particular pair of states. The experimental outcome
probabilities are shown in Fig. 3 and compared with the-
oretical predictions. For all states, mutually distinguishable
sets of three outcomes are expected to have zero probability.
This is the signature that allows the unambiguous two-out-
of-four state elimination. The probability of the outcomes

FIG. 3. Experimental results. For each of the states prepared
(indicated above each plot) the probability of detecting a photon in
the respective output modes {A–F } is shown by the filled bars. The
theoretically predicted probability is indicated by a black outline.
Each letter corresponds to a pair of states being excluded as per
(2). Error bars for the experimental data represent three standard
deviations assuming Poissonian statistics.
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are given by pi = Tr(�iρ). More details are provided in
Appendix A. Ideally, the nonzero outcome probability for
each state is

√
2 − 1 ≈ 41.4% for outcomes A–D and 3 −

2
√

2 ≈ 17.2% for E and F . This distribution depends on θ ,
which determines the set of states to be eliminated. If θ is any
smaller than the value we have chosen, pairs of states cannot
be eliminated without error.

The experimental data demonstrate good agreement with
theoretical predictions, with a maximum fractional error rate
of 3.3(2)% for the input state, |++〉, that being the total
percentage of erroneous outcomes, which should ideally be
0%. For the remaining states, we observe the total fractional
errors of {3.0(2)%, 2.5(2)%, 2.6(2)%} when preparing the
states {|+−〉, |−+〉, |−−〉}, respectively. Here, an erroneous
outcome for the QSE task is considered to be where the
measurement result eliminates a pair of states that includes the
input state that is prepared. The main contribution to imperfect
elimination probabilities is nonunit visibility in the BD inter-
ferometers; on average we observe interference visibilities of
97.7%. This is somewhat lower than can be expected from BD
interferometers, owing to the two-dimensional (2D) layout of
our optical path modes.

V. DISCUSSION

We have demonstrated the first two-out-of-four state elim-
ination using a generalized quantum measurement and a
path-mode encoding scheme for a specific set of states. For
both one- and two-out-of-four state elimination, measure-
ments in an entangled basis are known to outperform local
measurements (that is, separate measurements on each qubit)
[6,20]. Although our measurement would have required en-
tangling operations if realized on two physically separate
qubits, here it does not require entangling operations, because
we have realized it using a ququart. Although our realiza-
tion is optical, the same methods can be used to construct
realizations of generalized measurements on other platforms,
such as trapped ions or atoms [22]. What changes with each
physical realization is what the relevant basis states are, and
what the physical operations that couple pairs of states are.
The matrix decomposition of the unitary U can remain the
same, or a different gate decomposition tailored to each exper-
imental context may be used. The principle of extending the
system’s Hilbert space, implementing the necessary unitary
U , and measuring in the computational basis remains the same
for any physical realization. If one wants to maximize the
average number of eliminated states from a set of qubits, local
measurements are optimal, but in this case, sometimes no
states will be eliminated [6]. Unlike previous state elimina-
tion measurements, our demonstration realizes a generalized
unambiguous measurement.

Quantum state elimination is less explored than state
discrimination but has already proven useful as a tool for dif-
ferent quantum information tasks [16,18,19]. Quantum state
elimination has applications in quantum cryptography, e.g.,
in a noninteractive exclusive OR (XOR) oblivious transfer pro-
tocol which uses a particular set of qutrit quantum states,
selected in order to obtain the smallest possible cheating
probabilities for unrestricted dishonest parties [30]. Quantum
state elimination among four states may also enable modified

quantum key distribution (QKD) schemes where the secret
key bit is created only after the measurement is performed
by the receiver—similar to a prior QKD scheme that employs
elimination of one among three states [16]. The sender might
prepare one of four nonorthogonal states, representing two bit
values, and the recipient excludes two of these states, meaning
that they learn the first bit, the second bit, or their XOR. Finally,
the receiver publicly announces which bit was obtained, but
not its value. The two parties then share this secret bit. This
QKD scheme is conceptually different from traditional QKD
and may be worthy of further study. Theoretically, it has
been shown that communication games based on excluding
information through state elimination can be “infinitely” more
efficient when using a quantum resource rather than a classical
resource [14]. For our specific scenario, weak-duality games
can be demonstrated where two-out-of-four state elimination
is required for a winning strategy [31]. A future direction
will be to further explore unambiguous state elimination for
different sets of states, as well as for an increasing number of
states and dimensions. One approach is to use group theory to
study state elimination measurements [32].
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APPENDIX A: REALIZING THE POVM

Here we present the details of how we realized the POVM.
The mathematical description of the optimal measurement
is given by Crickmore et al. [6]. When cos 2θ = √

2 − 1,
meaning that 2θ ≈ 65.5◦, the measurement operators that
eliminate each pair of states are given by �i = |ψi〉〈ψi|, with
i ∈ {A, B,C, D, E , F }. Here, |ψi〉 are six un-normalized states
with 〈ψi|ψi〉 < 1, which are not orthogonal to each other.
Each state |ψi〉 is, however, orthogonal to the pair of states
that are excluded when obtaining outcome i. We will realize
the pair elimination measurement for this particular value of θ .
(When cos 2θ <

√
2 − 1, some of the measurement operators

are mixed.)
Explicitly, we have

|ψA〉 = 1√
2

(

√√
2 − 1|00〉 − |10〉),

|ψB〉 = 1√
2

(

√√
2 − 1|00〉 − |01〉),

|ψC〉 = 1√
2

(

√√
2 − 1|00〉 + |01〉),

|ψD〉 = 1√
2

(

√√
2 − 1|00〉 + |10〉),

|ψE 〉 = 1√
2

((
√

2 − 1)|00〉 + |11〉),

|ψF 〉 = 1√
2

((
√

2 − 1)|00〉 − |11〉). (A1)
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1. Completing the matrix

In order to realize this generalized state elimination mea-
surement, we need to translate the above mathematical
description of the measurement into a physical setup. The
first step is to employ the so-called Neumark extension. In
short, this means that a generalized quantum measurement
can be realized as a projective measurement in some higher-
dimensional Hilbert space; we need as many dimensions as
there are outcomes. We first write |ψi〉 = ar,1|00〉 + ar,2|01〉 +
ar,3|10〉 + ar,4|11〉, where r = 1 for i = A, r = 2 for i = B,
and so on, until r = 6 for i = F . We then form a 6 × 4 matrix
V with elements Vr, j = a∗

r, j ,

V = 1√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√√
2 − 1 0 −1 0√√
2 − 1 −1 0 0√√
2 − 1 0 1 0√√
2 − 1 1 0 0√

2 − 1 0 0 1√
2 − 1 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A2)

Why we are doing this will become clear shortly. In the matrix
V , the coefficients in each row belong to an un-normalized
“measurement state” |�i〉, and each column contains the co-
efficients for one particular basis state.

The completeness condition
∑

i �i = 1 ensures that the
probabilities for all results sum to 1, no matter what
state is being measured. This condition means that it
holds that

∑
r a∗

r, jar, j = 1 and
∑

r a∗
r,kar,l = 0, where j, k, l ∈

{1, 2, 3, 4} and k �= l . This in turn means that the four columns
in the matrix V in Eq. (A2) are four six-dimensional orthonor-
mal vectors. We can then complete the matrix into a 6 × 6
unitary matrix by adding two more columns, corresponding
to six-dimensional vectors which are orthonormal both to
each other and to the four existing columns. That is, we add
coefficients for two auxiliary basis states, |aux1〉 and |aux2〉.
Physically, the auxiliary basis states can be additional degrees
of freedom for the existing quantum system(s) or can result
from adding one or more auxiliary quantum systems; just
a single auxiliary qubit would double the number of basis

states. The mathematical description of how the measurement
is realized is the same, but the physical realization is different.
In our realization, the four original basis states and the two
auxiliary states will all be represented by different spatial
modes of a single photon.

If there are two or more columns to add, then this can be
done in infinitely many ways. We can, for example, choose

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

| 1
2

1
2 − 1√

2

| − 1
2

1
2 − 1√

2

V | 1
2

1
2 − 1√

2

| − 1
2

1
2 − 1√

2

| 0
√√

2 − 1

| 0
√√

2 − 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A3)

No matter exactly how we choose to complete the unitary
matrix V , to give a particular U , it then holds that

〈i|UρU †|i〉 = 〈ψi|ρ|ψi〉 = Tr(�iρ) = pi, (A4)

where |i〉 is the basis vector corresponding to the ith basis
state and ρ is a state with support only in the four-dimensional
“original” Hilbert space. This means that the measurement can
be physically realized by performing U on the original system,
coupling it to the auxiliary degrees of freedom, followed by
making a projective measurement in the basis given by the
four original basis states plus the two auxiliary ones.

2. Decomposing the unitary operation into optical elements

We search for a decomposition of U containing the small-
est possible number of T matrices. By permuting input and
output basis states before decomposing U using the method
in Ref. [23], decompositions with different numbers of T
matrices can be obtained. We look for a realization with as few
optical elements as possible. We denote the matrix obtained
from U by permuting input and output basis states, giving the
smallest number of optical elements, by Uopt. The decomposi-
tion is then determined by D = UoptT65T64T63T51T42, where D
is a diagonal matrix and the remaining T matrices are identity
operations. We have

Uopt =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1√
2

0 0 0
√√

2 − 1 1 − 1√
2

0 − 1√
2

0 − 1
2

1
2 − 1√

2

√
1√
2

− 1
2

0 0 − 1√
2

1
2

1
2 − 1√

2

√
1√
2

− 1
2

0 1√
2

0 − 1
2

1
2 − 1√

2

√
1√
2

− 1
2

1√
2

0 0 0
√√

2 − 1 1 − 1√
2

0 0 1√
2

1
2

1
2 − 1√

2

√
1√
2

− 1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A5)
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The T matrices are given by

T65 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0.91 −0.414

0 0 0 0 0.414 0.91

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, T63 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1√
2

0 0 1√
2

0 0 0 1 0 0

0 0 0 0 1 0

0 0 − 1√
2

0 0 1√
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, T42 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0

0 1√
2

0 1√
2

0 0

0 0 1 0 0 0

0 − 1√
2

0 1√
2

0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

T64 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1√
2

0 1√
2

0 0 0 0 1 0

0 0 0 − 1√
2

0 1√
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, T51 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1√
2

0 0 0 1√
2

0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

− 1√
2

0 0 0 − 1√
2

0

0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A6)

APPENDIX B: EXPERIMENTAL DETAILS

Details of how the experiment was performed are pre-
sented, starting from how we prepared the initial state.

1. State preparation

The states to be prepared were given in (1); that is, they are

|+θ,±θ〉 = cos2 θ |00〉 ± sin2 θ |11〉
± cos θ sin θ (|01〉 ± |10〉),

|−θ,±θ〉 = cos2 θ |00〉 ∓ sin2 θ |11〉
± cos θ sin θ (|01〉 ∓ |10〉). (B1)

To see how these states are prepared in our implementation,
consider Fig. 1, where each basis state |00〉, |01〉, |10〉, |11〉
represents one of the four colored path modes. The blue line
represents the state |01〉, green represents |10〉, red represents
|11〉, and purple represents |00〉. Phase shifts of ±1 only need
to be applied to the basis states |11〉, |10〉, and |01〉. The
phase shifts are achieved by adding a phase change to the
appropriate path in an interferometer in our setup. As the basis
state |00〉 requires no sign change, no phase shift is needed on
the purple mode.

Preparing one of the four states in (1) is achieved by ro-
tating a HWP, corresponding to a phase shift, by π , or not
rotating it. The notation φi, i = {1, 2, 3}, is the same as in
Fig. 1. Each state is prepared through applying a rotation in
a certain combination outlined in Table I. As an example,

TABLE I. Preparation of a state through applying a phase to an
arm of each MZI.

Desired state φ1 φ2 φ3

| + θ, +θ〉 0 0 0
| + θ, −θ〉 π 0 π

| − θ, +θ〉 π π 0
| − θ, −θ〉 0 π π

if preparing |+θ,+θ〉, the phase shifts are all +1; that is,
no phase shift is required. Hence φi, i = {1, 2, 3}, impart no
rotation.

Experimentally, we implement this operation by pushing
the phase shift from a separable operation as seen in Fig. 1 in
the main text to one combined with the T51, T42, and T63 op-
erations. This is done out of experimental convenience and is
true to Fig. 1 in the main text. To see this, one could realize the
same experimental setup but separate the T operations from
the phase shift operations by introducing a QWP-HWP-QWP
configuration, giving access to the entire Poincaré sphere,
prior to the HWP that makes up the projection along with
the PBS, which would allow for explicit realization of the
phase shift operation. The two path modes’ polarization is
still individually accessible as they have yet to combine on the
final HWP. Hence the operation of the QWP and HWP prior
to the PBS is sufficient to perform the T operations along with
the phase shift operations.

In order for the states to be prepared correctly and for the
probability amplitudes of a photon detection at each detector
to be balanced, BS operations are performed at the encoding
stage. To be explicit, consider the following example with
reference to Fig. 1 in the main text. The Mach-Zehnder inter-
ferometer (MZI) made up of the red- and purple-colored path
modes needs to be balanced in terms of probability. That is,
the red path is made a transmission through BS1 and reflection
through BS2, and the purple path is composed of transmis-
sion through BS1 and BS2 and reflection of T65. The BS and

TABLE II. The theoretical ratios between transmission and re-
flection each variable BS operates on their respective path modes.

BS operation Transmission (%) Reflection (%)

BS1 58.58 42.42
BS2 85.36 14.64
BS3 50.00 50.00
T65 82.81 16.81
T64 50.00 50.00
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TABLE III. Probability amplitude distribution along each arm.
The detector set consisting of E and F has a total probability of
16.99% of the total incident probability amplitude. The detector set
consisting of A and C and the detector set consisting of B and D take
41.91% of the total incident probability amplitude. We see a total
percentage higher than 100%. These values are derived from Table II
and are susceptible to rounding errors. Experimentally, we are trying
to balance each arm in accordance with these values, and so this table
is used more as a guide than as a definite limit.

Detector set Path color Probability amplitude (%)

E and F Red 8.58
Purple 8.41

A and C Green 21.21
Purple 20.7

D and B Blue 21.21
Purple 20.7

Total 100.81

T65 operations should have beam splitter ratios that direct
some amount of probability to not only balance the arms, but
also give up enough probability amplitude to the other two
interferometers. Our method of determining how to balance
each interferometer, i.e., how to determine the transmission
and reflection coefficients of each beam splitting operation,
is found via mode expansion. The T matrix operations were
presented previously along with the BS operations BSi, where
i = {1, 2, 3}, below, which allow us to model a condition
where each interferometer is balanced.

BS1 =
(√

cos4 θ + sin4 θ −√
2 cos θ sin θ√

2 cos θ sin θ
√

cos4 θ + sin4 θ

)
,

BS2 = 1√
cos4 θ + sin4 θ

(
cos2 θ − sin2 θ

sin2 θ cos2 θ

)
,

BS3 = 1√
2

(
1 −1
1 1

)
. (B2)

The theoretical values for the transmission and reflection
coefficients are given in Table II. This table gives the coeffi-
cients for the T matrix operations that take from the purple
path mode in Fig. 1 in the main text. The transmission and
reflection values can be adjusted depending on setup-specific
losses. These values are a starting point and do not take into

TABLE V. The contrast values for each port leading to a detector.
These were found as follows: By coupling a 1550-nm diode laser into
each of the ports and by projecting H and V polarizations through
the PBS using a HWP, we can obtain the maximum and minimum
values for each transmission and reflection port. By using (Imax −
Imin )/(Imax + Imin ), where I is the intensity, we obtain the contrast.

Detector Contrast (%)

A 98.4
B 96.4
C 98.2
D 97.0
E 97.2
F 98.8

account experimental losses; however, they can be further
optimized dependent on the experimental setup.

Using this table, we can examine the percentage of the
total probability amplitude available dedicated to each MZI.
To be explicit, by following the path using Fig. 1 in the
main text as a map, the total probability amplitude the arms
of each MZI have is found by multiplying the probabilities
in Table II. For example, the first MZI whose output ports
are measured by detectors E and F are made up of the red
and purple paths. To reiterate, the red path is made from a
transmission of BS1, which has a transmission probability of
58.58%, and a reflection of BS2, which has a reflection prob-
ability of 14.64%. This makes the red path have a probability
amplitude of 8.58% of the total incident amplitude. Each path
with its associated probability amplitude of the total incident
amplitude is presented in Table III.

It can be seen in Fig. 1 that the red path mode, making up
the interferometer with outcomes E and F , is formed purely
off the common purple path. This is the physical cause of
why the outcome probability amplitudes are unequal across
the nonzero outcomes. Table IV presents our outcomes when
each state is prepared, specifically the data that are represented
in Fig. 3 in the main text.

2. Additional experimental details

All path modes copropagate in parallel through the BDs,
minimizing any mismatch in optical path length and provid-
ing passive phase stability on all path modes. In order to
operate on the correct path mode in a setup whose compact-

TABLE IV. For each prepared state, the probability amplitudes recovered from the single-photon detections are presented along with their
uncertainty. This experimental measurement uncertainty for detectors A–F is given by three standard deviations of the detector sets’ probability
amplitudes assuming Poissonian statistics. The total probability of getting a wrong result is defined as the sum over the probability amplitudes
of the detectors that are not meant to click for a given state.

Probability outcome of each detector (%)

State A B C D E F Total probability error (%)

| + θ, +θ〉 1.82(8) 1.09(6) 40.2(4) 38.4(4) 18.2(3) 0.35(4) 3.3(2)
| + θ, −θ〉 0.95(6) 40.2(4) 0.95(6) 39.1(4) 0.24(3) 17.7(3) 3.0(2)
| − θ, +θ〉 40.9(4) 1.00(6) 39.5(4) 1.29(7) 0.24(3) 17.1(3) 2.5(2)
| − θ, −θ〉 40.8(4) 38.7(4) 1.01(6) 1.27(7) 17.8(3) 0.36(4) 2.6(2)
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ness is defined by the size of the BD diameter, holed HWPs
are used with custom 3D-printed mounts. These plastic 3D
prints are subject to large thermal fluctuations and cause drift
in the interferometer, reducing the visibility of each inter-
ferometer over time. We regard this as the more dominant
source of error, which could be mitigated by improving the
mounting material from plastic to a higher-thermal-resistance
material. We remark that the BD path-mode separation and
recombination are determined by the orthogonal polarization
components. Importantly, this means that the two optical
modes, which are spatially overlapped after the BD, remain
distinguishable in the polarization degree of freedom. This is
also what forms our six-dimensional Hilbert space through
using four spatial modes and two polarization modes. For
each outcome, being consistent with the coloring in the previ-

ous figures, we have detector pair {E , F : purple-H, red-V},
pair {A,C: purple-V, green-H}, and pair {D, B: purple-V,
blue-H}, where H and V refer to horizontal and vertical
polarizations.

Each MZI has associated noise, which can be defined by
the contrast, which is dependent on the PBS that closes the
MZI. This is also due to an accumulative buildup on nonper-
fect fringe visibilities of the BDs. Table V shows the contrast
of each port associated with a detector.

It should also be noted that manufacturing constraints
of the BDs add to the technical limitations of our setup.
Ideally, BDs should be matched such that they are mined
from the same vein. Imperfect alignment in the lattice struc-
ture leads to dephasing which will limit the contrast of the
interferometer.
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[5] V. Havlíček and J. Barrett, Simple communication complexity
separation from quantum state antidistinguishability, Phys. Rev.
Res. 2, 013326 (2020).

[6] J. Crickmore, I. V. Puthoor, B. Ricketti, S. Croke, M. Hillery,
and E. Andersson, Unambiguous quantum state elimination for
qubit sequences, Phys. Rev. Res. 2, 013256 (2020).

[7] C. W. Helstrom, Quantum detection and estimation theory,
J. Stat. Phys. 1, 231 (1969).

[8] I. D. Ivanovic, How to differentiate between non-orthogonal
states, Phys. Lett. A 123, 257 (1987).

[9] A. Peres, How to differentiate between non-orthogonal states,
Phys. Lett. A 128, 19 (1988).

[10] D. Dieks, Overlap and distinguishability of quantum states,
Phys. Lett. A 126, 303 (1988).

[11] A. Peres and D. R. Terno, Optimal distinction between non-
orthogonal quantum states, J. Phys. A: Math. Gen. 31, 7105
(1998).

[12] S. M. Barnett and S. Croke, Quantum state discrimination, Adv.
Opt. Photon. 1, 238 (2009).

[13] J. A. Bergou, U. Herzog, and M. Hillery, Discrimination of
quantum states, in Quantum State Estimation (Springer, New
York, 2004), Chap. 11, pp. 417–465.

[14] C. Perry, R. Jain, and J. Oppenheim, Communication Tasks
with Infinite Quantum-Classical Separation, Phys. Rev. Lett.
115, 030504 (2015).

[15] T. Heinosaari and O. Kerppo, Communication of partial igno-
rance with qubits, J. Phys. A: Math. Theor. 52, 395301 (2019).

[16] S. J. Phoenix, S. M. Barnett, and A. Chefles, Three-state quan-
tum cryptography, J. Mod. Opt. 47, 507 (2000).

[17] K. Flatt, S. Croke, and S. M. Barnett, Two-time state formalism
for quantum eavesdropping, Phys. Rev. A 98, 052339 (2018).

[18] R. Amiri, R. Stárek, D. Reichmuth, I. V. Puthoor, M. Mičuda, L.
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