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Linear-response time-dependent density functional theory approach to warm dense matter
with adiabatic exchange-correlation kernels

Zhandos A. Moldabekov ,1,2,* Michele Pavanello,3,4 Maximilian P. Böhme ,1,2,5 Jan Vorberger,2 and Tobias Dornheim1,2

1Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
2Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany

3Department of Chemistry, Rutgers University, 73 Warren St., Newark, New Jersey 07102, USA
4Department of Physics, Rutgers University, 101 Warren St., Newark, New Jersey 07102, USA

5Technische Universität Dresden, D-01062 Dresden, Germany

(Received 10 February 2023; accepted 29 April 2023; published 11 May 2023)

We present a methodology for the linear-response time-dependent density functional theory (LR-TDDFT)
calculation of the dynamic density response function of warm dense matter in the adiabatic approximation
that can be used with any available exchange-correlation (XC) functional across Jacob’s ladder and across
temperature regimes. The uniqueness of the presented approach is that it can go beyond the adiabatic local density
approximation and adiabatic generalized gradient approximation while preserving the self-consistency between
the Kohn-Sham (KS) response function and adiabatic XC kernel for extended systems. The key ingredient to
the presented method is the combination of the adiabatic XC kernel from the direct perturbation approach
with the macroscopic dynamic KS response from the standard LR-TDDFT method using KS orbitals. We
demonstrate the application of the method for the example of warm dense hydrogen, for which we perform
a detailed analysis of the KS density response function, the random phase approximation result, the total density
response function, and of the adiabatic XC kernel. The analysis is performed using local density approximation,
generalized gradient approximation, and meta-generalized gradient approximation level approximations for the
XC effects. The presented method is directly applicable to disordered systems such as liquid metals, warm dense
matter, and dense plasmas.
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I. INTRODUCTION

Warm dense matter (WDM) is relevant for a plethora of
applications such as inertial confinement fusion (ICF) [1,2],
laboratory astrophysics [3,4], and material science at extreme
conditions [5–7]. WDM is generated in experiments, e.g., by
laser heating or shock compression at facilities such as the
National Ignition Facility [1,2,8], the European X-ray Free-
Electron Laser [9], and the Linac coherent light source at
SLAC [10]. In nature, WDM exists in the interior of white
dwarfs [11,12] and giant planets [13,14], and in the outer layer
of neutron stars [15]. Among various atomic composition pos-
sibilities, warm dense hydrogen is of particular importance.
Indeed, hydrogen is the most abundant element in the uni-
verse and its isotopes are used as thermonuclear fuel in ICF
applications. Recently, a breakthrough achievement on the
path to ICF has been reported: a net positive energy outcome
from fusion reactions compared to the energy used to start the
fusion process has been detected. This makes the understand-
ing of warm dense hydrogen and the development of reliable
methods for WDM [16–18], in general, highly relevant.
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At the extreme temperatures and densities realized in
WDM experiments and within the aforementioned astrophys-
ical objects, electrons are partially degenerate and strongly
correlated. With regard to temperature and density, WDM oc-
cupies an intermediate region between solid states and dense
plasmas. This is also reflected in the theoretical methods used
for WDM research [18], some of which we discuss in this
paper. Being a relatively new field compared to solid state
physics and plasma physics, theoretical methods to describe
WDM are still in the stage of active development. Among ex-
isting approaches, ab initio methods such as quantum Monte
Carlo (QMC) [16,19–21] and thermal density functional the-
ory (DFT) [18,22–24] are particularly important for a reliable
description of experimental results and for providing guidance
for new experimental developments.

One of the main theories for the description of many-
particle systems is linear response theory (LRT). Although
basic principles of LRT are general, LRT is formulated in
somewhat different ways and with emphasis on different phys-
ical features in solid-state physics, in WDM studies, and in
plasma physics. On the one hand, WDM is usually disordered
and does not feature symmetries and well-defined crystal-
structure-like solids. On the other hand, strong electron-ion
and electron-electron correlations do not allow neglecting
microscopic density inhomogeneities as is often the case for
plasmas. Additionally, it is important for WDM to have access
to the density response properties at wave numbers compara-
ble or larger than the Fermi wave number since such wave
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numbers are probed by the x-ray Thomson scattering (XRTS)
technique [25,26], which is one of the main WDM diagnostic
methods [27–30]. It is crucial to have a clear understanding of
these aspects when tools developed for solids or plasmas are
used for WDM studies.

An important example of such a tool is the linear-response
time-dependent density functional theory (LR-TDDFT) ap-
proach. LR-TDDFT allows one to compute various electronic
optical and transport properties [31]. The key quantity for the
LR-TDDFT-based description is the density response func-
tion. Indeed, an accurate computation of the density response
function is one of the main problems of WDM theory [18,32].

A quantity that is closely connected to the density response
function is the exchange-correlation (XC) kernel, which can
be defined as the functional derivative of the XC potential with
respect to density [33]. The XC kernel is one of the key in-
gredients for the computation of the density response function
using LR-TDDFT. Recently, Moldabekov et al. [34] presented
an approach for the calculation of the static (adiabatic) XC
kernel within KS-DFT for any available XC functional. This
method is formulated for disordered systems that are homo-
geneous on average, e.g., WDM, dense plasmas, and liquid
metals. This method is based on the direct perturbation of
the system by a static harmonic potential [18,35–39]. The
difference in the density between perturbed and unperturbed
cases allows one to extract the static density response func-
tion. This static density response function is combined with a
reference noninteracting density response function to compute
the static XC kernel. The main utility of the static XC kernel
within LR-TDDFT is the computation of the density response
function. However, it had hitherto not been clear how to use
the static XC kernel from the direct perturbation approach in
the LR-TDDFT framework. Here, we formulate a consistent
LR-TDDFT approach for disordered systems such as WDM
that is based on the adiabatic (static) XC kernel obtained from
the direct perturbation approach.

As the main result, we formulate a clear recipe for the
computation of the linear density response function com-
bining both the LR-TDDFT and direct perturbation method.
Within this framework, LR-TDDFT is used to compute the
macroscopic KS-response function taking into account the
density inhomogeneity induced by ions (local-field effects
[40,41]) and the direct perturbation method provides access
to the static XC kernel for any XC functional. These two
ingredients are combined to compute the macroscopic linear
density response function of WDM. We apply this combined
workflow to investigate density response properties and the
XC kernel of warm dense hydrogen. We present a detailed
numerical investigation of the density response function, the
Kohn-Sham (KS) response function and its screened version
in the random phase approximation (RPA), and of the XC
kernel. To get insights into the role of XC effects, we use
XC functionals on the level of the local density approximation
(LDA), generalized gradient approximation (GGA) and meta-
GGA. Although we mainly focus on WDM applications, the
presented workflow is applicable for any disordered system
that is homogeneous on average.

The paper is organized as follows: We begin with pro-
viding the theoretical background of LR-TDDFT, of LRT as
used for homogeneous systems (such as plasmas), and of the

direct perturbation approach in Sec. II; we conclude Sec. II
by formulating an adiabatic approximation for the density re-
sponse function based on the static XC kernel from the direct
perturbation approach. The parameters and simulation details
are given in Sec. III and we illustrate the application of the
developed method for the example of warm dense hydrogen
in Sec. IV. The paper is concluded by a summary of the main
findings and a brief outlook on future applications.

II. THEORETICAL BACKGROUND

Different formulations and approaches are being used for
the calculation and description of the linear density response
function of electrons in WDM. First, there is the standard LR-
TDDFT approach. It uses the KS density response function,
which is based on KS orbitals, and the XC kernel [42]. In this
case, the impact of ions on electrons is taken into account in
both the KS response function and XC kernel through the den-
sity inhomogeneity induced by the ions (local-field effects).
Another often-used approach, originally developed for dense
plasma physics, is based on the ideal Lindhard response func-
tion and the so-called local field correction (LFC) [43], which
incorporates everything else that is missing in the Lindhard
function (not to be confused with local-field effects in the
LR-TDDFT) [32,44–46]. This is not only a standard plasma
physics approach but is also commonly used in the quantum
theory of homogeneous electron liquid [43,47]. From a com-
putational point of view, an alternative to the LR-TDDFT is
to use a direct perturbation by an external field to measure
the density response function connecting the perturbing field
with the density change induced by it [48–50]. These different
formulations and methods for a dynamic density response
function have been actively used in WDM studies [39,51–54].
However, in many aspects, the connection between them has
not been clearly formulated and understood.

The main goal of this paper is to formulate a consistent
LR-TDDFT approach for WDM that is based on an adiabatic
(static) XC kernel from the direct perturbation approach intro-
duced in Ref. [34]. We will first discuss the dynamic dielectric
function from LR-TDDFT, followed by an introduction to
LRT as used in the physics of dense plasmas and the direct
perturbation approach to the static XC kernel. This allows us
to present a clear connection between these schemes and a
recipe for LR-TDDFT calculations of the macroscopic density
response of WDM with an adiabatic XC kernel on any rung
of Jacob’s ladder.

A. Dynamic dielectric function from LR-TDDFT

We start with a brief summary of what is needed from LR-
TDDFT for further discussion of the connection between the
latter and the direct perturbation approach.

The microscopic dynamic dielectric function, for momen-
tum k and energy ω, is expressed in terms of the microscopic
density response function as [42]

ε−1
G,G′ (k, ω) = δG,G′ + 4π

|k + G|2 χG,G′ (k, ω), (1)

where k is a wave vector restricted to the first Brillouin zone,
and G and G′ are reciprocal lattice vectors.
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The Fourier coefficients χG,G′ (k, ω) of the density response
matrix are computed using a Dyson’s-type equation [55–57]:

χGG′ (k, ω) = χ0
GG′ (k, ω) +

∑
G1G2

χ0
GG1

(k, ω)
[
vG1(k)δG1G2

+ Kxc
G1G2

(k, ω)
]
χG2G′ (k, ω), (2)

where χ0
G,G′ (k, ω) is a noninteracting density response func-

tion, vG1(k) = 4π/|k + G1|2 is the Coulomb potential, and
Kxc

G1 ,G2
(k, ω) is the XC kernel. The noninteracting density re-

sponse function χ0
G,G′ (k, ω) is computed using the KS orbitals

and corresponding energy eigenvalues from a KS-DFT simu-
lation of an equilibrium state [58].

There are numerous approximations for the XC kernel in
Eq. (2), which we do not discuss in this paper (see, e.g.,
Refs. [55,59] for more information). We only note that the
XC kernel is defined as the functional derivative of the XC
potential with respect to density [42].

A commonly used approximation for the XC kernel that is
considered in this paper is the adiabatic (static) approximation
Kxc

G1 ,G2
(k) = Kxc

G1 ,G2
(k, ω = 0). For extended systems with sam-

pling of the Brillouin zone, currently there is no possibility
to compute Kxc

G1 ,G2
(k) using the functional derivative of the

XC potential beyond the adiabatic LDA (ALDA) and GGA
(AGGA) [55]. This is meant in the sense of the self-consistent
calculation where the XC kernel is fully compatible with the
XC functional used for the KS-DFT simulation of the equilib-
rium state.

The response of a system to an external monochromatic
perturbation with wave vector q = k + G, e.g., in the case
of the XRTS diagnostics, is described by the value of the
microscopic dynamic dielectric function Eq. (1) with G = G′:

εM (q, ω) = 1

1 + 4π

|q|2 χGG(k, ω)
. (3)

We note that q in Eq. (3) is not restricted to the first Brillouin
zone like k. Additionally, we have G = G′ = 0, if q is in the
first Brillouin zone [57,60].

Further, following the LR-TDDFT terminology, we call
the physical properties describing the response of a system
to an external macroscopic perturbation as macroscopic; e.g.,
εM (q, ω).

The RPA follows from setting Kxc
G1 ,G2

(k, ω) = 0 in Eq. (2):

χRPA
GG′ (k, ω) = χ0

GG′ (k, ω)

+
∑

G1

χ0
GG1

(k, ω)
4π

|k + G1|2 χRPA
G1G′ (k, ω). (4)

Accordingly, the macroscopic dielectric function in the
RPA reads

εRPA
M (q, ω) = 1

1 + 4π

|q|2 χ
RPA
GG (k, ω)

. (5)

Next, we discuss the LRT formulation as used for homoge-
neous systems such as WDM and dense plasmas.

B. Linear density response theory in dense plasma physics

In LR-TDDFT, ions are considered to be an external field
that affects electronic properties. In contrast, the LRT of
plasmas is generally formulated taking into account both the
response of ions and electrons to an external perturbation [61].
To be on the same level of description with the LR-TDDFT,
we consider the response of electrons with fixed ions. We note
that this is justified in situations where the perturbation time
is much shorter than the reaction time of ions since the latter
are much more inert compared to electrons [62].

The dielectric function of electrons in homogeneous sys-
tems is expressed using the density response function of
electrons χ (q, ω) in the following form [47]:

ε−1(q, ω) = 1 + v(q)χ (q, ω), (6)

where v(q) = 4π/q2.
It is a common practice in the quantum theory of the elec-

tron liquid and in dense plasma physics to express the density
response function in terms of the ideal response function and
the XC kernel [47,61,63],

χ (q, ω) = χ0(q, ω)

1 − [v(q) + Kxc(q, ω)]χ0(q, ω)
, (7)

where χ0(q, ω) is a reference noninteracting density response
function and the XC kernel is often defined using LFC:

Kxc(q, ω) = −v(q)G(q, ω). (8)

We note that in the case of the uniform electron gas (UEG),
the XC kernel in Eq. (7) is the same as the XC kernel of
the LR-TDDFT. However, in general, for disordered systems
that can be considered homogeneous after averaging over
different ionic configurations—such as WDM, dense plasmas,
and liquid metals—a clear connection between the XC kernel
in Eq. (7) and the microscopic XC kernel in the LR-TDDFT
[e.g., in Eq. (2)] has not been provided.

The dielectric function in the RPA follows from setting
Kxc(q, ω) = 0 in Eq. (7) and substituting the resulting χ (q, ω)
into Eq. (6):

εRPA(q, ω) = 1 − v(q)χ0(q, ω). (9)

In plasma physics applications, it is common to use
the Lindhard function (temperature-dependent version) as
χ0(q, ω) and approximate G(q, ω) according to the free elec-
tron gas model [44,61].

For WDM applications, the correction due to electron-ion
interactions to ε(q, ω) is often included explicitly in the form
of the electron-ion collision frequency in the so-called gen-
eralized Mermin model [25,44,64–66]. The relevant point is
that this model is also based on the temperature-dependent
Lindhard function and G(q, ω). The Lindhard function for
χ0(q, ω) can be used when the composition of the system
can be divided into well-defined species like free electrons,
ions, and neutral atoms. This is often the case for plasmas,
where a chemical model like the Saha equation is used for
the computation of the free electron density [67]. However,
in WDM it is usually not possible to clearly segregate free
and bound electrons and, thus, any concept based on the
Lindhard function (i.e., the free-electron gas) requires the in-
troduction of an effective free electron density (or an effective
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ionization degree). This is commonly used as a fit parameter to
describe experimental XRTS data [25,64–66]. We further note
that the effective free-electron density is also used to com-
pute G(q, ω) on the basis of some free-electron gas model.
In contrast, the LR-TDDFT approach described in Sec. II A
does not require the effective free electron density. Moreover,
electron-ion interaction effects are included in LR-TDDFT
implicitly through the microscopic density inhomogeneity and
KS orbitals. Therefore, it is highly beneficial to reformulate
Eq. (7) without using the Lindhard function and G(q, ω)
[equivalently Kxc(q, ω)] of the free-electron gas, but using
some χ0(q, ω) and Kxc(q, ω) from LR-TDDFT. This is done
in the present paper after introducing the method to compute
the static XC kernel and KS response function using an exter-
nal harmonic perturbation in the KS-DFT calculations.

C. Static XC kernel from the direct perturbation approach

The direct perturbation approach is based on the KS-DFT
simulation of a system perturbed by an external harmonic po-
tential [48,49,58]. The corresponding electronic Hamiltonian
reads [18,35,36,38]

Ĥq,A = Ĥe + 2A
N∑

j=1

cos(q · r̂ j ), (10)

where Ĥe is the Hamiltonian of the unperturbed system.
The static external potential is defined by its wave vector
q and amplitude A. The discussion of the general case of a
time=dependent external potential can be found in Ref. [18].

The simulation of both the unperturbed (A = 0) and per-
turbed (A �= 0) systems allows one to find a change in the
single-electron density:

�ne(r)q,A = 〈ne(r)〉q,A − 〈ne(r)〉A=0 . (11)

In WDM experiments, XRTS measurements are performed
on macroscopic objects. With regard to a macroscopic dis-
ordered system, what the x-ray probe sees statistically is a
large ensemble of atomic position configurations. Therefore,
in practice, we perturb a system along a given direction and
compute the average 〈...〉 along all other directions. Depend-
ing on the system temperature and density, one might need
further averaging over different atomic configurations. We
note that it does not mean that we neglect the local field effects
(see Sec. II D). For such disordered systems, the contributions
from the density Fourier components to �ne(r)q,A at q + G,
q + 2G, etc. are negligible [34]. Physically, it becomes ob-
vious if we recall that, for disordered systems (like molten
metals), G does not describe the Fourier transform of the Bra-
vais lattice but appears due to periodic boundary conditions
(with |G| = 2π/L) introducing a certain finite-size effect,
which we discuss in Secs. III and IV. Furthermore, if the
perturbation amplitude A is small enough, one can also neglect
the excitation of higher harmonics due to the nonlinear re-
sponse terms at 2q, 3q, etc. [39,68,69]. Therefore, the induced
density change is described by the linear density response
function χ (q) = χ (q, ω = 0) in the static limit according to
the relation [69]

�ne(r)q,A = 2Acos(q · r)χ (q). (12)

Similarly, a static KS response function describes the re-
sponse of the electron density to a change of the KS potential:

�ne(r)q,A = χKS(q)�vKS(r)q,A, (13)

where �vKS(r)q,A is the change of the KS potential due to an
external perturbation:

�vKS(r)q,A = 〈vKS(r)〉q,A − 〈vKS(r)〉A=0 . (14)

Therefore, the direct perturbation approach provides access
to both the macroscopic density response function and the KS
response function of a homogeneous system. We reiterate that
this method is valid for any disordered system that becomes
homogeneous on average; e.g., due to averaging over an en-
semble of atomic configurations (snapshots).

Now, we can set χ0(q, ω) = χKS(q, ω) and invert Eq. (7)
to find the static XC kernel for a homogeneous system [47],

Kxc(q) = −
{
v(q) +

(
1

χ (q)
− 1

χKS(q)

)}

= 1

χRPA(q)
− 1

χ (q)
, (15)

where χRPA(q) is the screened version of χKS(q):

χRPA(q, ω) = χKS(q, ω)

1 − v(q)χKS(q, ω)
. (16)

D. Connection between LR-TDDFT and direct
perturbation approach

To access the macroscopic density response function χ (q)
[defined according to Eq. (12)] without applying an exter-
nal harmonic perturbation, we use the macroscopic dielectric
function Eq. (3) in Eq. (6) to find the LR-TDDFT result for
χ (q):

χ (q, ω) = 1

v(q)

(
ε−1

M (q, ω) − 1
)
. (17)

Using Eq. (17), we can compute the macroscopic static
density response function χ (q) = χ (q, ω = 0) using LR-
TDDFT and compare it with χ (q) from the direct perturbation
approach. In Sec. IV A, we show numerical results confirming
that the results for χ (q) from the direct perturbation approach
Eq. (12) are equivalent to the LR-TDDFT result computed
using Eq. (17).

To get access to the macroscopic KS response function
χKS(q, ω) [defined according to Eq. (12)] without perturb-
ing by an external harmonic potential, we perform the
LR-TDDFT calculations without an XC kernel and use the
macroscopic dielectric function in the RPA εRPA

M (q, ω) from
Eq. (5) in Eq. (9):

χKS(q, ω) = 1

v(q)

(
1 − εRPA

M (q, ω)
)
. (18)

We note that the macroscopic KS response function
χKS(q, ω) introduced by Eq. (18) involves the solution of the
Dyson-type Eq. (4). In the LR-TDDFT language, this means
that χKS(q, ω) has more information about the ion-induced
density inhomogeneity compared to the noninteracting den-
sity response function χ0

GG(q, ω). In Sec. IV A, we compute
χKS(q) using Eq. (18) and compare it with χKS(q) from

023089-4



LINEAR-RESPONSE TIME-DEPENDENT DENSITY … PHYSICAL REVIEW RESEARCH 5, 023089 (2023)

FIG. 1. Computation scheme for the macroscopic density re-
sponse function Eq. (19) based on the adiabatic (static) XC kernel
from the direct perturbation approach Eq. (15) and the macroscopic
KS response function Eq. (18) from the LR-TDDFT. The presented
self-consistent calculation scheme can be used beyond ALDA with
any XC functional across Jacob’s ladder.

Eq. (13) to show that the macroscopic static KS response
function χKS(q) from the direct perturbation approach is in
agreement with the LR-TDDFT result.

E. LR-TDDFT calculations of the macroscopic density response
function with a consistent static XC kernel

The workflow of LR-TDDFT requires KS orbitals from
converged equilibrium KS-DFT simulations. These orbitals
are used in the Dyson-type Eq. (2) together with the micro-
scopic XC kernel Kxc

G1 ,G2
(q, ω) to compute the density response

function, with the microscopic XC kernel being the first-order
functional derivative of the XC potential. Consistent LR-
TDDFT simulations require a microscopic XC kernel that is
fully compatible with the XC functional used to compute the
XC potential. However, the LR-TDDFT for extended systems
(using the first-order functional derivative of the XC potential
to find the XC kernel) currently has the limitation that consis-
tent simulations can be performed using only adiabatic LDA
and GGA microscopic XC kernels [55]. For a macroscopic
density response function and dielectric function, we can cir-
cumvent this limitation for on-average-homogeneous systems
(e.g., WDM, dense plasmas, and liquid metals) by combining
the static macroscopic XC kernel Kxc(q) from the direct per-
turbation approach, Eq. (15), with the dynamic macroscopic
KS response function χKS(q, ω) defined by Eq. (18).

Our adiabatic (static) approximation for the macroscopic
density response function reads

χ (q, ω) = χKS(q, ω)

1 − [v(q) + Kxc(q)]χKS(q, ω)
, (19)

The self-consistent calculation method represented by
Eq. (19) is schematically explained in Fig. 1. To deliver
a macroscopic dynamic density response function in the
adiabatic approximation, this approach combines the static
XC kernel from the direct perturbation approach defined by
Eq. (15) with the macroscopic KS response function from
LR-TDDFT introduced by Eq. (18). We reiterate that neither
Eq. (18) for χKS(q, ω) nor Eq. (15) for Kxc(q) require infor-
mation about the microscopic XC kernel Kxc

G1 ,G2
(q, ω). In this

way, we can compute the macroscopic density response func-
tion χ (q, ω) in an adiabatic approximation for any available

XC functional in a fully self-consistent manner. The macro-
scopic dynamic dielectric function follows from Eq. (6).

Importantly, if a consistent adiabatic XC kernel is used, a
standard LR-TDDFT result for εM (q, ω) as defined by Eq. (3)
is equivalent to the result from our adiabatic approximation
for the macroscopic density response function Eq. (19). We
demonstrate it for the ALDA for the example of warm dense
hydrogen in Sec. IV A. By consistency, we mean that the same
XC functional is used for calculating the KS response function
as well as for the XC kernel.

For real materials, the adiabatic approximation represented
by Eq. (19) is more powerful than ALDA or AGGA of the
standard LR-TDDFT since Eq. (19) can be computed using
any XC functional across Jacob’s ladder of DFT [70,71]. For
example, Moldabekov et al. [34] used the direct perturbation
approach for the investigation of the static density response
function and XC kernel of the UEG and warm dense hydrogen
using various LDA, GGA, and meta-GGA functionals. Addi-
tionally, different hybrid XC functionals have been analyzed
at WDM conditions using the UEG model in Refs. [51,52].
These prior works used the reference static density response
function χ0(q) from KS-DFT calculations with zero XC func-
tional. This has been done for benchmarking purposes against
available QMC results. The uniqueness of Eq. (19) is the
consistent way to compute χ0(q, ω) = χKS(q, ω) and Kxc(q)
for applications within the adiabatic (static) approximation.

For WDM and dense plasma applications, Eq. (19) does
not require the introduction of an effective free electron den-
sity (in contrast to Lindhard-function-based approaches) and
our static XC kernel is now material specific. This also elimi-
nates the need for using some model LFC in Eq. (8).

We note that for the UEG, χKS(q, ω) reduces to the Lind-
hard function as we show in Sec. IV A. In this case, QMC
simulations have shown that the adiabatic (static) approxi-
mation is highly accurate in the case of weak to moderate
coupling strengths, e.g., at metallic densities [72].

III. SIMULATION PARAMETERS

We use Hartree atomic units for all numerical results pre-
sented in this paper. The total density of electrons is given
in terms of the density parameter rs = (4πn/3)−1/3, which
is the mean-interparticle distance. We note that rs also repre-
sents the characteristic coupling parameter between electrons
[19,73,74]. The temperature of electrons is expressed in terms
of the degeneracy parameter θ = T/TF , which is the temper-
ature value in the units of the Fermi temperature (energy).
We consider rs = 2 and rs = 4, which are typical for WDM
experiments. For warm dense hydrogen, we set θ = 1. This
allows us to compare χ (q) from the KS-DFT simulations with
the recent exact path integral QMC results by Böhme et al.
[68].

To test the validity of the presented approach for χKS(q) in
the limit of the UEG, we also use θ = 1, 0.5, and 0.01.

We set q along the z axis and, having this in mind, we
drop vector notation. In the case of the direct perturbation
approach, the perturbation wave numbers are given by q =
j · qmin with qmin = 2π/L and j being positive integers. For
a given snapshot of ionic positions, the density and KS po-
tential perturbations were averaged along the x and y axes
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(since q is along the z axis). The size of the main simula-
tion box is defined by n0L3 = N , where n0 = 3/(4πr3

s ) and
N is the total number of electrons in the main simulation
box. We consider N = 14 and N = 20. At the considered
parameters, the finite size effects at N = 14 and N = 20 are
negligible. This was demonstrated by path integral QMC sim-
ulations in Refs. [68,69,75,76] and by KS-DFT simulations in
Refs. [34,51,77,78].

In the case of the LR-TDDFT calculations, q values must
be the difference between two k-points. For example, if the k-
point grid is Nk × Nk × Nk , the wave number is given by q =
(l/Nk, m/Nk, p/Nk )2π/L, where l, m, p are positive integer
numbers and are not multiples of Nk . Since we set q along the
z axis, we always have l = 0 and m = 0.

The external field amplitude in the direct perturbation ap-
proach must be small enough so the density perturbation can
be described by the LRT. For warm dense hydrogen, we set
A = 0.01 (in Hartree). It was shown to be within the LRT
domain in Ref. [68]. Following Ref. [39], for the UEG cal-
culations, we set A = 0.01 at rs = 2 and A = 0.002 at rs = 4.

For the KS-DFT calculations of the static XC kernel, we
use the ABINIT package [79–84] with the pseudopotentials
by Goedecker et al. [85]. In the case of the LDA functional
[86], we cross checked that the ABINIT results are repro-
duced by the KS-DFT calculations using the GPAW code
[87–90], which is a real-space implementation of the projector
augmented-wave method. For the LR-TDDFT calculations
on the basis of the LDA, we used the GPAW code for the
calculation of the density response function and KS response
function [91]. The ionic configurations have been obtained
from thermal KS-DFT-based molecular dynamics simulations
as it is described in Ref. [92].

The direct perturbation approach based KS-DFT simula-
tions of warm dense hydrogen were performed for 14 (with
280 bands) and 20 (with 400 bands) particles in the main
simulation cell. We used 10 × 10 × 10 k-point sampling and
30 Ha energy cutoff. For the LR-TDDFT calculations of
the static density response functions at rs = 2 and q < 2qF ,
we used 14 electrons in the main cell with 280 bands and
500 eV energy cutoff in the equilibrium-state calculations. For
q > 2qF , we used the equilibrium state calculations with 1500
bands for 14 electrons in the main cell, 4 × 4 × 4 k points, and
550 eV energy cutoff. Using wave functions from the equilib-
rium state, the LR-TDDFT calculations were performed with
the cutoff in the dielectric function set to 100 eV and the
broadening parameter η = 0.001.

The calculations for the static density response functions of
the UEG at θ = 0.01 and θ = 0.5 were performed using N =
38 particles in the main cell (with 44 bands), 10 × 10 × 10
k-point sampling, and 30 Ha energy cutoff. The data for θ =
1 is obtained using N = 20 electrons in the main cell (with
400 bands), 10 × 10 × 10 k-point sampling, and 30 Ha energy
cutoff.

We note that in the case of the UEG, Moldabekov et al.
[51,77] benchmarked the quality of different LDA, GGA,
meta-GGA, and hybrid-level XC functionals within thermal
KS-DFT against an exact QMC data in the ground state and
at parameters considered in this paper. Similarly, in the case
of warm dense hydrogen, in Refs. [34,68], the accuracy of
several LDA, GGA, and meta-GGA-level XC functionals has

FIG. 2. (a) Symbols show KS response function computed from
the KS-DFT simulations of the UEG with LDA XC functional for
rs = 2 at different values of the reduced temperature θ . Solid lines are
corresponding results computed using the Lindhard function. (b) KS
response function and corresponding RPA values for warm dense hy-
drogen at rs = 2 and θ = 1 as computed using the LR-TDDFT (green
and orange symbols) and from the direct perturbation technique (red
and blue symbols).

been analyzed using QMC data. The convergence of KS-DFT
simulations with respect to such computation parameters as
k-point grid, energy cutoff, the number of particles, and the
number of bands have been studied in these works for UEG
[51,77] and warm dense hydrogen [34,68]. In this paper, we
choose the same or better (such as larger k-point grid and
energy cutoff) computation parameters to ensure the conver-
gence of the presented results. For the UEG, the convergence
of KS-DFT simulations is confirmed by reproducing an exact
Lindhard response function in the thermodynamic limit (see
top panels in Figs. 2 and 3 and related discussion in Sec. IV).
In the case of warm dense hydrogen, the high quality of the
KS-DFT simulations is confirmed on the example of LDA
XC functional by comparing to the QMC data for the density
response (see Fig. 4 and discussion in Sec. IV).

IV. SIMULATION RESULTS

A. Equivalence of LR-TDDFT and the direct
perturbation-based approach

To test the correctness of the macroscopic KS response
function computed using Eq. (13), first we consider the UEG
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FIG. 3. (a) Symbols show KS response function computed from
the KS-DFT simulations of the UEG with LDA XC functional for
rs = 4 at different values of the reduced temperature θ . Solid lines are
corresponding results computed using the Lindhard function. (b) KS
response function and corresponding RPA values for warm dense hy-
drogen at rs = 4 and θ = 1 as computed using the LR-TDDFT (green
and orange symbols) and from the direct perturbation technique (red
and blue symbols).

[19] for which the macroscopic KS response function must be
equivalent to the Lindhard function. We show that it is indeed
the case for rs = 2 in Fig. 2(a) and for rs = 4 in Fig. 3(a)
with θ covering both the ground state and the WDM regime.
From Figs. 2(a) and 3(a), we see that the macroscopic KS
response function Eq. (13) perfectly reproduces the Lindhard
function in the thermodynamic limit for the UEG. To get the
data presented in these figures, we used the LDA functional
by Perdew and Wang [93]. Therefore, Eq. (13) provides the
correct noninteracting (ideal) response function even if the
KS-DFT calculations are performed with the nonzero XC
functional.

Second, in Figs. 2(b) and 3(b), we demonstrate that the
macroscopic static KS response function of warm dense
hydrogen at θ = 1 computed using the direct perturbation
approach Eq. (13) is equivalent to the result found using the
standard LR-TDDFT method via Eq. (18). Figures 2(b) and
3(b) present results for rs = 2 and rs = 4, respectively, at θ =
1. Additionally, we show the results in the RPA, which are
computed using χKS(q) in Eq. (7) with ω = 0. From Figs. 2(b)

FIG. 4. Density response function of warm dense hydrogen at
(a) rs = 2 and (b) rs = 4 for θ = 1. The results computed using the
LR-TDDFT with ALDA kernel and the harmonic perturbation-based
approach using LDA functional are compared with the exact PIMC
data from Ref. [68].

and 3(b), one can see that the χKS(q) computed using Eq. (13)
is in agreement with the χKS(q) obtained using Eq. (18).

Next, we show in Fig. 4 that the density response func-
tion χ (q) computed according to Eq. (13) within the direct
perturbation approach using the LDA XC functional is in
agreement with the χ (q) from the LR-TDDFT calculations
using the ALDA kernel and equilibrium state wave functions
generated using LDA. Figure 4(a) shows the data for rs = 2
and Fig. 4(b) presents the results for rs = 4. Additionally,
in Fig. 4, we compare the KS-DFT results for χ (q) with
the recent exact path-integral quantum Monte Carlo (PIMC)
results [68]. From Fig. 4(a), one can see that the KS-DFT
results are in close agreement with the PIMC data at rs = 2. In
Ref. [68], it was shown that at θ = 1 and rs = 2, electrons in
the warm dense hydrogen manifest free-electron-like behav-
ior, indicating weak electron-ion coupling. In contrast, at rs =
4 and θ = 1, electron-ion coupling is strong and the system
can effectively be described as partially ionized. As a result,
in Fig. 4(b), we observe that the quality of the LDA based
KS-DFT data around 2qF significantly deteriorates compared
to the exact PIMC data with the decrease in the density
from rs = 2 to rs = 4. The deterioration of the quality of the
LDA-based description with the decrease in density is due to
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FIG. 5. Illustration of the stronger localization of the electrons
around protons with the decrease in density from (a) rs = 2 to
(b) rs = 4 at fixed θ = 1 using an isosurface of the electronic density
as obtained from DFT-MD. This figure was created using XCrySDen
[96,97].

the stronger localization of electrons around ions [94], which
gives rise to self-interaction errors in KS-DFT [95]. Stronger
coupling between electrons and ions also leads to the smaller
density response amplitude as can be seen by comparing the
χ (q) values in Figs. 4(a) and Fig. 4(b). The stronger localiza-
tion of electrons around ions at rs = 4 compared to the case

with rs = 2 in warm dense hydrogen is illustrated using an
isosurface of the electronic density in Fig. 5.

The third quantity we consider is the macroscopic dynamic
dielectric function εM (q, ω) of warm dense hydrogen. We
compute εM (q, ω) using the standard LR-TDDFT with the
ALDA kernel and LDA-based KS orbitals. Additionally, we
calculate εM (q, ω) using χ (q, ω) from Eq. (19) in Eq. (6)
according to the scheme presented in Fig. 1, where χKS(q, ω)
is computed using Eq. (18) and the LDA XC kernel is obtained
from the direct perturbation approach using Eq. (15). The
comparison of the data for εM (q, ω) computed using these
two different ways is presented in Fig. 6, where we show
the real and imaginary parts of εM (q, ω) at q � 0.873qF and
q � 1.434qF . Additionally, in Fig. 6, we present the RPA
results computed using zero XC kernel. From Fig. 6, we
observe that the ALDA based LR-TDDFT data for εM (q, ω) is
in excellent agreement with the result obtained using χ (q, ω)
from Eq. (19) in Eq. (6).

Therefore, for the example of the warm dense hydro-
gen, we have demonstrated using the LDA functional that
our approach from Eq. (19) for the macroscopic χ (q, ω) is
equivalent to the standard LR-TDDFT with an adiabatic XC
kernel approximation. We reiterate that the strength of the pre-
sented approach is that it can be used with the static XC kernel

FIG. 6. Demonstration of the equivalence of the LR-TDDFT result with the ALDA kernel (solid red line) to the macroscopic XC kernel and
macroscopic KS response function based scheme (as explained in Fig. 1) using the LDA functional (dashed green). The results are presented
for warm dense hydrogen at rs = 2 and θ = 1. (a) The real part of the dynamic dielectric function and (b) the imaginary part of the dynamic
dielectric function at q/qF � 0.873. (c) The real part of the dynamic dielectric function and (d) the imaginary part of the dynamic dielectric
function at q/qF � 1.434. The RPA result is provided for comparison as well (dashed blue).
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of any available XC functional without explicitly computing
the second-order functional derivative. For example, using
the direct perturbation approach, Moldabekov et al. [34] pre-
sented a static XC kernel for LDA, GGA, and meta-GGA level
functionals as well as for various hybrid functionals [51,52].
Moreover, Eq. (19) represents a method where the adiabatic
XC kernel KXC(q) is fully consistent to the XC functional used
to generate the KS response function χKS(q, ω) [defined by
Eq. (18)].

B. Static XC kernel for warm dense hydrogen at metallic density

In Ref. [34], the PIMC data-based comparative analysis of
the density response function of warm dense hydrogen at rs =
2 and rs = 4 using PBE [98], PBEsol [99], AM05 [100], and
SCAN [101] functionals revealed that these XC functionals
do not improve the description of the warm dense hydrogen
compared to ground state LDA [93] based calculations. More-
over, it was shown that a finite-temperature LDA functional
[102] developed for WDM conditions does not improve the
quality of the description compared to the ground state LDA
and even provides slightly worse results. Among aforemen-
tioned functionals in Ref. [34], the meta-GGA level SCAN
functional occupies a higher rung on Jacob’s ladder compared
to the LDA and GGA functionals and is more accurate than
the LDA and PBE for the ground state applications. Thus,
it is surprising that SCAN performs worse than the ground
state LDA and PBE when the thermal energy is comparable
with the Fermi energy. It is a natural question to ask whether
other meta-GGA functionals have the same drawback in the
WDM regime. Thus, in this paper, in addition to the ground-
state LDA and PBE, we included another two meta-GGA
XC potentials into our analysis. We consider XC potentials
introduced by Tran and Blaha [103] (TB) and by Räsänen,
Pittalis, and Proetto (RPP) [104]. These potentials are intro-
duced by modifying the Becke–Johnson exchange potential
[105] (approximating an exact Hartree-Fock exchange) and by
adding the LDA correlation by Perdew and Wang [93]. The
TB approximation provides high-quality results for various
types of solids and good agreement with experiments. This
approximation recovers the ground-state LDA approximation
for a constant electronic density. The RPP approximation is
designed to be exact for any single-electron system and to
reduce to the LDA level description in the limit of a constant
density. For example, the RPP approximation proved to be
very accurate for a hydrogen chain in an external electric field
[104].

We start our discussion of the results for warm dense hy-
drogen at a metallic density rs = 2. We consider the static KS
response function χKS(q), the static density response in the
RPA χRPA(q), and the static total density response function
χ (q). In Fig. 7, we analyze the relative deviation of χKS(q),
χRPA(q), and χ (q) from the LDA-based data for rs = 2 and
θ = 1. The results are presented for 14 and 20 particles in the
main cell. The relative deviation from the LDA based data is
computed as

�χKS(q)[%] = χKS(q) − χLDA
KS (q)

χLDA
KS (q)

× 100%, (20)

FIG. 7. The relative deviation from the LDA results of (a) the KS
response function, (b) the screened response on the level of RPA, and
(c) the total density response function from simulations using GGA
level PBE functional, meta-GGA-level TB, and RPP approximations
for warm dense hydrogen at rs = 2 and θ = 1.

where χLDA
KS (q) is the static KS response function calculated

using the LDA.
Similar expressions are used to evaluate the relative devi-

ations of χRPA(q) and χ (q) from corresponding LDA-based
results χLDA

RPA (q) and χLDA(q):

�χRPA(q)[%] = χRPA(q) − χLDA
RPA (q)

χLDA
RPA (q)

× 100% (21)

and

�χ (q)[%] = χ (q) − χLDA(q)

χLDA(q)
× 100%. (22)

Figure 7(a) shows that the PB- and TB-based data for
χKS(q) are in very close agreement to the χLDA

KS (q) with the
relative deviation smaller than 2% by absolute value. The
RPP-based results for χKS(q) have slightly larger disagree-
ment with χLDA

KS (q), which is in between 3% and −3%.
These disagreements are further diminished at q < 2qF due
to screening as one can see from Fig. 7(b), where the results
for the �χRPA(q) are presented. In χRPA(q), screening is taken
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FIG. 8. The deviation of the KS-DFT results from the exact
PIMC data for the static density response function of warm dense
hydrogen at rs = 2 and θ = 1.

into account using Eq. (7), which neglects the XC kernel.
Overall, we see that the results for χKS(q) as well as χRPA(q)
computed using different considered XC potentials are close
to each other. In fact, at rs = 2 and θ = 1, χKS(q) also has
close values to the Lindhard function derived using the ideal
electron gas model (see Fig. 2). This is in agreement with
previously discussed observation that at rs = 2 and θ = 1
electrons are strongly delocalized.

The results for the actual density response χ (q) of warm
dense hydrogen [cf. Eq. (11)] to an external field are presented
in Fig. 7(c). From Fig. 7(c), we see that the χ (q) computed
using the TB and RPP approximations significantly differs
from the LDA-based data at q > qF . It is also the case for
the PBE-based data for q > 2qF . This is in contrast to the
behavior of χKS(q) and χRPA(q), for which considered XC
potentials give nearly the same results. Another important ob-
servation from Fig. 7 is that the results computed using 14 and
20 particles exhibit a very similar behavior. This means that
the results computed at rs = 2 and θ = 1 using 14 particles in
the main cell are not affected by finite-size effects. This further
corroborates previous results presented in Refs. [34,68].

In Fig. 8, we analyze the quality of the considered approx-
imations by comparing to the exact PIMC data from Ref. [68]
for 14 particles in the main cell. The relative deviation of the
KS-DFT data from the PIMC results is computed as

�χDFT(q)[%] = χ (q) − χPIMC(q)

χPIMC(q)
× 100%, (23)

where χPIMC(q) is the density response function from the
PIMC simulations using the direct perturbation approach [68].

From Fig. 8, it is clear that the ground-state LDA provides
more accurate data for χ (q) compared to the PBE, TB, and
RPP.

In Fig. 9, we present the corresponding results for the
static XC kernel. In Fig. 9(a), we show the static XC kernel
computed self-consistently from the KS-DFT according to
Eq. (15). In Fig. 9(b), we present the static XC kernel ob-
tained using the exact χ (q) from the PIMC in Eq. (15). For
both cases, the χKS(q) is found from the KS-DFT simulations

FIG. 9. (a) Fully consistent static XC-kernel from KS-DFT sim-
ulations with different XC functionals. (b) Static XC-kernel extracted
using the PIMC data and KS-response function from KS-DFT sim-
ulations. Demonstration of the equivalence of the KS response
function from the harmonic perturbation technique and LR-TDDFT
calculations. The results are for warm dense hydrogen at rs = 2 and
θ = 1.

according to Eq. (13). The dashed red line in Fig. 9 represents
a quadratic dependence of the LFC G(q) in Eq. (8) (i.e., the
long-wavelength approximation) according to the compress-
ibility sum rule [34].

From Fig. 9(a), one can see that the PBE, TB, and RPP
results for the XC kernel converge to the LDA-based result
at small wave numbers q < 2qF and deviate with the in-
crease in the wave number at q > 2qF . At considered wave
numbers, the LDA-based data closely follows the quadratic
dependence. This is also the case for the PIMC-based XC
kernel at q < 2qF as one can see in Fig. 9(b). We observe that
the XC kernels computed at q < 2qF using the LDA, PBE,
TB, and RPP based χKS(q) are in a perfect agreement with
the long-wavelength approximation, i.e., they have a quadratic
dependence. However, these XC kernels show a strong devia-
tion from the quadratic dependence toward lower values with
the increase in the wave number at q > 2qF . Furthermore, if
one compares the position of the PBE-, TB-, and RPP-based
results relative to the dashed red line in Figs. 9(a) and 9(b),
we see that the corresponding XC kernel values deviate in dif-
ferent directions from the quadratic dependence in Figs. 9(a)
and Fig. 9(b). Overall, from comparing results in Figs. 9(a)

023089-10



LINEAR-RESPONSE TIME-DEPENDENT DENSITY … PHYSICAL REVIEW RESEARCH 5, 023089 (2023)

FIG. 10. Inaccuracy in the density response function due to an
inconsistent combination of the KS response function and the XC
kernel extracted from the PIMC data and an ideal reference function
without XC effects. The results are for warm dense hydrogen at
rs = 2 and θ = 1.

and 9(b), we conclude that the LDA, PBE, TB, and RPP give
accurate results for the XC kernel at q < 2qF . At q > 2qF ,
the PBE, TB, and RPP fail to describe the XC kernel not only
quantitatively, but also qualitatively.

Another interesting question is whether it is possible to
devise an universal XC kernel that can be used in the LR-
TDDFT in combination with χKS(q) to closely reproduce
exact data for the density response properties in a wide range
of parameters (temperatures, densities, and wave numbers).
Our analysis of the static density response function and XC
kernel indicates that there is no such universal XC kernel
for real materials. One of many reasons could be that χKS(q)
depends on the used approximation for the XC potential. We
observe it to a lesser extent at rs = 2 and to a greater extent at
rs = 4 (as we show in Sec. IV C), but it is always the case. In
other words, the XC effects are included into both χKS(q) and
Kxc(q). To mitigate this effect, we computed χKS(q) with the
XC functional set to zero. We denote the corresponding KS re-
sponse function as χNXC

KS (q) (with NXC standing for null XC).
We note that in this case we have noninteracting electrons in
an external field of ions. Then we use χNXC

KS (q) in combination
with the exact PIMC data for χ (q) in Eq. (15) to compute
Kxc(q). The computed XC kernel is then combined with the
χKS(q) computed using nonzero XC functional (the LDA,
PBE, TB, and RPP) to find the density response function χ (q)
using Eq. (19). We see from Fig. 10 that the deviation of the
χ (q) computed in this way from the exact PIMC data is a few
percent, but not zero. Thus, it does not reproduce the exact
PIMC results for χ (q). However, we note that the error in the
χ (q) in Fig. 10 is significantly smaller than deviations shown
in Fig. 8. This indicates that at rs = 2 and θ = 1, the χNXC

KS (q)
is a good universal reference function for the computation
of the XC kernel using the exact data for χ (q). We connect
this finding to the fact that at rs = 2 and θ = 1, the warm
dense hydrogen is nearly fully ionized and electron properties
are similar to that of free electron gas. Indeed, we show in
Sec. IV C that strong electronic localization around ions at

FIG. 11. (a) The KS response function, (b) the screened response
on the level of RPA, and (c) the total density response function from
simulations using LDA, PBE, and meta-GGA level TB and RPP
approximations for warm dense hydrogen at rs = 4 and θ = 1.

rs = 4 leads to a significant worsening of the χNXC
KS (q)-based

approach.

C. Static XC kernel for strongly correlated warm
dense hydrogen

Now we consider warm dense hydrogen at rs = 4 and θ =
1. At these parameters, we have a stronger electron-electron as
well as electron-ion coupling compared to the case with rs = 2
and θ = 1. The results for χKS(q), χRPA(q), and χ (q) are
presented in Fig. 11 (with 14 particles in the main cell). From
Fig. 11(a), one can see that there are strong disagreements be-
tween χKS(q) values computed using the LDA, PBE, TB, and
RPP at q < 3qF . For χRPA(q), these disagreements are some-
what alleviated due to screening, as we see from Fig. 11(b).
The results for the total density response function χ (q) are
presented in Fig. 11(c), where we provide a comparison with
the exact PIMC data. From Fig. 11(c), we see the LDA- and
PBE-based data have a similar quality compared to the exact
PIMC data. The TB-based data is slightly worse than LDA
and PBE. The results computed using RPP approximation
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FIG. 12. The deviation of the KS-DFT results from the exact
PIMC data for the static density response function of warm dense
hydrogen at rs = 4 and θ = 1.

show largest disagreement with the PIMC data. Overall, the
presented KS-DFT results have their largest deviation from
the PIMC data around 1.5qF < q < 2q.

We further quantify the difference between the KS-DFT
data and the PIMC results using �χDFT defined by Eq. (23).
The results for the relative difference �χDFT are presented in
Fig. 12. From Fig. 12, we observe that the LDA- and PBE-
based data have a similar quality with the largest deviation
about 7% at q � 0.845qF . The quality of the LDA- and PBE-
based data improves with the increase in the wave number
with a relative disagreement of a few percent at q � 2.5qF .
Compared to the LDA and PBE, the results computed us-
ing the TB and RPP approximations are significantly worse
and cannot be described as reliable at all considered wave
numbers.

Let us now consider the effect of the approximation used
for the XC potential on the χKS(q) and χRPA(q) in more detail.
We present the relative deviation of the χKS(q) and χRPA(q)
computed using the PBE, TB, and RPP compared to the LDA
based data in Figs. 13(a) and 13(b), respectively. For the
calculation of the relative deviations, we used Eqs. (20) and
(21). In Fig. 13, we show the results computed for both 20
and 14 particles in the main cell. We note that the values of
the RPP data points are reduced by a factor of 4 for a better
illustration of the results in Fig. 13. From Fig. 13, one can see
that the PBE- and LDA-based results for χKS(q) have a differ-
ence of about 5% at q < 2.5qF . This difference monotonically
reduces with the increase of the wave number at q > 2.5qF .
Similar behavior is observed from Fig. 13(b) for χRPA(q), but
with the magnitude of the difference significantly smaller due
to screening. The TB- and RPP-based results for χKS(q) and
χRPA(q) are in agreement with the LDA-based data only at
large wave numbers q > 3qF and drastically differ from the
LDA-based results at q < 3qF .

In Fig. 13(c), we present the relative deviation of the
total χ (q) obtained using the PBE, TB, and RPP approxi-
mations compared to the LDA-based results [computed using
Eq. (22)]. The first interesting observation is that χ (q) com-
puted using the TB is in good agreement with the LDA-based

FIG. 13. The relative deviation from the LDA results for (a) the
KS response function, (b) the screened response on the level of RPA,
and (c) the total density response function from simulations using
GGA-level PBE functional, meta-GGA level TB and RPP approxi-
mations for warm dense hydrogen at rs = 4 and θ = 1.

result at q < 2.5qF (with the difference �χ (q) � 2.5 %). This
is in contrast to the discussed relative differences for �χKS(q)
in Fig. 13(a). Additionally, the �χ (q) for the TB-based re-
sults increases with the increase in the wave number, while
�χKS(q) decreases. This clearly demonstrates that χKS(q)—
being an auxiliary quantity—should not be used to gauge
the quality of a particular XC functional upon comparing
with actual properties of a physical system. The PBE-based
data for �χ (q) show a good agreement with the LDA based
results (�χ (q) � 2.5%). Overall, the agreement between the
PBE-based χ (q) and the LDA-based χ (q) is better than for
χKS(q) and χRPA(q). From Fig. 13(c), we see that the RPP
approximation fails to describe the density response function
of the warm dense hydrogen at rs = 4 and θ = 1 with �χ (q)
reaching about 28%. These conclusions are valid for both data
sets with N = 14 and N = 20 particles in the main cell.

In Fig. 14, we show the results for the static XC kernel
at rs = 4 and θ = 1. In Fig. 14(a), we present the static
XC kernel computed self-consistently from the KS-DFT. In
Fig. 14(b), we present the static XC kernel calculated using
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FIG. 14. (a) Fully consistent static XC kernel from KS-DFT
simulations with different XC functionals. (b) Static XC-kernel ex-
tracted using the PIMC data and KS-response function from KS-DFT
simulations. Demonstration of the equivalence of the KS response
function from the harmonic perturbation technique and LR-TDDFT
calculations. The results are for warm dense hydrogen at rs = 4 and
θ = 1.

the PIMC data for χ (q). The dashed red line in Fig. 14 repre-
sents a quadratic dependence of the LFC G(q) corresponding
to the long-wavelength approximation.

From Fig. 14(a), we see that the PBE-based XC kernel is
well described by the quadratic curve at q < 4qF . The same
is the case for the LDA-based XC kernel at q � 2.5qF . The
TB and RPP-based XC kernels have significantly larger values
than the PBE and LDA based data at q > 2qF . All considered
XC kernels are in good agreement with each other at q < qF .

In Fig. 14(b), we show the XC kernel computed using the
PIMC data for χ (q). The PIMC XC kernel obtained using
the PBE-based χKS(q) has values close to the PBE-based XC
kernel from KS-DFT. This can be seen by comparing the PBE
data positions relative to the dashed red line in Figs. 14(a)
and 14(b). This is also the case for the LDA-based data. From
Fig. 14(b), we see that at q > 2qF , the PIMC XC kernel
computed using the TB-based χKS(q) has significant differ-
ences compared to the data computed using the LDA- and
PBE-based χKS(q). The PIMC XC kernel computed using the
TB-based χKS(q) is in good agreement with the PBE based
data at q < 2qF .

FIG. 15. Inaccuracy in the density response function due to an
inconsistent combination of the KS response function and the XC
kernel extracted from the PIMC data and an ideal reference function
without XC effects. The results are for warm dense hydrogen at
rs = 4 and θ = 1.

Let us now consider the performance of the XC kernel
computed using the PIMC data for χ (q) and setting χKS(q) =
χNXC

KS (q). As for the case with rs = 2, we use the resulting
static XC kernel in Eq. (19) to compute χ (q). The obtained
χ (q) is compared to the exact PIMC data for χ (q). The cor-
responding results are shown in Fig. 15. Comparing relative
deviation (error) values presented in Fig. 15 with Fig. 12, we
clearly see that the use of the χNXC

KS (q) as a reference function
for the extraction of the XC kernel from the PIMC data for
χ (q) leads to the significantly larger errors for the density
response function even compared to the purely KS-DFT based
XC kernel. It is clear that a strong localization of electrons
around protons invalidates the use of χNXC

KS (q) as a good
reference function.

D. The importance of a consistent KS response function
for the static XC kernel

The main goal of the paper is to show how to compute the
macroscopic KS response function that can be used together
with the χ (q) for the calculation of the static XC kernel and
that can be used for the calculation of χ (q, ω) consistently
within the adiabatic approximation, Eq. (19). The standard
way of introducing a macroscopic quantity in the LR-TDDFT
at a wave number q = k + G is by setting G = G′ [42]
(G = 0, if q is in the first Brillouin zone). This is known
to be valid for the dielectric function as we also confirm it
here independently using the method of direct perturbation.
However, setting G = G′ in a noninteracting density response
function χ0

M (q) = χ0
G,G(k, ω) does not give a correct macro-

scopic KS response function. One of our key findings is that
χKS(q, ω) �= χ0

M (q), where χKS(q, ω) is defined by Eq. (18)
or, equivalently, by Eq. (13). We have been able to show that
Eq. (18) provides a correct macroscopic KS response function
by using Eq. (13) within the direct perturbation approach.
Now we can demonstrate the effect of an inconsistent χ0

M (q)
on the extraction of the XC kernel from χ (q).
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FIG. 16. The XC kernels of warm dense hydrogen computed
using consistent and inconsistent KS response functions at (a) rs = 2
and (b) rs = 4 with θ = 1. We also show the exact UEG results based
on the neural-net representation of Ref. [75] (solid black line).

In Fig. 16, we compare the static XC kernels extracted
from the PIMC and KS-DFT data for χ (q) using χKS(q)
(a consistent macroscopic KS response function) and χ0

M (q)
(an inconsistent macroscopic KS response function). For the
KS-DFT data in Fig. 16, we used the LDA functional. From
Fig. 16(a), we see that at rs = 2 and θ = 1, the χKS(q)− and
χ0

M (q)-based data are in agreement with each other at q < 2qF

and significantly differ from each other at q > 2qF . At rs = 4
and θ = 1, we see from Fig. 16(b) that the χKS(q)- and χ0

M (q)-
based results for the XC kernel differ not only quantitatively,
but also qualitatively. Indeed, the χKS(q)-based XC kernel is
always positive, while the XC kernel computed using χ0

M (q)
has negative values. This qualitative disagreement was inter-
preted in Ref. [68] as a failure of the adiabatic LDA. Here we
show that it is in fact not the failure of the adiabatic LDA, but
caused by the use of the χ0

M (q) = χ0
G,G(k, ω) as a macroscopic

KS response function in Eq. (15).

V. CONCLUSIONS AND OUTLOOK

Recently, with the focus on disordered systems, Mold-
abekov et al. [34] have introduced the direct perturbation-
based method for the computation of the static XC kernel for
any available XC functional. Here we show how this static
XC kernel can be used for the LR-TDDFT calculations of

the dynamic density response function χ (q, ω) within the
adiabatic approximation [represented by Eq. (19) and Fig. 1].
The main point is to use a proper and consistent macroscopic
KS response function as introduced by Eq. (18). We reiterate
that the presented adiabatic approximation for χ (q, ω) has full
consistency between the XC functional used for the computa-
tion of the XC kernel and for the KS response function. We
have demonstrated how the inconsistent combination of the
KS response function and XC kernel can lead to quantita-
tively and even qualitatively wrong results. Additionally, we
conclude from the performed analysis that the existence of a
universal static XC kernel that works for different parameters
is highly unlikely. Instead, one has to use a state and material-
specific static XC kernel, which can be computed using the
direct perturbation approach.

Furthermore, we have studied in detail the effect of the
approximations made to the XC potential on the density re-
sponse function and XC kernel of warm dense hydrogen. We
demonstrated (a) the application of the presented scheme for
a static XC kernel that is self-consistent with the reference
KS response function, (b) the role of this self-consistency in
the description of the static density response function, (c) the
analysis of the static density response function using the exact
PIMC data for warm dense hydrogen, and (d) the role of the
variation in XC functional on the macroscopic KS response
function and XC kernel.

We found that at θ = 1, the TR and RPP meta-GGA-level
approximations perform worse than the ground-state LDA
and PBE functionals. Together with the prior finding of in-
efficiency of the meta-GGA level SCAN functional at WDM
conditions [34], the problems of the TP and RPP for partially
degenerate electrons indicate that the standard recipe for the
construction of the XC functionals starting on the basis of the
LDA does not lead to a better description of WDM. Indeed,
even at the LDA level, an explicit inclusion of the temperature
dependence into the XC functional leads to a worsening of the
KS-DFT result quality at WDM conditions [34]. Therefore, it
is clear that XC functional development for the WDM regime
requires new innovative approaches. For example, it was re-
cently shown that PBE0-type hybrid-level functionals, mixing
exact Hartree-Fock exchange with the PBE exchange, can pro-
vide a good description of the UEG at WDM parameters if a
mixing coefficient is chosen to reproduce the XC kernel of the
UEG [51,52]. Now, using the consistent approach presented
in this paper, this analysis of the PBE0-type hybrid-level
functional can be extended to real materials like warm dense
hydrogen.

An important possible application of the presented consis-
tent adiabatic approximation for χ (q, ω) is the analysis and
modeling of the XRTS measurements from WDM [106,107].
This is possible since the knowledge of χ (q, ω) gives
one straightforward access to the dynamic structure factor
See(q, ω) of electrons via the fluctuation-dissipation theorem
[47]. Besides, the knowledge of χ (q, ω) is equivalent to the
knowledge of the dynamical dielectric function ε(q, ω), which
in turn can be used for the calculation of transport properties
like electrical conductivity [32] and stopping power [108].

Finally, we note that a consistent static XC kernel is needed
for various other applications such as the construction of ef-
fective potentials [47,109–111] for quantum hydrodynamics
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[112–116] and plasmonics [117] and the for computation of
the energy loss characteristics of high-energy density plasmas
[118–120].
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