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Polymorphism in tubulin assemblies: A mechanical model
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We investigate the mechanical origin of polymorphic structures in two-dimensional tubulin assemblies, of
which microtubules are the best known example. These structures feature twisted ribbons, flat tubulin sheets,
macrotubules, and hoops, and they spontaneously assemble depending on the chemical environment. Upon
modeling tubulin aggregates as minimally anisotropic elastic shells and using a combination of numerical
simulations and analytical work, we show that the mechanical strain in tubulin lattices, originating from
asymmetries at the single dimer level, naturally gives rise to polymorphic assemblies, among which cylinders and
other tubular structures are predominant for a wide range of values of the spontaneous curvature. Furthermore,
our model suggests that switching the sign of the sheets’ spontaneous Gaussian curvature from positive (i.e.,
sphere-like) to negative (i.e., saddle-like), could provide a possible route to microtubules disassembly. Our paper
sheds light on the organization of in vitro tubulin assemblies and paves the way towards a more comprehensive
theory of in vivo systems, where the nonequilibrium effects resulting from the dynamic polymerization and
deopolymerization of tubulin and thermal fluctuations conspire with the elastic forces described here.

DOI: 10.1103/PhysRevResearch.5.023093

I. INTRODUCTION

Despite microtubules (MTs) being the most common ex-
amples of in vivo tubulin assemblies, various other structures
have been reported in the literature [1–7] since the discov-
ery of this molecule in the late sixties [8,9]. Tubulin is a
globular protein present in nearly all living cells, where it is
most commonly found in the form of dimers of tightly bound
α− and β−tubulin monomers [10]. Each of these monomers
can bind guanosine−5′-1 triphosphate (GTP), but, while this
occurs irreversibly at the α−monomer, the GTP nucleotide
bound to the β−monomer can be hydrolyzed to guano-
sine diphosphate (GDP), thereby giving rise to a two-state
system, where each dimer is either non-(GTP-tubulin) or
partially (GDP-tubulin) hydrolyzed. GTP-tubulin dimers can
then polymerize into polar chains known as protofilaments,
which, in turn, self assemble in a variety of conformations by
laterally binding to each other. In MTs, this biochemical setup
results in a very dynamical structure, where phases of growth
(i.e., rescue) and shrinkage (i.e., catastrophe) alternate via an
intermediate process during which the protofilaments detach
from one another and “peel out” into ring-shaped oligomers
[see Figs. 1(d) and 1(e)]. The cycles of catastrophe and rescue
are referred to as dynamic instability, which is the running
engine behind the reorganization of MTs in the cell [11].

The problem of the formation of spontaneously curved
structures from tubulin assemblies has drawn attention
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through the years in relation with the aforementioned dy-
namical instability [12–16]. As polymerization only occurs in
the GTP-bound state, there is generally a cap of GTP-bound
tubulin at the tip of a MT, protecting it from disassembly [17].
However, since polymerization is generally slower than GTP
hydrolysis, the growing end becomes eventually rich of GDP,
thereby favoring depolymerization. As a result, dynamic in-
stability may be described in terms of the kinetic lag between
polymerization and hydrolysis that leads to the presence or
lack of the GTP-cap. Yet, cryoelectron microscopy studies
suggested that the loss of stability of the tubulin lattice may be
facilitated by the inherent spatial curvature of tubulin dimers
[12,13], as schematically represented in Fig. 1(l). Experi-
mental evidence indicates that, while both GTP and GDP
dimers are intrinsically kinked [15,16,18,19], GDP-bound
tubulin features a larger curvature than GTP-bound tubulin
[20,21], as suggested by the prominent coiling of GDP-rich
depolymerizing protofilaments [see Fig. 1(d)]. In addition,
hydrolization is believed to increase the stiffness of tubulin
dimers, thereby rendering GTP-bound tubulin more flexible
[22,23] than GDP-bound tubulin, hence more prone to comply
with a wider range of spontaneous curvature [14,20,24].

Beside MTs, tubulin is able to from various MT-like as well
as other polymorphic assemblies, depending on the chemical
environment. Already in 1976, Larsson et al. reported the
formation of flat sheets of tubulin in presence of Zn2+ [1]. In
the usual type of buffer and in conditions favoring assembly,
at more than 0.05 mM Zn2+, protofilaments associate laterally
into large open sheets [25] [see Fig. 1(a)], as also in the pres-
ence of other cations such as Co2+ [26]. Unlike in MTs, which
normally feature 13 polarly aligned protofilaments, these
sheets can comprise more than 60 protofilaments bound with
alternating polarity [27] and display more rugged surface due
to the asymmetry in lateral association. In the presence of
microtubule-associated proteins (MAPs), some sheets were
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FIG. 1. Polymorphism in tubulin structures. (a) Flat sheet, (b) cross section of macrotubules (see smaller MTs), (c) polymerizing MT
with growing curved sheet, (d) depolymerizing MT with peeling ends, (e) ring-shaped oligomers of depolymerized tubulin, (f) C-shaped
ribbons bound to each other in different orientations, [(g)–(j)] helical ribbons with decreasing radius of curvature, (k) schematic of tubulin
assembled in a helical ribbon of radius R and width a, and (l) GDP-tubulin dimers have a conformational kink giving rise to spontaneously
curved protofilaments. GTP tubulin does too, although it is more flexible and likely less curved than GDP-tubulin. All the scale bars in the
micrographs correspond to 100 nm. Micrographs (a) taken from Ref. [25] and (f) from Ref. [3]. Micrographs (b) reprinted from Ref. [1]
with permission from Elsevier; (c) reproduced with permission from Springer Nature from Ref. [30]; (d) and (e) reprinted from Ref. [4] with
permission from Elsevier; and (g)–(j) reprinted from Ref. [2] with permission from Elsevier.

reported to curve or even close up into macrotubules [see
Fig. 1(b)]. The formation of large hoops, with smaller cur-
vature compared to MTs, has been reported instead in the
presence of glycerol, due to its stabilizing effect on polymer-
ized tubulin [4]. In these circular structures, as many as 80
protofilaments assemble in a shallow spiral having sometimes
more than 1000 nm in circumference [28]. Tubulin rings with
a radius of curvature comparable to that of MTs are common
residual structures of MT depolymerization so they typically
form in destabilizing conditions such as high pH >6.0 or
temperatures below 25◦C, rolling into double or triple rings
in the presence of cations, e.g., with Mg2+ at 0◦C [Fig. 1(e)].
Other curved structures include open ribbons, which resemble
incomplete MT walls, thus C shaped [see Fig. 1(f)]. Moreover,
these can bind with varying polarity to form S-shaped ribbons
and other curly structures [3,29]. Assembly in presence of
Ca2+ and taxol also leads to the formation of exotic struc-
tures such as large helical ribbons [see Fig. 1(g)]. Other in
vitro tubulin assemblies include helical structures with cur-
vatures comparable to that of MT [2,5] and highly curved
twisted ribbons, at pH 6.0 and Ca2+ concentrations >0.1 mM
[Figs. 1(h)–1(j)]. These and other anomalous shapes have
been observed for tubulin aggregates both in vitro [2–4] and
in vivo [5–7].

In this article, we ignore the biochemical origin of spatial
curvature of αβ − dimers to focus on its mechanical contri-
bution to polymorphism in tubulin assemblies. By means of a
combination of numerical simulations and analytical work, we
show that the mechanical strain in tubulin lattices originating
from asymmetries at the single dimer level naturally gives rise

to polymorphic assemblies, among which cylinders and other
MT-like structures are predominant for a wide range of values
of spontaneous curvature.

The article is organized as follows. In Sec. II, we present
our mechanical model for tubulin thin sheets as elastic sur-
faces, which are subject to structural intrinsic curvature. In
Sec. III, we start with the simpler case of developable sheets,
for which analytical calculations provide some insight in
the effect of spontaneous curvature terms and mechanical
anisotropy. In Sec. IV, we use simulations to look at the
more interesting case of flexible ribbons, which can admit
higher in-plane strain in order to better comply to the imposed
curvature, resulting in a more nuanced diagram of equilib-
rium shapes. The simulations for tubulin sheets with a higher
degree of stiffness in Sec. V provide a numerical parallel to
the analytical calculations. Section VI presents concluding
remarks.

II. THE MODEL

Different mechanical models have been used to study MTs
and the sheet structures at their (de)polymerizing ends. These
include isotropic models, obtained upon portraying MTs as
thin cylindrical shells [31,32] or spring networks [33,34], as
well as anisotropic models, built upon the elasticity of or-
thotropic shallow shells [35–40], bundles of slender rods [41]
or aimed at describing the hydrolization of the growing end
[42–47]. In the continuum elastic model used in Refs. [30,48]
to study the growing ends of MTs, anisotropy is instead
accounted for in terms of spontaneous curvatures. Although
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potentially generic, these models have been restricted to the
study MTs and, to the best of our knowledge, none have yet
addressed the general polymorphism in tubulin assemblies.

To gain insight into the mechanical origin of polymor-
phism, we model a tubulin sheet as a two-dimensional
crystalline membrane (see e.g., Ref. [49]), whose position
R = R(x1, x2) in the three-dimensional Euclidean space R3 is
parametrized in terms of the coordinate {x1, x2}. The length
and width of the sheet are assumed fixed, as typical of in
vitro assemblies, where protofilaments are stabilized against
polymerization and depolymerization. The shell’s free energy
is given by the sum of the stretching and bending energy
contributions, F = Fs + Fb, with

Fs = 1

2
Y

∫
dA σ 2, (1a)

Fb =
∫

dA [kH (H − H0)2 + k�(� − �0)2], (1b)

where dA is the area of an infinitesimal surface element and
the integration spans the entire system. Equation (1a) is the
tubulin lattice stretching energy, with Y > 0 the Young’s mod-
ulus, σ = gi jσ

i j/Y is the dimensionless trace of the in-plane
stress tensor σi j , and gi j = ∂iR · ∂ jR the surface metric tensor.
The scalar field σ is related to the changes in the Gaussian
curvature K = κ1κ2, with κ1 > κ2 the principal (i.e., maximal
and minimal) curvatures, by the Poisson equation (see e.g.,
Ref. [50])

∇2σ = K0 − K, (2)

where K0 = c1c2, with c1 > c2 being the preferential principal
curvatures of the tubulin sheet.

Equation (1b), on the other hand, is a minimally anisotropic
bending energy. Here H = (κ1 + κ2)/2 is the surface mean
curvature and � = (κ1 − κ2)/2 is the so-called deviatoric
curvature or warp. These are in turn related to the Gaussian
curvature by

K = H2 − �2. (3)

Notice that, unlike for the Gaussian curvature, the sign of both
the mean curvature and the warp is merely conventional and
depends upon the orientation of the surface normal vector.
Hereafter we will assume both H0 and �0 positive, so that
c1 > 0.

The constants kH > 0, k� > 0 quantify the energetic costs
associated with a departure from the preferential mean curva-
ture H0 = (c1 + c2)/2 and warp �0 = (c1 − c2)/2. The latter
bending energy was introduced by Fischer in a series of papers
in the early nineties [51–55], as an alternative to Helfrich’s
celebrated model of lipid membranes [56]. In this formula-
tion, evidently inspired by Frank’s theory of nematic liquid
crystals [57], bending occurs via the superposition of two
modes: A purely elliptic one—associated with the first term
in Eq. (1b)—and a purely hyperbolic one—described by the
second term. Each of these modes has an associated bending
stiffness that depends on the material properties. Thus, for
a purely elliptic deformation, where κ1 = κ2, Fb ∼ kH (H −
H0)2, whereas for purely hyperbolic, where κ1 = −κ2, Fb ∼
k�(� − �0)2.

For specific values of the bending stiffnesses kH and k�,
and of the curvatures H0 and �0, the bending energy Eq. (1b)

reduces to that of both lipid membranes and shallow elastic
shells. For instance, Helfrich’s free energy

FHelfrich =
∫

dA [k(H − c0)2 + k̄K], (4)

with k, k̄, and c0 material parameters, is readily recovered
from Eqs. (1) and Eq. (3) by setting

kH = k + k̄, H0 = k

k + k̄
c0,

k� = −k̄, �0 = 0.

Similarly, the bending energy of a shallow elastic shell of
flexural rigidity D and Poisson’s ratio ν is given by (see e.g.,
Ref. [58])

Fshell

= 1

2
D

∫
dA[(κ‖−c‖)2+(κ⊥−c⊥)2+2ν(κ‖−c‖)(κ⊥−c⊥)],

(5)

where κ‖ and κ⊥ are the normal curvatures along two arbi-
trary orthogonal directions on the mid-surface of the shell
[see Fig. 1(k)] and c‖ and c⊥ their corresponding preferential
values. Then, calling θ the angle between, say, the direction
associated with the curvature κ‖ and the first principal curva-
ture direction [see Fig. 1(k)] and using Euler’s theorem—i.e.,
κ‖ = κ1 cos2 θ + κ2 sin2 θ—allows one to express

κ‖ = H + � cos 2θ, κ⊥ = H − � cos 2θ,

from which Eq. (5) can be cast in the form given by Eq. (1) by
setting

kH = D(1 + ν), H0 = c‖ + c⊥
2

,

k� = D(1 − ν) cos2 2θ, �0 = c‖ − c⊥
2

sec 2θ.

Our model tubulin sheet, whose free energy is given by
Eq. (1), is then equivalent to a shallow elastic shell with
a minimal amount of anisotropy built into the preferential
curvatures c‖ and c⊥, and the angle θ expressing the in-
clination of the protofilaments with respect to the largest
principal curvature direction. However, being formulated in
terms the mean curvature H and the warp �, it offers the
additional advantage of decoupling elliptic and hyperbolic
deformations, thus bringing to the forefront the fundamental
shape-changing modes of two-dimensional media. Further-
more, while in elastic shells of finite thickness the Poisson
ratio is subject to the upper bound ν � 1/2, resulting from
volumetric constraints [58], the material parameters kH and k�

are amenable to less restrictive interpretations, rooted in the
fact that tubulin lattices comprise a single layer or molecular
building blocs, to which volumetric constraints do not apply.
An even more realistic mechanical model of tubulin sheets,
capturing the difference between longitudinal and transversal
interactions of αβ − dimers, could be obtained by accounting
for an anisotropic response to stretching other than bending
deformations; for instance, in the framework of orthotropic
shell elasticity [59]. Furthermore, our model ignores both the
kinetics of GTP-hydrolysis [47] and thermal fluctuations [60]
and is therefore limited to static conformations, especially
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those attained in in vitro systems upon stabilizing tubulin
against depolymerization by taxol or similar agents.

III. DEVELOPABLE TUBULIN SHEETS

To get a sense of the spectrum of possible shapes accessible
to our model tubulin sheet, we start from the simple case of
developable surfaces, that is, isometric to a planar rectangle,
whose edges have length a < b and whose Gaussian curvature
is everywhere vanishing. Such a class includes, in addition to
the flat rectangular sheets, cylinders and the helical ribbons.
To this end, we set K = 0 so Eq. (2) reduces to

∇2σ = K0. (6)

Because of developability, all conformations of the tubulin
sheet bear the same stress when prevented from adopting their
spontaneous Gaussian curvature K0. Expressing Eq. (6) in
rectangular coordinates 0 � x � a and 0 � y � b and solving
it with stress-free boundary conditions (see Appendix A) gives

σ = −K0

(
4

π

)2 ∑
n

′ ∑
m

′
Cnm sin

(
πn

a
x

)
sin

(
πm

a
y

)
, (7)

where the primes indicate that both summations run exclu-
sively on odd values of the integers n and m and

Cnm = 1

nm
[(

πn
a

)2 + (
πm
b

)2] . (8)

Inserting Eqs. (7) and (8) in Eq. (1a) and computing the
integral gives

Fs = 32A

(
K0

π2

)2 ∑
n

′ ∑
m

′
C2

nm, (9)

where A = ab is the area of the tubulin sheet. In the case of
ribbon-like sheets in particular, for which a � b, approximat-
ing Cnm ≈ (a/π )2/(mn3) and summing the series in Eq. (9)
gives

Fs = 1

240
AY (K0a2)2. (10)

By contrast, the bending energy of developable sheets
depends on the extrinsic geometry of the system, here em-
bodied by the mean curvature H and the warp �. Consider,
for instance, a generic ribbon-like surface wrapped around a
cylinder of radius R [see Fig. 1(k)]. Developability demands
κ2 = 0, whereas κ1 = 1/R since, as intuitive, any nonorthog-
onal planar section of the ribbon has a longer length, thus a
smaller radius of curvature, than the orthogonal one. From
this we conclude that H = � = 1/(2R), so that the bending
energy is given by

Fb = A

[
kH

(
1

2R
− H0

)2

+ k�

(
1

2R
− �0

)2]
. (11)

In the special case of a closed cylinder, R = a/(2π ) or R =
b/(2π ), depending on whether the cylinder closes along its
longitudinal or transverse side respectively. The bending en-
ergy of flat sheets, on the other hand, can simply be recovered
by taking the limit R → ∞.

With Eqs. (9) and (11) in hand, one can identify pos-
sible equilibrium conformations by minimizing the energy

with respect to the radius of curvature R for fixed area A
and spontaneous shape curvatures H0 and �0. As previously
mentioned, and as evident from Eq. (9), developability guar-
antees the stretching energy to be shape independent once the
spontaneous Gaussian curvature K0 is specified. By contrast,
minimizing Eq. (11) with respect to R yields the optimal
curvature

1

2R
= kH H0 + k��0

kH + k�

, (12)

whose corresponding bending energy is given by

Fb = A(H0 − �0)2

k−1
H + k−1

�

. (13)

Thus, for arbitrary H0 and �0 values, our model tubulin
sheet consists of a developable ribbon, whose mean curvature
and warp, which are equal by virtue of the developabil-
ity constraint, interpolate between H0 and �0 depending
on the magnitude of the corresponding bending stiffnesses.
Moreover, if the steric repulsion between tubulin dimers is
sufficient to prevent the sheet from forming multilayered con-
centric rolls, the maximal principal curvature κ1 can be at most
equal to the curvature 2π/a of a cylinder of circumference a,
thus 1/(2R) � π/a. This upper bound, together with Eq. (12),
implies that developable tubulin sheets form closed cylinders
of radius 2π/a when

�0 � π

a
+ kH

k�

(
π

a
− H0

)
, (14)

or even cylinders of smaller radius with overlapping ends
when steric repulsion does not prevent rolling. For smaller
�0 values, helical ribbons instead can roll open or close in
order to accommodate the spontaneous curvatures, or else the
tubulin sheet bends into a C-shaped ribbon.

The most interesting and possibly counterintuitive impli-
cation of these results is that there exists a regime where a
spontaneous negative Gaussian curvature favors cylindrical
shapes, namely when both the inequality Eq. (14) and �0 >

H0 hold, since, by virtue of Eq. (3), K0 < 0. Although only
qualitatively, this feature strengths the idea of protofilaments
having a spontaneous negative Gaussian curvature, as inferred
by the analysis of the curly shape of the ends of growing
MTs [61].

IV. NON-DEVELOPABLE TUBULIN SHEETS

In this section, we lift the constraint of developability
and investigate the general case of tubulin sheets with finite
Gaussian curvature K . We discretize the energies given in
Eqs. (1) on a triangular mesh and we numerically minimize
the resulting multivariate function using gradient descent with
adaptive step size (see Appendix B). For the remainder of this
section, we assume the bending stiffness to be equal and of the
same order of magnitude of the energetic cost of stretching,
i.e., kH = k� ∼ Ya2. Furthermore, to achieve an exhaustive
sampling of the energy landscape, we initialize our numerical
simulations from three different configurations, consisting of
a flat rectangular sheet, a helical ribbon, and an arch-shaped
strip, all having everywhere vanishing Gaussian curvature,
thus equal mean curvature and warp. With this setting we
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FIG. 2. Energy-minimizing conformations of an in silico tubulin
sheet obtained from a numerical minimization of the free energy
given by Eqs. (1). The three rows correspond respectively to the
case of vanishing spontaneous Gaussian curvature (i.e., K0 = 0 and
H0 = �0), vanishing warp (i.e., �0 = 0 and H0 �= 0), and vanishing
mean curvature (H0 = 0 and �0 �= 0). All configurations shown are
to scale, with the width of the initial flat rectangular sheet a as the
scale bar. See Appendix B for details.

investigate four different classes of shapes, for which: (1)
K0 = 0, thus H0 = �0; (2) �0 = 0, while H0 �= 0; (3) H0 = 0,
while �0 �= 0; (4) the general case where H0 �= �0 �= 0. The
first three cases are illustrated in Fig. 2, whereas the fourth and
more general case is summarized in the diagram of Fig. 3.

A. Vanishing spontaneous Gaussian curvature

When K0 = 0, our model tubulin sheet is energetically
favored to relax toward a developable surface, where H = �

and the free energy vanishes identically [see Eqs. (9) and
(13)]. Consistently with what we reported in Sec. III, the
lowest energy configuration is degenerate and, for small H0 =
�0 values, can be attained at least by two different config-
urations, which can be accessed upon initializing the energy
minimization from either a flat or twisted initial conforma-
tion [Figs. 2(a) and 2(b)]. For H0 = �0 > π/a, however, the

FIG. 3. State diagram for sheets with nonvanishing spontaneous
Gaussian curvature (i.e., K0 �= 0) obtained from a numerical mini-
mization of the free energy given by Eqs. (1). See Appendix B for
details. The bisectrix, separating regions of positive (i.e., H0 > �0)
and negative (i.e., H0 < �0) Gaussian curvature, marks a prominent
boundary between long cylindrical and multilayered tubular confor-
mations of our model tubulin sheet. All configurations shown are to
scale, with the width of the initial flat rectangular sheet a as the scale
bar.

degeneracy is broken and our in silico tubulin sheets roll up
in the form of sigar-like multilayered tubes, whose radius
decreases monotonically with H0 = �0 [Figs. 2(c) and 2(d)].

B. Vanishing spontaneous warp

For �0 = 0 and finite H0 values, the lowest energy config-
uration consists, for all initial conformations, of a positively
curved helical ribbon, whose principal curvatures κ1 ≈ κ2

increase with H0 [Figs. 2(e)–2(h)]. To build up positive Gaus-
sian curvature, the initially flat ribbon stretches (shrinks)
along the longitudinal (transverse) direction, while bending
in both directions simultaneously. This leads to an overall
increase of the mean and Gaussian curvature, while � remains
finite, but small in magnitude. A zero free-energy config-
uration, in this case, could be attained upon wrapping the
sheet on a sphere of radius 1/H0, for which K = K0 = H2

0
and � = �0 = 0. Such a configuration, however, is evidently
surrounded by local energy minima, which the system can
inhabit for an arbitrary long time, thus giving rise to a po-
tentially large spectrum of metastable states. The latter is
demonstrated by the residual stretching energy stored in the
relaxed configurations.

C. Vanishing spontaneous mean curvature

When H0 = 0, the sheet relaxes toward a minimal surface
(i.e., an area minimizing surface such as a soap film), hav-
ing zero mean curvature and negative Gaussian curvature.
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For small �0 values, this is achieved by relaxing towards
shapes approximating those of the catenoid [Fig. 2(i)]. For
large �0 values, however, the reduction of the area is no
longer compatible with the length of its boundary [62,63],
which is nearly unstretched, and wrinkles proliferate in the
periphery of the sheet [Figs. 2(j)–2(l)], in a way reminiscent
of non-Euclidean plates [64]. To clarify this concept, one can
use Bernstein-Schmidt isoperimetric inequality on surfaces of
constant Gaussian curvature (see e.g., Ref. [65]). That is,

L2 � (4π − KA)A, (15)

where L and A are respectively the perimeter and area of
an arbitrary simply connected domain on a surface having
constant Gaussian curvature K and the equality holds exclu-
sively in case the domain is by a geodesic disk. In our model
tubulin sheet L ≈ 2(a + b) and K ≈ −�2

0. Thus, for large
�0 values, the inequality in Eq. (15) can no longer hold and
the sheet buckles into a wrinkled structure, where geometric
compatibility is restored because of the larger area covered by
the wrinkles.

D. General case

Figure 3 shows the state diagram obtained in the general
case where both H0 and �0 are finite, but not equal to each
other, so that K0 �= 0. Compared to the previous scenarios,
here the system is highly frustrated as the nonvanishing spon-
taneous curvatures render a zero free-energy configuration
inaccessible to any embedded surface in R3. In order for
the free energy to vanish identically, the sheet must indeed
have both constant mean and Gaussian curvature, but the
only embedded surfaces with this property are patches of
either the plane, the cylinder or the sphere. Because in both
the plane and the cylinder K = 0, these shapes correspond
to zero free-energy configurations respectively for H0 = �0

(see Sec. IV A) and �0 = 0 (see Sec. IV B). For small finite
warp and H0 = 0 (see Sec. IV C), the lack of zero free-energy
configurations is compensated instead by the existence of
low free-energy soap-film-like configurations with vanishing
mean and negative Gaussian curvature. The latter are, how-
ever, unavailable when both H0 and �0 are finite. In particular,
when H0 > �0—and a spherical geometry is energetically
favored—the finite spontaneous warp prevents its occurrence.
Conversely, for H0 < �0, the finite spontaneous mean curva-
ture hinders the emergence of a perfect saddle. The minimal
free-energy configurations found in our numerical simulations
consist, in this case, of tightly rolled multilayered cylinders,
for H0 > �0, and shoehorn-shaped saddles, for H0 < �0. In
the latter case, the lack of geometric compatibility between
the bulk and the boundary results in the formation of wrinkles
such as those described in Sec. IV C for H0 = 0.

More importantly, our numerical simulations demonstrate
how crossing the H0 = �0 line, from the region where H0 >

�0, drives an unfolding of the tubulin sheet reminiscent of
catastrophe events in MTs and to intermediate sheet struc-
tures during assembly [16,21]. The latter condition can be, in
principle, achieved in different ways at the level of individual
protofilaments. Using the equivalence relations derived at the
end of Sec. II to express H0 and �0 in terms of c‖, c⊥, and θ ,

the inequality H0 > �0 can be rearranged in the form

cos 2θ >
c‖ − c⊥
c‖ + c⊥

. (16)

If the spontaneous curvature vanishes along the protofilaments
direction (i.e., c‖ = 0), Eq. (16) holds for arbitrary c⊥ and
θ values. Thus, as long as protofilaments are spontaneously
straight [66], helical and tubular configurations are mechani-
cally stable. By contrast, Eq. (16) has no real solutions when
c‖ is finite and of opposite in sign with respect to c⊥, since
then K0 < 0.

In summary, our results suggest that catastrophe events in
MTs could arise from a mechanical instability triggered by a
switch of the spontaneous Gaussian curvature K0 from posi-
tive to negative. Such a switch, in turn, could originate from a
conformational change of the tubulin dimers, whose effect is
to introduce an arbitrarily small, but finite, spontaneous lon-
gitudinal curvature driving the “peeling” of the protofilaments
away from the MT axis (i.e., c‖ < 0 and c⊥ > 0 with the sign
convention of this article). This mechanism is consistent with
current experimental observations of depolymerized MTs [see
Figs. 1(c) and 1(d)], as well as with the general view on MTs
disassembly, which ascribes the occurrence of catastrophe to a
conformational switch from a flexible, lattice-stabilized GTP
state, to a strongly radially curved and rigid GDP state [67].

V. STIFF TUBULIN SHEETS

We additionally performed simulations for stiffer tubulin
sheets with a Young’s modulus 100 times larger than for the
non-developable sheets discussed in Sec. IV. In this case, the
higher cost of stretching limits the transitions between differ-
ent local minima of the elastic free energy, so that our rigid in
silico tubulin sheets relax almost isometrically. As the initial
configurations have K = 0 by construction (see Appendix B),
all relaxed configurations are nearly developable, thus acting
as a practical validation of the numerical calculations and a
handy parallel to contextualize the analytical results presented
in Sec. III.

Consistently with Eq. (14), for �0/(π/a) � 2 −
H0/(π/a), we find both helical and C-shaped sheets to
be stable, zero-energy configurations, whereas for higher
values, only (multilayered) tubular rolls are observed. Still,
such multilayered structures have degenerate helical pitch
[see Figs. 4(f)–4(h)]. We note that, despite their Young’s
modulus being two orders of magnitude larger than that used
in Sec. IV, our model in silico tubulin sheets are not entirely
inextensible. In fact, for the cylindrical and helical shapes
in Figs. 4(d)–4(f), the small amount of stretching allowed
is expressed as a slight increase of the smallest principal
curvature κ2, in particular for low H0 values. Because the
transverse curvature κ1 is proportional to H0, the longitudinal
curvature κ2 ∼ 1/H0 increases for decreasing H0 values,
provided that K = κ1κ2 remains small.

When H0 = 0, on the other hand, a large spontaneous warp
is accommodated via multiple buckling events, thereby giving
rise to networks of wrinkles similar to those found in thin
elastic sheets under stress [68]. Lastly, for the general case,
we find that, because K ≈ 0, the rigid sheets fail to comply
to the imposed curvature outside of the H0 = �0 line, also
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FIG. 4. Resulting conformations for simulations of stiff tubu-
lin sheets, where K ≈ K0 = 0. The equilibrium conformations have
been obtained from a numerical minimization of the free energy
given by Eqs. (1), with a Young’s modulus value 100 times larger
than that used in Figs. 2 and 3. All configurations shown are to scale,
with the width of the initial flat rectangular sheet a as the scale bar.

notable in Eq. (12). This explains why rigid sheets with K0 �=
0 undoubtedly store bending energy.

VI. CONCLUSIONS

In this article, we explored the occurrence of polymor-
phism in tubulin assemblies, among which microtubules
(MTs) represent the most common and biologically relevant
realization. Tubulin sheets are modelled as shallow elastic
shells, where unequal longitudinal and transverse sponta-
neous curvatures reflect, in a minimal way, the mechanical
anisotropy arising from the organization of the αβ − dimers
into protofilaments [see Fig. 1(l)].

Unlike previous mechanical models of tubulin sheets (see
e.g., Ref. [30,48]), bending elasticity here is characterized in

terms of mean and deviatoric curvature (or warp), with the
goal of bringing to the forefront the fundamental deformation
modes of two-dimensional media and highlighting the lack
of geometrical compatibility inherent to specific choices of
the spontaneous curvatures. As the latter arises at the length
scale of the dimers, with the former being a global prop-
erty of the system, our approach allows us to identify
possible regimes where the kinked conformation of tubulin
dimers gives rise to prominent geometrical frustration, of
which the existence of a rough free-energy landscape—hence
polymorphism—is the most natural consequence.

Using combined analytical and numerical work, we
showed in particular, how a cylindrical geometry is by far the
most robust, for a wide range of spontaneous curvatures. The
origin of this robustness is twofold. On the one hand, in the
likely scenario where the spontaneous mean curvature and the
warp are comparable in magnitude (i.e., H0 ≈ �0, but with-
out restrictions about the magnitude or the difference of the
spontaneous curvature along the longitudinal and transverse
direction of the individual protofilaments), the existence of an
intrinsically flat zero free-energy configuration (i.e., K ≈ 0)
renders cylinders energetically favorable for a wide range of
spontaneous mean curvature and warp values. On the other
hand, for H0 > �0, the finite spontaneous warp renders a
zero free energy with constant mean and Gaussian curvature
dynamically inaccessible and tubulin sheets are again favored
to form (possibly multilayered) tubular structures.

Finally, we demonstrated that transitioning from H0 > �0

to H0 < �0 provides a possible strategy to render the closed
tubular conformation unstable to an open one, consistently
with experimental observations in MTs after a catastrophe
event.

Possible strategies for an experimental test of our predic-
tions could take advantage of the sensitive dependence of
the energy-minimizing configuration of our model tubulin
assemblies on the spontaneous curvatures H0 and �0. As
reviewed in Sec. I, this is determined by the conformation of
the αβ − dimers, which, in turn, depends on the hydrolization
of their associated nucleotide (i.e., GTP- or GTP-tubulin) and,
in general, by the presence in the tubulin buffer of cations,
glycerol, taxol, and other stabilizing agents. An estimate of the
magnitude of H0 and �0 in MTs could be obtained noticing
that, in the most common experimental realizations, these
have radius a/(2π ) = 12 nm, from which κ1 ≈ 83 µm−1. On
the other hand, experimental estimates of the dimeric curva-
ture have reported κ2 ≈ −25 µm−1 in GTP-bound tubulin [20]
and κ2 ≈ −40 µm−1 in GDP-bound tubulin [4,30]. For GTP-
bound tubulin this gives H0/(π/a) ≈ 0.7 and �0/(π/a) ≈
1.3, corresponding to the straighter cylindrical conforma-
tion in the purple region in Fig. 3, and H0/(π/a) ≈ 0.5 and
�0/(π/a) ≈ 1.5 for GDP-bound tubulin, corresponding to
the curved cylinders towards the top-left of this region. We
stress that these estimates, together with the outcome of our
analysis, support the general idea that an increase of the
spontaneous warp �0, hence a negative spontaneous Gaussian
curvature, could facilitate a transition from cylindrical to open
and doubly-curved conformations. Furthermore, whereas the
precise consequence of the chemical environment on the
molecular structure of tubulin dimers and its relation with
the nucleotide state are still subjects of ongoing research in
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biochemistry, it is known that agents such as Zn2+ and Co2+

ions, taxol, or glycerol stabilize the kinked conformation of
GDP-tubulin [69,70], thereby reducing the spontaneous warp
�0. By contrast, alkaline earth ions, such as Ca2+ and Mg2+,
are known to destabilize the dimers kinked conformation [71],
thus leading to an increase in the spontaneous warp. Consis-
tent with the outcome of our analysis, the former conditions
(i.e., small �0) favor the assembly of flat or gently curved
structures such as flat sheets, large hoops and helices, while
the latter (i.e., large �0) give rise to highly curved struc-
tures, such as smaller helices, rings and C-shaped ribbons.
These observations could serve as a starting point for fur-
ther experimental studies aimed at deciphering the complex
mechanochemical interplay between shape, molecular struc-
ture, and biological functionality in MTs and other tubulin
assemblies.
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APPENDIX A: STRETCHING ENERGY
OF DEVELOPABLE SHEETS

In order to calculate the stretching energy of a developable
rectangular sheet, Eq. (9), one must first calculate the dimen-
sionless trace σ of the covariant stress tensor, which is in turn
proportional to the Airy stress function (see e.g., Ref. [49]).
The latter can be done by integrating Eq. (2) with Dirichlet
boundary conditions, i.e.,

σ (0, y) = σ (a, y) = σ (x, 0) = σ (x, b) = 0, (A1)

where 0 � x � a and 0 � y � b are Cartesian coordinates
along orthogonal directions parallel to the short and long
edges of the sheet, whose length is given by a and b respec-
tively. The integration can be conveniently performed using
the Laplacian Green’s function

G(r, r′)

= − 4

ab

∞∑
n=1

∞∑
m=1

sin
(

πn
a x

)
sin( πn

a x′) sin( πm
b y) sin

(
πm
b y′)(

πn
a

)2 + (
πm
b

)2 ,

(A2)

where r = {x, y} and r′ = {x′, y′} are generic points on the
sheet. For a generic Gaussian curvature difference K0 − K this
gives

σ (r) =
∫

dA′ G(r, r′)[K0 − K (r′)]. (A3)

Now, in the case of developable sheets, K = 0 and the inte-
gration over the primed coordinates has the effect of removing

all terms associated with even values of the integers n and m,
since ∫ a

0
dx′ sin

(
πn

a
x′

)
=

{
2a
πn , n odd

0 n even
. (A4)

Together, Eqs. (A2), (A3), and (A4) readily give Eq. (7). Fi-
nally, integrating the square of the stress field and using again
Eq. (A4) allows one to obtain the stretching energy given in
Eq. (9).

To derive Eq. (10), on the other hand, one can approximate
Cnm ≈ (a/π )2/(mn3) under the assumption that a � b. Then

∑
n

′ ∑
m

′
C2

nm ≈
(

a

π

)4 ∑
n

′ 1

n6

∑
m

′ 1

m

2

=
(

a

π

)4[
ζ (6) − ζ (6)

64

][
ζ (2) − ζ (2)

4

]

= 1

30

(
πa

4

)4

, (A5)

where ζ (s) = ∑∞
n=1 1/ns is the Riemann zeta function. Re-

placing Eq. (A5) into Eq. (9) finally gives Eq. (10).

APPENDIX B: NUMERICAL SIMULATIONS

The equilibrium configurations of our non-developable
model tubulin sheets are obtained upon minimizing a discrete
variant of the elastic free energy given in Eqs. (1) on triangular
meshes consisting of N = 369 vertices of position ri, i =
1, 2 . . . N , and whose topology is fixed during simulations.
The discretized free energies are given by

Fs = 1

2
kS

∑
〈i j〉

(|ri − r j | − �0)2, (B1a)

Fb =
∑

i

Ai[kH (Hi − H0)2 + k�(�i − �0)2], (B1b)

where kS is a spring constant, proportional to the sheet
Young’s modulus [49], �0 a rest length setting the overall
size of the sheet, and Ai is the area effectively covered by
each vertex. The latter is calculated from the areas of all
triangles meeting at the ith vertex using a mixed Voronoi
scheme [72], so that, calling �i jk the triangle defined by the
vertices {i, j, k} whose positions are {ri, r j, rk}, one has

Ai =
∑
�i jk

⎧⎪⎪⎨
⎪⎪⎩

1
2 Area(�i jk) θi > π

2
1
4 Area(�i jk) θ j, θk > π

2
1
2

(
r2

i j cot θk + r2
ik cot θ j

)
otherwise

,

where ri j = |ri j | = |ri − r j |, Area(�i jk) = (1/2) ri jr jk sin θk

is the area of 
i jk and {θi, θ j, θk} are the angles subtended by
the three vertices [Fig. 5(a)].

Analogously, the discrete mean curvature Hv can be define
as

Hini = 1

4Ai

∑

i jk

(
ri j

ri j
cot θk + rik

rik
cot θ j

)
, (B2)

where ni is the outward-directed unit normal at the ith vertex.
The Gaussian curvature is routinely computed from the deficit
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FIG. 5. (a) The discrete fields in Eqs. (B1) for the ith vertex at
position ri are expressed as sums over the adjacent triangles, where
each triangle �i jk is defined for example by the vertices {i, j, k}. The
area element Ai is enclosed with the dashed lines. [(b)–(d)] Initial
configurations used in the simulations.

angle at each vertex. That is,

Ki = 1

Ai

⎡
⎣2π −

∑

i jk

θi

⎤
⎦, (B3)

where the summation runs over all triangles containing the ith
vertex. Finally, the discrete warp �i can be calculated, using
Eq. (3), from Hi and Ki. That is,

�i =
√

H2
i − Ki. (B4)

In this implementation, the vertices at the boundary of the
mesh have no defined curvature. Their energy is then given
only by the stretching contribution Fs and we set their bending
energy to zero.

Finally, energy minimization is performed via the
Malitsky-Mishchenko adaptive gradient descent method [73],
where the configuration R = {r1, r2, . . . rN } of the triangular
network is evolved by means of the following iteration rule:

R(t + 1) = R(t ) − l (t )∇F (t ), (B5)

where t is a time-like iteration counter, ∇ =
{∇r1 ,∇r2 , . . . ∇rN }, and the step size l (t ) is chosen at each
iteration as

l (t ) = min

{
l (t − 1)

√
1 + l (t − 1)

l (t − 2)
,

× |R(t ) − R(t − 1)|
2|∇F (t ) − ∇F (t − 1)|

}
. (B6)

The simulations are initialized in either one of the three
configurations displayed in Figs. 5(b)–5(d) and a displace-
ment of magnitude 10−2�0 and uniformly distributed random
direction is added to the position of each vertex to com-
pute ri(0). We then take l (0) = 10−6 and l (1) = 0.5|R(1) −
R(0)|/|∇F (1) − ∇F (0)| to perform the first iteration. Our
simulations continue until the averaged net displacement

(t ) = ∑

i l (t )|∇ri F (t )|/N is below 10−8�0.
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