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Quantum imaginary-time control for accelerating the ground-state preparation
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Quantum computers have been widely speculated to offer significant advantages in obtaining the ground state
of difficult Hamiltonian in chemistry and physics. In this work, we first propose a Lyapunov control-inspired
strategy to accelerate the well-established imaginary-time method for ground-state preparation. We also dig for
the source of acceleration of the imaginary-time process under Lyapunov control with theoretical understanding
and dynamic process visualization. To make the method accessible in the noisy intermediate-scale quantum
era, we further propose a variational form of the algorithm that could work with shallow quantum circuits.
Through numerical experiments on a broad spectrum of realistic models, including molecular systems, 2D
Heisenberg models, and Sherrington-Kirkpatrick models, we show that imaginary-time control may substantially
accelerate the imaginary-time evolution for all systems and even generate orders of magnitude acceleration
(suggesting order-of-magnitude acceleration) for challenging molecular Hamiltonians involving small energy
gaps as impressive special cases. Finally, with a proper selection of the control Hamiltonian, the new variational
quantum algorithm does not incur additional measurement costs compared to the original variational quantum
imaginary-time algorithm.
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I. INTRODUCTION

Quantum computing holds great promise to accelerate
essential computational tasks in many fields, such as cryp-
tography, finance, chemistry, material science, and machine
learning [1–4]. Particularly, using a quantum computer to
solve chemical problems is deemed one of the most promis-
ing areas to first witness a practical quantum advantage
[4] against classical algorithms. For instance, many ef-
forts have been invested in devising efficient algorithms for
finding the ground state of molecular Hamiltonians. Some
of the major approaches [5] include variational quantum
eigensolver (VQE) [6–9], quantum phase estimation (QPE)
[10–13], quantum imaginary-time evolution (QITE) [14–18],
and quantum power iteration method [19,20].

Among these approaches, variational algorithms have at-
tracted much recent attention with their potential to prepare
the ground state of a complex Hamiltonian with a shal-
low quantum circuit in the noisy intermediate-scale quantum
(NISQ) era. However, the hybrid quantum-classical opti-
mization loop of the variational algorithms has soon been
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pointed out to suffer a few prominent technical challenges.
More specifically, the classical optimization not only faces a
plethora of local minima but also may encounter notorious
barren plateau [21–25] on the energy landscape. One possible
scheme to mitigate this challenge is to simulate the QITE
with the time-dependent variational principle. The variational
simulation of the QITE avoids a deep quantum circuit and
principally alleviates issues with optimizations, such as the
barren plateau and local minimums [16].

Apart from the QITE, another common strategy to prepare
a ground state by utilizing the time-dependent Schrodinger’s
function is adiabatic evolution in the real-time domain. Going
beyond the adiabatic regime, the theory of optimal quantum
control [26–29] provides a general tool and foundation for
designing pulses to drive the desired state transitions in a
finite time and in the presence of other constraints. Recently,
the theory of Lyapunov quantum control has been used, in
the context of hybrid quantum-classical algorithms, to solve
classical optimization problems [30]. Under this formulation,
one encodes the solutions to an optimization problem as
the ground states of a classical spin system. To prepare a
ground state, one temporally modulates the structural form
of a Hamiltonian, via pulse engineering, in order to achieve
the desired state-to-state transition. With the Lyapunov con-
trol theory, one can simply use the system’s energy as the
Lyapunov function to guide pulse engineering. Through our
demonstrative examples below, the control-theory-inspired
variational methods clearly exhibit faster convergence as well
as enhanced robustness against noises compared to the stan-
dard VQE. Despite these encouraging instances, real-time
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quantum control has hardly been regarded as a practical ap-
proach to prepare the ground state of strongly correlated
many-body systems, because real-time control requires a care-
ful analysis of the controllability of a given setup which is
prohibitive to perform for complex systems [31,32]. Without
full controllability, one cannot successfully steer a quantum
system toward a target state as illustrated in our numerical
example presented later in the text.

Using a temporally modulated Hamiltonian to steer many-
body quantum dynamics is not restricted to the real-time
domain. In fact, an extensive body of literature proposed quan-
tum simulation methods involving complex time variables.
Specifically, there is found that a QITE under the alternating
influences of two different Hamiltonians may accelerate the
convergence of the ground-state preparation problems [17].
The combination of interesting observations on the acceler-
ated convergence of an open-loop control of a many-body
QITE and the real-time control-based variational methods for
shallow quantum circuits provoke more thoughts on whether
one can efficiently prepare ground states based on a close-loop
control theory for shallow parametrized quantum circuits in
the imaginary-time domain.

We propose an imaginary-time Lyapunov control theory
for ground-state preparation in this work. First, we theo-
retically discuss how steered Hamiltonian can speed up the
ground state convergence. Then, we show a proper QITC can
converge to the ground state faster than a QITE. For small-
gap systems [33] such as examples on molecules reported
in this work, we showcase that a QITC can even converge
orders of magnitude faster than the standard QITE, suggesting
an order-of-magnitude acceleration. Secondly, we discuss the
essential differences between the real- and imaginary-time
control theory. For the ground-state preparations, the quantum
imaginary-time control (QITC) generally admits more lenient
conditions on selecting control Hamiltonian to facilitate a
given state transition. Thirdly, to make this method compatible
with the limitation of the NISQ hardware, we formulate a
time-dependent variational simulation of the QITC. Hence,
one derives a new set of equations for time-dependent updates
of parameters for an ansatz circuit. Finally, we test various
systems like the diatomic molecules, 2D Heisenberg model,
Sherrington-Kirkpatrick model, and a spin model constructed
from a 3-SAT annealing problem [34] to ensure the existence
of the speedup is general among many different cases. In
addition, through numerical examples, we also demonstrate
that the newly proposed variational version of the QITC not
only converges faster than the standard variational QITE but
also manifests higher robustness against noises of moderate
strength. With a properly chosen set of control Hamiltonians,
the variational simulation of the QITC does not incur many
measurement overheads. For instance, if one chooses Hd that
commutes with the constituting Pauli terms in Hp, then one
can significantly minimize the number of measurement over-
heads.

II. THEORETICAL MOTIVATION

A time-dependent Hamiltonian in the imaginary-time do-
main is given by

dψ (τ )

dτ
= −(Hp − Eτ )ψ (τ ), (1)

where ψ (τ ) is the system’s state vector, Hp is the prob-
lem Hamiltonian, and Eτ = 〈ψ (τ )|Hp|ψ (τ )〉 is the state’s
expected energy, and it is introduced in Eq. (1) to ensure the
time-evolved wave function will be properly normalized. By
eigendecomposion, we can write the problem Hamiltonian
Hp as Hp = U�U †, where U is a unitary matrix and � =
diag(λ0, . . . , λn) is a diagonal matrix where λ0 � λ1 � · · · �
λn. Consider an additional Hamiltonian Hd that commutes
with Hp and follows the same ordering of eigenstate in energy
then,

Hd = UDU †, (2)

where D = diag(e0, . . . , en) is a diagonal matrix with e0 �
e1 � · · · � en. The energy difference between the ground
state and the ith eigenstate will change from �i0 = λi − λ0

to �̃i0 = �i0 + (ei − e0). Since the extra contribution to the
energy gap δi0 = ei − e0 > 0 for all δi0, the imaginary-time
evolution under Hp + Hd will then be greatly accelerated
[proportional to exp(δi0)] in comparison to the time evolution
under Hp alone. Through simple arguments, we illustrate a
sufficient (but not necessary) condition that may yield the
ideally great speedup on the imaginary-time evolution by
imposing an additional Hamiltonian Hd that commutes with
Hp and preserve the ordering of eigenstates of Hp by energy.
Even though it is computationally prohibitive to construct
Hd when the Hilbert space is large [19], the revelation in
this theoretical analysis provides a clear direction to proceed.
We carefully discuss a series of practical approximations at-
tempting to gain speedup in the imaginary-time evolution. For
all the simulation experiments in the paper, the construction
of control Hamiltonian follows the approximation methods.
We also denote that following the control strategy involving
maximum admissible control impulses assists to ensure the
substantial acceleration effect.

III. QUANTUM IMAGINARY TIME CONTROL

A quantum system’s dynamical evolution under a time-
dependent Hamiltonian in the imaginary-time domain is given
by the modified time-dependent Schrodinger’s equation,

dψ (τ )

dτ
= −(Hp + β(τ )Hd − Eτ )ψ (τ ), (3)

where ψ (τ ) is the system’s state vector, Hp is the prob-
lem Hamiltonian, and Hd is the control Hamiltonian
coupled to a time-dependent control pulse β(τ ). Eτ =
〈ψ (τ )|(Hp + β(τ )Hd )|ψ (τ )〉 is the state’s expected energy,
and it is introduced in Eq. (3) to ensure the time-evolved wave
function will be properly normalized. According to the Lya-
punov method and La Salle invariance principle [35], the state
preparation problem can be re-formulated as an optimization
problem in which the target state minimizes a Lyapunov func-
tion V (ψ (τ )), which must satisfy the following conditions.
Consider a system of differential equations ψ̇ (τ ) = f (ψ (τ ))
with a smooth f and the state of the system satisfies the con-
servation of probability ||ψ (τ )|| = 1,∀τ � 0, which means
that ψ is on the unit sphere S = {x ∈ Cn : ||x|| = 1}. Consider
a smooth function V (ψ ) on the phase space 	, such that
V (ψ ) � 0 and dV (ψ )

dτ
� 0 for ψ ∈ 	. Let us define M to be

the set of points ψ ∈ 	 such that dV (ψ )/dτ = 0, then every
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FIG. 1. (a) A temporally modulated Hamiltonian to steer many-body quantum dynamics. (b) The QITE gets slowed down significantly
when the current state is the combination of many low-energy eigenstates. (c) The H-chain results for even hydrogens that are scaled from
H2 to H8. The dots of different colors indicate the total convergence steps of QITE and QITC in different systems, and lines of different
colors indicate that the fitted curves of QITE satisfy f (x) = aex + b, where x = log(1/�E ). On the other hand, the QITC results yielded
f (x) = ax + b. (See the details in Appendix B1.) (d) The numerical results of four qubits H2 molecule with bond length 0.74 and 100 random
initial state, the x axis is the case number we assign for randomly chosen initial points, the left y axis is the number of convergence, and the
right y axis is the state fidelity between the initial state and ground state. The control Hamiltonian used here is single Pauli Z.

solution of the time-dependent Schrodinger’s equation con-
verges to M as t → ∞.

For the preparation of the ground state of a Hamiltonian,
the Lyapunov function can be chosen as follows:

V (ψ (τ )) = 〈ψ (τ )|P|ψ (τ )〉, (4)

where P = Hp − Ẽ with Ẽ a constant shift of energy to ensure
that P is a semipositive definite Hermitian operator [36]. The
time derivative of the Lyapunov function in Eq. (4) reads

V̇ (ψ ) = 2σ 2
Hp

(τ ) − β(τ )D(τ ), (5)

where ψ is an abbreviation for ψ (τ ). The other variables are
given by

σ 2
Hp

(τ ) ≡ 〈ψ |Hp|ψ〉2 − 〈
ψ |H2

p |ψ 〉
,

T (τ ) ≡ 〈ψ |{Hp, Hd}|ψ〉 − 2〈ψ |Hp|ψ〉〈ψ |Hd |ψ〉, (6)

where {·, ·} is the anticommutator. In this case, the Lyapunov-
controlled quantum dynamics will be driven to the asymptot-
ically stable points, which form the ground-state manifold, in
M. To make V̇ (ψ ) � 0, it is sufficient to enforce β(τ )T (τ ) �

0 as σ 2
Hp

(τ ) is less than or equal to zero. In summary, a suc-
cessful imaginary-time control to prepare the ground state of a
Hamiltonian is to design an appropriate β(τ ) and suitable Hd

(see Appendix A). For this work, we proposed some control
strategies (see Method) that are inspired by the bang-bang and
approximate bang-bang Lyapunov control that can provide
rapid state transitions for quantum systems in the real-time
domain [37].

A. Comparison to imaginary-time evolution

We find that QITE gets slowed down significantly when
the current state is mainly a superposition of many densely
spaced low-energy eigenstates Fig. 1(b). For the original Hp

the energy gap between the ground state and the first ex-
cited state remains fixed and limits the simulation efficiency.
Consistent with the theoretical motivation stated before, we
find that the QITC temporally modulates the entire spectrum
of H (τ ) during the evolution and finally returns back to the
original spectrum of Hp. Those temporally enlarged energy
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gaps contribute to the acceleration of the simulation process,
see Fig. 1(a)

In Fig. 1(c), we present the results of ground-state prepa-
ration, it shows that the QITC provides orders of magnitude
speedup (suggesting order-of-magnitude acceleration) in the
rate of convergence with respect to the intra-molecular dis-
tance. Note that the �10 energy gap reduces when the
intra-molecular distance grows. This observed scaling trend
certainly benefits the simulation of large complex systems
with small energy gaps. To ensure this observed significant
speedup holds in a variety of chemical systems, we provide
simulation results of four, eight, twelve, and sixteen-qubit
hydrogen chains, a twelve-qubit LiH, and HF in the following
section. In Fig. 1(d), we illustrate the enhanced convergence
efficiency for the QITC with different initial states. These
results also indicate that the convergence of the QITC does
not sensitively depend on the initial states.

B. Comparison to the real-time control
for the ground-state preparation

An essential question for a driven state preparation con-
cerns the controllability for the given control Hamiltonians
{H0

d , H1
d , . . .}, i.e., whether the quantum system can be driven

to the ground state of Hp from any given initial state when
it is subjected to evolve under the time-dependent Hamil-
tonian H (τ ) = Hp + β(τ )Hd in our context, where Hd =∑

i β
i(τ )Hi

d . Without loss of generality, we write β(τ )Hd as
opposed to the more general form

∑
i β

i(τ )Hi
d throughout

this work. This simple question for real-time control turns
out to be rather difficult to answer for a large quantum sys-
tem. A common technique involves analysis of the structure
and rank of corresponding Lie groups and algebra for the
propagators [38–40]. It is computationally demanding to de-
termine the controllability of a particular setup, and it is
unlikely that a random selection of control Hamiltonians can
guarantee complete controllability. The challenge to select
an appropriate set of control Hamiltonians (with respect to
a given initial state) poses a severe challenge to derive a
practical real-time control strategy to prepare a target ground
state.

The same question regarding controllability admits a much
clearer answer in the imaginary-time domain. As long as
the imaginary-time-evolved state ψ (τ ) and the ground state
have a nonzero overlap, the system can always converge to
the ground state in a sufficiently long evolution time. Hence, a
more crucial question is whether a set of control Hamiltonians
along with the corresponding control strategy β(τ ) [i.e., to en-
sure V̇ (ψ ) � 0] can substantially accelerate the driving from
a given initial state to the ground state of Hp. As discussed
next, the imaginary-time Lyapunov control can indeed work
with a broader range of control Hamiltonians for accelerating
the ground-state preparations.

We further illustrate the differences between real-time and
imaginary-time Lyapunov control with a numerical exam-
ple involving H2 molecule in Fig. 2. We randomly choose
100 initial states and examine how long the real-time and
imaginary-time evolutions converge to the ground state under
control Hamiltonians with various degrees of controllability.
When the control Hamiltonian satisfies the strongly complete

FIG. 2. The numerical result of 2 qubits H2 molecule (see Ap-
pendix D), the x axis is a serial number of initial states, the left
y axis is the convergent steps, the maximum number of steps is
limited to 1000, and the right y axis(corresponding to the grey area)
is the initial and ground state overlap. The complete imaginary-time
control (completely ITC (red)], the noncompletely imaginary-time
control (noncompletely ITC (blue)], and the complete real-time con-
trol [completely RTC (green)] could all converge in time. However,
the noncompletely real-time control [noncompletely RTC (yellow)]
cannot converge in a limited time.

controllability [41], we expect that the driven dynamics
converge to the ground state without difficulty. While this
expectation holds in the numerical experiments, we find
the imaginary-time evolution converges much faster (with
roughly one-tenth of the time steps for the real-time evolution
on average). We expect this performance gap to be further
enlarged with the system size. For control Hamiltonians with
incomplete controllability, the imaginary-time control can still
lead to satisfactory convergence in a small number of time
steps. In contrast, the real-time simulation under the same
control Hamiltonians cannot converge for all 100 initial states
in the predefined maximum number of steps allowed.

C. Comparing QITC and VQE in noisy environment

To make the method accessible in the noisy intermediate-
scale quantum era, we further propose a variational form of
the algorithm that could work with shallow quantum circuits.
To utilize the proposed imaginary-time control to prepare
a ground state on a near-term quantum device, we rely on
the time-dependent variational principle to approximate the
evolution of the QITC as sequential updates of parameters for
an ansatz circuit, as first proposed by McArdle et al. [16],
for the QITE. The modified algorithm proceeds as follows.
Given a time-dependent Hamiltonian H (τ ) = Hp + β(τ )Hd ,
we would invoke the the McLachlan’s variational principle
[42,43],

δ||(∂/∂τ + H (τ ) − Eτ )|ψ (τ )〉|| = 0, (7)

which conducting the dynamic evolution ∂|ψ (τ )〉/∂τ =
−[H (τ ) − Eτ ]|ψ (τ )〉 by deducing the incremental update
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FIG. 3. The numerical results of four-qubit hydrogen molecule
(see Appendix D) with a bond length of 0.74 Å on the noisy device.
The x axis is imaginary time with a single time step �τ = 0.1 and the
total time step is 50. The y axis is the energy difference from ground-
state energy. The solid line is the result of the numerical noise-free
model (the black line is chemical accuracy). The numerical noisy
model is simulated by adding the single qubit depolarization error
channels with parameter λ = 10−4 and the CNOT depolarization
error channels with parameter λ = 10−5 (we use TENSORCIRCUIT

[44] to effectively get this result). The dashed line is the mean value
of 50 noisy results, and the error bar is bounded by the worst and
best simulation results. The control strategy used in this simulation
is approximately bang-bang control with S = 0.3 and γ = 5.

(corresponding to one time step δτ ) of the parameters θ for
an ansatz circuit. Following Ref. [16], we need to solve the
following equations: ∑

j

Ai j θ̇ j = Ci,∀i; (8)

where

Ai j = 	
(

∂〈φ(τ )|
∂θi

∂|φ(τ )〉
∂θ j

)
,

Ci = 	
(

−
∑

α

λα

∂〈φ(τ )|
∂θi

hα|φ(τ )〉
)

, (9)

and hα and λα are the Pauli terms and coefficients of
the Hamiltonian H = Hp + β(τ )Hd = ∑

α λα (τ )hα . With the
new ansatz state, we can then evaluate the Lyapunov func-
tion and assign values to the pulse β(τ ) via a predetermined
control rule to keep V̇ (ψ ) < 0. The procedure of alternating
updates of θ and β is then repeated until a fixed point is
reached. In this section, we compare the simulation ability
of VQE, variational imaginary-time evolution, and variational
imaginary-time control. In Fig. 3, we compare the results
among the VQE, the variational ansatz-based QITE, and the
variational ansatz-based QITC for the ground-state prepara-
tion of a four-qubit H2 system under both noise-free and
noisy situations. We adopt the fully connected ansatz with
high expressibility [45] initialized by the same random initial
parameters for all the methods. The results show that the
QITC converges faster than the QITE and the VQE for both
the noisy and noise-free models. The control Hamiltonian we

TABLE I. The result of 2D Heisenberg model. The (2×2)D is the
“difficult” regime in the space of Hamiltonian parameters case where
QITE required a great number of steps to converge. All the control
Hamiltonians are in the structure of simple Pauli Z with the cyclic
structure mentioned above and we only write down the nontrivial
part of Pauli in the table. For example, the ZIZ in the 22 model is the
abbreviation of ZIZIIIIII. The number of control steps for all cases is
100 steps.

Model (1×1) (2×2) (3×3) (2×2)D

h/J 0.1/0.09 0.1/0.09 0.1/0.09 0.2/0.1
QITE total time step 366 764 5963 28 934
QITC total time step 130 253 1137 182
Difference 236 511 4826 28752
Ratio 2.82 3.02 5.24 158.98
Control ZIIZ ZIIZ ZIIZ ZIIZ
Hamiltonian (Hd ) ZIZ ZZZ ZZZ
Number of Hd 4 18 32 18

using here is the single Z and double Z selected from the
hydrogen Hamiltonian Hp.

IV. EXAMPLES BEYOND H CHAINS

First, we simulate two diatomic molecules HF and LiH
to test the speedup from the control in molecule systems. In
Figs. 4(a) and 4(b), we show that both the HF and LiH using
the same control Hamiltonian used in the H-chain system
can obtain order-of-magnitude speedup. Second, we consider
a spin model constructed from the annealing solving of an
11-qubit 3-SAT problem during the linear schedule, see H (s)
defined in Appendix B3. We then implement and compare the
simulations of the ITC and the ITE in order to prepare the
ground states for a series of H (s) chosen along the adiabatic
path. According to the simulation result in Fig. 4(c), we nu-
merically verify the speed-up of the ITC as the instantaneous
energy gap �E (s) shrinks. Third, we demonstrate the 2D
Heisenberg model (see Hamiltonian details in the Method
section) with different system sizes using control Hamiltonian
constructed only by Pauli Z up to cube order. As we can
see from the results in Table I, Lypapunov control provides
obvious speed-up while the system size scales up. The (2×2)D

case also indicates the existence of great speed-up using sim-
ple control Hamiltonian Pauli Z.

Finally, we simulate a four-qubit variational-ansatz based
imaginary-time evolution of the spin glass model (see Hamil-
tonian details in the Method section) in Fig. 5 with random
variables Ji j = (0.049, 0.215, 0.103, 0.045,−0.076, 0.146),
the energy difference between the ground state and first ex-
cited state �10, in this case, is 0.22 which is not small
compared to the result of our molecule models. Although
the QITE can work fine with such �10, it is still difficult
to find a good initial state for a complex system like this
SK model. To prepare a better initial state, we use VQE
with COBYLA optimizer and variational QITC with com-
mute basis Hd = {XXXX,YYYY, ZZZZ} at the first ten steps,
respectively. After the initial state preparation, we use varia-
tional imaginary-time evolution to evolve to the ground state
given these two initial states. It can be seen that compared
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FIG. 4. (a) The numerical result of 12 qubits HF molecule (see Appendix D) with bond length from 1.00 to 2.36 Å and the same initial state
with equal superposition of all the basis states, the QITE is the result of imaginary-time evolution. The QITC is the result of the imaginary-time
control, the x axis refers to the log of one over the energy gap between the ground state and the first excited state, and the y axis is the total
time step. QITE fitted curve f (x) = 248.67 exp(x) + 126.12 and QITC fitted curve f (x) = 12.80x + 110.09, where x = ln(1/�E ). (b) The
numerical result of 12 qubits LiH molecule (see Appendix D) with bond length from 2.00 to 4.00. The x axis is log of one over energy gap
between the ground state and the first excited state. The y axis is the total time steps of the QITE and QITC. QITE fitted function f (x) =
71.60 exp(x) + 154.96 and QITC fitted curve f (x) = 125.31x − 108.81, where x = ln(1/�E ). (c) The result of 3-SAT quantum annealing
problem (see Appendix B). The x axis is the one over the energy gap between the ground state and the first excited state. The y axis is the
converge steps difference between the QITE and QITC.

with the VQE initial state, the control initial state can achieve
higher accuracy under the same number of convergence steps.
The details and more discussion of the models are presented
in Appendix B.

V. RESOURCE CONSUMPTION
FOR SCALING H-CHAIN SYSTEM

So far, we have only discussed the conceptual advantage of
our method (i.e., faster convergence towards the ground state).
As we propose this method in the context of digital quantum
simulation on a quantum computer, we further analyze how
our method helps to reduce the consumption of quantum
resources. Here we present the number of measurements for
H2, H4, H6 and H8 (i.e., 4, 8, 12, and 16 qubits)). In Fig. 6,
we summarize this reduction in the number of measurements

FIG. 5. The result of 4 qubits SK model with different initial-
ization. The x axis is the number of time steps and the y axis is
the energy difference from the ground state. The control initial can
achieve chemical accuracy around three times faster than the VQE
initial with a smoother convergence path.

with different choices of Hd (see Appendix B for details):
The Full Hd with the same 1/�E (blue bar), the Half Hd

with same 1/�E (orange bar), the Full Hd with the same
bond length(green bar) and the Half Hd with the same bond
length(red bar). The result shows that all of them give some
polynomial reductions in the number of measurements, com-
pared to the standard variational ansatz-based imaginary-time
evolution. This is because the extra measurement numbers
from Hd , Hp are relatively small in comparison to the vari-
ational ansatz update measurements, which scales as NpNθ ,
where Np is the number of Pauli terms of Hp and Nθ is
the number of the parameter in the ansatz circuit (we used

FIG. 6. Total measurement difference results. The results are the
estimation of the difference in total measurements for imaginary-
time evolution and imaginary-time control convergence, the calcula-
tion details are listed in Table II. The x axis is the number of H in the
system and the y axis is the log plot of the measurement reduction.
The full Hd and half Hd are listed in Appendix B.
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TABLE II. Summary of Measurement test, where Np is the number of Pauli terms of problem Hamiltonian Hp (here we use Jordan-Wigner
transformation), Nθ is the number of parameters in the ansatz circuit (here we use k-UpCCGSD) and NpNθ is the number of measurement to
update the variational-ansatz based imaginary-time evolution. {Hp, Hd} is the extra measurement for update control Hamiltonian coefficient
β(τ ) and �Step are the total time step difference between imaginary-time evolution and imaginary-time control. The �Step f and �Steph are
the total time step difference using Full Hd control and Half Hd control for same bond length case.

Full Hd Half Hd Same bond length

Np Nθ k-UpCCGSD NpNθ {Hd , Hp} �Step {Hd , Hp} �Step �Step f �Steph

H2 15 6 (k = 1) 90 5 381 5 327 554 473
H4 185 72 (k = 2) 13 320 1006 555 577 449 872 771
H6 919 270 (k = 3) 248 130 16 627 572 8804 399 1098 991
H8 2913 672 (k = 4) 1 957 536 112 396 544 57 966 377 1804 1712

k-UpCCGSD from PennyLane for the reference). In Table II,
we show the Np, Nθ , and extra measurements for different
Hd . Thus according to Fig. 6, for the molecules tested in this
study, we find the measurement resource reduction increases
polynomially with the system size.

VI. THE IMAGINARY TIME CONTROL STRATEGY

In this section, we will discuss the approximate bang-
bang control and bang-bang control laws we use to design
the β(τ ) for imaginary-time control and the inverse control
strategy we used to accelerate our molecule system ground
state convergence. To appreciate our approach, we first review
some typical real-time control strategies designed to guarantee
V̇ � 0. Following a standard convention [37], we refer to the
following choice as the standard Lyapunov control:

βk (t ) = −KkTk (t ),

where βk (t ) is an external real-valued control field, K > 0 is
the control gain used to adjust the amplitude of the control
field, and Tk (t ) ≡ (〈ψ |i[Hd , Hp]|ψ〉 for the real-time control.
Another commonly used strategy is the bang-bang Lyapunov
control,

βk (t ) =
⎧⎨
⎩

−S, (Tk > 0)
S, (Tk < 0) k = 1, . . . , m,

0, (Tk = 0)

where S > 0 is the maximum strength of the control field. In
order to achieve a good trade-off between convergence and the
rapidity of control, Kuang et al. [37] propose an approximate
bang-bang control as follows:

βk (t ) = 2S

1 + e−γ Tk
− S.

where γ > 0 is a parameter used to adjust the hardness of the
control strategy. For the imaginary-time control strategy, let
us generalize the standard Lyapunov control such that it could
work with the imaginary-time evolution. We redefine Tk ≡
2〈ψ |Hp|ψ〉〈ψ |Hd |ψ〉 − 〈ψ |{Hp, Hd}|ψ〉 in this case. The Hd

related terms in Tk (τ ) may entail lots of extra measurements if
they cannot be obtained by measuring the Pauli terms appear-
ing in 〈ψ |Hp|ψ〉. To reduce the measurement cost and still
maintain a powerful Hd to provide an enhanced convergence,
we propose the following strategy. We first decide if the state
in the quantum circuit has high overlap with any eigenstate of

Hp or Hd by checking the value of Tk , if Tk < L then we do not
apply any control pulses, otherwise we use a similar control
strategy for the real-time case introduced above.

βk (τ ) =
{

2S
1+e−γ Tk

− S, Tk � L

0, else
,

where L is some predefined threshold value. If the state is
close to an eigenstate [i.e., Tk (τ ) < L], we should turn off
the control field and let the system evolves under Hp in the
imaginary-time domain. This truncation can greatly reduce
the measurement costs (for the implementation of the corre-
sponding variational algorithm) in the region where the state
will linearly converge to the eigenstate. Finally, we test how
the truncation [i.e., setting βk (τ ) = 0 when Tk (τ ) < L] will
affect the precision of the converged results given by trun-
cating the control pulse, and we also test the control with
different phases in Appendix C.

VII. DISCUSSION

In summary, we propose to utilize the imaginary-time
Lyapunov control to prepare ground states and explain the
advantages of QITC. First, imaginary-time control can speed
up imaginary-time evolution with the proper design of control
Hamiltonian and control function β(τ ). Through numerical
experiments on a broad spectrum of realistic models, we
show that compared to standard imaginary-time evolution,
imaginary-time control provides substantial speed-up for all
systems. And for the selected small-gap systems invested in
this work, an order-of-magnitude speedup is observed. Sec-
ondly, compared to real-time control, imaginary-time control
admits more relaxed conditions for controllability (when the
target is the ground state) and a broader range of control
Hamiltonians to facilitate the desired state transitions in a
finite time. Thirdly, to make the present method accessible in
the NISQ era, we propose a variational simulation of the QITC
with an ansatz circuit. Finally, we show various examples to
strengthen the speedup from QITC. We also show that when
the control Hamiltonian is chosen appropriately, it does not
incur many additional measurement costs and exhibits higher
robustness against noises. These merits make the present ap-
proach a natural replacement for the variational ground-state
preparation. For future work, we aim to study imaginary-time
control for other challenging state preparation tasks, such as
excited states simulation and Gibbs state preparation, etc.
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APPENDIX A: ACCELERATION INDUCED
BY LYAPUNOV CONTROL

In this section, we explain the simulation acceleration
driven by Lyapunov control in multiple stages. First, we dis-
cuss a practical strategy to construct a control Hamiltonian
(without explicitly diagonalizing the system Hamiltonian) that
ensures substantial speedup in Sec. A 1. Second, we attempt
to provide an intuitive understanding of the accelerated dy-
namical process by inspecting time-dependent changes in the
distribution of eigenstate populations and the time-evolved
energy spectrum of H (τ ) in Sec. A 2. In Sec. B, we look
at a broad spectrum of realistic models (of interest in con-
densed matter physics, quantum chemistry, and combinatorial
optimization) to demonstrate the broad applicability of the
proposed method for simulating the ground state of a Hamil-
tonian.

1. General strategy for control Hamiltonian construction

As stated in the previous section, one scenario to drive the
ideally-great speedup is to construct an Hd that (1) commutes
with Hp, (2) maintains the eigenstate ordering of Hp and (3)
holds the matrix norm for Hp + Hd roughly the same as that
of Hp. Among the three criteria, it is reasonable to partially
relax the condition on the eigenstate ordering and make Hd (t )
a time-dependent control Hamiltonian instead.

One possibility is to choose Hd (t ) = ∑n
i=1 βi(t )Hi

p, which
is an n-th order matrix polynomial made up of power of
Hi

p and βi ∈ R. Intuitively, the time-dependent spectrum of
Hd (t ) may temporarily alter eigenstate ordering and enlarge
or shrink energy gaps between states. Under this tempo-
ral modulation of the Hamiltonian spectrum, there would
be accelerated and de-accelerated population transfer among
eigenstates of Hp during the imaginary-time evolution. To
ensure that we obtain as large an energy filtering towards
the ground state of Hp as possible is to simply minimize the
expected energy value 〈ψ (t )|Hp|ψ (t )〉 during the imaginary-
time evolution under Hp + Hd (t ). The gradient descent will
give us the rule to update β(t ). At this point, this strategy of
optimizing Hd (t ) essentially corresponds to the closed-loop
control theory discussed thoroughly in the main text.

We now have a simple and clear picture for the selection of
control Hamiltonian. However, it might not be experimentally
feasible to implement such a complex form of control Hamil-
tonian, Hd (t ) = ∑n

i=1 βi(t )Hi
p. An approximate option is to

retain only the major components of Hp in this polynomial ex-
pansion of Hd (t ). Effectively, instead of having an Hd (t ) that
always commutes with Hp, we end up considering an H̃d (t )
with nonzero off-diagonal matrix elements in the eigenbasis
of Hp. While this compromise (due to realistic experimental

FIG. 7. The convergence results of Hd . The ITC matrix density is
the percentage of the matrix D̃ filled with the nonzero number range
from 0 to 1. The x axis is the logarithm of the total convergence time
step. The y axis is the fidelity between the convergence state and the
ground state.

constraints) may offset the ideally-great speedup, we find that
it is still possible to achieve an appreciable speedup within
the closed-loop control setup. To make the discussion in this
section self-contained, we present a numerical illustration.

In Fig. 7, we show the simulation result of how the
imperfectly controlled dynamics, driven by Hp + H̃d (t ) =
UD̃(t )U †, affect the convergence of imaginary-time evolution
for a 9 qubits 2D XXX model with nonperiodic boundary
condition. The problem Hamiltonian can be written as Hp =
0.2

∑
i Zi + 0.1

∑
edge X iX j + Y iY j + ZiZ j , where edge im-

plies the nearest-neighbor couplings and the initial state
is |+ + · · · +〉. Assume that the originally intended con-
trol Hamiltonian Hd is intended to enlarge the energy gaps
between the ground state and excited states, but, due to the
experimental constraints, we choose to adopt a more easily
implementable H̃d . In this case, we no longer have a fully
diagonal matrix D in the eigenbasis of Hp rather we consider

D̃ =

⎛
⎜⎜⎝

−5 0 0 . . .

0 0 0 . . .

. . . . . . . . . . . .

0 0 0 0

⎞
⎟⎟⎠ + R(p),

where R(p) is a random sparse matrix with p percentage of
nonzero off-diagonal matrix elements. The result shows that
the Hd with nontrivial off-diagonal disorder D̃(p = 20% and
p = 40%) can still maintain the ideally-great speedup (ap-
proximately approach exponential speedup) for this problem,
although the further increase of the number of off-diagonal
terms will eventually suppress the speedup. Interestingly,
when the number of nonzero off-diagonal disorders rises up
to p = 60% the inhibition effects on the speedup of this nine-
qubit system seem to plateau.

In a practical scenario, the control Hamiltonian for the
models in Appendix B follows the rules we mentioned above.
For molecular systems studied, Pauli Z terms are the dominant
terms in Hp with large coefficients. The selection of those
dominant Pauli Z terms as control Hamiltonian follows the
rule (1) since it commutes with the highest contribute terms in

023087-8



QUANTUM IMAGINARY-TIME CONTROL FOR … PHYSICAL REVIEW RESEARCH 5, 023087 (2023)

FIG. 8. The result of two-qubit hydrogen with complete control.
The left figure shows how the energy levels change with time, as
the solid line is the original energy level and the dashed line is
the controlled energy level. The right figure is the convergence of
imaginary-time models. The left y axis corresponds to the energy for
the red solid and blue solid lines. The right y axis corresponds to the
energy gap between the ground state and the first excited state, and
the β(τ ) = 1

n

∑n
i=1 βi(τ ). The result shows that all energy levels will

change with time.

Hp therefore approximately commutes with Hp. The details of
Hd selection are listed in Appendix B 1. For complex systems
like the XXX model and SK model, Pauli Z terms from Hp

may not be dominant parts. We select the k-local Pauli Z
as Hd , which not only commutes with all Pauli Z terms but
also commutes with many Pauli XX(YY) terms making it
approximately follow the rule (1). Finally, proper design of the
control strategy and maximum admissible control impulses
will allow rules (2) and (3) to be successfully followed, see
details in Appendix C.

2. Dynamic process visualization

We find the ITC temporally modulates the entire spectrum
of H (τ ) during the evolution and return back to the original
spectrum of Hp when time t 
 1 as β(t 
 1) → 0. As can
see in the following figures, for the case of the imaginary-
time evolution (ITE), since the Hp is a time-independent
Hamiltonian, the energy gap between the ground state and the
excited states remains fixed in time. For the imaginary-time
control (ITC), on the other hand, the energy gap between
the ground state and the excited states of Hp will change
with time. However, unlike the polynomial basis that can
guarantee to order of the whole eigenspectrum as in Fig. 8,
the small set of limited Pauli basis might only modify some
of the eigenstates as in Fig. 9. We comment on how the
energy gap changes with time under control using different
control Hamiltonians from the point of view of controllabil-
ity, which provides another realization of how the control
Hamiltonian orders the energy spectrum during the conver-
gence. The idea is borrowed from the idea of controllability
discussed in real-time control [41], in our definition, given a
set of reachable states denoted by R(|ψ0〉) start from initial

FIG. 9. The result of two-qubit hydrogen with noncomplete con-
trol shows that the highest excited state and the ground state will both
change with time.

state |ψ0〉, the control system Hp + β(τ )Hd is said to be com-
pletely (eigenstates) controllable if R(|ψ0〉) = E , where E is
the collection of eigenstates, and said to be noncompletely
(eigenstates) controllable if R(|ψ0〉) �= E . From the point of
view of the energy spectrum, since the final convergence state
of imaginary-time evolution should be the ground state of
the new system, the control system should reorder the whole
energy spectrum during the convergence when the control
system is completely controllable. For the control system
that is not completely controllable, it can still accelerate the
ground state convergence if the ground state in the reachable
state R(|ψ0〉) which should always be true since ITC can
switch back to the original ITE by the turn of the β. By
definition, it is clear that polynomial basis is in the class of
completely controllable, and limited Pauli basis might be in
one of the classes according to the elements in the basis. In the
following numerical experiment, we will visualize the concept
of controllability using the energy spectrum. The energy gap
between the ground state and the excited states of Hp will
change with time as

�E (τ ) = 〈ψ0|H (τ )|ψ0〉 − 〈ψi|H (τ )|ψi〉.
where H (τ ) = Hp + β(τ )Hd , |ψ0〉 and |ψi〉 correspond to the
ground state and i-th excited state of drift Hamiltonian Hp,
respectively. In Fig. 8, we show the simulated result of using
an ITC to prepare the ground state for a two-qubit hydrogen
model. In this case, we adopt a set of control Hamiltonians
that yield complete controllability (polynomial basis), on the
two-qubit dynamics. As clearly illustrated in the figure, the
ITC temporally modulates the entire spectrum of H (τ ) during
the evolution and returns back to the original spectrum of Hp

when time t 
 1 as β(t 
 1) → 0. Thus we conclude that
the controlled system can evolve towards the ground state of
Hp in fewer time steps with enlarged energy gaps.

Next, we attempt a different experiment. If the control
Hamiltonian does not guarantee complete controllability (lim-
ited Pauli basis), the imaginary-time control will not be able
to enlarge all energy gaps but just a few of them. In this case,
it can still speed up the convergence of the ITC but may not
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FIG. 10. The result of two-qubit hydrogen with aggressive con-
trol strategy shows that the control pulses are able to rearrange energy
level.

be as fast as the previous case with complete controllability
In Fig. 9, the two-qubit hydrogen is driven by a noncomplete
controllable Hamiltonian Hd , the instantaneous ground state
energy drop increases the energy gap between the ground state
and the excited states, therefore, provide the speed-up for ITC,
and this control will benefit more when the initial state has an
appreciable overlap with the highest excited state since the
highest excited state is also controllable.

However, when the control Hamiltonian is not completely
controllable and the control strategy β(τ ) is too aggressive,
then the driven ITE may actually compromise the rate of
convergence. This is because the ground state has been in-
verted to the highest excited state in some time steps, and
the system will be temporarily driven away from the target
state (i.e., the ground state of Hp) when its energy has been
shifted upwards. In Fig. 10, during the period τ ∈ (0.5, 1.0),
the order of the ground state and the highest excited state are
swapped. Clearly, as shown in the right panel of Fig. 10, the
ITE converges to the desired ground state faster in this case.

To avoid the unintended eigenstate re-ordering by the con-
trol field, it is crucial to confine the magnitude of β to some
proper range. In our test, it is better to set |β| to be equal
to or less than the magnitude of the energy 〈ψ (τ )|Hp|ψ (τ )〉
which can be obtained from measuring the norm of the matrix
problem Hamiltonian. In Fig. 11, we illustrate the effects of
choosing different β on the time-evolved energy levels of
Hp, which is the Hamiltonian for a two-qubit hydrogen. In
this test, we adopt two different approximate bang-bang con-
trol strategies β(τ ) = 2S

1+e−γ Tk
− S, introduced in Appendix C.

These two control strategies share the same γ but S = 1 and
S = 10, respectively. From Fig. 11, it is clear that bigger |β|
may enlarge energy gaps between eigenstates of HP but also
increases the likelihood of state reordering.

APPENDIX B: EMPIRICAL CONTROL
HAMILTONIAN SELECTION

As mentioned in Appendix A, the success of the
imaginary-time control (ITC) is to modify this typical evolu-
tion path of ITE. The control may drive the time-evolved wave

FIG. 11. The result of two-qubit hydrogen with different ad-
missible maximum strength S. It shows that the large admissible
maximum strength might decrease the energy gap.

function to temporarily enhance contributions from high-
energy eigenstates before converging to the ground state. In
other words, the advantage of having controlled dynamics in
the imaginary-time domain is to avoid densely spaced energy
regions in the Hamiltonian spectrum, which cannot be escaped
in the standard ITE. If one can find a Hd that could drive a
system towards high-energy states during the ITE, it has the
potential to improve the convergence efficiency as prescribed
by our proposed method to get ITC.

In this section, we present the strategies of control Hamilto-
nian selection and discuss how different control Hamiltonian
impact the the execution of quantum computing experiments,
including empirically control Hamiltonian and simulation
results for molecule in Appendix B 1, control Hamilto-
nian, and control Hamiltonian and simulation results for
Sherrington-Kirkpatrick in Appendix B 2, control Hamilto-
nian and simulation results for a spin model constructed from
3-SAT in Appendix B 3. In summary, with a proper design of
control Hamiltonian, we will obtain obvious acceleration for
ground state simulation. Thus our proposed imaginary-time
control can potentially make a digital quantum simulation
for the ground-state preparation much more accessible in the
NISQ era.

1. Control Hamiltonian and simulation results
for molecule system

Based on the above general strategy for control Hamilto-
nian selection, here we provide a further empirical method
for control Hamiltonian selection, especially for molecule sys-
tems. We find that the empirical Hd and its slightly modified
versions can greatly speed up the ITC convergence for studied
systems with both large and small energy gaps.

For the molecule system, we try the candidate control
Hamiltonian Hi containing only Pauli Z (single Z and double
Z, and the total number of choices is Cn

1 + Cn
2 where n is a

number of qubits. In studied molecular cases, we find that
limiting the Pauli Z to quadratic is enough to obtain greatly
speedup.

Intra-molecular bond distance for the typical dissociation
curves is considered as an adjustable parameter to generate
variant energy gaps for the molecular systems. We choose a
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TABLE III. The Hd selection of figures. The function P(S) is the collection of all permutations without repetition of Pauli string S. The
I+P(S) means add I before all the Pauli string P(S), for example, II+P(IZ) is equal to {IIIZ, IIZI}. The Full Hd is slightly different from
empirical Hd since it has the P(IZ)+I term and the Half Hd is slightly different from the empirical Hd since it lacks the P(ZZ)+I term.

H2 H4 H6 H8 LiH HF

Full Hd II+P(IZ) IIII+P(IIIZ) IIIIII+P(IIIIIZ) IIIIIIII+P(IIIIIIIZ) IIII+P(IIIIIIIZ) IIIIIIIIII+P(IZ)
P(IZ)+II P(IIIZ)+IIII P(IIIIIZ)+IIIIII P(IIIIIIIZ)+IIIIIIII P(IIIZ)+IIIIIIII P(IIIIIIIIIZ)+II
II+P(ZZ) IIII+P(IIZZ) IIIIII+P(IIIIZZ) IIIIIIII+P(IIIIIIZZ) IIII+P(IIIIIIZZ) IIIIIIIIII+P(ZZ)
P(ZZ)+II P(IIZZ)+IIII P(IIIIZZ)+IIIIII P(IIIIIIZZ)+IIIIIIII P(IIZZ)+IIIIIIII P(IIIIIIIIZZ)+II

Half Hd II+P(IZ) IIII+P(IIIZ) IIIIII+P(IIIIIZ) IIIIIIII+P(IIIIIIIZ) IIII+P(IIIIIIIZ) IIIIIIIIII+P(IZ)
II+P(ZZ) IIII+P(IIZZ) IIIIII+P(IIIIZZ) IIIIIIII+P(IIIIIIZZ) IIII+P(IIIIIIZZ) IIIIIIIIII+P(ZZ)

All Hd P(IIIZ) P(IIIIIIIZ) P(IIIIIIIIIIIZ) P(IIIIIIIIIIIIIIIZ) P(IIIIIIIIIIIZ) P(IIIIIIIIIIIZ)
P(IIZZ) P(IIIIIIZZ) P(IIIIIIIIIIZZ) P(IIIIIIIIIIIIIIZZ) P(IIIIIIIIIIZZ) P(IIIIIIIIIIZZ)

Empirical Hd II+P(IZ) IIII+P(IIIZ) IIIIII+P(IIIIIZ) IIIIIIII+P(IIIIIIIZ) IIII+P(IIIIIIIZ) IIIIIIIIII+P(IZ)
II+P(ZZ) IIII+P(IIZZ) IIIIII+P(IIIIZZ) IIIIIIII+P(IIIIIIZZ) IIII+P(IIIIIIZZ) IIIIIIIIII+P(ZZ)
P(ZZ)+II P(IIZZ)+IIII P(IIIIZZ)+IIIIII P(IIIIIIZZ)+IIIIIIII P(IIZZ)+IIIIIIII P(IIIIIIIIZZ)+II

problem Hamiltonian Hp with a large energy gap as a fast
test to help with control Hamiltonian selection. We first run
standard ITE on this Hp (which should converge to the ground
state easily owing to the large energy gap) and keep a record
of the βi(τ ) from the ITE calculation with |+ + + · · · + +〉
as the initial state. We sum up βi over time Bi = ∑

τ βi(τ )
for further analysis. From our numerical investigations on
molecular systems: H chain, LiH, and HF, we find that those
Hi having negative Bi all share the same structure. The struc-
tures of Hamiltonian means that, the Pauli strings are divided
into two groups that occupy [0 : (N − 1)] and [N : (M − 1)]
orbitals respectively, where N is the number of electrons and
M is the number of total orbitals. We use these Hi as the con-
trol Hamiltonian, which we called Empirical Hd . Empirical
Hd and its slightly modified versions can ideally great speed
up the ITC convergence for studied systems with both large
and small energy gaps. Take it for an example, there are 4
electrons (N = 4) and 12 total orbitals (M = 12), the Pauli
strings P0P1P2P3P4P5P6P7P8P9P10P11 will be divided into
two groups: P0P1P2P3IIIIIIII and IIIIP4P5P6P7P8P9P10P11 (for
Openfermion notation, the energy of the orbitals from low to
high are ordered from left to right). We find that the single Z
Pauli strings that Z only exist in [N : (M − 1)] orbitals and
the double Z Pauli strings that Zs exist only in [0 : (N − 1)]
orbitals or [N : (M − 1)] orbitals have negative Bi (as Table III
“Empirical Hd ”), and all other Pauli strings have positive Bi.

Finally, we use the empirical Hd described above for vari-
ous molecules (H chain, LiH, and HF, see Appendix D) with
different energy gaps. In Figs. 12 and 13, we show the ITC
results with the control Hamiltonian that has all single Z
and double Zs (“control all” in Figs. 12 and 13, “All Hd”
in Table III), the empirical control Hamiltonian mentioned
above (“control negative” in Figs. 12 and 13, “Empirical Hd”
in Table III) and the result of the standard ITE (“no control”
in Figs. 12 and 13). The results show that the empirical Hd

is far better than using all Hi as control Hamiltonian. And
empirical Hd can greatly speed up the ITC convergence for
studied systems with both large and small energy gaps.

We also test two types of Hd that are slightly different from
the empirical Hd mentioned above. The details of those Hd are
also listed in Table III. Figure 14 shows the convergence of
different types of Hd selections and the speed-up for different

system sizes, where the “Full Hd ” have extra single Z terms
compared to “Empirical Hd ” and the “Half Hd ” have less dou-
ble Z terms compared to “Empirical Hd .” We can see that for
“Full Hd ” and “Half Hd ” the acceleration scale approximately
exponentially as a function of 1/�E for different choices of
Hp for the cases we studied on.

2. Control Hamiltonian and simulation results
for Sherrington-Kirkpatrick model

Besides the commute basis {XX . . . XX,YY . . .YY, ZZ . . .

ZZ} we use in the four-qubit cases in the main text. We
also construct and compare two types of Hd according to
Appendix A 1. One is constructed polynomial Hd from the
approximate polynomial basis p(H̃p) = {H̃2

p , H̃3
p , H̃4

p , H̃5
p },

where approximate polynomial matrix H̃k
p is constructed from

FIG. 12. The result of the control Hamiltonian test of the H chain
system, the x axis is a log of 1/�E , and the y axis is the total time
steps for convergence. The result shows that the empirical control
Hamiltonian can provide an ITC that gives greatly speed-up with
respect to the standard ITE for all cases while Hd that contain all
Hi require extra time or no speed-up.
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FIG. 13. The result of the control Hamiltonian test of LiH and
HF, the x axis is a log of 1/�E , and the y axis is the total time
steps for convergence. The result shows that the empirical control
Hamiltonian can provide good control results that have greatly speed-
up from ITE for all cases while Hd that contain all Hi require extra
time or no speed-up.

FIG. 14. The result of the H chain size scaling test with different
types of Hd . The different dots represent different types of Hd and
different colors of lines represent the total time steps.

FIG. 15. The result of spin glass (SK model) with different coef-
ficients, the x axis is the case indices sorted by the ratio of total QITE
time steps divided by the total QITE time steps, note that sorting does
not depend on energy differences. The y axis is the ratio of the total
time step. The mean of p(H ) and σ (H ) is the mean of the approx-
imate polynomial Hd and Pauli Hd of ten randomly selected initial
states. The best of p(H ) and σ (H ) is the largest speed-up among
ten randomly selected initial states using approximate polynomial
Hd and Pauli Hd . The single time step �τ = 0.03.

polynomial matrix Hk
p by removing matrix elements that

have values less than a fixed constant number. The other
Pauli Hd is selected from the 1-local Pauli Z and 4-local
Pauli Z cyclic(ZIIIIII ) and cyclic(ZZZZIIII ), where cyclic
means the set of circular shifts of Pauli strings, for example,
cyclic(XY Z ) = {XY Z,Y ZX, ZXY }. The control strategy we
use here is approximate bang-bang control with the maximum
strength of the control field S slowly turning to zero within
dozens of time steps to have lower resource requirement, see
Appendix C. In Fig. 15, we compared the convergence of ITE
and ITC of 100 randomly sampling cases and each case has 10
randomly selected initial states. The result shows that the con-
trol can provide a general speed-up and can achieve a hundred
times speed-up in some cases. The approximate polynomial
Hd can provide a higher average speed-up but weaker corner
case speed-up, while Pauli Hd has a lower average speed-up
but has a better corner case speed-up.

3. Control Hamiltonian and simulation results
for a spin model constructed from 3-SAT

In the main text, we show that ITC can provide obvious
speed-up over the ITE for molecular systems. It is also desir-
able to verify whether such a superior advantage can hold for
other scenarios. In this subsection, we compare ITC and ITE
for solving a spin model that is closely related to the 3-SAT
problems. This is another ground-state preparation task that is
sufficiently distinct from the molecular systems considered in
the main text.

3-SAT problem is defined by a logical statement involving
n boolean variables bi. The logical statement consists of m
clauses Ci in conjunction: C1 ∧ C2 ∧ · · · ∧ Cm. Each clause
is a disjunction of 3 literals, where a literal is a boolean
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FIG. 16. Annealing 3-SAT instantaneous �E , the energy gap
between the ground state and first excited state of the time-dependent
Hamiltonian H (s).

variable bi or its negation ¬bi. For instance, a clause may
read (b j ∨ bk ∨ bl ). The task is to first decide whether a given
3-SAT problem is satisfiable; if so, then assign appropriate
binary values to satisfy the logical statement. We can map a
3-SAT problem to a Hamiltonian for a set of qubits. Under
this mapping, each binary variable bi is represented as a qubit
state. Thus an n-variable 3-SAT problem is mapped into a
Hilbert space of dimension N = 2n. Furthermore, each clause
of the logical statement is translated to a projector acting on
this n-qubit system. Hence, a logical statement with m clauses
may be translated to the following Hamiltonian,

Hfinal =
m∑

α=1

∣∣bα
j b

α
k bl jα

〉〈
bα

j b
α
k bl jα

∣∣.
A common approach to solve this type of constraint satisfac-

tion problem is to use adiabatic quantum computations(AQC).
One first prepares the ground states of an easy-to-solve Hamil-
tonian Hinit . Next, one slowly evolves the Hamiltonian such
that it adiabatically connects Hinit and Hfinal. In other words,
the adiabatically evolved Hamiltonian reads

H (s) = (1 − s)Hinit + sHfinal, s ∈ [0, 1],

where Hinit is typically chosen to be a sum of one-qubit Hamil-
tonians Hi acting on the ith qubit,

Hinit = 1

2

n∑
i=1

hi, hi =
(

1 −1
−1 1

)
.

The energy gap �E (s) between the instantaneous ground state
and first-excited state of H (s) will vary with time s as shown
in Fig. 16. Based on the well-established theoretical studies, it
is also clear that the instantaneous energy gap of interest can
get very small along the adiabatic path when the system size
is large.

APPENDIX C: THE IMAGINARY-TIME
CONTROL STRATEGY

For the imaginary-time control, in this letter, we mainly
used two types of control strategy. The first one is the approxi-

FIG. 17. 50 steps truncation test, the numerical control term trun-
cation test result of eight qubits HF molecule with different energy
gap.

mate bang-bang control introduced above that target the larger
energy gap problem (type I). The second one is the modified
version of the bang-bang strategy that targets the small energy
gap problem (type II). We also provide the source codes of all
simulations in Ref. [46] where you can find more details on
the control strategy and control parameter settings.

1. Imaginary-time control strategy: type I

For the type I control strategy, let us generalize the standard
Lyapunov control such that it could work with the imaginary-
time evolution. We redefine Tk ≡ 2〈ψ |Hp|ψ〉〈ψ |Hd |ψ〉 −
〈ψ |{Hp, Hd}|ψ〉 in this case. The Hd related terms in Tk (τ )
may entail lots of extra measurements if they cannot be ob-
tained by measuring the Pauli terms appearing in 〈ψ |Hp|ψ〉.
To reduce the measurement cost and still maintain a power-
ful Hd to provide an enhanced convergence, we propose the
following strategy. We first decide if the state in the quantum
circuit has high overlap with any eigenstate of Hp or Hd by
checking the value of Tk , if Tk < L then we do not apply any
control pulses, otherwise we use a similar control strategy for
the real-time case introduced above.

βk (τ ) =
{

2S
1+e−γ Tk

− S, Tk � L

0, else
,

where L is some predefined threshold value. If the state is
close to an eigenstate [i.e., Tk (τ ) < L], we should turn off
the control field and let the system evolves under Hp in the
imaginary-time domain. This truncation can greatly reduce
the measurement costs (for the implementation of the corre-
sponding variational algorithm) in the region where the state
will linearly converge to the eigenstate. Finally, we test how
the truncation [i.e., setting βk (τ ) = 0 when Tk (τ ) < L] will
affect the precision of the converged results given by trun-
cating the control pulse in the middle of the convergence
(Fig. 17). For a physical system with a large energy gap
between the first-excited state and the ground state, it only
requires a few control steps at the beginning then the re-
sult of convergence will be very close to the result without
truncation. For systems with a small energy gap, the
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FIG. 18. Two-phase control example, the convergence will pass
through three different phases. At phase I, the control will drift the
state to a higher energy transition state. In phase II, the control will
speed up the convergence to the ground state. In the final phase, the
control will be closed to save computing resources.

truncation will significantly affect the precision of the con-
verged results.

2. Imaginary-time control strategy: type II

For the type II control strategy, we use a modified bang-
bang control strategy that has two phases. The first phase
of control will bypass the slow convergence region and the
second phase will speed up the convergence, the demonstra-
tion of the phases is demonstrated in Fig. 18. For the small
energy gap problem, the type I control might drift the system
to the low excited state and weaken the speed-up. To avoid
this, we control the state to the transition state that contains
high-energy excited state and then to the ground state in two
phases. Phase I of the control will lower the contribution of the
low-energy states, the energy will go up and reach the equilib-
rium state consisting of high-energy excited states. Phase two
is the traditional bang-bang control which is designed to lower
the energy. The switch from phase I to phase II is decided
by the energy changes (reach the equilibrium state), and the
time-energy plot of the type two control is shown in Fig. 18.
In summary, we propose the following control strategy:

βk (τ ) =
{

K1sgn(Tk (τ )) (phase 1)

−K2sgn(Tk (τ )) (phase 2)
,

where K1 and K2 are the strength of the control field and
sgn(Tk (τ )) is the sign of the Tk (τ ), βk (τ ) will be set to zero if
the sign alternating between positive and negative(reach the
bound of the Hd ), in this paper, we set K1 
 K2 to avoid
convergence to the excited state.

In conclusion, the advantage of the type I control strategy
has weak requirements for the selection of control Hamilto-
nian, but it may not provide ideally great speed-up of the
1/�E . The type II control strategy on the other hand can
provide greatly speed-up of the 1/�E but require stronger
control Hamiltonian selection.

APPENDIX D: SYSTEMS HAMILTONIAN

1. Hydrogen

In our simulations, we consider the hydrogen molecule in
the minimal STO-3G basis. Each hydrogen atom contributes

FIG. 19. The variational circuit of four-qubit H2 system.

a single 1S orbital. As a result of the spin, there are four spin
orbitals in total. By using the function of the QISKIT, the qubit
Hamiltonian for JW representation can be obtained. This four-
qubit Hamiltonian is given by

H = h0I + h1Z0 + h2Z1 + h3Z2 + h4Z3 + h5Z0Z1

+ h6Z0Z2 + h7Z0Z3 + h8Z1Z2 + h9Z1Z3 + h10Z2Z3

+ h11Y0Y1X2X3 + h12Y0Y1Y2Y3 + h13X0X1X2X3

+ h14X0X1Y2Y3 + h15X0X1Y2Y3.

By using the function of the QISKIT, the two-qubit Hamilto-
nian of the hydrogen molecule can be obtained from parity
representation with Z2 symmetry reduction. This two-qubit
Hamiltonian is given by

H = h0I + h1Z0 + h2Z1 + h3Z1Z0 + h4X1X0

And the circuit (Fig. 19) for Variational-based ansatz [45]
simulation used in the main text.

To update the parameters of variational-based ansatz, we
calculate the gradient of the circuit by using parameter shift
rule [47] to obtain the numerical differential result of the
circuit.

2. Hydrogen chain

In our simulations, we consider the hydrogen chain
molecule in the minimal STO-3G basis. The hydrogen chain
Hn has n electrons and contributes n 1S orbital to the basis.

3. Hydrogen fluoride

In our simulations, we consider the hydrogen fluoride
molecule in the minimal STO-3G basis. The fluoride atom
has nine electrons, and so contributes a 1S, 2S, 2Px, 2Py, and
2Pz orbital to the basis, while the hydrogen atom contributes
a single 1S orbital. For the Appendix B truncation test, by
freezing the core two 1S orbitals, we can reduce the system
from 12 orbitals with 10 electrons to 8 orbitals with 6 electrons
on 2S and 2P orbitals. By using the QISKIT, the qubit Hamil-
tonian for Jordan-Wigner representation can be obtained. This
eight-qubit Hamiltonian is given by 145 different Pauli terms
and coefficients.

4. Lithium hydride

In our simulations, we consider the lithium hydride
molecule in the minimal STO-3G basis. The lithium atom has
three electrons, and so contributes a 1S, 2S, 2Px, 2Py, and 2Pz

orbital to the basis, while the hydrogen atom contributes a
single 1S orbital.

023087-14
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5. Hamiltonian details for the spin models

The 2D Heisenberg models are constructed with nonperi-
odic boundary conditions, whose Hamiltonian can be written
as

Hp = hi

∑
i

Zi + Ji j

∑
edge

X iX j + Y iY j + ZiZ j .

The model information in the table presents edge×edge,
for example, 2×2 means 3×3 lattice. The Hamiltonian of

Sherrington-Kirkpatrick model we use can be written as

Hp =
∑
i< j

Ji j (X
iX j + Y iY j + ZiZ j )

with random generate variables Ji j ∈ (−0.5, 0.5) and using
|+ + · · · +〉 as the initial state.
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