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Acoustic detection potential of single particles in viscous liquids
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An ionizing particle passing through a liquid generates acoustic signals via local heat deposition. We delve into
modeling such acoustic signals in the case of a single particle that interacts with the liquid electromagnetically
in a generic way. We present a systematic way of introducing corrections due to viscosity using a perturbative
approach so that our solution is valid at large distances from the interaction point. A computational simulation
framework to perform the calculations described is also provided. The methodology developed is then applied
to predict the acoustic signal of relativistic muons in various liquids as a toy model.
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I. INTRODUCTION

Research in the production of acoustic signals by charged
particles in liquids received increasing attention after the char-
acterization of acoustic waves produced by “local heating”
in 1957 [1]. Charged particles passing through liquids give
rise to acoustic radiation primarily via local heating [2], if the
energy deposited is large enough, the acoustic wave becomes
detectable. Hence, acoustic signals produced by heavy ion
beams, PeV particle cascades, and high energy neutrinos were
heavily investigated between the 1960s and the early 1990s
[3–9].

Historically, acoustic detection has been applied to the
study of high energy cosmic particles [10–12]. However, it
has recently found applications at lower energies in the search
for cold dark matter using superheated liquids [13–16], where
ionizing particles produce a shockwave during a local, instan-
taneous phase transition of the liquid [17]. Such detection
technique comes at the cost of conducting the experiment
in a specialized thermodynamic state so that nonlinear ef-
fects, such as molecular dissociation, microbubble formation,
shocks, etc., are present [18].

In a liquid that is not in a finely controlled thermody-
namic state, the theoretical calculation of the acoustic signal
produced by low energy particles; (O(keV)) is non-trivial.
Even in ideally static fluids, current theoretical solutions break
down at large distances from the interaction point (e.g., be-
cause the viscosity of the liquid is not taken into account [19]).

In this manuscript, we show how to estimate acoustic
signals produced in liquids by a single ionizing particle in-
teraction in a most generic and accurate method.
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Instead of specializing in local heating, we consider the
more general case of a moving, compactly supported heat
deposition of arbitrary shape. We also introduce a way to
account for the viscosity of the liquid so that second-order
corrections can be easily calculated, allowing for a more re-
alistic solution of the acoustic wave at large distances from
the particle track, where the signal is highly attenuated. To
make things painless for our reader, we explicitly derive all
equations, always clearly stating the physical assumptions
behind each mathematical step. Finally, as an example, we
present the calculation of the acoustic signal of relativistic
muons using our methodology.

The study presented can also be used as a resource for the
willful experimental physicist that embarks on the mission of
detecting acoustic signals of particles in viscous liquids.

II. STRONGLY DAMPED ACOUSTIC WAVE EQUATION

We introduce the mechanism behind the generation of an
acoustic signal due to a single particle interaction in a liquid.
Let us first consider the effect of an arbitrary heat deposition
in the bulk of the liquid. For this purpose, we add a source
term and a damping term to the well-known acoustic wave
equation in an isothermal fluid:

�∇2 p(x) = ρ0κ
∂2

∂t2
p(x), (1)

where p(x) is the pressure difference at a spacetime location
x = (t, �x), ρ0 is the rest density taken as constant, and κ is the
compressibility of the liquid.

A. Damping term derivation

1. Derivation from navier stokes

Due to the small energy deposition by a single particle in
the fluid, it is reasonable to assume that the damping effect
caused by the viscosity of the liquid will significantly affect
the decay time of the acoustic wave. To derive the viscous
wave equation (also known as the strongly damped wave
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equation [20,21]), we exploit the principle of conservation of
mass and momentum expressed by Eq. (2) and Eq. (3), and
include the damping term μ �∇2 �V in the latter:

∂D

∂t
+ �∇ · (D �V ) = 0 (2)

D
∂ �V
∂t

+ D( �V · �∇ ) �V = −�∇P + μ �∇2 �V , (3)

where D(x), P(x), and �V (x) are the density, pressure, and ve-
locity, respectively, while μ is the coefficient of bulk viscosity.
In the same fashion as other related literature [19,21,22], we
assume a fluid with no vorticity ( �∇ × �V = 0). Thus, Navier-
Stokes equation Eq. (3) takes the form

D
∂ �V
∂t

+ D �V ( �∇ · �V ) = −�∇P + μ �∇2 �V . (4)

Let us now consider a small perturbation to each of the vari-
ables:

D = ρ0 + ερ, (5)

P = p0 + εp, (6)

�V = �v0 + ε�v = ε�v, (7)

where ρ0, p0, and �v0 are the density, pressure, and velocity
of the fluid at equilibrium, and we have assumed the fluid
to be initially at rest; ε is an arbitrary, small, dimensionless
parameter. By plugging the perturbed variables into Eq. (2)
and Eq. (4) and neglecting higher order terms in ε, we obtain
the equations below:

∂ρ

∂t
+ ρ0 �∇ · �v = 0, (8)

ρ0
∂�v
∂t

+ �∇p = μ �∇2�v, (9)

where we have absorbed ε to each variable to keep the
notation concise (i.e., ερ ≡ ρ, εp ≡ p, ε�v ≡ �v). Taking the
divergence of Eq. (9) leads to

ρ0
∂

∂t
�∇ · �v + �∇2 p = μ �∇2( �∇ · �v), (10)

where �∇ · �v can be replaced using Eq. (8) to obtain

�∇2

(
p + μ

ρ0

∂ρ

∂t

)
= ∂2ρ

∂t2
. (11)

By writing the density as a function of the compressibility,
i.e., D = ρ0κP, Eq. (11) can be expressed only as a function
of pressure:

�∇2

(
p + μκ

∂ p

∂t

)
= ρ0 κ

∂2 p

∂t2
. (12)

We define the speed of the wave, c, as c = 1/
√

ρ0κ and the
attenuation frequency, ω0, as ω0 = 1/μκ . Thus, Eq. (12) takes
the more familiar form:

�∇2

(
p + 1

ω0

∂ p

∂t

)
= 1

c2

∂2 p

∂t2
. (13)

2. Damping characteristic

As a sanity check, we obtain the dispersion relation of
plane wave solutions to Eq. (13) by plugging arbitrary plane
wave solutions into the equation. The solutions have the form

ei�kd (ω)·�x−iωt , (14)

where �kd is the complex wave vector for the damped case
(hence the subscript), ω is the angular frequency, �x is the
position in space, and t is the time. By doing so, we find
that the dispersion relation between the frequency ω and wave

number kd :=
√

�kT
d
�kd is given by

k2
d = ω2

c2

(
1 − i

ω

ω0

)−1

. (15)

In the limit of ω0 → ∞ (i.e., in the case of no damping)
Eq. (15) becomes kd c = ω, which is the expected solution.

Equation (15) also shows how the damping term affects
the sound wave generated. At low frequency, the relation is
similar to the undamped case (ω0 → ∞). However, as the
frequency increases, the wave number’s imaginary component
further increases.

We can understand the physical significance of the imag-
inary component of k by plugging it into a spherical plane
wave eik(ω)r−iωt . The imaginary part is going to introduce an
exponential decay in the amplitude of the wave with a rate pro-
portional to it and that increases with frequency. In the context
of acoustic waves produced by particles, the higher frequency
components of the generated pressure wave will decay faster,
while the lower frequency components will propagate further,
making it easier to detect them.

Finally, notice that the choice to include the dissipation
component in the wave vector �k as opposed to the angular
frequency ω is arbitrary for plane waves. If instead we were
to keep �k a real quantity then ω would be imaginary to contain
the damping coefficient.

B. Source term derivation

It is well documented [23,24] that a particle passing
through a liquid deposits energy such that the local tem-
perature sharply increases. The almost instantaneous change
in temperature leads to a rapid volume expansion, and the
subsequent change in density propagates through the liquid.
Here, we assume that this effect, referred to as “local heating,”
is the biggest contributor to the generation of the sound wave.
This is consistent with past literature where acoustic signals
due to particle beams were studied [5,19,25]. In this section,
we address the mechanism by which the wave is generated,
i.e., the source term in Eq. (1).

1. Derivation from navier stokes

Let us consider the effect of some local temperature fluctu-
ation τ (x) such that the total temperature is given by T (x) =
T0 + τ (x), where T0 is the equilibrium temperature. With a
variation in temperature, density will change as a function of
both pressure and temperature. Specifically, at the first order
(using ρ, p, and τ to denote the changes in density, pressure,
and temperature, respectively) we can express the change in
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density by [24]:

ρ = ∂ρ

∂P

∣∣∣∣
T

p + ∂ρ

∂T

∣∣∣∣
P

τ, (16)

where P and T represent the total pressure and temperature,
respectively, and V represents a small volume of the liquid
around the particle interaction point. Let us recall the def-
initions of isothermal compressibility κT and coefficient of
thermal expansion [26]:

κT = − 1

V

∂V

∂P

∣∣∣∣
T

= 1

ρ0

∂ρ

∂P

∣∣∣∣
T

, (17)

β = 1

V

∂V

∂T

∣∣∣∣
P

= − 1

ρ0

∂ρ

∂T

∣∣∣∣
P

. (18)

We can then rewrite Eq. (16) as follows [24]:

ρ = ρ0(κT p − βτ ). (19)

From here we can proceed just as in Sec. II A when we derived
Eq. (11). First, we use Eq. (16) to write the density in terms of
the pressure difference p and temperature fluctuation τ . Then,
we assume that the functions κT (P, T, t ) and β(P, T, t ) vary
slowly with time, such that

ρ0κT
∂2 p

∂t2
− ρ0β

∂2τ

∂t2
= �∇2

(
p + μκT

∂ p

∂t
+ μβ

∂τ

∂t

)
. (20)

For the media considered in this paper (i.e., slightly viscous
liquids), this is a realistic approximation [24]. Equation (20)
shows the presence of an extra damping term. However, as-
suming that the temperature variation is small, ∂

∂t
�∇2τ ≈ 0, we

may neglect it. Using the first law of thermodynamics, we can
determine the heat per unit volume added to the liquid ε(x),

ε = δQ

δV
= ρ0Cpτ, (21)

where Cp is the specific heat capacity of the liquid at constant
pressure. We may now introduce the complete wave equa-
tion by substituting τ with Eq. (21):

�∇2

(
p + 1

ω0

∂ p

∂t

)
− 1

c2

∂2 p

∂t2
= − β

Cp

∂2ε

∂t2
, (22)

where the attenuation frequency is ω0 = 1/μκT and the speed
of sound c2 = 1/ρ0κT . We have derived the correction terms
to the acoustic wave equation [Eq. (1)] that is generated by a
heat source inside a liquid. In Sec. IV A, we will show how to
estimate the heat deposition ε(x) for a single, charged particle
through a liquid using the Bethe-Bloch formula.

III. ANALYTIC SOLUTIONS TO THE WAVE EQUATION

In this section we solve for the acoustic signal due to
arbitrary single particles in its most general form using pertur-
bation theory. We first develop a perturbative approximation
scheme for the nonhomogeneous strongly damped wave equa-
tion Eq. (23) based on viscosity. Then, we calculate Green’s
functions for the retarded propagator on each order, and fi-
nally, we provide an explicit solution for the first order in
viscosity.

Throughout the section we will focus on the following
form of Eq. (22) where the source term has been replaced by

an arbitrary function f : R4 → R such that

�p(x) + λ �∇2 ∂

∂t
p(x) = − f (x), (23)

where � is the d’Alembert Operator, λ = 1/ω0 is the viscosity
coefficient, p is the pressure, and f represents the source and
is some function with compact support. Later we will impose
more restrictions on f to better represent the energy distribu-
tion of a moving particle. However, for now, we consider a
general distribution to come up with Green’s functions for the
problem.

A. Approximations using perturbation theory

The solution for the pressure wave p in Eq. (23) can be
found more easily by treating the damping term λ �∇2 ∂

∂t p(x)
as a perturbation for small λ. Specifically, we can write the
solution as a function of λ so that

p(x) = p0(x) + λp1(x) + · · · =
∞∑

n=0

λn pn(x). (24)

Using Eq. (24) we can rewrite Eq. (23) as

�p0(x) +
∞∑

n=1

λn

[
�pn(x) + �∇2 ∂

∂t
pn−1(x)

]
= − f (x). (25)

For all values of λ we can derive the following recursive
formula for the nth order correction in the pressure

�p0(x) = − f (x), (26)

�pn(x) = −�∇2 ∂

∂t
pn−1(x). (27)

Using these expressions we can write the following partial
differential equation:

�n+1 pn(x) = −
(

−�∇2 ∂

∂t

)n

f (x). (28)

Note that for n = 0 we have the normal wave equation with
source function f as shown in Eq. (26). We also see that higher
order corrections in pressure are waves that are generated by
the higher orders of the curvature of the source function. In
other words, if f takes the form of a bump function we will
end up adding sharper and more oscillatory corrections for
each order.

We will now focus on solving the global Cauchy problem
for Eq. (28). To do that we will use the method of Green’s
functions. Before we do so, it is useful to simplify Eq. (28)
using a Fourier transform defined as

f̂ (k) =
∫
R4

d4x f (x)e−ik·x, (29)

f (x) =
∫
R4

d4k

(2π )4
f̂ (k)eik·x, (30)

where k · x is the four-vector inner product defined by k ·
x = kαxα = ηαβkαxβ , where ηαβ = diag(−1, 1, 1, 1) is the
Minkowski metric. We prove some properties of this Fourier
transform in Appendix A. Using this transformation Eq. (28)
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FIG. 1. Integration Contour �ε of k0 in the inverse Fourier trans-
form of Eq. (33) to obtain the retarded propagator.

becomes

p̂n(k) = 1

−k2

(
ik0 �k2

−k2

)n

f̂ (k), (31)

where �k2 = k2
1 + k2

2 + k2
3 and k2 = −k2

0 + �k2. The full deriva-
tion is shown in Appendix B. This is a much-simplified
formula that completely defines the frequency profile of each
term given a source function f . Now we are ready to solve for
the Green’s functions.

B. Green’s functions

To provide closed form solutions to Eq. (24) we study a
general expression for the retarded propagator of Eq. (28). We
shall see that the retarded propagator is key to maintaining
causality.

1. Using potentials and residues

The form of the propagator greatly simplifies if, instead
of solving Eq. (28) for the nth pressure component pn in the
perturbative expansion, we solve it for a potential ψn such that
∂n

∂t n ψn = pn. Therefore, from now on we will solve for ψn and
then plug them back into Eq. (31) to obtain the full pressure
solution. With this substitution Eq. (28) can be rewritten as

�n+1ψn(x) = −(−�∇2)n f (x). (32)

To calculate the Green’s function Gn(x) for the nth order, we
plug in a δ source [i.e., f (x) = δ(x)] in Eq. (32). Then we
take the Fourier transform defined in Eq. (29) and obtain an
expression for the Fourier transformed Green’s function Ĝn:

Ĝn(k) = 1

−k2

( �k2

−k2

)n

. (33)

Notice that the singularities of the order n + 1 are at k2 = 0,
i.e., for k0 = ±|�k|. To extract the retarded propagator in spa-
tial coordinates from Ĝ we need to take the inverse Fourier
transform defined in Eq. (30) with the contour �ε, shown
in Fig. 1, for ε → 0 to preserve causality. Specifically, such

inverse Fourier transform is given by

Gn(x) = lim
ε→0

∫
�ε

dk0

2π
e−ik0t

∫
R3

d3k

(2π )3
Ĝn(k) ei�k·�x. (34)

We can rewrite this integral by “nudging” the singularities by
ε. To do so, we do a coordinate transformation by changing
k0 → k0 + iε so that the integral becomes

Gn(x) = lim
ε→0

∫
R4

d4k

(2π )4

(�k2)n eik·x

[(k0 + iε)2 − �k2]n+1
, (35)

where the singularities are at

k0 = ±|�k| − iε. (36)

We can now do the k0 integral using the residue theorem.
Since the analytic form of the residues is quite convoluted,
we shall first look at some of their properties as follows.

2. Properties of residues

As can be seen from Eq. (36), both singularities are on the
lower half of the complex plane. For t < 0, where the integral
converges at the upper half plane, the contour encloses no
singularities so that the integral is zero. For t > 0 the contour
includes the singularities and the integral must be calculated.
Let us denote the two residues by ĝ±(�k2) corresponding to
the singularities at ±|�k| + iε, respectively. Clearly, they are
functions of �k2 as well as n and ε. By using the residue
theorem around a circle small enough to contain only one of
the singularities, we can prove that the residues are related as
follows:

ĝ+(�k2) = −ĝ∗
−(�k2), (37)

where the ∗ denotes the complex conjugate. This is really
convenient as we can rewrite the integral in Eq. (35) using
the residue theorem as

Gn(x) = �(t ) lim
ε→0

∫
R3

d3k

(2π )3
ĝn(�k2; ε) ei�k·�x, (38)

where �(t ) is the Heaviside step function, and ĝn(�k2; ε) is the
sum of the residues which is given by

ĝn(�k2; ε) = iĝ+(�k2; ε) + iĝ−(�k2; ε)

= iĝ+(�k2; ε) − iĝ∗
+(�k2; ε)

= −2Imĝ+(�k2; ε), (39)

where the middle step is carried out using Eq. (37). In this
way, not only have we managed to simplify the transform,
but we have also shown that the Green’s function is real for
all orders n. That is because ĝn is radially symmetric in k
and real-valued (since it is the imaginary part of a complex-
valued function), so the inverse Fourier transform must be
real.

3. Calculation of residues and Green’s functions

We are now ready to calculate the analytic expression of the
residues at the two singularities where k0 = k± = ±|�k| + iε.
From what we have shown above, it is enough to calculate the
residue at k0 = k+. We do so using the Laurent expansion of
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the integrand in Eq. (35). By calculating a series representa-
tion centered at k0 = k+ for each term of the equation, and
then multiplying them together, we obtain that the coefficient
of the (k0 − k+) term is given by

ĝ+ = lim
ε→0

−e−εt�(t ) Im
ei(�k·�x−|�k|t )

2n|�k| P(|�k|)

= −�(t )
sin(�k · x − |�k|t )

2n|�k| P(|�k|), (40)

where P(k) denotes a polynomial of |�k| given by

P(|�k|) = (−1)n
n∑

m=0

(2i|�k|t )m

m!

(
2n − m

n

)
. (41)

We can now plug the expression of the residue into the inte-
gral using spherical coordinates to obtain the final expression
of the Green’s function Gn for the potential ψn:

Gn(x) = �(t )

4n+1πr

n∑
m=0

(−2t )m

m!

(
2n − m

n

)

× [δ(m)(t − r) − δ(m)(t + r)], (42)

where r = |�x|. Taking cases on �(t ) we can simplify the
expression above and, by grouping the constants, we obtain

Gn(x) =
n∑

m=0

(−2)m

4n+1πm!

(
2n − m

n

)
Gnm(x), (43)

where Gnm(x) is given by

Gnm(x) = tm

r
δ(m)(t − r). (44)

We managed to express Gnm by using the fact that �(t )δ(r +
t ) = 0 ∀r > 0. Using the above Green’s functions leads to an
expression for the pressure

p(x) =
∞∑

n=0

∂n

∂t n
(Gn ∗ f )(x), (45)

which is valid for any arbitrary source function f .

C. Causality

By factoring out a Heaviside function in Eq. (43) it be-
comes apparent that the propagator is indeed causal. The
convolution of Eq. (43) with the source function f leads to
the following integral:

pn(x) =
∫ t

−∞
dt ′

∫
R3

d3x′ Gn(x − x′) f (x′), (46)

from which we can see that each perturbation order in pressure
pn depends on the shape of the source before the time t .

D. Closed form solution for delta source

Thanks to the analytic expression for the nth order calcu-
lated in Eq. (43), we can find a solution for a delta source
function for f in closed form. In particular, we want to de-
scribe the energy density of the source over space as a moving

delta function of the form δ(x)δ(y)δ(z − vt ) where v is the
speed of the particle in the units where the speed of sound
c is equal to one. Assuming that the energy density that the
particle deposits as a function of time is given by a function
q(t ), we can proceed by defining f as

f (x) = q(t )δ(x)δ(y)δ(z − vt ). (47)

To find pn(x) using Eq. (46), we need to calculate the
convolution (Gn ∗ f )(x). Since the convolution is a linear
operation, we can calculate it by obtaining the convolution
for each component Gnm in the expansion shown in Eq. (43).
Each term of the convolution can be computed by

Gnm ∗ f (x) =
∫
R3

d3x′
∫
R

dt ′ Gnm(x′) f (x − x′). (48)

Plugging the functions in, we obtain the following expression:

Gnm ∗ f (x) =
m∑

l=0

∑
z′

k∈S

(−1)l l!

(
m

l

)2

vm−l

× ∂m−l

∂z′m−l

[
q(t − r(z′))r(z′)m−l

r(z′) − vz′

]
(z′

k ), (49)

where v is the speed of the particle, r(z′) =
√

x2 + y2 + z′2,
and S is the set of solutions z′

k of the equation

z′ − (z − vt ) = vr(z′). (50)

We can use this expression to more compactly write the con-
volution ψn = Gn ∗ f so that ψn(x) reads as

ψn(x) =
n,m∑
m,l

∑
z′

k∈S

Cnml

× ∂m−l

∂z′m−l

[
q(t − r(z′))(vr(z′))m−l

r(z′) − vz′

]
(z′

k ), (51)

where Cnml is a constant factor given by

Cnml := (−1)l+m 2ml!

4n+1πm!

(
2n − m

n

)(
m

l

)2

. (52)

Equation (51) shows that the potential is given by derivatives
of the same function, evaluated at the roots of Eq. (50). The
physical meaning of the roots as well as their analytic form is
described in the next section.

E. Sound sources for different particle speeds

In Eq. (51) we have shown that the derivative is evaluated at
certain “special” points that are the roots of Eq. (50). Solving
this equation, we obtain the following two solutions:

z′
± = γ 2(z − vt ) ± |v|

√
γ 4(z − vt )2 + γ 2ρ2, (53)

where γ 2 = 1/(1 − v2), and ρ =
√

x2 + y2 is the distance
perpendicular to the path of the particle. However, as clearly
shown by Eq. (50) and Eq. (53), these solutions do not always
apply. To understand which solution is physically meaningful,
we go back to the integral representation of the convolution
with the source function in Eq. (48).

The wave generated by a moving particle can be thought of
as the sum of the sound waves generated at each point along
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FIG. 2. Minkowski diagrams for sources moving slower (a) or
faster (b) than the speed of sound c = 1 in the medium. We can see
that for slow particles (a) an observer O observes the sound emitted
from P+. However, when the source moves faster than the speed of
sound (b) the observer at O observes the sound emitted from both P−
and P+. In Eq. (50) we solve for the z coordinate of these points.

its motion. The form of those sound waves is given by the
retarded propagator we have calculated in Eq. (43). Therefore,
when an observer at spacetime point x observes a sound wave,
we can trace it back to a point in the particle’s track where it
was generated.

An equivalent way to visualize this is sending particles
along the path of a prototype wave. This is the approach we
have implemented in the integral in Eq. (48). The equivalence
is justified by the commutativity of the convolution. There-
fore, Eq. (50) predicts the points of intersection between a
virtual particle passing through an observer located at x and
a prototype wave propagating from the origin (and described
by the propagator). This is clearly shown in Fig. 2.

1. Slow particles

To find out which of the two solutions in Eq. (53) are appli-
cable in the case of the particle speed being smaller than the
speed of sound (v < 1), we notice the following. Assuming
v < 1 implies that γ 2 > 0, then z′

± is defined for all values
of z, t, and r. However, Eq. (50) imposes another condition
which can be written as

z′ − (z − vt ) > 0. (54)

FIG. 3. The prototype wave on the zt plane at some ρ > 0 is
shown as a dashed line. The observer O will never observe a sound
if the speed of the particle generating it is greater than the speed
of sound (i.e., v1 > 1).This is shown by the fact that the supersonic
particle trajectory through it (dotted line) never intersects with the
prototype wave. Instead, for a particle with speed v2 < 1 there will
always be an intersection from any observer, as shown in the solid
line.

It follows that the only solution that satisfies Eq. (50) is z′
+

(S = {z′
+} for v < 1), which is also schematically shown in

Fig. 2.

2. Fast particles

In the case of particles moving faster than the speed of
sound (v > 1) the considerations become more niche. Fig-
ure 3 illustrates that there are some solutions at positive times
that the signal will never reach. Mathematically, this happens
when the square root of z′

± in Eq. (53) becomes imaginary.
This is possible since v > 1 ⇒ γ 2 < 0. In such a case, the
delta function in the convolution will have no zeros and the
signal would be zero. This happens when

vt < z + ρ
√

v2 − 1. (55)

When the condition in Eq. (55) is satisfied, it can be shown
that Eq. (54) implies that, for (z − vt ) > 0, no solution exists
and the pressure generated there is zero. However, when (z −
vt ) < 0, both solutions z′

± hold and S = {z′
+, z′

−}.

F. Leading order analytic solution

To make our model a little less abstract we will explicitly
provide a closed form solution for n = 0, i.e., the undamped
wave equation. The propagator is given by choosing n = 0 in
Eq. (51):

p(x) =
∑
z′

k∈S

∂

∂t

q(t − r(z′
k ))

4π (r(z′
k ) − vz′

k )
, (56)

where the set of solutions S has been defined above, depending
on the value of v and x. Assuming that the particle starts
depositing energy at time t = 0 we can set q(t ) = �(t ) so that
the solutions from Eq. (56) simplifies further to

p(x) = −vz̄ �(−z̄ − ρ
√

v2 − 1)

[z̄2 + ρ2(1 − v2)]
3
2

, (57)
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where z̄ = z − vt , � is the Heaviside function, and ρ =√
x2 + y2, that is the radius of the observer from the point

where the energy deposition starts. Supersonic particles (v >

1) produce different signals than subsonic (v < 1). This is a
well-known result, and we can use the classical wave equa-
tion solution (term for n = 0) to predict the point and time
when the maximum signal occurs as a function of the distance
from the particle track ρ (applying viscous corrections at a
second stage). For the subsonic case, this is at the point when
the derivative of the multivariable function vanishes in all of
its components. This condition is given by

(z − vt )2 = ρ2

2γ 2
. (58)

For supersonic particles, even at points away from ρ = 0, we
have a singularity in the pressure at the zeroth order. This
singularity is located within a shell of radius R3 defined by
ρ2 + z2 = t2. Hence, given a value of ρ, it follows that the
maximum will be located at

z2 = −ρ2γ 2

t = r.
(59)

It is worth remembering that, in the supersonic case, v > 1 ⇒
γ 2 < 0. We now exploit these results to examine the pressure
around these special points and estimate the signal created by
the particles.

IV. EXAMPLE APPLICATION TO MUONS

Now that we have a perturbative framework for computing
the acoustic signal generated by the passage of single particles
in liquids, we present an application of the model to the case
of mildly relativistic muons that have mean energy loss rates
close to the minimum and thus, are said to be minimum
ionizing particles, or mips [23]. We chose a mip as an example
as it simplifies the heat deposition calculations. However, this
technique is applicable to any particle for which the heat
deposition is known.

We start by deriving an expression for the distribution of
the energy deposition rate of a mip [i.e., the source term
in Eq. (22)]. Then, we calculate the evolution of the sound
waves to work out peak pressures at various particle speeds in
different materials.

A. Energy deposition estimation

To model the effect of a mip going through a fluid, we
will ignore any nonlinear effects, such as direct collisions
between the particle and the fluid molecules. In that way,
we will be able to analytically describe the average energy
deposition of the particle. Multiple attempts to describe the
energy deposition profile of a single charged particle can be
found in literature [19,27]. While the Bethe-Bloch formula
[28] can be used to obtain an accurate estimate of the average
energy lost by a charged particle in a medium, it does not give
the correct estimate of the most probable energy loss because
the energy loss distribution per interaction is a highly skewed
Landau [23]. So instead of the Bethe-Bloch formula, we shall
use the most probable value of the Landau distribution as

given by [23]:

dE

dz

∣∣∣∣
M

= ξ

[
ln

2mec2
l β

2
l γ 2

l

I
+ ln

ξ

I
− β2

l

]
, (60)

where ξ is a characteristic energy given in Ref. [23], I is
the mean excitation energy of the liquid, me is the mass of
an electron, cl is the speed of light, γl is the Lorenz factor,
and βl = v/cl is the speed of the particle relative to the speed
of light (note that we are still using units where the speed of
sound c = 1). The primary assumptions we make are that the
particle travels in a straight line through the fluid (along ẑ)
and that it is so energetic that its change in speed is negligi-
ble while crossing the medium. In more rigorous terms, we
assume that

d

dt

dE

dz
= 0. (61)

As a result, the rate at which energy is deposited in the
medium is given by

dE

dt
= dz

dt

dE

dz

∣∣∣∣
M

= v
dE

dz

∣∣∣∣
M

. (62)

We can set up a cylindrical coordinate system around ẑ where
the particle is always at position (ρ, φ, z) = (0, 0, vt ) at time
t. What we now need to derive is the rate of change of energy
density ∂ε

∂t (x) = ∂ε
∂t (ρ, z, t ) in order to plug it into the wave

equation (22).
To do so, consider the energy deposition in some volume

�. The rate of energy deposition within the volume can be
written as [using (62)]

dE

dt
=

∫
�

d� v
dE

dz

∣∣∣∣
M

G(x), (63)

where G(x) is the spatial distribution of the energy deposited
by the particle. From (63), we can derive the rate of change of
energy density in cylindrical coordinates:

∂ε

∂t
(x) = ∂ε

∂t
(ρ, φ, z, t ) = dE

dt
G(ρ, φ, z − vt ). (64)

Inspired by Refs. [19,23], we choose to describe G by a
delta distribution. Since such distribution is axially symmetric
we can express ∂ε

∂t as

∂ε

∂t
(ρ, z, t ) = v

dE

dz

∣∣∣∣
M

δ2(ρ)δ(z − vt ), (65)

where ρ is the perpendicular distance from the particle track,
v is the speed of the particle, and z is the distance along the
track.

The last ingredient we need for calculating the rate of en-
ergy density deposition in the fluid is an activation term q(t ).
This is a function q : R → [0, 1] that only depends on the
time and is meant to describe when the particle starts deposit-
ing energy in the liquid. In Sec. III F, we used a Heaviside step
function for q, however, the discontinuity of the Heaviside
leads to a singularity in the pressure that is nonphysical. A
better model for q is a sigmoid function

q(t ) = 1

1 + e−αt
, (66)
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FIG. 4. Activation function for the source term in Eq. (67) as a
function of parameter α. The higher the α, the more q(t ) approaches
a Heaviside step function.

where α is a parameter that dictates the gradient of the transi-
tion as shown in Fig. 4. This is a free parameter whose value
affects the peak pressure of the signal and has to be fixed
depending on the liquid target. The value of α depends on
how fast the particle deposits its energy in the medium, which
in turn depends on the detector geometry. For the calculations
below we have used α = 1 m−1 in the units where c = 1.

Thus, the full source term is

∂ε

∂t
(ρ, z, t ) = v

dE

dz

∣∣∣∣
M

q(t )δ2(ρ)δ(z − vt ), (67)

where dE
dz |M is the rate of energy deposition by the particle in

the liquid. The source term in Eq. (67) is similar to the source
term in Eq. (47) but multiplied by a constant. We shall use
this in the following section to calculate the acoustic signals
of muons in various media.

B. Numerical estimates for muon signal in different media

In this section, we apply the model just developed to
calculate the acoustic signals of relativistic muons passing
through water, liquid argon, liquid xenon, liquid nitrogen, and
mercury.

To make the calculation of the acoustic signals of single
charged particles through different fluids, we built a python
package that symbolically evaluates any set of values in
Eq. (51) in parallel and then uses the computer’s graphics card
to calculate the pressure. The code, installation instructions,
and tutorials can be found in Ref. [29].

FIG. 5. Peak pressure pm as a function of time t at distance ρ =
1 cm in various liquids of the acoustic signal produced by relativistic
muons (β = 0.9). Denser liquids with large coefficient of thermal
expansion seem to produce higher peaks for the same particles.

Using our simulation and the constants in Table I, we are
able to calculate quantitative characteristics for the passage of
relativistic muons (βl = 0.9) through the fluids listed above.

Figure 5 shows the maximum pressure observed pm at
ρ = 1 cm away from the particle track as a function of time.
The particle generates a skewed pulse over time that peaks at
the scale of femtoPascal (10−15 Pa). Materials with a higher
density and coefficient of thermal expansion, like mercury,
seem to be the ideal target fluids. Table II contains an accurate
numerical estimate of the peak pressure at a distance ρ = 1 cm
from the track of the muon.

The dependence of the peak pressure on the distance from
the particle’s track is shown in Fig. 6(a). There is a strong
exponential trend after 10−1 m while a peak is reached before
that point. The peak pressure signal as a function of the ve-
locity of the incoming muons βl , shown in Fig. 6(b), is also
described by an exponential decay.

V. CONCLUSION

We have presented a methodology for calculating acoustic
signals from single particle energy depositions in liquids with

TABLE I. Constants relevant to the calculation for acoustic signals in various fluids. The constants were found in Refs. [30–44].

Temperaturea Density Sound speed Viscosity Source term multiplier Mean excitation energyb

Name T (K) ρ0 (kg m−3) c (m s−1) μ (×10−4 Pa s) β

Cp
(×10−6 kg J−1) I (eV)

Water 298.15 997.02 1496.60 8.90030 0.06122 79.70
Nitrogen 77.00 807.20 853.50 1.61980 2.72482 82.00
Argon 84.00 1415.67 861.24 2.88490 3.98389 188.00
Xenon 165.00 2942.40 643.27 5.10420 6.66136 482.00
Mercury 298.15 13600.00 1450.10 16.85000 1.27989 799.97

aAll pressures are at P = 1 atm.
bThe scalar multiplier in front of the source term in Eq. (22).
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TABLE II. Peak pressure pm of the acoustic signal produced by
a single relativistic muon β = 0.9 in various liquids. The parameters
were calculated using the simulation in [29] and the constants in
Table I.

Temperaturea Peak pressure
Name T (K) pm (×10−17 Pa)

Water 298.15 1.0499
Nitrogen 77.00 7.7324
Argon 84.00 9.4589
Xenon 165.00 5.2946
Mercury 298.15 10.4703

aAll pressures are at P = 1 atm.

small, but nonnegligible, viscosity. As an example, we have
applied our model to predict the signal from muons crossing
various liquids. In this analysis, we have only considered the
thermal production of sound while ignoring nonlinear effects
such as microbubble formation.

The simulation and Python package, available in Ref. [29],
can be used to predict the acoustic signal generated by several
types of particles in different media. All the assumptions of
the model are clearly listed in the derivations provided in the
earlier sections, together with a complete description of the
physical phenomena at play.

Since we have analytically calculated leading and second
order corrections due to viscosity, we can extend the observa-
tion made by Learned in Ref. [19] to the signals produced by
single particles in low-viscous liquids. We have found out that
acoustic signals decay with a power law with distance and
not of an exponential one as claimed by Ref. [19], making
their detection theoretically possible. However, the signal we
predict is of very low peak amplitude, which is consistent with
the significantly lower energy deposition of single particles.

Further studies are currently being undertaken to com-
pletely characterize the effect of viscosity nonperturbatively
in order to extend our findings to highly viscous fluids. Given
the small energies and signals involved, we are also devel-
oping an effective field theory, that would not only simplify
calculations but would also account for quantum effects. From
the experimental side, while we have concluded that in the
particular example of muons, this level of signal is too small
to be detected with traditional methods such as hydrophones
or sparsely placed squids, the value of this work is in enabling
this calculation for any particle. We shall leave the devel-
opment of the physical sensor to the (brave) experimental
physicists that wish to embark on such a journey.
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APPENDIX A: FOURIER TRANSFORM OF
DIFFERENTIAL OPERATORS

We prove some general properties of the Fourier Transform
defined in Eq. (29) that were used throughout. To do this
we denote the Fourier Transform by F . The fact that F is
a Fourier Transform with inverse F−1 given by Eq. (30) can
be verified directly through the Fourier Identity, so we will not
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explicitly prove it here. Instead we show some properties on
the Fourier Transform of the partial derivative of a function f
in one of the coordinates.

Lemma 1. Given a function f ∈ L2(R4) with Fourier
Transform f̂ , the Fourier Transform of its partial derivative
along xμ is given by

F
[

∂ f

∂xμ

]
(k) = i gμνkν f̂ (k), (A1)

where gμν is a constant metric defined on R4.
Proof. The proof of this is a straight forward application

of integration by parts. Consider the Fourier Transform of the
derivative using Eq. (29):

F
[

∂ f

∂xμ

]
(k) =

∫
R4

dx
∂ f

∂xμ
(x) exp (−ix · k)

=
∫
R3

d3x
∫
R

dxμ ∂ f

∂xμ
(x) exp (−igκνxκkν )

= −
∫
R3

d3x
∫
R

dxμ∂ f (x)
∂

∂μ
exp (−igκνxκkν )

=
∫
R3

d3x
∫
R

dxμ∂ f (x) igμνkν exp (−igκνxκkν )

= i gμνkν

∫
R4

dx f (x) exp (−ix · k)

= i gμνkν f̂ (k).

Here the third step is done using integration by parts of
the inner integral. The boundary term is not shown because it
vanishes at xμ → ±∞ since the function f is L2. �

By successively applying Lemma 1 we can show the fol-
lowing corollary

Corollary 1. Given a function f ∈ L2(R4) with Fourier
Transform f̂ , the following are true:

F[ �∇2 f ](k) = −�k2 f̂ (k)

F[� f ](k) = −k2 f̂ (k),

where, �k2 = gi jkik j with i, j = 1, 2, 3 and k2 = gμνkμkν with
μ, ν = 0, 1, 2, 3.

APPENDIX B: FOURIER SOLUTION OF EQ. (28)
AND EQ. (32)

In order to obtain the Fourier transformed solutions of
Eq. (28) and Eq. (32) shown in Eq. (31) and Eq. (33), re-
spectively, we transformed each side of the equation. Here we
carry out the relevant calculations explicitly.

Consider the perturbative wave equation shown in Eq. (28).
We apply the Fourier Transform defined in Eq. (29) to both
sides and use the properties of Corollary 1 to obtain:

(−k2)n+1 p̂n(k) = −(ik0�k2)n f̂ (k),

which we can rearrange to obtain Eq. (31) by solving for p̂n.
The solution of Eq. (32) is obtained in a similar way. By taking
the Fourier Transform of both sides, we obtain

(−k2)n+1ψ̂n(k) = −(�k2)n f̂ (k).
Rearranging, we get

ψ̂n(k) = 1

−k2

( �k2

−k2

)n

f̂ (k). (B1)

Notice that in the case where f (x) = δ(x) then f̂ (k) = 1.
Doing this substitution in Eq. (B1) we obtain Eq. (33).
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