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Exact rate analysis for quantum repeaters with imperfect memories
and entanglement swapping as soon as possible
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We present an exact rate analysis for a secret key that can be shared among two parties employing a linear
quantum repeater chain. One of our main motivations is to address the question whether simply placing quantum
memories along a quantum communication channel can be beneficial in a realistic setting. The underlying model
assumes deterministic entanglement swapping of single-spin quantum memories and it excludes probabilistic
entanglement distillation, and thus two-way classical communication, on higher nesting levels. Within this
framework, we identify the essential properties of any optimal repeater scheme: entanglement distribution in
parallel, entanglement swapping as soon and parallel quantum storage as little as possible. While these features
are obvious or trivial for the simplest repeater with one middle station, for more stations they cannot always be
combined. We propose an optimal scheme including channel loss and memory dephasing, proving its optimality
for the case of two stations and conjecturing it for the general case. In an even more realistic setting, we
consider additional tools and parameters such as memory cutoffs, multiplexing, initial state and swapping
gate fidelities, and finite link coupling efficiencies in order to identify potential regimes in memory-assisted
quantum key distribution beyond one middle station that exceed the rates of the smallest quantum repeaters as
well as those obtainable in all-optical schemes unassisted by stationary memory qubits and two-way classical
communication. Our analytical treatment enables us to determine simultaneous trade-offs between various
parameters, their scaling, and their influence on the performance ordering among different types of protocols,
comparing two-photon interference after dual-rail qubit transmission with one-photon interference of single-rail
qubits or, similarly, optical interference of coherent states. We find that for experimental parameter values that
are highly demanding but not impossible (up to 10 s coherence time, about 80% link coupling, and state or gate
infidelities in the regime of 1%–2%), one secret bit can be shared per second at a total channel loss budget of
157.6 dB, i.e. a total distance of 800 km for a fiber attenuation length of 22 km with repeater stations placed at
every 100 km—a clear improvement over realistic twin-field or, much more pronouncedly, ideal point-to-point
quantum key distribution at GHz clock rates.
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I. INTRODUCTION

Recent progress on quantum computers with tens of qubits
led to experimental demonstrations of quantum devices able
to solve specifically adapted problems not efficiently soluble
with the help of classical computers alone. Typically, these
devices are based on solid-state (superconducting) systems
[1,2], however, there are also photonics approaches [3]. While
these schemes still have to be enhanced in terms of size,
i.e., the number of qubits (scalability), their error robustness
and corresponding logical encoding (fault tolerance), as well
as their range of applicability (eventually reaching univer-
sality), this progress represents a threat to common classical
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communication systems. Eventually, this may compromise
current key distribution protocols. Although there are recent
developments in classical cryptography to address the threat
imposed by such quantum devices (“postquantum cryptog-
raphy”), quantum mechanics also gives a possible solution
to this by means of quantum key distribution (QKD) [4,5].
Many QKD protocols have been proposed such as the most
prominent, so-called BB84 scheme [6]. Among the various
quantum technologies that promise to enable their users to
fulfill tasks impossible without quantum resources, quantum
communication is special. Unlike quantum computers there
are already commercially available quantum communication
systems intended for costumers who wish to communicate
in the classical, real world in a basically unconditionally
secure fashion—independent of mathematically unproven as-
sumptions exploiting the concept of QKD. QKD systems are
naturally realized for photonic systems using nonclassical op-
tical quantum states such as single-photon, weak [7,8], or even
bright coherent states [5].

Current point-to-point QKD systems, directly connecting
the sender (Alice) and the receiver (Bob) via an optical-fiber
channel, are limited in distance due to the exponentially grow-
ing transmission loss along the channel. Typical maximal
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distances are 100–200 km. A very recent QKD variant, so-
called twin-field (TF) QKD [9], allows to push these limits
farther (basically doubling the effective distance) by placing
an (untrusted) middle station between Alice and Bob. Re-
markably, TF QKD achieves this loss scaling advantage in an
all-optical fashion with no need for quantum storage at the
middle station and at an, in principle, unlimited clock rate
with no need for two-way classical communication. It further
inherits the improved security features of measurement-
device-independent (MDI) QKD schemes [10,11]. However,
the original TF QKD concept is not known to be further
scalable beyond the effective distance doubling.

A. Quantum repeaters: Previous works

In classical communication, the distance problem is
straightforwardly overcome by introducing repeater stations
along the fiber channel (about every 50–100 km) in or-
der to reamplify (and typically reshape) the optical pulses.
On a fundamental level, the famous No-Cloning-theorem
[12,13], prohibits such solutions for quantum communica-
tion. As a possible remedy, the concept of quantum repeaters
has been developed [14–16]. With the help of sufficiently
short-range entanglement distributions, quantum memories,
entanglement distillation and swapping, in principle, scalable
long-distance, fiber-based quantum communication becomes
possible, including long-range QKD. While this original
quantum repeater concept would still impose high experi-
mental requirements on the various implementation platforms
[17–21], these first proposals made a possible realization of a
large-scale quantum repeater more likely. Nonetheless, even
when completely implemented, such schemes would still be
fundamentally limited in their achievable (secret) key rates
per second. The reason for this is the need for two-way
classical communication on all, including the highest “nest-
ing” levels in order to conduct entanglement distillation and
confirm successful entanglement swappings when these are
probabilistic. Today this type of quantum repeater schemes are
referred to as first-generation quantum repeaters. Alternative
schemes circumventing the fundamental limitations are the
so-called second- and third-generation quantum repeaters that
exploit quantum error correction codes to suppress the effect
of memory (and gate) errors or channel loss (and gate errors),
respectively [22].

It is important to stress that all these quantum repeaters
are designed to allow for a genuine long-distance quantum
state transfer. In the QKD context, this means that the inter-
mediate stations along the repeater channel may be untrusted.
If instead sufficiently many trusted stations can be placed
along the channel between Alice and Bob, and the quantum
signals can be converted into classical information at each
station (as a whole, effectively corresponding to classically
connected, independent, sufficiently short-range QKD links),
large-scale QKD is already possible and being demonstrated
[23]. Conceptually, this also applies to long-range links en-
abled by satellites [24,25]. It is only the genuine quantum
repeater that incorporates two main features at the same time:
long-distance scalability and long-distance privacy.

From a practical point of view, it is expected that global
quantum communication systems will be a combination of

both elements: genuine fiber-based quantum repeaters over
intermediate distances (thousands of kilometers) and satellite-
based quantum links bridging even longer distances (tens of
thousands of kilometers; the earth’s circumference is about
40 000 km). While such truly global quantum communication
may eventually lead to some form of a “quantum internet”
[26], only the coherent long-distance quantum state transfer
as enabled by a genuine quantum repeater allows to con-
sider applications that go beyond long-range QKD. In fact,
the original quantum repeater proposals were not specifically
intended for or adapted to long-range QKD. They can be
used for any application that relies upon the distribution of
entangled states over large distances including large-scale
quantum networks. Obvious applications are distributed quan-
tum tasks such as distributed quantum computing, coherently
connecting quantum computers which are spatially far apart.
These ultimate long-distance quantum communication ap-
plications will then impose much higher demands on the
fault tolerance of the experimental quantum states and gates.
In particular, QKD-specifc classical postprocessing will no
longer be applicable. In this work, we shall consider small to
intermediate-scale quantum repeaters that allow to do QKD
or coherently connect quantum nodes at a corresponding size
and at a reasonably practical clock rate.

B. Quantum repeaters: Present work

In this work, we will focus on small-scale or medium-
size quantum repeater systems beyond a single middle station
and without probabilistic entanglement distillation on higher
“nesting levels.” This class of quantum repeaters is of great
interest for at least two reasons.

(i) There are now first experiments of memory-enhanced
quantum communication basically demonstrating memory-
assisted MDI QKD [27,28]. Therefore the natural next step
for the experimentalists will be to connect such elementary
modules to obtain larger repeater systems with two or more in-
termediate stations, thus bridging larger distances and, unlike
memory-assisted MDI QKD, ultimately relying upon classical
communication between the repeater stations [29].

These next near-term experiments will aim at a distance
extension still independent of additional and more compli-
cated schemes such as entanglement distillation on “higher
nesting levels.” Restricting the entanglement manipulations to
the level of the elementary repeater segments will also help
to avoid the use of long-distance two-way classical signalling
like in a fully scalable first-generation quantum repeater, and
hence allow for still limited but reasonable repeater clock
rates. In this regime, comparing (secret key) rates per second
of the quantum repeaters with those of an (ideal) point-to-
point link or TF QKD scheme is in some way most fair and
meaningful.

While the current experimental repeater demonstrations
with a single repeater station [27,28] would still suffer from
too low clock rates and link coupling efficiencies before
giving a practical repeater advantage, an urgent theoretical
question is whether, under practical realistic circumstances,
it really helps to place memory stations along a quantum
communication channel and execute memory-assisted QKD
without extra active quantum error correction. In principle,
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placing a middle station between Alice and Bob allows to gain
a repeater advantage per channel use [29–31].

Omitting the nonscalable all-optical TF approach, is there
a practical benefit also in terms of secret bits per second
when using a two-segment quantum repeater? Moreover, and
this is the focus of the present work, is there even a further
advantage when adding more stations beyond a single middle
station under realistic assumptions and with no extra quantum
error correction? We will see that for up to eight repeater seg-
ments, covering distances up to around 800 km, the quantum
repeaters treated in this work, assuming experimental param-
eter values that are demanding but not impossible to achieve
in practice, can exceed the performance limits of the other
schemes. For larger distances, the attainable absolute rates
of point-to-point quantum communication become extremely
small. However, for quantum repeaters, additional elements
of quantum error correction will be needed, as otherwise the
final rates would vanish and no gain can be expected over
point-to-point communication.

(ii) The second point refers to the theoretical treat-
ment. Typically, the repeater rates can be calculated either
numerically including many protocol variations and (experi-
mental) degrees of freedom [32] or approximately in certain
regimes [18] (there are also semi-analytical approaches, see
Refs. [33,34]).

If errors are neglected an exact and even optimized raw
rate calculation is possible even for nonunit (but constant)
entanglement swapping probabilities using the formalism
of Markov chains and decision processes [35,36] (see also
Refs. [37,38]). This approach works well for repeaters up to
about ten segments; for too many repeater segments the result-
ing linear equation systems become intractable. Nonetheless,
for the smallest repeaters with only a single middle station, it
was shown how to calculate secret key rates even including
various experimental parameters, though partially also em-
ploying approximations for the raw rates [30,31]. In this work
we will go beyond the case of a single middle station and
present exact calculations of secret key rates obtainable with
realistic small and intermediate-scale quantum repeaters. The
theoretical difficulty here is, even already when only channel
loss and memory dephasing is considered, that for repeaters
beyond a single middle station there are various distribution
and swapping strategies and so it becomes nontrivial to de-
termine the optimal ones. The usual treatment in this case
is based upon the so-called doubling strategy where for a
repeater with a power-of-two number of segments only certain
pairs of segments will be connected in order to double the
distances at each repeater level. As a consequence, sometimes
entanglement connections will be postponed even though
neighboring pairs may be ready already, thus unnecessarily
accumulating more memory dephasing errors. With regards
to memory dephasing, the best strategy appears to be to swap
as soon as possible and here we will show how this type of
repeater strategy can be exactly and analytically treated. This
element is the crucial step that enables us to propose optimal
quantum repeater schemes.

On the hardware side, memory-based quantum repeaters
require sufficiently long-lived quantum memories and effi-
cient, typically light-matter-based interfaces converting flying
into stationary qubits. In the context of our theoretical treat-

ment, the stationary qubits are assumed to be represented
by single spins in a suitable solid-state quantum node such
as color (NV or SiV) centers in diamond, usually separately
treated as short-lived electronic and long-lived nuclear spins
[39,40]. As for efficient quantum emitters and short-lived
quantum memories semiconductor quantum dots may be con-
sidered too [29]. Alternatively, various types of atom or ion
qubits could be taken into account [29].

While all these different hardware platforms have their
own assets and disadvantages (e.g., the required temper-
atures which range from room or modestly low temper-
atures for atoms/ions/NV to cryogenic temperatures for
NV/SiV/quantum dots), and every one eventually requires a
specifically adapted physical model, to a certain extent the
quantum repeater performance based on these elements and
assuming only a single repeater station can be assessed (or at
least qualitatively bounded from above) using a fairly simple
physical model that includes three experimental parameters:
the link coupling efficiency, the memory coherence time, and
the experimental clock rate [29].

In order to incorporate an appropriate experimental mem-
ory coherence time into the model, qubit dephasing errors
can be considered where the stationary qubit is never lost
but subject to random phase flips with a probability expo-
nentially growing with the storage time. Already this rather
simple model is theoretically nontrivial, because it leads to
two distinct impacts on the final secret key rates. On the one
hand, a finite link coupling efficiency (including all constant
inefficiencies per segment from the sources, detectors, and
interfaces) and a segment-length-dependent transmission ef-
ficiency affect the raw rate of the qubit transmission (which,
if expressed as rate per second, also directly depends on
the repeater clock rate). Thereby, in logarithmic rate-versus-
distance plots (like those frequently shown later in this paper),
a finite link coupling leads to an offset towards smaller rates
at zero distance, while a finite channel transmission results in
a certain (negative) slope. On the other hand, a finite memory
coherence time influences the final Alice-Bob state fidelity or
QKD error rate (which also indirectly depends on the repeater
clock rate, i.e., the time duration per entanglement distribu-
tion attempt per segment, determining the possible number of
distribution attempts within a given memory coherence time).
This becomes manifest as an increase of the (negative) slope
for growing distances, moving from an initially repeaterlike
slope towards one corresponding to a point-to-point transmis-
sion.

There are interesting concepts to suppress this latter effect
by introducing more sophisticated memory models such as
(spatial or temporal) memory buffers or cutoffs. Especially a
memory cutoff [41] has turned out to be useful without the
need for additional experimental resources. It means that a
maximal storage time is imposed at every memory node and
any loaded stationary qubits waiting for a longer duration will
be reinitialized. As a result, state fidelities can be kept high
at the expense of a decreasing raw rate due to the frequently
occurring reinitializations (which implies that a memory cut-
off must neither be set too low nor too high). Theoretically,
including memory cutoffs into the rate analysis significantly
increases the complexity (becoming manifest in, e.g., quickly
growing Markov-chain matrices) [35].

023086-3



KAMIN, SHCHUKIN, SCHMIDT, AND VAN LOOCK PHYSICAL REVIEW RESEARCH 5, 023086 (2023)

For small quantum repeaters, especially those with only
one middle station, a secret key rate analysis remains possible
[29,31]. For larger quantum repeaters, the effective rates may
be calculated via recursively obtained expressions [42], via
different kinds of approximations and assumptions [43] or
with the help of numerical simulations [32]. Nonetheless, in
our treatment, we shall explicitly include a memory cutoff in
some protocols allowing us to extrapolate its positive impact
on other schemes.

We choose to incorporate random dephasing as the dom-
inating source of memory errors. While memory dephasing
is generally an error to be taken into account, it is particu-
larly important for those stationary qubits encoded into single
solid-state spins, e.g., for color centers or quantum dots [29].
We omit (time-dependent) memory decay (loss) which ad-
ditionally becomes relevant for atomic memories, either as
collective spin modes of atomic ensembles or in the form of an
individual atom in a cavity (generally, atoms and trapped ions
may be subject to both dephasing and decay) [17,21,28,44].
It turns out that the effect of memory dephasing can be ac-
curately included into the statistical repeater model, since the
total, accumulated dephasing in the final Alice-Bob density
operator follows a simple sum rule [45]. Thus, the statistical
averaging can be applied to the final state, for which we derive
a recursive formula that also includes depolarizing errors from
the initially distributed states and from the imperfect Bell
measurement gates in every entanglement swapping opera-
tion. The main complication will be to determine the correct
dephasing variables for the different swapping strategies and
identify the optimal schemes. As a result, we extend the sim-
ple model of Ref. [29] not only with regards to the repeater’s
size, but also to include additional experimental parameters:
besides the above three parameters we then have one or two
extra parameters for the initially distributed states (taking into
account initial dephasing or depolarization errors depending
on the protocol) and one extra depolarization parameter for
the local gates and Bell measurements.

Our analytical treatment enables us to identify the scaling
of the various parameters, their specific impact onto the re-
peater performance (for QKD, affecting either the raw rate
or the error-dependent secret key fraction), and the result-
ing trade-offs. Most apparent is the trade-off for quantum
repeaters with n segments and n − 1 intermediate memory
stations leading to an improved loss scaling with an n-
times bigger effective attenuation distance compared with
a point-to-point link (n = 1), but a final state fidelity pa-
rameter decreasing as the power of 2n − 1 (assuming equal
gate and initial state error rates). We will then be able to
consider repeater protocol variations with an improved scal-
ing of the basic loss and fidelity parameters. Based upon
the above-mentioned TF concept with coherent states or
basically replacing two-photon by one-photon interferences
at the beam splitter stations, these repeaters exhibit a 2n-
times bigger effective attenuation distance while keeping the
2n − 1 power scaling of the final state fidelity parameter
for n − 1 memory stations [45]. However, they are subject
to some extra intrinsic (dephasing) errors even when only
channel loss is considered, which will turn out to be an
essential complication that prevents to fully exploit the im-
proved scaling of the basic parameters in comparison with the

standard repeater protocols that do not suffer from intrinsic
dephasing.

Comparing different repeater protocols and incorporating
the optimized memory dephasing from our statistical model
into them, we find that for experimental parameter values that
are highly demanding but not impossible (up to 10 s coherence
time, 80% link coupling, and state or gate infidelities in the
regime of 1%–2%), one secret bit can be shared per second
over a total distance of 800 km. This represents a significant
improvement over ideal point-to-point or realistic TF QKD at
GHz clock rates. In particular, the repeaterless, point-to-point
bound [46], for, e.g., 800 km is 3 × 10−16 bits per channel use
or 0.3 μbits per second (at GHz clock rate).1 We will see that,
in order to clearly beat this with those reasonable experimental
parameters from above, the number of repeater stations must
neither be too high nor too low, and so placing a station at
every 100 km will work well.

As mentioned before, our schemes are generally indepen-
dent of the typically used doubling strategies in quantum
repeaters (which are most suitable to incorporate entangle-
ment distillation in a systematic way and which are included
as a special case in our sets of swapping strategies). Instead
we will consider general memory-assisted entanglement dis-
tribution with possible QKD applications. Compatible with
our analysis are also schemes that aim at an enhanced ini-
tial state distribution efficiency or fidelity as, for example,
in multiplexing-assisted or the above-mentioned second-
generation quantum repeaters. In any case, the subsequent
steps after the initial distributions in each repeater segment
are simple entanglement swapping steps combined with quan-
tum storage in single spins. For the entanglement swapping
we assume unit success probability. This assumption is ex-
perimentally justified for systems where Bell measurements
or, more generally, (entangling) gates can be performed in a

1The most recent TF QKD experiments achieve remarkably large
distances in the range between 509 and 833 km [64–67]. Espe-
cially the most recent demonstration of Ref. [67] over 833 km is
a strong statement in favour of the TF QKD approach. However,
it is important to notice that low-loss fibers were employed in that
demonstration corresponding to Latt = 25.747 km, 0.168 dB/km, or
a tolerated total loss budget of 140 dB/833.8 km. This loss budget, if
ultra-low-loss fibers were used corresponding to Latt = 30.606 km or
0.1419 dB/km, would even allow to reach distances near 1000 km.
Nonetheless, in our theoretical rate analysis, we assume standard
fiber transmission throughout, corresponding to Latt = 22 km or
0.197 dB/km. For these values, ideal TF QKD achieves about 1 se-
cret bit per second over 800 km (this is a bound which is also related
to the one-way distillable entanglement) [22,68]. Any realistic TF
QKD experiment over such distances will certainly perform worse
than this ideal bound or, in other words, for a ultra-low-loss fiber
transmission also the ideal TF QKD rate would move up, e.g., for
Latt = 30 km, to a value as high as about 100 secret bits per second
for 800 km. The results of the experiment of Ref. [67], of course,
are also clearly below the ideal TF QKD bound when compared
with identical fiber transmission parameters. Our optimized quantum
repeater that achieves 1 secret bit per second over 800 km would
correspond to a scheme that tolerates a total channel loss budget of
157.6 dB. With improved, low-loss fiber channels, this loss budget
would also allow us to go to much larger distances beyond 1000 km.
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deterministic fashion, for instance, with atoms or ions or solid-
state-based spin qubits [29]. For a linear quantum repeater
chain, this system is still remarkably complex.

The assumption of deterministic entanglement swapping
will allow us to calculate the exact (secret key) rates in a
quantum repeater up to eight segments. We will distinguish
schemes with sequential and parallel entanglement distribu-
tions and also consider different swapping strategies. Based
on two characteristic random variables, the total repeater
waiting time and the accumulated dephasing time of the final
state, and their probability generating functions, we will be
able to determine exact, optimized secret key rates. In prin-
ciple, this gives us access to the full statistics of this class
of quantum repeaters. Optimality here refers to the minimal
dephasing among all parallel-distribution (and hence maximal
raw-rate) schemes. For three segments and two intermediate
stations, we show that the resulting secret key rates are opti-
mal among all schemes (with distribution attempts in every
segment limited by equal signaling time units). For more
segments, we conjecture this to hold too, however, there is
the loophole that sequential-distribution schemes (generally
exhibiting smaller raw rates) may accumulate less dephasing
and as a result, in combination, lead to a higher secret key rate.
We conclude that our treatment gives evidence for any optimal
scheme to distribute entangled pairs in parallel, to swap as
soon as possible, and to simultaneously store qubits as little
as possible. However, here the first and the third property are
not compatible, which leads to another trade-off between high
efficiencies (raw rates) and small state fidelities (high error
rates) as commonly encountered for entanglement distribution
and quantum repeaters. The (partially or fully) sequential
schemes have the advantage that parallel storage of qubits can
be avoided to a certain (or even a full) extent. However, since
the sequential schemes are overall slower, their total dephas-
ing may still exceed that of the fastest repeater schemes with
parallel storage. For up to eight repeater segments, our optimal
scheme, exhibiting the smallest total dephasing among all fast
repeater schemes, also exhibits a smaller total dephasing than
the fully sequential scheme.

The outline of the paper is as follows. In Sec. II, we first
review the known results and existing approaches to analyze
secret key rates for the smallest possible quantum repeater
based upon a single middle station, including calculations of
the repeater raw rate and physical error models to describe
the evolution of the relevant density operators. The methods
for the statistical analysis—probability generating functions,
and the figure of merit to quantitatively assess the repeater
performance—a QKD secret key rate, will be introduced in
Sec. III. In Sec. IV, we start introducing our new, general-
ized treatment for quantum repeaters beyond a single middle
station. We present two sections on the two characteristic
random variables—the waiting time and the dephasing time,
which contain the entire statistical information of the class
of quantum repeaters considered in our work. In order to
be able to take into account optimal strategies for the initial
entanglement distribution and the subsequent entanglement
swapping in more complex quantum repeaters with two or
more intermediate repeater stations, we discuss in detail in
various sections sequential and parallel distribution as well as
optimal swapping schemes. Still in Sec. IV, we show how

FIG. 1. A two-segment quantum repeater. Each segment has
length L0 and is characterized by a distribution success probability p,
a (geometrically distributed) random number of distribution attempts
N (with expectation value N̄ = 1/p), and a “final” two-qubit state
ρ̂ (subscripts denote segments or qubits at the nodes). “Final” here
means that the, in general, imperfectly distributed states may be
further subject to memory dephasing for a maximal number of m time
steps (distribution attempts). After an imperfect swapping operation
S (error parameter μ), the repeater end nodes share an entangled
state over distance 2L0.

these optimizations can be applied to the statistics of vari-
ous quantum repeaters, explicitly calculating the probability
generating functions of the two basic random variables for
two-, three-, four-, and eight-segment quantum repeaters. In
particular, for the four- and eight-segment cases we will show
how and to what extent our optimized and exact treatment of
the memory dephasing will improve the relevant quantities of
the final state density operators as compared with the usually
employed, canonical schemes such as “doubling.” The inter-
esting case of a three-segment repeater and its optimization
will be discussed in more detail in an Appendix. Finally, in
Sec. V we will analyze the secret key rates of all proposed
schemes and compare them for various repeater sizes with
the “PLOB” bound [46].2 For this, we will explicitly consider
the extended set of experimental parameters and insert exper-
imentally meaningful values (representing current and future
experimental capabilities) for them. A particular focus will be
on the initial state and gate parameters and their impact on
the repeater performance. We shall compare the performances
of different schemes, discuss the possibility of including mul-
tiplexing, and examine what influence a memory cutoff and
what (scaling) advantages the different types of encoding for
the flying qubits can have. For the latter, we discuss in more
detail schemes based on the TF concept and, for the compari-
son between different schemes and encodings, the final secret
key rates per second. Section VI concludes the paper with a
final summary of the results and their implications. Various
additional technical details can be found in the appendices.

II. QUANTUM REPEATERS WITH ONE MIDDLE STATION

A small quantum repeater composed of two segments
and one middle station, as schematically shown in Fig. 1,

2See also Ref. [61] for a related work on the general secret key loss
scaling in a point-to-point link, and also the more recent Refs. [69,70]
on bounds on the key and entanglement rates that can be achieved
by means of repeaters (assisted by local operations and classical
communication).
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is pretty well understood and it is known how to obtain
the secret key rates in a QKD scheme assisted by a single
memory station, even including experimental imperfections
[29–31,45], including memory cutoffs [29,31,35,41], and for
general, probabilistic entanglement swappping [35]. First
experimental demonstrations of memory-enhanced quantum
communication are also based on this simplest repeater setting
[27]. In such a small quantum repeater, there is only a single
Bell measurement on the spin memories at the central station,
and so the entanglement swapping “strategy” is clear. Later
we will briefly discuss the two-segment case as a special case
of our more general rate analysis treatment, easily deriving
the statistical properties of the two basic random repeater
variables, the total waiting and dephasing times, and obtaining
the optimal scheme [29,45].

The smallest, two-segment quantum repeater also serves as
a basic building block for general, larger quantum repeaters.
In the scheme of Fig. 1, each segment distributes an entangled
pair of (mostly) stationary qubits by connecting its end nodes
through flying qubits. The goal is to share entanglement be-
tween the two qubits at the end nodes of the whole repeater.
The specific entanglement distribution scheme in each seg-
ment depends on the repeater protocol and it may involve
memory nodes sending or receiving photons [29].

In the notation of Fig. 1, from an entangled state �̂12 of
qubits 1 and 2 and an entangled state �̂34 of qubits 3 and 4, we
create an entangled state �̂14 of qubits 1 and 4. The states �̂12

and �̂34 subject to the Bell measurement for the entanglement
swapping operation are those quantum states present in the
segments at the moment when the swapping is performed. If,
for example, segment 1 generates an entangled state earlier
than segment 2, then �̂12 enters the swapping step in the form
of the initially, distributed state (which is not necessarily a
pure maximally entangled state) after it was subject to mem-
ory dephasing while waiting for segment 2. Thus our physical
model includes state imperfections that originate from the
initial distribution as well as from the storage time, as we shall
discuss in detail below. In addition, we will include an error
parameter for the swapping gate itself.

A. Raw rate

The entanglement distribution in an elementary segment
is typically not a deterministic process and several attempts
are necessary to successfully share an entangled pair of qubits
among two neighboring stations. If the probability of suc-
cessful generation in each attempt is p, then the number of
time steps until success is a geometrically distributed random
variable N with success parameter p. We denote the fail-
ure probability as q = 1 − p. The parameter p is primarily
given by the probability that a photonic qubit is success-
fully transmitted via a fiber channel of length L0 connecting
two stations, exp(−L0/22 km). It also includes local state
preparation/detection, fiber coupling, frequency conversion,
and memory “write-in” efficiencies. The random variables for
different segments (in Fig. 1 denoted as N1 and N2 for the
first and the second segment, respectively) are independent
and identically distributed geometric random variables. Only
when both segments have generated an entangled state, we
perform a swapping operation on the adjacent ends (nodes 2

and 3) of the segments and, when successful, we will be left
with an entangled state of qubits 1 and 4.

In general, the swapping operation is also nondetermin-
istic, but here we consider only the case of deterministic
swapping. Under this simple assumption, we can still cover
a large class of physically relevant and realistic repeater
schemes and obtain exact and optimized rates for them. More-
over, especially for larger repeaters (still with no entanglement
distillations), this assumption allows to circumvent the need
for classical communication times longer than the elementary
time τ (as defined below) in order to confirm successful en-
tanglement swapping operations on “higher” repeater levels
beyond the initial distributions in each segment. Physically,
this assumption requires that in our schemes the Bell mea-
surements for entanglement swapping (including the memory
“read-out” operations) can be performed deterministically.
Nonetheless, the swapping operations can still be imperfect,
introducing errors in the states, as will be described below.

Due to the nondeterministic nature of the initial en-
tanglement generation, the whole process of entanglement
distribution is also nondeterministic and fully described by
the number of attempts up to and including the successful
distribution (so, this number is always larger than zero). The
real, wall-clock time needed for entanglement generation or
distribution can be obtained from the number of attempts
by multiplying it with an elementary time unit, typically
τ = L0/c f , where again L0 is the length of the segment and
c f = c/nr is the speed of light in the optical fiber (c is the
speed of light in vacuum and nr is the index of refraction of
the fiber, and depending on the specific distribution protocol
there may be an extra factor 2). The elementary time unit is
actually composed of the classical (and quantum) signaling
time per segment τ and the local processing time. However,
for typical L0 values as considered here, the former largely
dominates over the latter, and so we may neglect the local
times, as they would hardly change the final secret key rates
[29].

If one of the two segments generates entanglement earlier
than the other, then the created state must be kept in memory.
The exact technique employed to implement this quantum
memory is irrelevant for our analysis. The simplest model as-
sumes that the state can be kept in memory for arbitrarily long.
A useful assumption in the realistic setting with imperfect
quantum memories is to set a certain limit of m time units on
the memory storage time, thus restarting the creation process
whenever this threshold is reached.

B. Errors

When the quantum repeater is employed for long-range
QKD, errors will become manifest in terms of a reduced
secret key fraction, as introduced in the subsequent section.
In order to compute this secret key fraction, we need to know
the finally distributed state (density operator) of the complete
repeater system, and for this we require a more detailed phys-
ical model. We shall establish a relation between the finally
distributed state as a function of the initial states in each
segment and various errors that appear in the process of en-
tanglement distribution. The physical model is rather common
and has been used before in several works, both analytical and
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numerical. Especially, a two-segment quantum repeater can be
treated analytically based on simple Pauli errors representing
memory dephasing and gate (Bell measurement) errors.

We address the effect of imperfect quantum storage at a
memory node via a dephasing model where the stored quan-
tum state is waiting for an adjacent segment to successfully
generate or distribute entanglement. This kind of memory
error can be modelled by a one-qubit dephasing channel,

�λ(�̂) = (1 − λ)�̂ + λZ�̂Z, (1)

where Z is a qubit Pauli phase flip operator. We assume that
0 � λ < 1/2, and any such number can be represented as λ =
(1 − e−α )/2 for some α > 0. We denote the map in Eq. (1)
also as �α . To avoid confusion, throughout this work we use
the following definition:

�α (�̂) = 1 + e−α

2
�̂ + 1 − e−α

2
Z�̂Z. (2)

The definition for a dephasing two-qubit channel is obtained
from Eqs. (1) and (2) by the replacement Z → Z ⊗ I if the
dephasing acts on the first qubit and by Z → I ⊗ Z if the
dephasing acts on the second qubit.

Errors may also occur when a Bell state measurement is
performed. This kind of errors is modelled by a two-qubit
depolarizing channel,

�̃μ(�̂) = μ�̂ + (1 − μ)
1̂

4
. (3)

We do not consider dark counts of the detectors, since the op-
tical propagation distances L0 after which a detection attempt
takes place remain sufficiently small in any quantum relay or
repeater. Thanks to recent technological developments typical
dark count rates can be reduced far below 1 dark count per
second. In Ref. [47], they were shown to be in the range of
mHz. Dark counts of such a low frequency have no significant
impact on the secret key rate in our schemes.

Let us now apply this to the case of a two-segment quantum
repeater. The Bell measurement of qubits 2 and 3 produces
from a pair of states �̂12 and �̂34 a state �̂14, see Fig. 1. The
initial state �̂1234 = �̂12 ⊗ �̂34 of all four qubits 1, 2, 3, and 4
is the product of the states of qubits 1, 2 and qubits 3, 4. After
the measurement the state �̂14 of qubits 1 and 4 becomes

�̂14 ≡ S (�̂1234) = Tr23(P̂23�̃μ,23(�̂1234)P̂23)

Tr(P̂23�̃μ,23(�̂1234)P̂23)
, (4)

where μ describes the imperfection of the measurement and
P̂23 = |�+〉23〈�+| is one of the four measurement operators
in the two-qubit Bell state basis of the central subsystem
(qubits 2 and 3), {|	±〉23〈	±|, |�±〉23〈�±|}, where |	±〉 =
(|00〉 ± |11〉)/

√
2, |�±〉 = (|10〉 ± |01〉)/

√
2, for qubits de-

fined via the two Z eigenstates |0〉, |1〉 (for any one of the
other three Bell measurement outcomes, the analysis below is
similarly applicable). In this case, Eq. (4) reduces to

�̂14 ≡ S (�̂1234) = 23〈�+|�̃μ,23(�̂1234)|�+〉23

Tr(23〈�+|�̃μ,23(�̂1234)|�+〉23)
. (5)

A simple way to compute the right-hand side of this relation
for an arbitrary density operator �̂1234 is given in Appendix B.

In general, states of the form

�̂0 = �̃μ0 (F0|�+〉〈�+| + (1 − F0)|�−〉〈�−|) (6)

play an important role in the full theory presented below. It is
easy to verify that

(I ⊗ Z )�̂0(I ⊗ Z ) = (Z ⊗ I )�̂0(Z ⊗ I ), (7)

so it does not matter whether �α acts on the first or second
qubit of �̂0 and either application we simply denote as �α (�̂0).
An easily checkable relation is

�α (�̂0) = �̃μ0 (F |�+〉〈�+| + (1 − F )|�−〉〈�−|), (8)

where the new parameter F is expressed in terms of the
original one, F0, as

F = 1
2 (2F0 − 1)e−α + 1

2 . (9)

The initial fidelity parameter F0 (describing an initial
dephasing of the distributed states) combined with the μ0-
dependent initial depolarization are both included in the initial
ρ̂0 in Eq. (6), because later this will allow for an elegant
recursive state relation for larger repeaters. It will also allow
to switch between different initial physical errors depending
on the specific repeater realization. In general, the maps in
Eq. (2) satisfy the relation �α ◦ �β = �α+β . In particular, we
have �α ◦ . . . ◦ �α = �kα , where �α is used k times on the
left-hand side. So, applying �α to the state �̂0 given by Eq. (6)
several times, we have to multiply α in Eq. (9) by this number
of times.

In a two-segment quantum repeater, if we start with the
distributed states �̂12 and �̂34 of the special form [similar to
Eq. (6)]

�̂12 = �̃μ1 (F1|�+〉12〈�+| + (1 − F1)|�−〉12〈�−|),
�̂34 = �̃μ2 (F2|�+〉34〈�+| + (1 − F2)|�−〉34〈�−|), (10)

then the “swapped,” finally distributed state �̂14, given by
Eq. (5), is also of the same form

�̂14 = �̃μd (Fd |�+〉14〈�+| + (1 − Fd )|�−〉14〈�−|), (11)

where μd = μμ1μ2 and Fd reads as

Fd = 1
2 (2F1 − 1)(2F2 − 1) + 1

2 . (12)

We see that the form of the state is preserved by the total
distribution procedure of a two-segment repeater. The same
conclusion will be applicable to larger repeaters as well—if
all segments start in a state of the form given by Eq. (6), then
the finally distributed state will also be of the same form.

For the two-segment repeater, let us now assume that
both segments generate the same state as in Eq. (6), but
not necessarily simultaneously, and so generally only after
some waiting time we perform the entanglement swapping
and distribute entanglement over the two segments. If the
first segment generates entanglement after N1 time units, and
the second segment after N2 time units, and we perform the
entanglement swapping after N time units, with N � N1, N2,
then the states �̂12 and �̂34 prior to swapping will be of the
form in Eq. (10) with μ1 = μ2 = μ0 and

F1 = 1
2 (2F0 − 1)e−(N−N1 )α + 1

2 ,

F2 = 1
2 (2F0 − 1)e−(N−N2 )α + 1

2 . (13)
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The final, distributed state is then given by Eq. (11) where,
according to Eq. (12), the parameters are μd = μμ2

0 and

Fd = 1
2 (2F0 − 1)2e−(2N−N1−N2 )α + 1

2 . (14)

This distributed state is subject to less dephasing when we
swap as early as possible, thus N = max(N1, N2), so the inte-
ger term in front of α is equal to 2 max(N1, N2) − N1 − N2 =
|N1 − N2|. The precise physical meaning of α will be dis-
cussed later when we calculate the memory-assisted secret key
rates in a quantum repeater. Here we omitted explicit factors
depending on the number of memory qubits that are subject to
dephasing in a single repeater segment (in our model this will
be one or, typically, two corresponding to one distributed spin
pair). These factors can be absorbed into α.

III. METHODS AND FIGURE OF MERIT

Before we move to the more general case of more than
two segments and more than just one middle station, we need
some general methods and tools from statistics. This will
enable us to derive an analytic, statistical model for larger
quantum repeaters beyond one middle station (the physical
model remains basically the same as for the elementary two-
segment quantum repeater) and to calculate average values or
moments of two random variables: the total repeater waiting
time Kn and the total (i.e., the totally accumulated) memory
dephasing time Dn. As a quantitative figure of merit, it is
useful to consider the secret key rate of QKD, as it combines
in a single quantity the two typically competing effects in a
quantum repeater system: the speed at which quantum states
can be distributed over the entire communication distance and
the quality of the totally distributed quantum states. These
two effects are naturally related to the above-mentioned two
random variables. For our purposes here, throughout we shall
rely on asymptotic expressions for the secret key rate omitting
effects of finite key lengths. Of course, alternatively, one could
also treat the total state distribution efficiencies and qualities
(fidelities) separately and individually, and then also consider
quantum repeater applications beyond long-range QKD.

A. Probability generating function

The method of probability generating functions (PGFs)
plays an important role in our treatment of statistical proper-
ties of quantum repeaters. For any random variable X , taking
integer non-negative values its PGF GX (t ) is defined via

GX (t ) = E[tX ] =
+∞∑
k=0

P(X = k)t k . (15)

The series on the right-hand side converges at least for all
complex values of t such that |t | � 1. The PGF contains all
statistical information about X , which can be easily extracted
if an explicit expression for GX (t ) is known. For example, the
average value of X , E[X ] ≡ X , and its variance V[X ] ≡ σ 2

X =
E[(X − X )2], are expressed as follows:

E(X ) = G′
X (1),

V(X ) = G′′
X (1) + G′

X (1) − G′2
X (1). (16)

For any α � 0 the random variable e−αX has a finite average
value, which can be computed as

E[e−αX ] = GX (e−α ). (17)

Note that for this random variable, besides the mean or aver-
age value, any statistical moment can be easily obtained and
the kth-moment simply becomes E[e−αkX ] = GX (e−kα ). Two
kinds of random variables appear in our model of quantum
repeaters where one is related to the raw rate and the other
to the secret key fraction of QKD as introduced below. It
is not always possible to get a compact expression for the
PGF of these random variables explicitly, but when it is, we
use the equations above to obtain statistical properties of the
corresponding random variables.

B. Secret key rate

The main figure of merit in our study is the quantum
repeater secret key rate, which can be defined as the product
of two quantities,

S = Rr, (18)

where R is the raw rate and r is the secret key fraction. The
raw rate is simply the inverse average waiting time,

R = 1

T
, (19)

where T = E[K] is the average number of steps K needed
to successfully distribute one entangled qubit pair over the
entire communication distance between Alice and Bob (giving
an average time duration in seconds when multiplied with
an appropriate time unit τ ). The secret key fraction of the
BB84 QKD protocol [5,6], assuming one-way postprocessing,
is given by

r = 1 − h(ex ) − h(ez ), (20)

where ex and ez are the quantum bit error rates (QBERs),

ez = 〈00|�̂n|00〉 + 〈11|�̂n|11〉,
ex = 〈+ − |�̂n| + −〉 + 〈− + |�̂n| − +〉, (21)

and h(p) is the binary entropy function,

h(p) = −p log2(p) − (1 − p) log2(1 − p). (22)

The QBERs ex and ez in Eq. (21) are obtainable from the
final, distributed state �̂n of an n-segment quantum repeater,
which in our case will depend on the dephasing random vari-
able, and so we have to insert average values in Eq. (20)
as indicated by the bars. We thus need a complete model
of quantum repeaters to compute the statistical properties of
the relevant random variables associated with the number of
steps to distribute entanglement or the density operator of
the distributed state. Given such a model, the aim of our
work is to compute and analyze secret key rates of quantum
repeaters with an increasing size, up to eight segments, con-
sidering and optimizing different distribution and swapping
schemes. Besides the most common BB84 QKD protocol,
alternatively, we may also consider the six-state protocol [48]
which would slightly improve the secret key rate. Assuming
again one-way postprocessing, the secret key fraction r of the
six-state protocol is given by 1 − H (λ) [[4], App. A] where
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H (·) is the Shannon entropy and the vector λ must contain
the corresponding weights of the four Bell states in the final
density operator �̂n. Throughout this work all secret key rates
are calculated from their asymptotic expressions and hence ef-
fects of finite key lengths are not included here. This simplifies
the analytical treatment of a quantum repeater chain, which,
as we will see, quickly becomes rather complex for a growing
number of stations, involving many distinct choices and strate-
gies for the entanglement manipulations. Moreover, our rate
analysis shall also be useful to assess and compare the perfor-
mances of different quantum repeaters in applications beyond
QKD.

IV. QUANTUM REPEATERS BEYOND
ONE MIDDLE STATION

Larger repeaters with more than two segments and one
middle station can now be modeled in a way similar to the
two-segment case discussed above. However, the extended,
more general case is also more complex and there are both dif-
ferent ways to perform the initial entanglement distributions
in all elementary segments and different ways to connect the
successfully distributed segments via entanglement swapping.
For the initial distributions, we make a distinction between
sequential and parallel schemes, where the former refers to a
scheme in which, according to a predetermined order, the dis-
tributions are attempted step by step starting from e.g., the first
segment. In a parallel scheme, the distributions are attempted
simultaneously in all segments, which obviously leads to a
smaller total repeater waiting time than for the sequential dis-
tribution schemes. Nonetheless, since the sequential schemes
do make use of the quantum memories, they do already offer
the repeaterlike scaling advantage over point-to-point quan-
tum communication links. Even for a two-segment quantum
repeater, we may choose a sequential scheme, where we
first only distribute e.g., the left segment and only once we
succeeded there we attempt to distribute the right segment.
Experimentally, this can be of relevance for those realizations
where only a single short-term quantum memory is available
at every station for the light-matter interface and another
quantum memory for the longer-term storage (e.g., respec-
tively, an electronic and a nuclear spin in color-center-based
repeater nodes) [40,49]. Theoretically and conceptually, there
are at least two advantages of a (fully) sequential distribution
approach [45].

First, the two basic random variables of a quantum repeater
are very simple and so the secret key rates are fairly easy to
calculate. Second, always only at most one entangled qubit
pair (or even only a single spin if, e.g., Alice measures her
qubit immediately) may be subject to memory dephasing dur-
ing all distribution steps. For the entanglement connections
via entanglement swapping, the two-segment case is special,
as there is only one swapping to be performed at the end when
pairs in both segments are available. However, already with
three segments and two repeater stations there is no unique
swapping order anymore, and we may either fix the order or
“dynamically” choose where we swap as soon as swapping
is possible for two neighboring, successfully distributed seg-
ments. In a fixed scheme, two neighboring segments, though
ready, may have to wait before being connected. Thus the

choice of the entanglement swapping scheme has a significant
impact on the totally accumulated dephasing time. In a worst-
case scenario, we could wait until all segments have been
distributed and then do all the entanglement connections at
the very end; for deterministic entanglement swapping, like
in our model, this would not affect the raw waiting times,
but it would lead to a maximal total dephasing. In this case,
a sequential distribution where entanglement swapping takes
place immediately when a new, successfully bridged seg-
ment is available can lead to a higher secret key rate than
a combination of parallel distribution and swapping at the
end (where the rates of the latter scheme may still only be
obtainable approximately) [45]. The crucial innovation in our
analytical treatment here is that we will be able to obtain the
exact secret key rates for schemes that combine fast, parallel
distributions with fast, immediate swappings (and hence a
suppressed level of parallel storage). In other words, among
all parallel-distribution schemes we will calculate the exact
rates that are optimized with regards to the total repeater
dephasing.

A. Waiting times

The average total waiting times in a quantum repeater or
even the full statistics of the waiting-time random variable
can be, in principle, obtained via the Markov chain formalism,
even when the swapping is probabilistic [35,36]. More gener-
ally, the PGFs as introduced earlier contain the full statistical
information, and for deterministic swapping, we can obtain
the PGF of Kn through combinatorics. In order to minimize the
total waiting time, the distributions should occur in parallel.
However, there is no unique way to perform the entanglement
swapping, and so let us briefly consider this aspect in the
context of the waiting times. For example, for a four-segment
repeater, two possible swapping strategies are shown in Figs. 2
and 3. Both schemes are for a fixed swapping order, while
we may distribute the individual segments in parallel. In the
first scheme, typically referred to as “doubling”, we swap
the two halves of the repeater independently and only when
both are ready, we swap them too. In the second scheme,
we swap the segments one after the other starting in one of
the repeater’s ends (here the left end); we may refer to this
scheme as “iterative” swapping. Other schemes are possible,
and the more segments the repeater has, the more possibilities
for performing swappings there are. The raw rate of a repeater
is characterized by the number of steps, Kn, needed to success-
fully distribute an entangled pair, and this random variable can
be expressed in terms of the geometric random variables Ni

associated with each segment. For example, for the swapping
schemes shown in Figs. 2 and 3, when combined with parallel
distributions, we have K4 = max(N1, N2, N3, N4), so the two
schemes have the same raw rate. In general, the waiting times
of all such schemes that distribute in parallel are of a similar
form. Those schemes that we later classify as “optimal” in
terms of the whole secret key rate are assumed to be par-
allel distribution schemes. Conversely, combining iterative
swapping with sequential distribution can lead to a reduced
accumulated dephasing time at the expense of an increased
total repeater waiting time. We shall discuss the accumulated
dephasing times next.
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FIG. 2. “Doubling” swapping scheme for a four-segment quantum repeater. This is the most common swapping strategy which allows
to systematically include entanglement distillation at each repeater “nesting level.” Without extra distillation, however, “doubling” is never
optimal: combined with fast, parallel distributions it exhibits increased parallel storage times and hence memory dephasing (while combined
with sequential distributions the repeater waiting times become suboptimal). Memory cutoff parameters are omitted in the illustration.

B. Dephasing times

In order to treat the total dephasing time in a quantum
repeater with more than two segments, we have to general-
ize the methods and the model that led to the result for the
distributed state for two segments, Eqs. (11) and (12), and the
discussion below, to larger repeaters with, in pinciple, an arbi-
trary number of segments n. In fact, we did the two-segment
derivations in such a way that an n-segment extension is now
straightforward. We obtain the following expression for the
final, distributed state in the general case:

�̂n = �̃μn

[
1 + (2F0 − 1)ne−αDn

2
|�+〉〈�+|

+ 1 − (2F0 − 1)ne−αDn

2
|�−〉〈�−|

]
, (23)

where μn = μn−1μn
0 and Dn = Dn(N1, . . . , Nn) is a random

variable describing the total number of time units that con-
tribute to the total dephasing in the final output state. For
n = 2, the expression for D2(N1, N2) = |N1 − N2| has been
obtained before, for larger n the value of Dn now depends on
the swapping scheme. As before, we omitted explicit factors

depending on the number of memory qubits that are subject
to dephasing in a single repeater segment (one or two spins
in our model) which also depends on the application and the
specific execution of the protocol. Such factors can always be
absorbed into α. The precise physical meaning of α will be
discussed later when we calculate the memory-assisted secret
key rates in a quantum repeater. The QBERs for the state in
Eq. (23) are easy to compute,

ez = 1
2

(
1 − μn−1μn

0

)
,

ex = 1
2

(
1 − μn−1μn

0(2F0 − 1)ne−αDn
)
. (24)

For one of the averages, we have ez = ez, and in order to ob-
tain the other average ex we need to calculate the expectation
value E[e−αDn ]. This average can be obtained with the help of
Eq. (17) if we know the PGF of Dn. Again, in principle, we
can get the full statistics of Dn (and functions of it) from this
PGF. More specifically, according to Eq. (17), for the random
variable e−αDn we can easily obtain all statistical moments of
order k, E[e−αDnk]. This may be useful for a rate analysis that
includes keys of a finite length, though here in this work we
shall focus on asymptotic keys. The PGF of Dn, however,
is generally harder to obtain than that of Kn. For example,

FIG. 3. “Iterative” swapping scheme for a four-segment quantum repeater. The swapping operations are performed step by step (here from
left to right). Also this scheme, when executed with parallel distributions in each segment, leads to an increase of the total dephasing. However,
if combined with sequential distributions, the accumulated dephasing times can be reduced (with always at most one spin or spin pair being
subject to a long dephasing) at the expense of a growing repeater waiting time. Memory cutoff parameters are omitted in the illustration.
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the PGF of Dn is not obtainable via the absorption time of
a Markov chain (unlike that of Kn, which is obtainable even
when the entanglement swapping is probabilistic) [35,36].
Nonetheless, at least without considering the more compli-
cated case including a memory cutoff, we can calculate the
relevant PGF of Dn by analyzing all permutations of the basic
variables (there are also other, more elegant, but still not so
efficient and well scalable methods to treat the statistics of
Dn, e.g., based on algebraic geometry).

We see that in order to compute the secret key rate of a
quantum repeater we need to study the two integer-valued
random variables Kn and Dn. The former describes the num-
ber of steps to successfully distribute entanglement and is
responsible for the repeater’s raw rate. The latter describes
the quality of the final state and strongly depends on the
swapping scheme. For example, for a four-segment repeater
with a predetermined swapping order like the iterative scheme
in Fig. 3, we could actually also choose to adapt the initial
entanglement distributions to the swapping strategy and hence
wait with every subsequent distribution step until the corre-
sponding connection from the left has been performed. Since
this is no longer the parallel distribution (it is the “sequential”
distribution), we would obtain an increased total waiting time.
However, the accumulated dephasing time may be reduced
this way, as we discuss in the next section.

In general, we may also consider schemes with a memory
cutoff, where we put a certain restriction of m time units on
the maximum time a qubit can be kept in memory. So, in
this case, we study four variables—the total number of dis-
tribution steps and the total dephasing, both with and without
cutoff. In order to maximize the secret key rate we need a
scheme with small E[Kn] and large E[e−αDn ]. In the following
sections, we will introduce different schemes for performing
the entanglement swapping and, where possible, compute the
PGFs of the corresponding random variables. The PGF of
Kn is denoted as Gn(t ) and that of Dn as G̃n(t ). For the
corresponding quantities with cutoff m, we use the superscript
[m], e.g., K [m]

n . We will see and argue that there are three
basic properties that a quantum repeater protocol (unassisted
by additional quantum error detection or correction) should
exhibit: distribute the entangled states in each segment in par-
allel, swap the initially distributed states as soon as possible,
and avoid parallel storage of already distributed pairs as much
as possible. Obviously, all these three “rules” cannot be fully
obeyed at the same time. In particular, parallel distribution
will ultimately lead to some degree of parallel storage.

C. Sequential distribution schemes

In what we refer to as a sequential entanglement dis-
tribution scheme, the initial, individual pairs are no longer
distributed in parallel but strictly sequentially according to a
predetermined order. If this order is chosen in a suitable way,
it is possible that at any time during the repeater protocol at
most one entangled pair is subject to dephasing (apart from
small constant dephasing units for single attempts), because
once a new pair is available an entanglement connection can
be immediately performed and only then another new segment
starts distributing. This may lead to a reduced accumulated
dephasing time. Moreover, from a secret key rate analysis

point of view, an appropriate sequential scheme can allow for
a straightforward calculation of the statistics of both random
variables, the total waiting and the accumulated dephasing
times, even when a memory cutoff is included.

Let us consider a simple, sequential distribution and swap-
ping scheme where the above discussion applies and the secret
key rate can be computed exactly by means of elementary
combinatorics. In this scheme, we start by distributing entan-
glement in segment 1 (most left segment), and only after a
success we start to attempt distributions in segment 2. As soon
as we succeed there too, we immediately swap segments 1 and
2 and start to distribute entanglement in segment 3. As soon
as we succeed with the distribution in segment 3, we swap
segment 3 with the first two, already connected segments, start
distributing in segment 4, and so on, repeating this process
until entanglement has also been distributed in the most right
segment followed by a final entanglement swapping step. This
scheme, for n = 4, is also illustrated by Fig. 3. The variables
Kn and Dn for this scheme and general n are thus defined as

K seq
n = N1 + · · · + Nn, Dseq

n = N2 + · · · + Nn. (25)

The PGFs of these random variables are just powers of the
PGF of the geometric distribution:

Gseq
n (t ) =

(
pt

1 − qt

)n

, G̃seq
n (t ) =

(
pt

1 − qt

)n−1

. (26)

In Appendix C, we derive the following expressions for the
PGFs of the random variables with memory cutoff. We as-
sume an accumulated, global cutoff where the total storage
(dephasing) time across all segments must not exceed the
value m. The PGF of K [m]

n is given by

G[m]
n (t ) = pntn

∑m−n+1
j=0

( j+n−2
n−2

)
q jt j

1 − qt − p
∑n−2

i=0

(m
i

)
piqm−itm+1

, (27)

and the PGF of D[m]
n becomes

G̃[m]
n (t ) = t n−1 ∑m−n+1

j=0

( j+n−2
n−2

)
q jt j∑m−n+1

i=0

( m
i+n−1

)
piqm−n+1−i

. (28)

Because it takes at least one time step for each segment to suc-
ceed, we have the inequalities n � K [m]

n and n − 1 � D[m]
n �

m, which agree with the PGFs of these quantities presented
above. Moreover, for m → +∞, we have

G[+∞]
n (t ) = Gseq

n (t ), G̃[+∞]
n (t ) = G̃seq

n (t ). (29)

These relations are easy to prove, just note that

m−n+1∑
i=0

(
m

i + n − 1

)
piqm−n+1−i = 1

pn−1

[
1 −

n−2∑
i=0

(
m

i

)
piqm−i

]
.

(30)

The binomial coefficient
(m

i

)
is polynomial in m of ith degree,

and thus
(m

i

)
qm → 0 when m → +∞ for all i = 0, . . . , n − 2,

which proves the relations of Eq. (29).
There are also variations of the above sequential cutoff

scheme. In the previous scheme we only abort a round when
we already waited m time units. Now consider the case where
we already waited m/2 time units, but only a small number of
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segments succeeded. Hence, it is highly unlikely that we will
succeed in all segments within the m time steps. Therefore
it is better not to waste time and already abort the current
round to start from scratch. A very simple strategy following
this idea makes use of an individual (local) cutoff in each
segment. However, it is beneficial to use a different cutoff
in every segment; one should choose a smaller cutoff in the
first segments and then increase the cutoff for later segments.
The rationale behind this is that in the first segments we have
not invested much effort and can discard rather aggressively,
whereas later we should discard less aggressively since we
already consumed lots of resources.

The advanced protocol is uniquely defined by a vector of
cutoffs m = (m1, . . . , mn−1) and the random variables Kn and
Dn for this protocol and general n are given by

K seq,m
n = Ñ (mn−1 ) + (Tn−1 − 1)mn−1 +

Tn−1∑
j=1

K seq,m
n−1, j , (31)

where K seq,m
1 is geometrically distributed with parameter p,

Ñ (mn−1 ) follows a truncated geometric distribution with cutoff
mn−1, and Tn−1 is a geometric random variable with parameter
(1 − qmn−1 ) describing the number of starts of the protocol. For
the dephasing we have

Dseq,m
n = Ñm1 + · · · + Ñmn−1 . (32)

The PGF of K seq,m
n is given recursively by (see Ap-

pendix C)

G[m]
n (t ) = G[mn−1]

2 (t )t−mn−1 P(mn−1 )
(
G[m]

n−1(t )tmn−1
)
, (33)

where P(m)(t ) = (1−qm )t
1−qmt and G[m]

1 = Gseq
1 . The PGF of Dseq,m

n

is simply given by

G̃[m]
n (t ) =

n−1∏
j=1

G̃
[mj ]
2 (t ), (34)

since the sum of independent random variables translates to
a product for PGFs. As the state quality only depends on the
total dephasing time, the best sequential protocol would count
the total number of storage steps and discard based on a cutoff
as a function of the number of already succeeded segments,
and one may also employ an early aggressive discarding.

D. Parallel distribution schemes

A more efficient class of schemes is constructed when we
do not wait for some segments to finish before we start others.
In these schemes, we start all segments independently and
distribute in parallel. It follows that for these schemes without
a cutoff, we have

Kpar
n = max(N1, . . . , Nn), (35)

i.e., all such schemes give the same raw rate. In Appendix A,
we derive the following expressions for the PGF of Kn:

Gpar
n (t ) = t

n∑
i=1

(−1)i+1

(
n

i

)
1 − qi

1 − qit

= 1 + (1 − t )
n∑

i=1

(−1)i

(
n

i

)
1

1 − qit
. (36)

The two expressions are identical, since their difference re-
duces to (1 − 1)n = 0. From the first expression, it is clear
that the values of Kn start at 1, as it must be, because it
takes at least one time unit to distribute entanglement. In the
other expression, the necessary property of all PGFs becomes
manifest, Gn(1) = 1. From the first relation of Eqs. (16), we
get the well-known expression for the average waiting time of
a quantum repeater with parallel distribution and deterministic
entanglement swapping (at any time possible, e.g., at the very
end)

Kpar
n = d

dt
Gpar

n (t )
∣∣∣
t=1

=
n∑

i=1

(−1)i+1

(
n

i

)
1

1 − qi
, (37)

previously obtained in Ref. [50] (not including the full prob-
ability distribution). All other relevant expressions, the total
number of distribution steps including memory cutoff as well
as the finally distributed quantum state including memory
imperfections, both for the model with and without memory
cutoff, depend on the particular swapping strategy chosen
(e.g., unnecessarily postponing some or even all entanglement
swapping steps until the very end maximizes the amount
of parallel storage and hence the total dephasing in the fi-
nal state). For this, there is a growing number of choices
for larger repeaters, and in the following we shall derive
an optimal swapping scheme that results in a minimal to-
tal dephasing time (while sharing the high raw rates, i.e.,
the minimal total waiting times, with all parallel distribution
schemes).

1. Optimal swapping scheme

Because all schemes (without a cutoff) considered in this
section have equal raw rates, the best secret key rate is de-
termined by the optimal scheme with regards to the secret
key fraction. In this section, we shall present this scheme.
In contrast to the schemes presented in Figs. 2 and 3, which
are fixed, the optimal swapping scheme is dynamic. In a fixed
scheme the order of swappings is fixed at the beginning and
does not depend on the order in which the segments become
ready. For example, for the “doubling” scheme as shown in
Fig. 2 for n = 4, we never swap segments 2 and 3, even if
they are ready and segments 1 and 4 are not. We always wait
for segments 1 and 2 or segments 3 and 4 to become ready,
swap these pairs, and then swap the larger segments to finish
the entanglement distribution over the whole repeater. In a
dynamical scheme, we do not follow a prescribed order and
can swap the segments based on their state. Of course, we
can freely mix and match fixed and dynamic behaviors. For
example, for n = 8, we can first swap four pairs of segments
in a fixed way and then swap the four new, larger segments
dynamically. We now show that the fully dynamic scheme,
where we always swap the segments that are ready, is the
optimal one.

To prove this we give two characterizations of this fully
dynamic scheme. One is the straightforward translation of the
description to the definition, but this definition is not explicitly
optimal. The other one is optimal by construction, but is not
fully dynamic explicitly. We then show that the two construc-
tions coincide demonstrating the validity of our statement.
Swapping an earliest pair of segments means that we choose
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an index i for which max(Ni, Ni+1) is minimal (there can be
several such indices), swap the pair of segments i and i + 1,
and recursively apply this procedure to the other segments (if

there are several such pairs, choose one of them arbitrarily).
If we denote the dephasing random variable of this scheme as
D̃n, its formal definition reads as

D̃n(N1, . . . , Nn) = ∣∣Ni0 − Ni0+1

∣∣ + D̃n−1
(
N1, . . . , Ni0−1, max

(
Ni0 , Ni0+1

)
, Ni0+2, . . . , Nn

)
, (38)

where i0 = argmini max(Ni, Ni+1). This definition is a greedy, locally optimal scheme, which optimizes only one step. As it is
known from algorithm theory, greedy algorithms do not always produce globally optimal results. By doing only locally optimal
steps, we may miss an opportunity for a much better reward in the future if we make a nonoptimal step now. Fortunately, in this
case the greedy, locally optimal scheme expressed by Eq. (38) does give the globally optimal result, as we show below.

In any scheme, the first step will be to swap a pair of neighboring segments, let us say segments i and i + 1. We do this at the
time moment max(Ni, Ni+1), and the contribution of these segments to the total dephasing is |Ni − Ni+1|. After this swapping, we
are left with n − 1 new segments, one of which is the combination of two original ones. Any initial segment j, where j �= i, i + 1,
generates an entangled state after Nj time units, and the combined segment “generates” entanglement after max(Ni, Ni+1) time
units. If we swap these n − 1 segments in any way in Dn−1 time units, then the total swapping takes Dn = |Ni − Ni+1| + Dn−1

time units. To find the minimal dephasing we simply take the minimum over i = 1, . . . , n − 1 of this expression, and recursively
apply it for the new segments. If we denote the dephasing random variable corresponding to this scheme as D�

n, this description
translates into the following definition:

D�
n(N1, . . . , Nn) = min

i=1,...,n−1
[|Ni − Ni+1| + D�

n−1(N1, . . . , Ni−1, max(Ni, Ni+1), Ni+2, . . . , Nn)]. (39)

The base case of this recursive definition is D�
2(N1, N2) ≡

D2(N1, N2) = |N1 − N2|. This definition by construction gives
the globally minimal number of dephasing time units required
to distribute long-distance entanglement if it takes Ni time
units for segment i to generate entanglement.

We now have two quantities, the locally optimal one, given
by Eq. (38), and the globally optimal one, given by Eq. (39).
The former has semantics of swapping the earliest, but may
not be globally optimal. The latter is optimal by construction,
but does not necessarily correspond to the swapping earliest
strategy. It turns out that the two quantities coincide, at least
for all n = 2, . . . , 8. A straightforward way to check this is
to consider all possible inequality relations between Ni. There
are n! such relations, which correspond to the permutations of
Ni in the following inequality:

N1 � · · · � Nn. (40)

For any given inequality relation between Ni, we can compute
both quantities explicitly in terms of Ni. For example, for the
relation in Eq. (40), both quantities reduce to the same expres-
sion, D̃n = D�

n = Nn − N1. For all other possible relations, we
have

D̃n(N1, . . . , Nn) = D�
n(N1, . . . , Nn), (41)

for all n = 2, . . . , 8. This can be easily verified with the help
of a computer algebra system. Our conjecture is that the
statement is valid for all n � 2, but in this work, we consider
repeaters with up to eight segments only, and for such n we
have verified this statement directly.

In contrast to the sequential scheme introduced earlier,
there is no compact expression for the PGF of the optimal
scheme here. Each case will be considered separately in the
next sections. Where possible, we present explicit expressions
of the PGFs of the quantities in question. The main difficulty
is encountered for those schemes with memory cutoff, and
hence when including a cutoff, even for smaller repeaters
(but n > 2), we only consider the fully sequential scheme,

for which we have got the exact expressions. In the following
sections, we discuss quantum repeaters for n = 2, 3, 4, and
8 segments. Although the case n = 2 is rather well known
and there is no set of different swapping strategies to choose
from in this case, it will be briefly reproduced based on the
formalism introduced in this work. The case n = 3 is interest-
ing, as it represents the simplest, nontrivial case beyond one
middle station, already requiring a choice regarding distribu-
tion and swapping strategies (here, in the main text, the focus
remains on schemes with an optimal dephasing for parallel
distribution; in Appendix E, we discuss the full secret key rate
for n = 3 including all possible distribution schemes). Finally,
the cases n = 4 and n = 8 are chosen, as they allow for a
comparison with “doubling” (see Fig. 2). Larger quantum
repeaters with n > 8 become increasingly difficult to treat (in
terms of the optimized total dephasing). We will later also see
that for n = 8, without additional methods of quantum error
detection or correction, the necessary experimental parameter
values in our model become already highly demanding.

2. Two-segment repeater

This is the simplest kind of a quantum repeater. The PGF
G2(t ) of K2 = max(N1, N2) is given by Eq. (36) with n = 2
and in this case reads as

G2(t ) = p2t (1 + qt )

(1 − qt )(1 − q2t )
. (42)

As we noted before, there is only one choice for the de-
phasing variable, D2 = |N1 − N2| (parallel distribution). In
Appendix D, we derive the following expression for the PGF
of this variable:

G̃2(t ) = p2

1 − q2

1 + qt

1 − qt
. (43)
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There we also show that the PGFs of the variables with cutoffs
are

G[m]
2 (t ) = p2t (1 + qt − 2(qt )m+1)

(1 − qt )(1 − q2t − 2p(qt )m+1)
,

G̃[m]
2 (t ) = p

1 + q − 2qm+1

1 + qt − 2(qt )m+1

1 − qt
. (44)

It is obvious that we have the same consistency relations as
for the sequential distribution scheme:

G[+∞]
2 (t ) = G2(t ), G̃[+∞]

2 (t ) = G̃2(t ). (45)

3. Three-segment repeater

For three segments, there are various ways how to
distribute entanglement. One could use a fully sequential
scheme, start at one end and distribute entanglement in con-
current segments. Alternatively, one could consider schemes
where pairs of segments generate entanglement in parallel and
the remaining segment goes last or, the other way around, it
goes first. There are also combined distribution schemes with
“overlapping” parallel and sequential distributions. Finally,
there are those schemes which attempt to generate entan-
glement in all segments at once and thereby use different
swapping schemes. Among the latter here only the potentially
optimal scheme is of interest, as it minimizes the accumulated
dephasing, while having the same total waiting time as any
other parallel distribution scheme.

However, it could still be the case that a scheme from the
other, slower class of schemes performs better in terms of the
full secret key rate. This is possible, because there is typically
a trade-off between the raw rate and the dephasing or, more
generally, the QBER. In particular, the fully sequential distri-
bution scheme is interesting, since its total dephasing becomes
minimal, as there is basically always only one segment wait-
ing at every time step. On the other hand, for the fully parallel
schemes the raw rate is optimal.

In Appendix E, we present all possible schemes for n = 3
and calculate the PGFs of their total waiting and dephasing
times. Then we use these results to obtain the secret key
rate for each scheme and to compare the different schemes.
We also show in the Appendix that the PGF of the optimal
dephasing random variable, equivalently defined by Eqs. (38)
and (39), reads as

G̃�
3(t ) = p3

1 − q3

1 + (q + 2q2)t − (2q2 + q3)t3 − q4t4

(1 − qt )(1 − q2t )(1 − qt2)
.

(46)
It turns out that with regards to the full secret key rate

the parallel-distribution optimal-dephasing scheme is indeed
optimal in all relevant regimes and especially in the limit of
improving hardware parameters, which can be seen in Figs. 22
and 23 for two different memory coherence times. In the same
section one can also find a more detailed discussion of the
figures. In addition, aiming at the most general treatment of
the n = 3 case, we also consider the scenario where Alice and
Bob measure their qubits immediately, thus suppressing their
memory dephasing, and we apply this to all possible schemes.
The comparison of these “immediate-measurement” schemes
is shown in Figs. 20 and 21, again for two different coherence
times. The conclusion remains the same: overall “optimal” is

optimal. However, note that the option with immediate mea-
surements for Alice and Bob only exists when they operate the
quantum repeater for the purpose of long-range QKD.3 More
advanced quantum repeater applications may require quantum
storage for the qubits at each end (user) node. In any case, the
memory qubits at each intermediate repeater node are (jointly)
measured as soon as possible when the two adjacent segments
are filled with an entangled pair (or even later, depending on
the particular swapping strategy, but in Appendix E, we only
consider swap-as-soon-as-possible schemes that minimize the
dephasing).

The above discussion leads us to the conclusion that there
are three basic properties that a quantum repeater protocol
(unassisted by additional quantum error detection or correc-
tion) should exhibit: distribute the entangled states in each
segment in parallel, swap the initially distributed states as
soon as possible, and avoid parallel storage of already dis-
tributed pairs as much as possible. It is obvious that all these
three “rules” cannot be fully obeyed at the same time. How-
ever, our optimal scheme has the optimal balance with regards
to these rules for three segments. We conjecture that this also
holds true for larger n > 3-segment repeaters.

4. Four-segment repeater

Of particular interest to us is the case of a four-segment
repeater which is commonly operated via “doubling.” Here
we are now able to discuss more general schemes, especially
those that would always swap as soon as possible, unlike
doubling where the second and third segments may not be
immediately connected even when they are both ready. Over-
all there are many more schemes than in the previous n = 3
case, and here for n = 4 we focus on the parallel-distribution
schemes. All these schemes (without cutoff) have identical
K4 = max(N1, N2, N3, N4), whose PGF is given by Eq. (36)
for n = 4. The dephasing variable D4 and its PGF become
different for different schemes. One such scheme, the com-
mon “doubling,” is illustrated in Fig. 2, where we first swap
the pairs of segments 1, 2 and 3, 4 independently and then
swap the two larger segments. Note that the swappings will
typically take place at different moments in time - one pair of
segments will usually swap earlier than the other. The state
of the faster pair that goes into the final swapping operation
is the state of these segments after their connection and at
the moment when the final swapping is done, and so the state
has been subject to a corresponding memory dephasing. For
example, if the swapping of segments 1 and 2 is done first, the
state of the distributed state over segments 1 and 2 just after
the swapping is �̂14 = S (�̂12 ⊗ �̂34). If k time units later seg-
ments 3 and 4 swap, producing the state �̂58 = S (�̂56 ⊗ �̂78),
the former state becomes �kα (�̂14), and the state distributed
over the whole repeater is

�̂18 = S (�kα (S (�̂12 ⊗ �̂34)) ⊗ S (�̂56 ⊗ �̂78)), (47)

3For QKD applications, there is another variation that would indeed
allow to achieve higher secret key rates, namely, when Alice and Bob
send their signals at a high clock rate and the memory stations can
locally decide how to process the arriving qubits [29].
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instead of just �̂18 = S (S (�̂12 ⊗ �̂34) ⊗ S (�̂56 ⊗ �̂78)).
Again, as before, we omitted any extra factors that depend
on the number of spins subject to dephasing in a single
repeater segment. So, Fig. 2 shows just a workflow of
swapping operations, while the exact expressions should be
adjusted according to the respective time differences. The
dephasing variable D4 in this doubling scheme is defined as
follows:

Ddbl
4 = |N1 − N2| + |N3 − N4|

+ | max(N1, N2) − max(N3, N4)|. (48)

The first two terms are due to the possible time difference
for generating entangled states within each pair of segments.
The last term is due to the time difference between the pairs
[e.g., the difference of the two maxima is k time steps in
Eq. (47)]. Note that this particular form of Ddbl

4 is consis-
tent with the commonly used “doubling” where the initial
distributions happen in parallel, but the swapping strategy is
fixed and sometimes disallows to swap as soon as possible.
In Appendix D, we derive the PGF of this random dephasing
variable,

G̃dbl
4 (t ) = p4

1 − q4

Pdbl
4 (q, t )

Qdbl
4 (q, t )

, (49)

where the numerator and denominator are given by

Pdbl
4 (q, t ) = 1 + (q2 + 3q3)t + (3q + 3q2 − q5)t2

− (q3 − q5)t3 + (q3 − 3q6 − 3q7)t4

− (3q5 + q6)t5 − q8t6,

Qdbl
4 (q, t ) = (1 − q2t )(1 − q3t )(1 − qt2)(1 − q2t2).

The dephasing variable corresponding to the iterated
scheme as shown in Fig. 3 differs from that of the doubling
scheme. In the iterative scheme, we first distribute entangle-
ment over segments 1 and 2, then extend it over segment 3,
and finally over segment 4. Note that the figure can be un-
derstood to illustrate both sequential distribution and iterated
swapping. In the sequential distribution scheme, we would
start to generate entanglement in each segment only when all
previous segments (e.g., from left to right) have successfully
generated entanglement. In the iterated swapping scheme, all
segments may start simultaneously (parallel distribution), thus
increasing the chances to swap sooner, but also the number of
qubits potentially stored in parallel. The variable Ditr

4 for this
scheme is

Ditr
4 (N1, N2, N3, N4) = |N1 − N2| + | max(N1, N2) − N3|

+ | max(N1, N2, N3) − N4|.

The PGF of this random variable is rather large and reads as

G̃itr
4 (t ) = p4

1 − q4

Pitr
4 (q, t )

Qitr
4 (q, t )

, (50)

where the numerator and denominator are given by

Pitr
4 (q, t ) = 1 + 3q3t + (4q2 − q4 − 2q5)t2

+ (q − q2 − 3q3 − 6q4 + 2q5 + q6)t3

+ (−2q2 − 5q3 + q4 + 2q5 − q6 − 3q7)t4

+ (−2q2 + 4q4 − 4q6 + 2q8)t5

+ (3q3 + q4 − 2q5 − q6 + 5q7 + 2q8)t6

+ (−q4 − 2q5 + 6q6 + 3q7 + q8 − q9)t7

+ (2q5 + q6 − 4q8)t8 − 3q7t9 − q10t10,

Qitr
4 (q, t ) = (1 − qt )(1 − q2t )(1 − q3t )(1 − qt2)

× (1 − q2t2)(1 − qt3).

We present an example for another, mixed swapping strategy
in Appendix G.

For the dephasing random variable D�
4, corresponding to

the optimal swapping scheme given by Eq. (39) for n = 4, we
derive the following PGF:

G̃�
4(t ) = p4

1 − q4

P�
4 (q, t )

Q�
4(q, t )

, (51)

where the numerator and denominator read as

P�
4 (q, t ) = 1 + (q + 2q2 + 3q3)t + (q + 2q2 + q4)t2

− (3q2 + 4q3 + 4q4)t3 − (4q5 + 4q6 + 3q7)t4

+ (q5 + 2q7 + q8)t5+(3q6 + 2q7 + q8)t6+ q9t7,

Q�
4(q, t ) = (1 − qt )(1 − q2t )(1 − q3t )(1 − qt2)(1 − q2t2).

5. Eight-segment repeater

As before, again all parallel-distribution schemes (with-
out cutoff) have identical total waiting times, K8 =
max(N1, . . . , N8), whose PGF is given by Eq. (36) for n =
8. For the dephasing variable, there are many more possi-
bilities now. We shall consider and compare five different
schemes—the doubling and the optimal schemes, and three
less important schemes, which nevertheless exhibit an in-
teresting behavior. The somewhat less important ones are
described and discussed in Appendix G.

The optimal dephasing D�
8 is defined equivalently by

Eqs. (38) and (39) for n = 8 and the doubling dephasing Ddbl
8

is defined recursively as

Ddbl
8 (N1, . . . , N8) = Ddbl

4 (N1, . . . , N4) + Ddbl
4 (N5, . . . , N8)

+ | max(N1, . . . , N4)

− max(N5, . . . , N8)|, (52)

with Ddbl
4 defined as in Eq. (48). The comparison of the five

different schemes can be found in Appendix G. In this Ap-
pendix, Appendix G, we present some figures showing the
ratios between the average dephasing of the four sub-optimal
schemes and the optimal scheme, with and without exponenti-
ation. We can then compare the relative positions of the curves
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in Fig. 26 with those of the curves of the ratios

E
[
Dsch

8

]
E

[
Dopt

8

] = G̃sch′
8 (1)

G̃opt′
8 (1)

, (53)

which are shown in Fig. 27. Looking at the two figures, we
see that

E
[
Ddbl

8

]
> E

[
D44

8

]
, E

[
e−αDdbl

8
]

< E
[
e−αD44

8
]
. (54)

This behavior is in full agreement with the properties of the
exponential function: if x > y � 0 and α > 0, then e−αx <

e−αy. However, for the other pair of schemes, we have

E
[
D242

8

]
> E

[
D2222

8

]
, E

[
e−αD242

8
]

> E
[
e−αD2222

8
]
. (55)

Nonetheless there is no contradiction here. This is a known
property of nonlinear functions of random variables. This
property can be observed even in the simplest case of ran-
dom variables X and Y each taking two values only. One
can easily construct an example such that E[X ] > E[Y ] and
E[e−αX ] > E[e−αY ]. However, the inequalities (55) show that
it is not necessary to consider artificial constructions. This
property can be observed for simple and natural schemes.

The important conclusion is that the optimal scheme by
construction minimizes E[D], but to have the highest fidelity
of the distributed state we need to maximize E[e−αD]. For an
ordinary nonnegative function f (x) and a positive parameter
α > 0 the minimum of f (x) is the maximum of e−α f (x) and
vice versa, but for random variables, this is not necessarily
true. Strictly speaking, in general, we know only the scheme
that minimizes E[D], but not the scheme that maximizes
E[e−αD]. The two schemes seem to be identical, but there is
no strict proof of this statement. We have to rely on evidence
based on computing the properties of some schemes explicitly
and comparing them. For the examples for n = 8 given in
this section and in the Appendix, we see that dividing the
exponentiated dephasing of all other schemes by that of the
optimal scheme gives a number smaller than one, whereas
the same ratios without exponentiation give a number greater
than one. Thus minimal dephasing corresponds to minimal
dephasing errors, and the optimal dephasing scheme exhibits
the smallest fraction of dephasing errors.

To summarize, our optimization of the secret key rates
obtainable with different distribution and swapping strategies
is based on three steps. First, we can rely upon the proof
of the minimal dephasing variable for up to n = 8 segments
given in Sec. IV D 1 assuming parallel initial distributions (it
is already nontrivial to extend this proof to larger n > 8).
Second, in order to compare the average dephasing errors in
the final density operators, we need to consider the average
dephasing exponentials for the different schemes. Finally, in
order to assess the optimality of the secret key rate over all
possible schemes, we have to take into account also those
schemes where the initial distributions no longer occur in
parallel which generally leads to smaller raw rates, but at
the same time can result in a smaller dephasing by (partially)
avoiding parallel storage. For the first nontrivial case beyond
a single middle station, we have explicitly gone through all
these three steps, namely, for the case of a three-segment re-
peater with two intermediate stations (Appendix E), and found
that “optimal” is optimal. For larger repeaters beyond eight

segments, n > 8, we conjecture that our “optimal” scheme
also gives the best secret key rate. This includes conjecturing
that our minimized dephasing is minimal also for n > 8, that
it minimizes the dephasing errors in the final density operator,
and that overall the dephasing-optimized parallel-distribution
approach is superior to any partially or fully sequential dis-
tribution scheme. Especially the last point cannot be taken
for granted. In Appendix F, we present some rate calcula-
tions for n = 8 where, beyond a certain distance, “optimal”
can be beaten by a sequential scheme. However, there we
allow for immediate measurements at an end node only for
the sequential scheme (for which this is easy to include),
but not for “optimal”; a comparison which is slightly unfair
and also only relevant for QKD applications. In the case
of nonimmediate-measurement schemes including potential
beyond-QKD applications, “optimal” remains optimal.

V. SECRET KEY RATE ANALYSIS

A useful and practically relevant figure of merit for quan-
tifying a quantum repeater’s performance is its secret key rate
in long-range QKD, which determines the amount of secret
key generated in bits per channel use or second. As briefly
reviewed in Sec. III B, the secret key rate consists of two
parts: the raw rate or yield and the secret key fraction. The
former quantifies how long it takes to send a raw quantum
bit or to (effectively) generate entanglement, independent of
the quality of the final state; the latter then determines the
average amount of secret key that can be extracted from a
single raw bit, depending on the particular QKD protocol
chosen and including the corresponding procedures for the
classical postprocessing.

Here we will focus on the asymptotic BB84 secret key
rate S = Rr = r/T with one-way postprocessing. In the most
general scenario of long-range memory-assisted QKD, i.e.,
including a finite swapping probability a and a memory cutoff
parameter m, it is given by

S(p, a, m) = 1 − h(ex(p, a, m)) − h(ez(p, a, m))

T (p, a, m)
, (56)

where h is the binary entropy function, T the average number
of steps needed to successfully distribute long-distance entan-
glement, and ex, ez are the QBERs of Eq. (24). The probability
of successful entanglement generation in a single attempt in
a single elementary segment is p, as introduced in Sec. II A.
The denominator of S, T = E[K], is basically the total raw
waiting time of the repeater which generally depends on p and
a where a is a finite success probability of the entanglement
swapping using the same notation as in Refs. [35,36] (where it
was shown how to compute [35] and optimize [36] T = E[K]
for arbitrary a). The dependency on the cutoff parameter m
means: the smaller m becomes, the longer it takes to dis-
tribute an entangled state. The numerator of S, r, generally
also depends on p, a, and m through the QBERs. Recall that
we have to take the averages here, ez = ez and ex obtainable
via E[e−αDn ]. A smaller m can lead to a higher state quality
with a smaller total dephasing and thus to a larger secret key
fraction r. It is generally hard to optimize S over general p,
a, and m. Our approach here is based on the simplifying (and
experimentally still relevant) assumption a = 1 (deterministic
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entanglement swapping) and the idea that the highest secret
key rates will be obtainable with the fastest schemes (parallel
distributions minimizing the total waiting time) and, among
these, with those that swap entanglement as soon as possible
(minimizing the total dephasing time, see Sec. IV D 1). While
for a two-segment repeater the cases of deterministic and non-
deterministic swapping can be treated similarly, for repeater
chains beyond a single middle station (n > 2) our results
for optimizing distribution and swapping strategies only hold
for the deterministic swapping case. Using the results of all
previous sections, the secret key rate can then be calculated.
Thus, in what follows, we always have a = 1.

The above secret key rate S is expressed in terms of bits
per channel use. For a rate per second, the average total
number of distribution attempts T must by multiplied with the
duration of a single attempt in seconds, i.e., the elementary
time unit τ = L0/c f . Note that a single attempt or channel
use is uniquely defined only for direct channel transmission
in a point-to-point link, whereas the channel in a quantum
repeater is used directly only between neighboring memory
stations. Since our model always assumes that the interfaces
at each station connect a single channel (to the left or to the
right) with a single memory qubit (unit memory “buffer”),
those channel segments that belong to already successfully
distributed pairs remain unused until new attempts in these
segments will be started (e.g., when the memory cutoff has
been exceeded or when a long-distance pair has been finally
created). Nonetheless, at every attempt, we shall always count
a full channel use over the entire distance despite the growing
number of unused channel segments during memory-assisted
long-distance entanglement distribution. Thus, strictly speak-
ing, we underestimate the secret key rate per channel use and
one could continue distributing pairs in all channel segments
provided sufficient memory qubits are available.

The parameter values as given in Table I have been used
to obtain the quantitative results discussed in this section.
Most parameters there have been introduced in the previous
sections in the context of our physical model. The resulting
probability to distribute entanglement over one link in terms
of the parameters of Table I now includes a zero-distance
link-coupling efficiency

p(L0) = plink e− L0
Latt , (57)

with p(0) = plink and where plink = ηc ηd ηp incorporates var-
ious efficiencies of the experimental hardware independent of
the channel transmission itself, especially wavelength conver-
sion, fiber coupling, preparation, and detector efficiencies.

In the context of our statistical and physical model, the
memory coherence time τcoh in Table I, an experimentally
determined parameter that describes the average speed of the
memory dephasing, can be converted into a (dimensionless)
effective coherence time in units of the repeater’s elementary
time unit, τcoh/τ . Equivalently, we can say that the (num-
ber of) dephasing time (steps) Dn is to be multiplied with
an elementary time τ before it can be divided by τcoh in
E[e−Dnτ/τcoh ]. In any case, we absorb both τ and τcoh in our
dimensionless α dephasing parameter,

α(L0) = τ

τcoh
= L0

c f τcoh
. (58)

TABLE I. Experimental parameter values used to calculate se-
cret key rates. The star symbols * allow for various choices. The
exact choices vary for each experimental platform. Some of the “im-
proved values” are the ideal values which allow to consider idealized,
fundamental scenarios such as “channel-loss-only” or “channel-loss-
and-memory-dephasing-only” (for which we may also set plink = 1).

Constant Meaning
Current
value

Improved
value

a Swapping probability 1 1
τcoh Coherence time 0.1 s 10 s
μ Gate depolarization (Bell

measurement)
0.97 1

μ0 Initial state depolarization 0.97 1
F0 Initial state fidelity

(dephasing)
1 1

Latt Attenuation length 22 km 22 km
nr Index of refraction 1.44 1.44
ηp Preparation efficiency * *
ηc photon-fibre coupling

efficiency ×
* *

wavelength conversion
ηd Detector efficiency * *
plink := Total efficiency 0.05 0.7
ηc · ηd · ηp

Thus α can be referred to as an inverse effective coherence
time. Note that in order to count the dephasing times appropri-
ately in a specific protocol, we may have to add an extra factor
of 2 (depending on the number of spins dephasing at each
time step in a certain elementary or extended segment) and a
constant dephasing term ∼2n that takes into account memory
dephasing that occurs even when the first distribution attempt
in a segment succeeds. Any missing factors in the dephasing
can be reinterpreted in terms of α or τcoh, e.g., a missing factor
of 2 corresponds to a coherence time twice as big.

In Table I, two sets of current and improved parameter
values are listed, which specifically refer to τcoh and plink for
which we choose 0.1 s or 10 s and 0.05 or 0.7, respectively.
The other state and gate fidelity parameters will be either set to
unity or close to but below one (in some of the following plots
we will also treat them as a free parameter). We will see that
in memory-assisted QKD without additional quantum error
detection or correction, the fidelity parameters must always
be above a certain threshold value which (obviously) grows
with the number of stations (and which generally depends on
the particular QKD protocol and the classical postprocessing
method).

To compare the performance of each repeater protocol with
a direct point-to-point link over the total distance L, we will
use the PLOB bound [46], which is given by

SPLOB(L) = − log2(1 − e− L
Latt ). (59)

It represents an upper bound on the number of secret bits that

can be shared per channel use. For example, for e− L
Latt = 1/2

corresponding to L = 15 km, we have SPLOB = 1, and so at
most one secret bit can be distributed per channel use (per
mode) independent of the optical encoding. It will also be
useful to consider an upper bound on the number of secret
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FIG. 4. Contour plots illustrating the minimal fidelity requirements to overcome the PLOB bound by a two-segment repeater with different
parameters: (a) τcoh = 0.1 s, plink = 0.05, m = 10; (b) τcoh = 0.1 s, plink = 0.7, m = 50; (c) τcoh = 10 s, plink = 0.05, m = 3000; and (d) τcoh =
10 s, plink = 0.7, m = 5000. In all contour plots, μ = μ0 and F0 = 1 has been used.

bits that can be shared with the help of a quantum repeater
[51],

SPLOB,QR(L0) = − log2(1 − e− L0
Latt ), (60)

corresponding to the PLOB bound for one segment (in the
case of equal segment lengths L0). For a point-to-point
link, n = 1 with L = L0, we thus use the notation SPLOB =
SPLOB,QR. The rates we will focus on first in the following are
to be understood as secret key rates per channel use. Later we
shall also discuss secret key rates per second.

A. Two-segment repeater

Let us start with the rates for the simplest case: a two-
segment quantum repeater with one middle station. We shall
only consider one scheme, the “optimal” scheme, with and
without a memory cutoff. First, we address the question
whether and when it is possible to overcome the PLOB bound
with a two-segment repeater given the (current and improved)
parameter values from Table I. We stick to F0 = 1 and, for
illustrative clarity, we set μ = μ0 (while, first, μ is not fixed).

Physically, this means that the repeater states when initially
distributed in each segment and then manipulated at the mid-
dle station for the Bell measurement are subject to the same
depolarizing error channels (and there is no extra initial de-
phasing). The cutoff parameter m is chosen most appropriately
such that the final secret key rate is close to optimal over the
entire range.

In Fig. 4, one can see various contour plots of the secret
key rate. For convenience, we translated the error parameter μ

into a fidelity, F = (3μ + 1)/4. The plots clearly indicate the
minimal fidelity values below which the rates drop below the
PLOB bound or even to zero rates, for different total repeater
distances L. The resulting contours are color-coded such that
a particular color represents the secret key rate to be, e.g.,
twice the rate of the PLOB bound. Thus one can see that in
certain parameter regimes it becomes impossible to beat the
PLOB bound with a two-segment repeater. However, if both
the memory coherence time τcoh and the link efficiency plink

take on their improved values, it is possible to reach secret
key rates as high as 500 times the rate of the PLOB bound,
and beyond, in a certain distance regime.
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FIG. 5. Rates (secret key or raw) for a two-segment repeater over distance L for different experimental parameters: (a) τcoh = 0.1 s, plink =
0.05, μ = μ0 = 0.97; (b) τcoh = 0.1 s, plink = 0.05, μ = μ0 = 1; (c) τcoh = 0.1 s, plink = 0.7, μ = μ0 = 0.97; (d) τcoh = 0.1 s, plink = 0.7,
μ = μ0 = 1; (e) τcoh = 10 s, plink = 0.05, μ = μ0 = 0.97; (f) τcoh = 10 s, plink = 0.05, μ = μ0 = 1; (g) τcoh = 10 s, plink = 0.7, μ = μ0 =
0.97; and (h) τcoh = 10 s, plink = 0.7, μ = μ0 = 1.

In Fig. 5, we show the resulting secret key rates for the
experimental parameters from Table I, for both the scheme
with and without a memory cutoff. This time the error param-
eter μ = μ0 is fixed, and it either takes on its “current” or
its “improved” (ideal) value. For comparison, as a reference,
we also included the raw rates in each case. The loss scaling
of the rates in all schemes is, as expected, proportional to

plink e− L
2Latt = plink

√
e
− L

Latt (corresponding to a linear decrease
with distance due to the log scale representation). The effect of
the different experimental parameter values is clearly visible.
The choice of plink = 0.05 or plink = 0.7 determines the offset
along the y axis (rate axis) at zero distance. A higher plink

allows to cross the PLOB bound at a smaller distance. Note
that the PLOB bound itself can arbitrarily exceed the value
of one secret bit towards zero distance; in our schemes we

always distribute qubits and so one secret bit per channel use
is the maximum (and depending on the number of modes to
encode the photonic qubits there could be extra factors, “per
mode”). The choice of τcoh = 0.1 s or τcoh = 10 s determines
when (at which distance) the (negative) slope of the secret
key rate increases such that the repeater switches from a√

e
− L

Latt to a e− L
Latt (PLOB-like) scaling, or even worse. This

effect is an effect of the memory dephasing that occurs even
when μ = μ0 = 1. If, in addition, μ = μ0 = 0.97 < 1, the
secret key rates can drop abruptly down to zero, since then
the QBERs have nonzero contributions both in ez and ex, see
Eq. (24). Note that this effect happens also when either of the
two parameters, μ or μ0, drop below one, i.e., when either
the gates or the initial states become imperfect. Also note that
nonunit μ or μ0 in addition lead to an increased y-axis offset
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FIG. 6. Contour plots illustrating the minimal fidelity requirements to overcome the PLOB bound by a four-segment repeater for different
parameters: (a) τcoh = 0.1 s, plink = 0.05; (b) τcoh = 0.1 s, plink = 0.7; (c) τcoh = 10 s, plink = 0.05; and (d) τcoh = 10 s, plink = 0.7. In all
contour plots, μ = μ0 and F0 = 1 has been used.

which will become more apparent for larger repeaters with
larger n.

However, a memory cutoff can significantly change the
picture, and it can increase the achievable distance compared
to the scheme without a cutoff (compare the solid yellow with
the solid green curves in Fig. 5). More specifically, beyond
distances when the rates of the no cutoff scheme drop dramat-
ically, the cutoff scheme still scales proportional to the PLOB
bound. Note that for the scheme with a cutoff, even the raw
rates (dashed green curves) can switch from an L/2 to an L
scaling (like PLOB), because a finite cutoff value “simulates”
an imperfect memory in the raw rate (whose loss scaling
resembles the scaling without a quantum memory, i.e., that of
the PLOB bound, in the limit of m = 1) [41]. Again, one can
also see that with “current” parameter values, see Fig. 5(a),
it is impossible to beat the PLOB bound [here even when
μ = μ0 = 1, see Fig. 5(b)], but with improving values for the
coherence time and the link efficiency, it becomes possible.
This holds even when only one of the two parameters, plink

or τcoh, is improved, as long as we can cross PLOB at a

sufficiently small distance or maintain the repeater’s slope
for sufficiently long, respectively. In the next section we will
turn to a four-segment repeater (a three-segment repeater is
discussed in great detail in Appendix E).

B. Four-segment repeater

As we have seen in Sec. IV D 4, there are various swapping
strategies possible for a four-segment repeater in contrast to
a simple two-segment repeater. Our conjecture is (see also
Appendix E for the case n = 3) that the “optimal” scheme is
optimal in the regimes of increasingly good hardware param-
eters. Thus let us first again focus on the minimal fidelities
to overcome the PLOB bound for this scheme, similar to our
analysis for two segments, but now without cutoff only. The
results are shown in Fig. 6. It becomes apparent that now a
much higher fidelity or equivalently μ is needed, but in turn
also much higher secret key rates, 104-times the PLOB rate
and beyond, are possible. Since we have n = 4 now, nonunit μ

values have a stronger impact on the QBERs, see Eq. (24). At
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FIG. 7. Rates (secret key or raw) for a four-segment repeater over distance L for different experimental parameters: (a) τcoh = 0.1 s, plink =
0.05, μ = μ0 = 0.97; (b) τcoh = 0.1 s, plink = 0.05, μ = μ0 = 1; (c) τcoh = 0.1 s, plink = 0.7, μ = μ0 = 0.97; (d) τcoh = 0.1 s, plink = 0.7,
μ = μ0 = 1; (e) τcoh = 10 s, plink = 0.05, μ = μ0 = 0.97; (f) τcoh = 10 s, plink = 0.05, μ = μ0 = 1; (g) τcoh = 10 s, plink = 0.7, μ = μ0 =
0.97; and (h) τcoh = 10 s, plink = 0.7, μ = μ0 = 1.

the same time, however, the loss scaling becomes proportional

to plink e− L
4Latt = plink

4
√

e
− L

Latt . Furthermore, note that a different
scaling of the contours is observable, due to the lack of a
memory cutoff.

Next, we consider the secret key rates for a particular
choice of the experimental parameters including μ = μ0 ac-
cording to Table I. Besides the “optimal” scheme, now we also
include the sequential and the doubling schemes in the rate
analysis (sequential/iterative swapping together with sequen-
tial distributions and doubling with parallel distributions). In
Fig. 7, one can see the PLOB bound and the secret key rates
for the sequential scheme with and without a cutoff, for the
doubling scheme and for the optimal scheme (both without a

cutoff). In addition, again the raw rates are shown as a refer-
ence, and the corresponding three dashed curves are the raw
rates for (equivalently) doubling and “optimal,” and for the
sequential scheme with and without cutoff. Compared to the
previous two-segment repeater, it is now easier to overcome
the PLOB bound, but the crossing happens at longer distances,
since the four-segment repeater starts with a lower rate at
L = 0 km.

C. Eight-segment repeater

In comparison with the usual treatment of quantum re-
peaters via doubling the links at each repeater level, the next
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FIG. 8. Contour plots illustrating the minimal fidelity requirements to overcome the PLOB bound by an eight-segment repeater for different
parameters: (a) τcoh = 0.1 s, plink = 0.05; (b) τcoh = 0.1 s, plink = 0.7; (c) τcoh = 10 s, plink = 0.05; and (d) τcoh = 10 s, plink = 0.7. In all
contour plots, μ = μ0 and F0 = 1 has been used.

logical step is to consider an eight-segment repeater. For eight
segments, there is an increasing number of possible distribu-
tion and swapping strategies, and for the swapping we have
discussed this in more detail in Sec. IV D 5. Here we will
only consider the sequential, the doubling, and the optimal
schemes (the former one with sequential distributions, the
latter two with parallel distributions). Again, in Fig. 8, we
present limitations on the error parameter μ to overcome the
PLOB rate at different distances. The regions are color-coded
as before. Compared to the limits observed for a two-segment
repeater they exhibit a different behavior now, but this is again
due to the fact that we do not consider a cutoff scheme here.
The requirements for the fidelity or μ are higher, but this
was expected, since the secret key fraction includes terms
∝ μ2n−1, again setting μ0 = μ. Nevertheless, for sufficiently
high fidelities, the attainable secret key rates are much higher

than for any of the previously considered repeater schemes,
becoming as high as 108 times the rate of the PLOB bound,
and beyond.

Finally, we have also evaluated the performance of an
eight-segment repeater for our experimental parameter set.
Now caution is required when these plots are compared di-
rectly with the previous ones, as we had to improve the
“current,” nonunit value of μ to μ = 0.99. Without this fi-
delity adjustment, it would be impossible to achieve a nonzero
secret key rate for an eight-segment repeater (see next sec-
tion). The μ scaling with n in the QBERs prohibits to scale
up a realistic quantum repeater to arbitrarily large distances
and n values, as long as no extra elements for quantum error
detection or correction are included. For example, in a second-
generation quantum repeater, the effective μ0 and μ values
could be kept close to one, at the expense of extra resources
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FIG. 9. Rates (secret key/raw) for an eight-segment repeater over distance L for different experimental parameters: (a) τcoh = 0.1 s, plink =
0.05, μ = μ0 = 0.99; (b) τcoh = 0.1 s, plink = 0.05, μ = μ0 = 1; (c) τcoh = 0.1 s, plink = 0.7, μ = μ0 = 0.99; (d) τcoh = 0.1 s, plink = 0.7,
μ = μ0 = 1; (e) τcoh = 10 s, plink = 0.05, μ = μ0 = 0.99; (f) τcoh = 10 s, plink = 0.05, μ = μ0 = 1; (g) τcoh = 10 s, plink = 0.7, μ = μ0 =
0.99; and (h) τcoh = 10 s, plink = 0.7, μ = μ0 = 1.

for quantum error correction and a typically decreasing ini-
tial distribution efficiency p (e.g., due to an extra step of
entanglement distillation for the distributed, encoded memory
qubits). Our formalism could be also applied to such a more
sophisticated scenario by considering the effective changes
of μ, μ0, and p (and possibly α too). Nevertheless, our
plots in Fig. 9 show that an eight-segment quantum repeater
in a memory-assisted QKD scheme is, in principle, already
able to cover large distances by reaching usable rates up to
1000 km or even 1200 km, provided that μ = 0.99 or μ → 1,
respectively. Besides this, the behavior of an eight-segment
repeater is very similar to that of the previous four-segment
repeater.

D. Minimal μ values

We have already seen that the secret key rate of memory-
assisted QKD is highly sensitive to the depolarizing errors
that we use to model the imperfect gates and the imperfect
initial states in the quantum repeater. Here let us explicitly
give some minimal values for the error parameter μ which
at least have to be achieved in order to obtain a nonzero
secret key fraction for QKD protocols restricted to one-way
postprocessing (see Table II). More generally, in principle,
much higher error rates can be tolerated by allowing for
two-way postprocessing in the QKD protocols [52]. However,
in this work, we primarily utilize the secret key rate as a
practical and useful quantitative figure of merit to assess a
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TABLE II. Minimal values of μ required for a nonzero secret key
rate in one-way postprocessing protocols.

μ0 = 1, μ0 = μ, μ0 = 1, μ0 = μ,
n BB84 BB84 6-state 6-state

2 0.780 0.920 0.748 0.908
4 0.920 0.965 0.908 0.959
8 0.965 0.984 0.959 0.981

quantum repeater’s performance. Nonetheless, the quantum
repeater schemes that we consider may also be employed for
other, more general quantum information and communication
tasks. Thus we decided not to include schemes with two-way
postprocessing, as this would certainly lead to a narrower spe-
cialization towards QKD applications. Clearly, in the context
of long-range QKD, we believe that considering schemes with
two-way postprocessing will be very valuable, since potential,
future large-scale quantum repeaters will be rather noisy and
therefore protocols which still work for large error rates are
very useful. Such a further optimization of our schemes with
a special focus on long-range QKD is possible and we leave
this option for future work.

It is easy to check that the concatenation of two depolar-
izing channels with parameters μ1 and μ2 is equivalent to a
single depolarizing channel with parameter μ1μ2. Thus, for
an n-segment repeater, we would expect a total depolarizing
channel with parameter μn = μn

0μ
n−1. We have carefully and

systematically checked and confirmed this in the first part of
the paper including other parameters too, such as constant ini-
tial and time-dependent memory dephasing. For the BB84 and
the six-state protocols, the amount of tolerable noise, such that
a secret key can still be obtained with one-way postprocessing,
has been extensively studied. For BB84 the error threshold lies
at Q = 11.0% and for the six-state protocol it is Q = 12.6%
[[4], Appendix A]. Since a maximally mixed state results in
an error rate of 50%, this gives us a constraint on the minimal
values of μn � 1 − 2Q.

More specifically, the BB84 secret key fraction of Eq. (20)
on which we focus here vanishes when the two QBERs both
exceed Q = 11%. This holds true for μn < 1 − 2Q even when
all other elements are perfect, i.e., even when there is no mem-
ory dephasing at all (α → 0). In this case, the two QBERs as
described by Eq. (24) coincide (assuming zero initial dephas-
ing F0 = 1) and neither includes a random variable. These
two constant QBERs then express the sole faultiness of the
repeater elements without any time-dependent quantum stor-
age (i.e., only the initial states and the gates) which can suffice
to prevent Alice and Bob from finally sharing a nonzero secret
key.

E. Comparisons

1. Sequential versus doubling versus optimal schemes

In the previous sections (together with the Appendix), we
have presented our results for the obtainable secret key rates
of two-, three-, four-, and eight-segment quantum repeaters
based on various entanglement distribution and swapping
strategies. While it is generally straightforward to include a

memory cutoff for the case of two segments, for more than
two segments, we have achieved this only for the fully sequen-
tial scheme. This was depicted in green in the (noncontour)
plots for four and eight segments. The memory cutoff allows
to maintain a scaling proportional to the PLOB bound even
beyond the distance where the scheme without cutoff drops
more quickly. As a consequence, the cutoff can significantly
increase the achievable distance. However, it is hard to obtain
an exact result for the secret key rate for the more complicated
swapping strategies. Nonetheless, for larger distances, one
could extrapolate the behavior of the doubling and optimal
schemes including a cutoff by simply continuing the curves
with lines parallel to the PLOB bound after the drops. Alter-
natively, inferring from our plots, at larger distances one can
rely on a continuation of the curves that behaves exactly like
the sequential scheme with a memory cutoff. Both approaches
give us a fairly good picture of the behavior of the doubling
and optimal schemes including the cutoff.

Nevertheless, the optimal scheme outperforms all other
schemes without a cutoff before each one drops completely.
The doubling scheme achieves almost similar rates, although
it starts earlier to decline. The secret key rates are similar
thanks to the equivalent, high raw rates of the doubling and
optimal schemes (both being based upon parallel entangle-
ment distributions), and due to our general assumption of
deterministic entanglement swapping with a = 1 [36].4 Thus,
for the doubling scheme, one could additionally incorporate
nested entanglement distillations in the usual, well-known
way, which would allow to reduce the QBERs at the expense
of the effective raw rates and with the need of extra physical
resources. The differences between the doubling and optimal
schemes may not be so large for the repeater sizes mainly
considered here (n � 8). However, note that for doubling we
kept a constant signaling time τ = L0/c f independent of the
nesting level. As a consequence, we certainly overestimate
doubling, since signaling beyond the elementary segments
can become necessary for a fixed doubling scheme (which
could be compensated via “blind swapping” at higher nest-
ing levels [16,53]). Our exact statistical treatment enabled
us to determine the optimal swapping scheme (optimizing
the dephasing) and thus allows for a quantitative comparison
with the nonoptimal doubling and possible other (including
“mixed”) schemes. The fully sequential scheme, based on
sequential entanglement distributions, leads to the lowest raw
rate. The longer total waiting times of this scheme also con-
tribute to an increased accumulated dephasing. On the other
hand, the dephasing of the fully sequential scheme remains
limited, as only one segment is waiting at any time step. Over-
all, although the sequential scheme is the easiest to analyze
theoretically, it would typically result in the lowest secret key
rate. Nonetheless, the fully sequential scheme is conceptually
special and serves as a useful reference for comparison with
the other schemes.

4For a < 1, regimes exist where for the raw rates “doubling” per-
forms strictly worse than “swap as soon as possible” [36], similar
to regimes here for the full secret key rates with a = 1 when the
dephasing becomes dominant.
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2. Two- versus four- versus eight-segment repeaters

In this section, let us finally address one of the main ques-
tions that motivates the exact secret key rate analysis that we
have presented: is there an actual benefit of additional (mem-
ory) stations and repeater segments compared with schemes
that work entirely without quantum memories (such as point-
to-point links or twin-field QKD) or compared to schemes
with a smaller number of memory stations? More specifically,
is it useful to replace a simple two-segment repeater by a
four- or eight-segment repeater in a realistic setting, i.e., even
when the extra quantum memories are subject to additional
preparation and operational errors and contribute to an in-
creased accumulated memory dephasing? In the preceding
section with Table II, we saw that the sole faultiness of the
memory qubit initial states and gates, even with no time- and
distance-dependent memory dephasing, can make the secret
key rate completely vanish, and this effect grows with the
segment number n. In the last section of the paper, we shall
also look at schemes that minimize the actual number of mem-
ory stations by combining the twin-field QKD and repeater
memory concepts, for instance, in a four-segment scheme with
only one of the three intermediate stations being equipped
with memory qubits.

Now here we only consider the “optimal” scheme (gener-
ally and rigorously only without memory cutoff, as discussed
before), since this ensures we always consider the highest
possible secret key rates. By adding extra repeater stations
the requirements on the initial state preparations and the Bell
measurements become much higher, where the corresponding
terms scale as ∝ μn−1μn

0 in the QBERs. We stress again
that in order to achieve a nonzero secret key rate for the
eight-segment repeater, we had to alter the nonideal value
of μ of Table I to a sufficiently large value, μ = 0.99, see
also Table II. For a fair comparison, this value is then also
used here to obtain the curves of the two- and four-segment
repeaters.

The resulting secret key rates can be seen in Fig. 10. As one

would expect, for example, the scaling changes from
√

e
− L

Latt

to
8
√

e
− L

Latt when the transition from a two-segment to an eight-
segment repeater is considered. However, the rate at L = 0 km
decreases when increasing the number of segments. This ef-
fect occurs for the raw rates (and the secret key rates assuming
μ = 1), but it becomes more apparent for μ = 0.99. Still,
at long distances, eight segments are superior to a smaller
number of segments. Therefore acknowledging that the neces-
sary μ requirements are extremely demanding but not entirely
impossible to achieve in practice, we conclude that it is indeed
beneficial to add repeater stations. In particular, the effect of
the memory dephasing alone (besides channel loss), for possi-
ble coherence times like those in Table I and used throughout
the plots, will not prevent the benefit of adding more stations.
Even when both plink and τcoh take on their lowest of the
two considered values as shown in Fig. 10(b), by placing
seven memory stations along the channel it is in principle still
possible to exceed the PLOB bound significantly. However,
realistically, when μ < 1 like in Fig. 10(a), all secret key rates
stay below the PLOB bound. In this case, it becomes crucial
that either plink [Fig. 10(c)] or τcoh [Fig. 10(e)] is sufficiently
large such that the curves can cross PLOB at a sufficiently

small distance (thanks to the small y-axis offset) or they can
maintain their repeater loss scaling for sufficiently long dis-
tances, respectively. Recall that all rates shown and discussed
here are per channel use. Further it should be stressed here
that we did not explicitly include time-dependent memory loss
(assuming that the memory imperfections are dominated by
the time-dependent memory dephasing), which can addition-
ally jeopardize the benefits of adding more, in this case lossy
memory stations [54]. (If this loss is detectable it may lead to a
nondeterministic entanglement swapping like in the “DLCZ”
quantum repeater, which is harder to accurately analyze and
optimize even for a constant swapping probability [36]; if the
loss remains partially undetected at each station, it can lead to
a reduced final state fidelity and thus an increased QBER.)

Let us discuss the comparison of repeaters with different
segment numbers in a little more detail. It is indeed quite sub-
tle and for this we shall also take into account larger repeater
systems, far beyond the n = 8 case. For the general discus-
sion, it is helpful to first consider the fully sequential scheme,
as in this case we have access to all relevant (physical and
statistical) quantities even for large repeaters, see Table III. If
we only consider channel loss or, equivalently, if we only look
at the raw rates, there is an optimal number of segments for a
given total distance. In Table III, among the possibilities con-
sidered there, this is n = 80 for L = 800 km, and so we should
put stations every L0 = 10 km. If we include the memory de-
phasing (“channel-loss-and-memory-dephasing-only case”),
we observe that not only the average (number of) waiting time
(steps) E[Kn], but also the average (number of) dephasing time
(steps) E[Dn] is minimized for n = 80 when L = 800 km.
In fact, these two averages, n/p and (n − 1)/p, respectively,
become identical for larger n, and both grow in the two lim-
its of many and very few segments, L0 → 0 (n → ∞) and
L0 → L/2 (n → 2), respectively. However, when changing
the segment length L0, also the inverse effective coherence
time α = L0/(c f τcoh ) will change, where now α is simply
maximal at L0 = L/2 and it steadily becomes smaller when
L0 → 0 at fixed τcoh. Note that below a certain L0 value the
repeater’s elementary time unit is no longer dominated by the
classical communication times and instead the maximal local
processing times must go into α which we refer to as αloc.
This effect implies that in order to maximize the effective
coherence time τcoh/τ , one should simply use as many stations
as possible, eventually approaching the limitation given by the
local processing times at each station. For these, we may typ-
ically assume αloc

1 = τ/τcoh = MHz−1/0.1 s = 0.00001 and
αloc

2 = τ/τcoh = MHz−1/10 s = 0.0000001.
However, the first really relevant quantity to assess the

effect of the memory dephasing is the effective average
dephasing time αE[Dn] that is related to the memory dephas-
ing channel evolution. Interestingly, for the fully sequential
scheme, this quantity, αE[Dn] = (L/n)(n − 1)/(c f τcoh p),
converges for growing n (small L0) to L/(c f τcoh p) with
p → 1. For example, in Table III, for L = 800 km,
we have L/(c f τcoh p) = 0.0374 for τcoh = 0.1 s and
L/(c f τcoh p) = 0.0004 for τcoh = 10 s. These limits are
attainable for about n = 8000 and for n = 800, respectively.
With τcoh = 10 s the limit is also almost attainable for n = 80,
so again L0 = 10 km, and there is no further benefit by further
increasing n. However, we also have αloc

1 E[Dn] = 0.00001 ×
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FIG. 10. Comparison of secret key rates of two-, four-, and eight-segment repeaters at total distances L for different experimental
parameters: (a) τcoh = 0.1 s, plink = 0.05, μ = μ0 = 0.99; (b) τcoh = 0.1 s, plink = 0.05, μ = μ0 = 1; (c) τcoh = 0.1 s, plink = 0.7, μ = μ0 =
0.99; (d) τcoh = 0.1 s, plink = 0.7, μ = μ0 = 1; (e) τcoh = 10 s, plink = 0.05, μ = μ0 = 0.99; (f) τcoh = 10 s, plink = 0.05, μ = μ0 = 1;
(g) τcoh = 10 s, plink = 0.7, μ = μ0 = 0.99; and (h) τcoh = 10 s, plink = 0.7, μ = μ0 = 1.

(n − 1)/p = 0.0804 for n = 8000 and αloc
2 E[Dn] =

0.0000001 × (n − 1)/p = 0.0001 for n = 800.
Next let us consider the relevant quantities for the optimal

scheme as presented in Table IV. In this case, we no longer
have access to all exact values for larger repeaters n > 8.
However, there is a distinction between the waiting times Kn

and the dephasing times Dn. For the total waiting times or
the raw rates R we can calculate the numbers for small and
also for larger n according to the exact analytical expression
in Eq. (37). There are also good approximations for both
small n (small p) and larger n (p closer to one) which may
be easier to calculate [35,43,55]. Importantly, unlike the case
of the fully sequential scheme, the raw rate R now grows
with all n (though slowly for larger n) thanks to the fast,

parallel distributions in all segments together with the loss
scaling that improves with n. This behavior even matches that
of the repeater-assisted capacity bounds for increasing n, as
given in the last row of Table IV. However, recall that for our
qubit-based quantum repeaters the raw rate can never exceed
one secret bit per channel use, whereas SPLOB,QR(L0) can, for
decreasing L0.

For the average total dephasing we can calculate the exact
values up to n = 8. Comparing these values in Tables III and
IV, we see that the optimal scheme accumulates less dephas-
ing than the fully sequential scheme when n = 4 and 8. The
two competing effects in the fully sequential scheme, long
total waiting time versus minimal number of simultaneously
stored memory qubits per elementary time unit, overall result
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TABLE III. Overview of the relevant quantities for the fully sequential scheme: segment number n, segment length L0 (km), average
(number of) waiting time (steps) E[Kn], raw rate R, average (number of) dephasing time (steps) E[Dn], inverse effective coherence time
α1 = L0/(c f 0.1s), effective average dephasing time α1E[Dn], inverse effective coherence time α2 = L0/(c f 10 s), effective average dephasing
time α2E[Dn], average dephasing fractions E[e−α1Dn ] and E[e−α2Dn ], secret key fractions and rates, r and S, for different μ = μ0 (subscript
corresponds to the choice of α1 or α2, μ = 1 is the channel-loss-and-memory-dephasing-only case), and the (repeater-assisted) capacity bound
SPLOB,QR(L0). We further assumed plink = F0 = 1 for the link coupling efficiency and the initial state dephasing.

n 1 2 4 8 80 800 8000

L0 (km) 800 400 200 100 10 1 0.1
E[Kn] ∼1016 ∼108 35497 754 126 837 8036
R ∼10−16 ∼10−8 ∼10−5 0.0013 0.0079 0.0012 0.0001
E[Dn] − ∼108 26623 659 124 836 8035
α1 − 0.0192 0.0096 0.0048 0.0005 ∼10−5 ∼10−6

α1E[Dn] − ∼106 256 3.1674 0.0598 0.0402 0.0386
α2 − 0.0002 0.0001 ∼10−5 ∼10−6 ∼10−7 ∼10−8

α2E[Dn] − 15131 2.5576 0.0317 0.0006 0.0004 0.0004
E[e−α1Dn ] − ∼10−6 ∼10−6 0.0729 0.9420 0.9606 0.9621
E[e−α2Dn ] − 0.0001 0.1573 0.9689 0.9994 0.9996 0.9996
r1(μ = 1) − ∼10−13 ∼10−12 0.0038 0.8106 0.8603 0.8646
r2(μ = 1) − ∼10−9 0.0179 0.8843 0.9961 0.9972 0.9973
r1(μ = 0.99) − 0 0 0 0 0 0
r2(μ = 0.99) − 0 0 0.2203 0 0 0
S1(μ = 1) − ∼10−21 ∼10−17 ∼10−5 0.0064 0.0010 0.0001
S2(μ = 1) − ∼10−17 ∼10−6 0.0012 0.0079 0.0012 0.0001
S1(μ = 0.99) − 0 0 0 0 0 0
S2(μ = 0.99) − 0 0 0.0003 0 0 0
SPLOB,QR(L0) ∼10−16 ∼10−8 0.0002 0.0154 1.4530 4.4921 7.7846

TABLE IV. Overview of the relevant quantities for the optimal scheme: segment number n, segment length L0 (km), average (number of)
waiting time (steps) E[Kn], raw rate R, average (number of) dephasing time (steps) E[Dn], inverse effective coherence time α1 = L0/(c f 0.1 s),
effective average dephasing time α1E[Dn], inverse effective coherence time α2 = L0/(c f 10 s), effective average dephasing time α2E[Dn],
average dephasing fractions E[e−α1Dn ] and E[e−α2Dn ], secret key fractions and rates, r and S, for different μ = μ0 (subscript corresponds to
the choice of α1 or α2, μ = 1 is the channel-loss-and-memory-dephasing-only case), and the (repeater-assisted) capacity bound SPLOB,QR(L0).
For the cases n > 8, not all exact values are available and hence we inserted approximate values or (lower or upper) bounds. We assumed
plink = F0 = 1 for the link coupling efficiency and the initial state dephasing.

n 1 2 4 8 80 800 8000

L0 (km) 800 400 200 100 10 1 0.1
E[Kn] ∼1016 ∼108 18487 255 5.4 2.9 2.2
R ∼10−16 ∼10−8 0.0001 0.0039 0.1841 0.3490 0.4646
E[Dn] − ∼108 22923 488 < 124 <836 <8035
α1 − 0.0192 0.0096 0.0048 0.0005 ∼10−5 ∼10−6

α1E[Dn] − ∼106 220 2.3484 <0.0598 <0.0402 <0.0386
α2 − 0.0002 0.0001 ∼10−5 ∼10−6 ∼10−7 ∼10−8

α2E[Dn] − 15131 2.2022 0.0235 <0.0006 <0.0004 <0.0004
E[e−α1Dn ] − ∼10−6 ∼10−5 0.1552 >0.9420 >0.9606 >0.9621
E[e−α2Dn ] − 0.0001 0.2215 0.9769 >0.9994 >0.9996 >0.9996
r1(μ = 1) − ∼10−13 ∼10−11 0.0174 >0.8106 >0.8603 >0.8646
r2(μ = 1) − ∼10−9 0.0357 0.9090 >0.9961 >0.9972 >0.9973
r1(μ = 0.99) − 0 0 0 0 0 0
r2(μ = 0.99) − 0 0 0.2323 0 0 0
S1(μ = 1) − ∼10−21 ∼10−15 0.0001 >0.1492 >0.3002 >0.3997
S2(μ = 1) − ∼10−17 ∼10−6 0.0036 >0.1834 >0.3480 >0.4633
S1(μ = 0.99) − 0 0 0 0 0 0
S2(μ = 0.99) − 0 0 0.0009 0 0 0
SPLOB,QR(L0) ∼10−16 ∼10−8 0.0002 0.0154 1.4530 4.4921 7.7846
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in a larger dephasing rate in comparison with our optimal
scheme for n � 8. We extrapolate this relative behavior to
larger n and therefore assume that the dephasing values of
the fully sequential scheme may serve as upper bounds on
those for the optimal scheme when n > 8 in Table IV. We
make the same assumption for the other dephasing-dependent
quantities, in particular, the secret key fractions, for which the
fully sequential values then serve as lower bounds. Looking
at the entries of Table IV for the optimal scheme, as a final
result, we conclude that while for μ = 1 (“channel-loss-and-
memory-dephasing-only” case) it may be best to choose as
many segments as n = 80 (i.e., stations are placed at every
10 km), similar to what is best for the fully sequential scheme
(Table III), for μ = 0.99 < 1, we must not go to segment
numbers higher than n = 8. In fact, for μ = 0.99, both for
the sequential and the optimal schemes, effectively the only
nonzero secret key rate is obtainable for n = 8 and the larger
of the two coherence times considered, with a factor-three
enhancement for the optimal scheme over the sequential one.
If n > 8, the faulty states and gates make S vanish, if n < 8
the small raw rates and the high effective average dephasing
times do not permit practically usable secret key rates. Note
that the entire discussion here in the context of Tables III and
IV is for a total distance of L = 800 km. We may infer that an
elementary segment length of L0 ∼ 100 km is not only highly
compatible with existing classical repeater and fiber network
architectures, but also seems to offer a good balance between
an improved memory-assisted loss scaling and an only limited
addition of extra faulty elements. This conclusion here holds
for our repeater setting based upon heralded loss-tolerant
entanglement distribution, deterministic entanglement swap-
ping, and a memory dephasing model. Similar elementary
lengths have been used before for schemes with probabilis-
tic entanglement swapping and memory loss [17,18]. For
schemes with deterministic entanglement swapping, but a
less loss-tolerant entanglement distribution mechanism, [21]
smaller segment lengths may be preferable. We will include
such schemes, exhibiting an intrinsic channel-loss-dependent
dephasing, into the discussion in a later section. Let us now
consider a simple form of multiplexing in order to improve
the repeater performance, provided sufficient extra resources
are available.

F. Multiplexing

Operating M repeater chains in parallel automatically leads
to an enhancement of the overall rates by a factor of M. How-
ever, since in this case the corresponding number of channels
grows as well by a factor of M, the rates per channel use
remain unchanged. The situation becomes different though
when the chains can “interact” with each other. In particular,
the loss scaling of heralded entanglement distributions can be
improved, at least for small systems in an MDI QKD setting
(even without the use of quantum memories but with the need
for a nondestructive heralding) [56]. For memory-based quan-
tum repeaters, memory imperfections may be compensated
via multiplexing techniques [41,53,57,58]. Experimentally,
multiplexing can be realized through various degrees of free-
dom. Apart from spatial multiplexing with additional memory
qubits at each station that can be coupled to additional fiber

FIG. 11. Multiplexing in a two-segment repeater.

channels, this can be forms of temporal or spectral multi-
plexing where a single fiber may be employed sequentially
at a high clock rate [59] or at the same time with multiple
wavelengths, respectively. In this section, we shall incorpo-
rate a simple form of multiplexing into our formalism and
our repeater models and systems. We have seen that either
high total efficiencies or sufficiently long coherence times are
needed to achieve usable secret key rates at long distances.
We will now see that multiplexing can be understood as a
means to effectively enhance the memory coherence time. In
the following, we will describe in more detail which kind
of multiplexing we consider and why it indeed effectively
increases the coherence time.

The simplest way to include multiplexing in our repeater
models is by using M memories simultaneously to generate
entanglement. These memories can either be connected to the
same fiber by a switch or they may each be coupled to their
own fiber channel. For simplicity, we consider the switch to
be perfect such that both approaches become equivalent (and
where the additional channel uses take place either in time or
in space). A lossy switch could be easily incorporated into our
model by using an additional parameter which is included in
plink (note that the loss from the switch is time-independent
and so always the same). A possible setup for a two-segment
repeater with multiplexing is shown in Fig. 11. Here all entan-
glement distribution attempts happen simultaneously. Since
we have M replica of all memories and channels, this setup
acts as if p �→ 1 − (1 − p)M , provided that memory qubits
from different chains can talk to each other in the middle
station so that we may again swap as soon as possible.

For an M multiplexing, let us thus define the effective dis-
tribution probability peff = 1 − (1 − p)M . For small p, only
keeping linear terms, we have peff ≈ M p. As the expected
waiting time in a single segment is then given by 1

M p , we
can already gain insight on the possibility that multiplexing
increases the effective coherence time by a factor of M. More
specifically, for example, for the fully sequential scheme the
expectation value of Dn is (n − 1)/p, thus the transition p �→
peff ≈ M p reduces the number of dephasing steps, on average,
by a factor of 1/M. This is equivalent to an increase of the
coherence time by a factor M. In the following, let us be more
precise and show what “small” p really means in terms of
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FIG. 12. (a) peff for M = 10 (b) rule of thumb: the orange points
show the numerical minimization for different M and the blue line
shows the fitted function. It was obtained by fitting the numerical
function for all values in the interval (3,1000) (for M = 2 our algo-
rithm has convergence problems.) However, it also works well for
larger M like, e.g., 104 up to some small deviations at high M prob-
ably due to the numerical precision. For the meaning of the fitting
parameters, see main text. As always, we assumed Latt = 22 km.

the corresponding segment length L0. In fact, including mul-
tiplexing, the secret key rates in dependence of the repeater
distance behave in a more complicated way and one can see
that for small distances the rate is nearly constant and only for
larger distances the rates behave as we would expect from the
nonmultiplexed schemes.

In the general, exact model using peff = 1 − (1 − p)M , it
becomes clear that the above-mentioned behavior originates
from this general expression for peff . In Fig. 12(a), one can see
that peff can be divided in three regimes. In the first regime of
small L0, peff is a constant. In the second regime of large L0,
peff is a simple exponential decay, while in between it has a
more complicated form interpolating both regimes. In the first
regime, the effective probability is nearly constant, because
in our simple multiplexing protocol we only make use of a
single “entanglement excitation” in each segment of the par-
allelized repeater chains, but for small L0 we would typically
have multiple excitations in each segment. Thus increasing L0

decreases the number of excitations, but as we anyway only
make use of a single one, this barely matters (making use

of more excitations and keeping the “residual entanglement”
could potentially further enhance the rates [60]; however, here
our focus is on a simple and clear interpretation of the impact
of the multiplexing on the coherence time and the memory
dephasing in our statistical model). In the second regime of
rather large L0, the contributions of multiple excitations can
be neglected and therefore the rates behave exactly like in the
M = 1 case. Hence, this regime two is exactly that where we
can increase the effective coherence time by a factor of M
with the help of multiplexing. We can give a rough rule of
thumb for the minimal length of L0 when one may use the
simple approximation of increasing the coherence time by a
factor of M. For this we assume p = exp(− L0

Latt
)5 and take the

minimizing argument of ∂2 ln(peff )
∂L2

0
for a given M in order to

estimate the midpoint of the interpolating regime. For general
M, this expression can be nicely fitted to an expression of
the form c1 ln(c2M + c3) + c4, as one can see in Fig. 12(b).
One should then consider L0 to be slightly larger for the
approximation to hold.

Let us give another, more rigorous derivation of the ef-
fective coherence time in the presence of multiplexing. The
coherence time primarily characterizes the increasing decline
of the secret key rate with distance. However, a massive
drop actually happens when the secret key fraction r reaches
zero, which is possible when ez > 0, i.e., when μ < 1 or
μ0 < 1. Thus let us determine the probability at which r = 0
holds with multiplexing and from that deduce an equivalent
coherence time without multiplexing. Since the QBER ez is
constant (ez = ez ), we have to solve for the expectation value
of ex such that

1 − h(ez )
!= h(ex ). (61)

In order to find the probability p or equivalently the distance
at which the drop happens, let us use the Taylor series of the
binary entropy function at x = 1

2 ,

h(x) = 1 − 1

2 ln(2)

∞∑
n=1

(1 − 2x)2n

n(2n − 1)
, ∀ 0 < x < 1. (62)

Then one finds for ex up to first order:

ex = 1

2
−

√
ln(2)h(ez )

2
, (63)

where only the negative root is possible, as 0 � ex � 1
2 . In-

serting ex and solving for E[e−αDn ] gives

E[e−αDn ] =
√

2 ln(2)h(ez )

μn−1μn
0(2F0 − 1)n . (64)

If μ = μ0 = 1, including especially the channel-loss-and-
memory-dephasing-only case (for which also F0 = 1), we
have h(ez ) = 0 and so the requirement becomes E[e−αDn ] =
0, which is impossible. However, as soon as ez > 0, i.e., μ < 1
or μ0 < 1, a sufficiently small nonzero (average) dephasing
fraction E[e−αDn ] leads to a zero secret key fraction. As we
can always calculate this expectation value by our previously

5When considering plink < 1 one can incorporate this as an addi-
tional length of − ln(plink )Latt regarding L0.
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FIG. 13. Rates (secret key/raw) of [(a) and (b)] two- and [(c) and (d)] four-segment repeaters using multiplexing M = 10 at distances
L for different experimental parameters: [(a) and (c)] τcoh = 0.1 s, plink = 0.7, μ = μ0 = 0.97 and [(b) and (d)] τcoh = 10 s, plink = 0.05,
μ = μ0 = 0.97. The rate of a repeater without multiplexing, but with the same coherence time is shown in orange, whereas the rate of a
repeater using multiplexing is shown in red. Additionally, a repeater without multiplexing, but with an equivalent effective coherence time is
presented in dashed black. All rates are expressed per channel use and hence include a division by M.

derived PGFs, we now have an accurate and systematic way
to derive the probability p (or the total distance L = nL0) at
which the drop takes place for given values of n, τcoh, μ,
μ0, and F0. Recall that the inverse effective coherence time
α = L0/(c f τcoh ) typically also depends on L0. On the other
hand, we may use the above relation to determine an (inverse)
effective coherence time by calculating the drop for a repeater
with multiplexing and then the equivalent α, which would be
needed to achieve the same distance without any multiplexing.
From this α, one can recover the coherence time τcoh and finds
the approximate relation

τcoh �→ M · τcoh, (65)

when a multiplexing of M is used and the remaining setup
is kept the same. Thus one can achieve an M-times longer
effective coherence time with the help of multiplexing.

In Fig. 13, we show the rates of two- and four-segment
repeaters using a multiplexing of M = 10 in red. Note that be-
cause we use the SKR per channel use, the rates are obtained
including a division by M. The rates of the same repeaters
without multiplexing are presented in orange. Furthermore, a
repeater without multiplexing, but with the equivalent ‘effec-
tive’ coherence time of τeff = Mτcoh is shown in dashed black.
One can see that for small distances, i.e large probabilities, the
multiplexed repeater does not quite behave like its nonmul-
tiplexed counterpart with an effectively increased coherence
time. A clear splitting between the red and black curves is vis-
ible. However, for larger distances, especially after crossing
the PLOB bound, the multiplexed repeater behaves exactly
the same as if simply memories with an effectively longer
coherence time were used. For smaller link efficiencies, the
splitting becomes much less pronounced, as can be seen in
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the plots on the right of Fig. 13. All this holds for both two
and four segments, according to Fig. 13. In particular, for
small link efficiencies, the secret key rate of an equivalent
repeater with τeff = Mτcoh is almost indistinguishable from
a repeater with multiplexing. This is in agreement with the
above discussion on the occurrence of single versus multiple
‘entanglement excitations’ in each segment where the latter
are then highly suppressed even at short distances due to
the small value of plink. Thus, for practical purposes, in all
our discussions, we may treat several cases equivalently, for
instance, a repeater with τcoh = 10 s and M = 1 would be
equivalent to a repeater with τcoh = 1 s and M = 10.

G. Secret key rate per second

In a real-world application, the important figure of merit
is not the rate per channel use, it will be the rate per
second. In particular, a memory-asissted QKD system or gen-
erally a memory-based quantum repeater, as typically based
upon light-matter interactions and classical communication
at least between neighboring stations, has a limited “clock
rate.” Classical communication is needed to declare successful
transmission of photons for the entanglement distribution. In
general, also extra communication would be needed to signal
any successful entanglement swapping, but as we assumed
deterministic swapping no such communication is needed in
our repeater models.

As we already discussed frequently throughout the paper,
a repeater’s performance generally depends on an elementary
time unit τ , which is contained in the inverse effective co-
herence time α = τ/τcoh, where generally τ = τclock + L0/c f

including the experimental local processing time τclock. We
have mostly argued that in the relevant distance regimes, this
quantity is dominated by the (quantum and classical) commu-
nication times between neighboring stations, thus τ = L0/c f

and α = L0/(c f τcoh ). Already with segment lengths above
10 km, one can neglect the local clock rates, since these are
much higher than the rates given by the transmission times.
An extra factor of two could be included in τ for some
protocols due to the L0 transmission of a photon entangled
with a memory qubit and the classical answer (sent back
over L0) heralding its successful transmission. However, this
would depend on the specific protocol and so we have cho-
sen the simplest, minimal form τ = L0/c f . Only for very
short segment lengths do we have α ≈ αloc = τclock/τcoh =
MHz−1/τcoh with experimental clock rates τ−1

clock typically of
the order of MHz.

However, there are repeater schemes that are independent
of additional classical communication and the decision to
keep or reinitialize a memory state can be made at the memory
station. These schemes may be referred to as “node receives
photons” (NRP) unlike the class of schemes “node sends
photons” (NSP) [29]. An NRP protocol and application that
circumvents the need of extra signal waiting times can be
realized with two “segments” and a middle station in memory-
assisted MDI QKD [29].

Such a scheme, when treating it as an elementary quan-
tum repeater unit or module many of which a large-scale
repeater can be made of, may be referred to as a “quantum
repeater cell,” actually composed of two half-segments [[29],

Fig. 6(b)]. In this case, even for large (half-)segment length L0,
we have α = αloc = τclock/τcoh. For completeness, we show
the rates of such an NRP-based two-segment scheme in the
form of contour plots in Appendix H. By circumventing the
need for extra classical communication and thus significantly
reducing the effective memory dephasing, the minimal state
and gate fidelity values can even be kept constant over large
distance regimes. However, as soon as the NRP concept is
applied to larger repeaters effectively connecting several com-
plete repeater segments [[29], Fig. 6(a)], the need for extra
classical communication to initiate an entanglement swapping
operation can no longer be entirely avoided (though there are
ideas to still partially benefit from the NRP concept [59]). A
quantum repeater cell can also be considered employing the
NSP protocol [30] and one such cell (two half-segments) or
the corresponding complete segment can then be used as an
elementary quantum repeater unit [[29], Fig. 4]. For the NSP
concept, the extra signal waiting time is generally required
at every distribution attempt. In any case or protocol, the
repeater’s elementary time unit τ determines the effective
coherence time τcoh/τ and as such, even when the rates per
channel use are considered, it determines how many distribu-
tion attempts are possible within a given τcoh and hence how
big the effective dephasing time αDn becomes.

Compared with memory-assisted quantum communication
schemes, a big asset of an all-optical point-to-point quantum
communication link is that it can operate at a high clock
rate, typically of the order of GHz, only limited by the speed
of Alice’s laser (quantum state) source and Bob’s (quantum
state) detector. For such a direct state transmission, no extra
classical communication is required as for heralding the suc-
cessful transfer of entangled photons between repeater links.
Thus the rate per second is simply given by the two local clock
rates, especially the time it takes to generate the photonic qubit
states or any other quantum states in QKD based on different
types of encoding (however, due to the known linear bounds
on the key distribution via a long and lossy point-to-point
quantum communication channel [46,61], it is clear that the
rate scaling of qubit-based QKD cannot be beaten by any form
of nonqubit encoding).

Other all-optical schemes such as MDI QKD or twin-field
QKD, which are no longer point-to-point and do include a
middle station between Alice and Bob, also benefit from such
high clock rates. The remarkable feature of twin-field QKD
is that it shares both advantages: the high clock rate with
point-to-point quantum communication and the L → L/2 loss
scaling gain with memory-based two-segment quantum re-
peaters. In order to assess whether there is a real benefit of
employing a two-segment quantum repeater or even adding
extra repeater stations, we must eventually consider the rates
per second and take into account the corresponding clock rates
in all schemes. As a consequence, comparing clock rates of
MHz with those of GHz (of memory-based versus all-optical
quantum communication), there is a penalty of a factor of
about 1000 from the start for the memory-based approach.
In the regime where α ≈ L0/(c f τcoh ), this penalty even gets
worse. In this case, when τ ≈ L0/c f , there are at least two
disadvantages of τ growing with L0: a reduced effective co-
herence time τcoh/τ and a reduced raw rate per second R/τ .
Beating the PLOB bound for the rates per channel use is only
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TABLE V. Overview of the relevant quantities for the fully sequential scheme of Table III calculated per second (shown are only those
entries that change, but again with segment number n, segment length L0 (km)): raw rate R/τ , secret key rate S/τ for different μ = μ0 (again
subscript corresponds to the choice of α1 or α2, μ = 1 is the channel-loss-and-memory-dephasing-only case), and the (repeater-assisted)
capacity bound per elementary time unit SPLOB,QR(L0)/τ where we choose τ = GHz−1 for the cases n = 1, 2, i.e., the bounds, expressed per
second, on all-optical point-to-point and twin-field QKD. Note that for realistic but still GHz-clock-rate twin-field QKD, we rather have S/τ ∼
1 Hz. In any of the other, memory-based scenarios, we choose τ = τclock + L0/c f with τclock = MHz−1. We again assumed plink = F0 = 1 for
the link coupling efficiency and the initial state dephasing.

n 1 2 4 8 80 800 8000

L0 (km) 800 400 200 100 10 1 0.1
R/τ ∼10−14 Hz ∼10−6 Hz 0.0293 Hz 2.8 Hz 165.2 Hz 248.7 Hz 259.1 Hz
S1(μ = 1)/τ − ∼10−18 Hz ∼10−14 Hz 0.0106 Hz 133.9 Hz 213.9 Hz 224.0 Hz
S2(μ = 1)/τ − ∼10−14 Hz 0.0005 Hz 2.4 Hz 164.5 Hz 248.0 Hz 258.4 Hz
S1(μ = 0.99)/τ − 0 Hz 0 Hz 0 Hz 0 Hz 0 Hz 0 Hz
S2(μ = 0.99)/τ − 0 Hz 0 Hz 0.6086 Hz 0 Hz 0 Hz 0 Hz
SPLOB,QR(L0)/τ ∼10−7 Hz 18.3 Hz 0.2 MHz 15.5 MHz 1.5 GHz 4.5 GHz 7.8 GHz

a necessary criterion that a quantum repeater can be beneficial.
In order to confirm a real benefit, we have to consider the
secret key rates per second S/τ = rR/τ . Thus even with per-
fect memories τcoh → ∞, the different τ values matter. The
situation is similar to throwing two or more dices at once at
a fast rate. To get all dices showing six eyes, this may still be
faster than throwing them very slowly while being allowed to
only continue with the unsuccessful dices in each round. The
final raw and secret key rates per second obtainable with our
two most prominent and mostly discussed repeater schemes,
the fully sequential and the optimal schemes, are given in
Tables V and VI, respectively.

H. Application and comparison of protocols

Let us now consider various quantum repeater protocols
based on different types of the optical encoding and calcu-
late their corresponding secret key rates per second using the
methods developed in the preceding sections. We shall look
at (i) a kind of standard scheme employing two-mode (dual-
rail, DR) photonic qubits distributed through the optical-fiber
channels (either emitted from a central source of entangled
photon pairs and written into the spin memory qubits or
emitted from the repeater nodes employing spin-photon en-

tangled states and utilizing two-photon interference in the
middle of each segment) [29], (ii) a scheme based upon
spin-photon (spin-light-mode) entanglement and one-photon
interference with an encoding similar to that introduced by
Cabrillo et al. [62] effectively using one-mode (single-rail,
SR) photonic qubits, and (iii) a scheme that extends the con-
cepts of twin-field QKD with coherent states to a specific
variant of memory-assisted QKD, i.e., a kind of twin-field
quantum repeater [45]. We refer to scheme (ii) as the Cabrillo
scheme and discuss it in more detail in Appendix I. For
all three schemes we consider a quantum repeater with
n = 1, 2, 3, 4, 8 segments matching the size of the repeater
systems that we have formally/theoretically treated in great
detail in the first parts of this paper. We always use the
previously derived “optimal” quantum repeater protocol that
belongs to the fastest schemes and gives the smallest dephas-
ing among all fast schemes.

The two schemes (ii) and (iii) share the potential benefit
that for quantum repeaters with n segments and n − 1 in-
termediate memory stations (not counting the memories at
Alice and Bob or assuming immediate measurements there)
they lead to an improved loss scaling with a 2n times bigger
effective attenuation distance compared with a point-to-point
link (unlike the standard scheme (i) that only achieves an

TABLE VI. Overview of the relevant quantities for the optimal scheme of Table IV calculated per second [shown are only those entries that
change, but again with segment number n, segment length L0 (km)]: raw rate R/τ , secret key rate S/τ for different μ = μ0 (again subscript
corresponds to the choice of α1 or α2, μ = 1 is the channel-loss-and-memory-dephasing-only case), and the (repeater-assisted) capacity bound
per elementary time unit SPLOB,QR(L0)/τ where we choose τ = GHz−1 for the cases n = 1, 2, i.e., the bounds, expressed per second, on
all-optical point-to-point and twin-field QKD. Note that for realistic but still GHz-clock-rate twin-field QKD we rather have S/τ ∼ 1 Hz. In
any of the other, memory-based scenarios, we choose τ = τclock + L0/c f with τclock = MHz−1. We again assumed plink = F0 = 1 for the link
coupling efficiency and the initial state dephasing.

n 1 2 4 8 80 800 8000

L0 (km) 800 400 200 100 10 1 0.1
R/τ ∼10−14 Hz ∼10−6 Hz 0.0563 Hz 8.2 Hz 3.8 kHz 72.7 kHz 967.2 kHz
S1(μ = 1)/τ − ∼10−18 Hz ∼10−12 Hz 0.1423 Hz >3.1 kHz >62.5 kHz >832.1 kHz
S2(μ = 1)/τ − ∼10−14 Hz 0.0020 Hz 7.4 Hz >3.8 kHz >72.4 kHz >964.5 kHz
S1(μ = 0.99)/τ − 0 Hz 0 Hz 0 Hz 0 Hz 0 Hz 0 Hz
S2(μ = 0.99)/τ − 0 Hz 0 Hz 1.9 Hz 0 Hz 0 Hz 0 Hz
SPLOB,QR(L0)/τ ∼10−7 Hz 18.3 Hz 0.2 MHz 15.5 MHz 1.5 GHz 4.5 GHz 7.8 GHz

023086-32



EXACT RATE ANALYSIS FOR QUANTUM REPEATERS … PHYSICAL REVIEW RESEARCH 5, 023086 (2023)

n-times bigger effective attenuation distance), but a final state
fidelity parameter still decreasing as the power of 2n − 1
(assuming equal gate and initial state error rates) like the
standard scheme (i). However, scheme (ii) has an intrinsic
error during the distribution step due to the initial two-photon
terms in combination with channel loss. Similarly, scheme
(iii) is more sensitive to channel loss exhibiting an intrin-
sic loss-dependent dehasing error, because the optical state
is a phase-sensitive continuous-variable state [21]. The two
models of channel-loss-induced errors for schemes (ii) and
(iii) thus slightly differ, while the transmission loss scaling
is identical. As a consequence, for both (ii) and (iii), we have
the constraint that the excitation amplitudes (the weights of
the nonvacuum terms) must not become too large. Despite the
above-mentioned benefits compared with scheme (i) it will
turn out that the intrinsic errors of schemes (ii) and (iii) rep-
resent an essential complication that prevents to fully exploit
the improved scaling of the basic parameters in comparison
with the standard repeater protocols.

For a fair comparison, assuming similar types of initial
state imperfections in all three schemes, we set μ0 = 1 with
F0 = 0.99, 0.98 and so replace the initial depolarizing error
for scheme (i) by an initial dephasing error. Thus, in the
expressions of the QBERs as given by Eq. (24), the contri-
bution of μn

0 to the initial error scaling from the analysis of
the preceding sections (where F0 = 1) is now replaced by
a corresponding scaling with F0 < 1. The gate error scaling
with μn−1 remains unchanged in all schemes. Of course, our
formalism also allows to focus on specific schemes includ-
ing initial state errors with μ0 < 1. In this case, the specific
contributions of the different elements in each elementary re-
peater unit (segments, half-segments, “cells”) [29] to the link
coupling efficiency plink and the initial state error parameters
μ0 or F0 depend on the protocol [29].

For example, zooming in on an NSP segment [29], we
have a squared contribution from the two spin-photon entan-
gled states on the left and on the right, μ2

sp,ph, and another
possible gate error factor, μOBM, coming from the optical
Bell measurement in the middle of the segment. In this sce-
nario, already in a single segment, we effectively have one
imperfect entanglement swapping operation (acting on the
two photons in the middle of the segment) connecting two
initially distributed, depolarized entangled states (the two
spin-photon states), to which our physical model directly ap-
plies replacing our initial μ0 for one segment according to
μ0 → μ2

sp,phμOBM. This overall initial distribution error will
most likely be dominated by the imperfect spin-photon states,
assuming near-error-free (though probabilistic) photonic Bell
measurements, thus μ0 ∼ μ2

sp,ph.
In a full NRP segment, the memory write-in may be re-

alized via quantum teleportation using a locally prepared
spin-photon state and an optical Bell measurement on the
photon that arrives from the fiber channel and the local pho-
ton. In this scenario, already in a single complete segment,
we may effectively have three initial entangled states (two
local spin-photon states on the left and on the right together
with one distributed entangled photon pair emitted from a
source in the middle of the segment) and two optical Bell
measurements, [[29], Fig. 6(a)] with our model resulting in

a μ0 ∼ μph,phμ
2
sp,phμ

2
OBM scaling of the initial error parameter

for one segment (i.e., similar to the effective final scaling of
a three-segment repeater in our more abstract model, with
μ0 → μsp,ph and μ → μOBM, and setting for this simplify-
ing analogy, quite unrealistically, μsp,ph = μph,ph). Assuming
near-error-free Bell measurements, and near-perfect (though
possibly only probabilistically created) photon pairs, we
would again arrive at an overall scaling of μ0 ∼ μ2

sp,ph for
the initial error parameter. In case of an entangled photon
pair source that deterministically produces imperfect photon-
photon states (such as a quantum dot source), we would have
μ0 ∼ μph,phμ

2
sp,ph instead. There is also the option of a her-

alded memory write-in that no longer relies on the generation
of local spin-photon states and optical Bell measurements
[28]. In this case, our physical model has to be slightly adapted
to such a scenario and a decomposition of the different error
channels, including an imperfect memory write-in operation,
into one effective initial error channel should be considered.

Thus zooming in on our general initial-state error parame-
ters μ0 or F0 for a specific implementation is straightforwardly
possible, but it will eventually lead to even stronger fidelity
requirements for the individual experimental components that
contribute to μ0 or F0. The different contributions to the
link coupling efficiencies plink can be similarly decomposed
into the different experimental elements, also including some
differences for the different types of quantum repeater units
and protocols [29]. However, note that for our comparison in
this section, especially assuming that two photonic states are
combined in the middle of each segment (i.e., in a kind of NSP
scenario), the two-photon interference of scheme (i) results in
a quadratic disadvantage not only for the channel transmission
but also in terms of the link coupling efficiency plink in com-
parison with the protocols based on one-photon interference
[schemes (ii) and (iii)], plink,(i) = p2

link,(ii) = p2
link,(iii). For this,

let us write in short plink,DR = p2
link,TF, given the similarity of

schemes (ii) and (iii).
In Fig. 14, we compare the secret key rates for the dual-rail

scheme (i) (DR), the Cabrillo scheme (ii), and the twin-field
repeater (iii) (TF). The two twin-field-type schemes include a
free parameter describing the number of excitations. More ex-
citations lead to a higher transmission rate at the expense of a
lower state quality. In the plots, we optimize this parameter for
each data point to obtain the maximal secret key rate. Recall,
for the DR scheme, we introduce a small dephasing via the
parameter F0 < 1 in order to avoid comparing perfect initial
entangled states with noisy ones. When comparing schemes
(ii) and (iii) one can see that for μ ≈ 1 (iii) performs better
while for lower μ (ii) is the better performing scheme. This is
because the probability of an error is smaller for the Cabrillo
scheme, but the error would affect both QBERs of the BB84
protocol, significantly reducing the secret key rate. For the TF
scheme (iii), we have an effect on only one of the two error
rates. When μ gets smaller, all schemes have a nonvanishing
error rate in both bases and therefore the lower error rate of
the Cabrillo scheme is helpful.

Figure 14 shows that, although the DR scheme has a scal-
ing disadvantage in comparison to both other schemes, it is
often highly competitive, since both twin-field-type schemes
suffer from their low initial probabilities of success when
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FIG. 14. Secret key rates per second. We always assume a coherence time τcoh = 10 s, plink,TF = 0.9, and M = 1.

only weak excitations can be used to avoid introducing too
much noise from the loss channel. Considering a memory
coherence time of 10 seconds, a gate error parameter μ �
0.97, and coupling efficiencies as plink,TF = 0.9, one can al-
ready overcome the PLOB bound with only three memory
stations using either the DR scheme (i) or the TF protocol
(iii). For this comparison, in terms of secret bits per second,
we assume a source repetition rate of 1 GHz for an ideal
point-to-point link as associated with the PLOB bound per
channel use. Note that we do not include an extra factor of
1/2 for the final rates which would strictly be needed in the
DR-based scheme in comparison with the PLOB bound for
a single-mode loss channel. Here the parallel transmission
of the two modes for a DR qubit does not change the rates
per second and this optical encoding does not cause an extra
experimental resource overhead (in fact, it even simplifies the
optical transmission circumventing the need for long-distance
phase stabilization as for the TF-type schemes). Moreover, an
optical point-to-point direct transmission would most likely be
based on DR qubit transmission as well. The other, previously
mentioned factor 2 that occurs in front of the effective inverse
coherence time α when the two spins of a two-qubit spin
pair simultaneously dephase while waiting in one segment
has now been included here for each segment (i.e., a small
improvement would be possible when Alice and Bob measure
their spins immediately).

In Fig. 14, we always assume a coherence time τcoh = 10 s,
plink,TF = 0.9, and M = 1. Recall from our discussions of
the possibility of multiplexing that we may equivalently con-
sider schemes for which, for instance, τcoh = 1 s and M = 10
according to Eq. (65). The plots lead to the following observa-
tions. The two TF-type schemes (ii) and (iii) more heavily rely
upon sufficiently good error parameters than the DR scheme

(i). In Figs. 14(a) and 14(b), for two different initial dephasing
fidelities (which is only relevant for DR), we see that only the
TF scheme (iii) performs as good as DR with a gate error as
low as μ = 0.999. In this case, for the given parameters, TF
even allows to reach slightly larger distances compared with
DR, both going well above L = 1200 km giving more than a
hundredth of a secret bit per second at such distances. Note
that in order to achieve this, the TF scheme requires a loss
scaling with a 16 times bigger effective attenuation distance
compared with a point-to-point link, whereas the DR scheme
only has to exhibit an 8 times bigger effective attenuation
distance (“n = 8 TF” versus “n = 8 DR”). The number of
memory stations is the same for both, namely, seven (not
counting those at Alice and Bob).

With increasing gate errors μ � 0.99, as shown in
Figs. 14(c)–14(g), only the DR scheme allows to reach dis-
tances above or near L = 1000 km. If both error parameters,
that for the gates, μ, and that for the initial states, F0, are no
longer sufficiently good (both or in combination), also the DR
scheme ceases to reach large distances and barely beats the
PLOB bound [see Figs. 14(f) and 14(g)]. For the two TF-type
schemes (ii) and (iii), we generally checked both types of
detectors, on-off as well as photon-number-resolving (Fig. 14
shows the results for on-off detections), and we did not see a
significant difference in the logarithmic plots of the secret key
rates for both schemes. The reason is that for larger distances
the two-photon events at either of the two detectors (detectable
via PNRDs) get increasingly unlikely compared with one-
photon detection events coming from the two-photon terms in
combination with the loss of one photon during transmission
(causing errors which remain undetectable via PNRDs).

The practically most relevant situation is shown in
Figs. 14(c)–14(e). In particular, for the numbers chosen there,
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i.e., state and gate errors of the order of 1%–2%, the DR
scheme reaches a distance of L = 800 km with about one
secret bit per second, and even beyond with a lower rate.
The link coupling efficiency for this scenario, like in all oth-
ers, is plink,DR = p2

link,TF = 0.81; the coherence time is τcoh =
10 s. The number of segments is n = 8 (“n = 8 DR”, dotted
yellow curve) corresponding to a memory station placed at
every L0 = 100 km. The result for this scheme is consistent
with the results obtained for S2(μ = 0.99) and especially
S2(μ = 0.99)/τ in Tables IV and VI, respectively, for n = 8.
However, note that for the values in Tables IV and VI we
chose plink = F0 = 1 and μ = μ0, slightly different from the
parameter choice for Fig. 14(c) where μ0 = 1 and F0 = 0.99
playing the role of an imperfect state parameter instead of μ0

(in addition, we have plink = 0.81 for DR, and also two spins
dephasing at any time step included). Reiterating the previous
discussions in Secs. V E 2, the choice of L0 ∼ 100 km seems
not only highly compatible with existing classical repeater and
fiber network architectures, but also offers a good balance be-
tween an improved memory-assisted loss scaling and an only
limited addition of extra faulty elements. Here now we found,
in particular, that the standard DR scheme (i) provides another
good choice in order to really benefit from these well balanced
parameters. Finally, we also considered the six-state QKD
protocol [48] instead of BB84, but this only improved the
final rates marginally. In the case of μ = 0.98 and μ0 = 1, the
rate could be, in principle, improved significantly for n = 8,
but for these parameters, in practice, it is easier to use BB84
and n = 4 instead. When considering sufficiently good error
parameter values like μ = 0.99, such that n = 8 outperforms
n = 4, then again there is only a minimal improvement by
employing the six-state QKD protocol.

VI. CONCLUSION

We presented a statistical model based on two random
variables and their probability-generating functions (PGFs) in
order to describe, in principle, the full statistics of the rates
obtainable in a memory-based quantum repeater chain. The
physical repeater model assumes a heralded initial entangle-
ment distribution with a certain elementary probability for
each repeater segment (including fiber channel transmission
and all link coupling efficiencies), deterministic entanglement
swapping to connect the segments, and single-spin quan-
tum memories at each repeater station that are subject to
time-dependent memory dephasing. No active quantum error
correction is performed on any of the repeater “levels,” while
our model does not even rely upon the basic assumption of
any nested repeater level structure. The two basic statistical
variables associated with this physical repeater model are the
total repeater waiting time and the total, accumulated dephas-
ing time.

In the context of an application in long-range quantum
cryptography, our model corresponds to a form of memory-
assisted quantum key distribution, for which we calculated
the (asymptotic, primarily BB84-type) secret key rates as a
figure of merit to assess the repeater performance against
known benchmarks and all-optical quantum communication
schemes. Apart from the theoretical complexity that grows
with the size of the repeater (i.e., the number of repeater

segments), it was clear from the start that experimentally the
memory-assisted schemes of our model cannot go arbitrarily
far while still producing a nonzero secret key rate. One mo-
tivation and goal of our work was to quantify this intuition
and to provide an answer to the question whether it is actually
beneficial, in a real setting, to add faulty memory stations
to a quantum communication line. Existing works had their
focus on the smallest repeaters with only two segments and
one middle station. So, the aim was to further explore these
smallest repeaters and then extend them to repeaters of a larger
scale, answering the above question.

Within this framework, we determined an optimal repeater
scheme that belongs to the class of the fastest schemes (min-
imizing the average total waiting time and hence maximizing
the long-distance entanglement distribution “raw rate”) and,
in addition, minimizes the average accumulated memory de-
phasing within the class of the fastest schemes. We have
achieved this optimization for medium-size quantum repeaters
with up to eight segments. In particular, for the minimal de-
phasing, this led us to a scheme to “swap as soon as possible.”
The technically most challenging element of our treatment is
to determine an explicit analytical expression for the random
dephasing variable of the fast schemes and its PGF. In order to
confirm the correspondence of the minimum of the dephasing
variable with the minimal QKD quantum bit error rate (for
the variable related to memory dephasing), we calculated the
relevant expectation values and compared the optimal scheme
with schemes based on other, different swapping strategies.
More generally, our formalism enables one to also consider
mixed strategies in which different types of entanglement
distribution and swapping can be combined, including the tra-
ditionally used doubling strategy that allows to systematically
incorporate methods for quantum error detection (entangle-
ment distillation).

Our new results especially apply to quantum repeaters
beyond one middle station for which an optimization of the
distribution and swapping strategies is no longer obvious. For
the special case of three repeater segments, assuming only
channel loss and memory dephasing, and with equal distribu-
tion time units in every segment given by the signaling time,
we showed that our optimal scheme gives the highest secret
key rate among not only all the fastest schemes but among
all schemes including overall slower schemes that may still
potentially lead to a smaller accumulated dephasing. We con-
jecture that our optimal scheme also gives the highest secret
key rate for more than three segments under the same physical
assumptions. A rigorous proof of this is nontrivial, because
the number of distinct swapping and distribution strategies
grows fast with the number of repeater segments. Moreover,
in a long-range QKD application, some of the spin qubits may
be measured immediately which is generally hard to include
in the statistical analysis and the optimization for all possi-
ble schemes; for three segments though we did include this
additional complexity of the protocols. Towards applications
beyond QKD, this extra variation may no longer be relevant.

We identified three criteria that should be satisfied by an
optimal repeater scheme: distribute entanglement in parallel
as fast as possible, store entanglement in parallel as little as
possible, and swap entanglement as soon as possible. It is
not always possible to satisfy these conditions at the same
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time, and we discussed specific schemes that are particularly
good or bad with regards to some of the criteria. For exam-
ple, a fully sequential repeater scheme is particularly slow,
but avoids parallel storage of many spin qubits. Nonetheless,
since it is overall slow, the fully sequential scheme can still
accumulate more dephasing. We presented a detailed analysis
comparing such different repeater protocols and approaches.

With regards to a more realistic quantum repeater mod-
eling, we considered additional tools and parameters such
as memory cutoffs, multiplexing, initial state and swap-
ping gate fidelities in order to identify potential regimes
in memory-assisted quantum key distribution beyond one
middle station where, exploiting our optimized swapping
strategy, it becomes useful to add further memory stations
along the communication line and connect them via two-
qubit swapping operations. Importantly, we found that the
initial state and gate fidelities must exceed certain minimal
values (generally depending on the specific QKD protocol
including postprocessing), as otherwise the sole faultiness
of the spin-qubit preparations and operations prevents to
obtain a nonzero secret key rate even when no imperfect
quantum storage (no memory dephasing) at all takes place
and independent of the finite channel transmission. This ef-
fect becomes stronger with an increasing number of repeater
nodes, scaling with the power of 2n − 1 for the error param-
eters in the QKD secret key rate. Once this minimal state
and gate fidelity criterion is fulfilled and when the other
experimental imperfections are included too, especially the
time-dependent memory dephasing, it is essential to consider
the exact secret key rates obtainable in optimized repeater
protocols in order to conclude whether a genuine quantum
repeater advantage over direct transmission schemes is pos-
sible or not. This is what our work aimed at and achieved
based on the standard notion of asymptotic QKD figures of
merit.

By quantifying the influence of (within our physical
model) basically all relevant experimental parameters on the
final long-range QKD rate, we were able to determine the
scaling and trade-offs of these parameters and analytically
calculate exact, optimal rates. A quantum repeater of n =
L/L0 segments is thereby characterized by the parameter set
(p, a, α) where p is the entanglement distribution probability
per segment (including the n-dependent channel transmission
and zero-distance link coupling efficiency per segment), a
is the entanglement swapping success probability, and α is
the inverse effective memory coherence time which, in most
protocols, depends on n via the quantum and classical com-
munication times per distribution attempt (we also considered
small-scale two-segment protocols without this dependence
and ideas exist to minimize the impact of the inevitable signal
waiting times for the elementary units of larger repeaters in
combination with high experimental source and processing
clock rates [59]). In addition, we have introduced a set of
initial state and gate parameters (μ0/F0, μ) where μ0 and F0

can be adapted to the specific protocols. Additional memory
parameters can be collected as (m, M, B) where m is the mem-
ory cutoff (maximal time at which any spin qubit is stored), M
is the number of simultaneously employed memory qubits in
a simple multiplexing scenario with M repeater chains used in
parallel, and B is the (spatial) “memory buffer” (the number of

memory qubits per half station in a single repeater chain). In
our work, we focused on schemes with a = 1 and B = 1. The
use of B > 1 memories at each station would allow to continue
the optical quantum state transfer even in segments that al-
ready possess successfully distributed states and to potentially
replace the earlier distributed lower-quality pairs (subject to
memory dephasing) by the later distributed pairs. We also did
not put the main emphasis on the use and optimization of m,
though we did include this option in some schemes. We found
that M > 1 leads to an effective improvement of the memory
coherence time by a factor of M.

In this setting, the three essential experimental parame-
ters that have to be sufficiently good are the link coupling
efficiency (via p), the memory coherence time (via α), and
the state/gate error parameter μ0/μ. While the latter must
not go below the above-mentioned limits, generally two of
these three parameters should be sufficiently good as a rule of
thumb in order to exceed the repeaterless bound and obtain
practically meaningful rates. If this is the case, or even better,
if all three are of high quality, memory-assisted quantum key
distribution based on heralded entanglement distribution and
swapping without additional quantum error correction or de-
tection is possible to allow Alice and Bob to share a secret key
at a rate orders of magnitude faster than in all-optical quantum
state transmission schemes. For instance, for a total distance
of 800 km and experimental parameter values that are highly
demanding but not impossible (up to 10 s coherence time,
about 80% link coupling, and state or gate infidelities in the
regime of 1%–2%), one secret bit can be shared per second
with repeater stations placed at every 100 km, providing the
best balance between a minimal number of extra faulty re-
peater elements and a sufficient number of repeater stations
for an improved loss scaling.
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APPENDIX A: DERIVATION OF EQ. (36)

In this section, we derive the PGF Gn(t ) of the random
variable Kn defined via

Kn = max(N1, . . . , Nn), (A1)

where Ni are the geometrically distributed random variables
with parameter p. We have

Gn(t ) =
+∞∑

k1,...,kn=1

pqk1−1 . . . pqkn−1tmax(k1,...,kn )

= pntFn(q, t ), (A2)

where the function Fn(x, t ) is defined as

Fn(x, t ) =
+∞∑

k1,...,kn=0

xk1+...+kntmax(k1,...,kn ). (A3)
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The series on the right-hand side of this definition converges
for all |x| < 1 and |t | � 1, since we have

|Fn(x, t )| �
+∞∑

k1,...,kn=0

|x|k1+...+kn = 1

(1 − |x|)n
. (A4)

The function Fn(x, t ) can be written in a compact form, having
only a finite number of terms. We have

Fn(x, t )

1 − t
=

+∞∑
k1,...,kn=0

+∞∑
k=max(k1,...,kn )

xk1+...+knt k

=
+∞∑
k=0

t k
k∑

k1,...,kn=0

xk1+...+kn

=
+∞∑
k=0

t k

(
1 − xk+1

1 − x

)n

. (A5)

Expanding the nth power on the right-hand side and apply-
ing simple algebraic transformations, we obtain the following
compact expression:

Fn(x, t ) = 1 − t

(1 − x)nt

n∑
i=0

(−1)i

(
n

i

)
1

1 − xit
. (A6)

From Eq. (A2), we derive the following expression for the
PGF of Kn:

Gn(t ) = (1 − t )
n∑

i=0

(−1)i

(
n

i

)
1

1 − qit

= 1 + (1 − t )
n∑

i=1

(−1)i

(
n

i

)
1

1 − qit
, (A7)

which is exactly the expression of the main text.

APPENDIX B: TRACE IDENTITIES

We have

23〈�+|�̃μ,23(�̂1234)|�+〉23

= μ · 23〈�+|�̂1234|�+〉23 + 1 − μ

4
Tr23(�̂1234). (B1)

Here we show how to compute the quantities on the right-hand
side of this equality. A simple way is to work with density
matrices. We use the order of basis elements induced by the
tensor product. From the one-qubit basis (|0〉, |1〉)T we obtain
the two-qubit basis

(|0〉
|1〉

)
⊗

(|0〉
|1〉

)
=

⎛
⎜⎜⎜⎝

|00〉
|01〉
|10〉
|11〉

⎞
⎟⎟⎟⎠. (B2)

Taking the tensor product once again, we obtain the ordering
of four-qubit basis vectors |0000〉, |0001〉, |0010〉, |0011〉,
|0100〉, |0101〉, |0110〉, |0111〉, |1000〉, |1001〉, |1010〉, |1011〉,
|1100〉, |1101〉, |1110〉, |1111〉. If a four-qubit state is de-
scribed by a density operator �̂1234 which has a 16 × 16
density matrix � in the standard basis ordered as described

above, then two-qubit partial diagonal states have the follow-
ing matrices in the basis (B2):

23〈00|�̂1234|00〉23 = ρ[1, 2, 9, 10],

23〈01|�̂1234|01〉23 = ρ[3, 4, 11, 12],

23〈10|�̂1234|10〉23 = ρ[5, 6, 13, 14],

23〈11|�̂1234|11〉23 = ρ[7, 8, 15, 16], (B3)

where �[I], I being a set of 1-based indices, is the submatrix
of � with row and column indices in I . For the off-diagonal
states, we have

23〈01|�̂1234|10〉23 = ρ[3, 4, 11, 12|5, 6, 13, 14],

23〈10|�̂1234|01〉23 = ρ[5, 6, 13, 14|3, 4, 11, 12], (B4)

where �[I|J] is the submatrix of � with row indices in I and
column indices in J .

The state of the form given by Eq. (10)

�̂ = �̃μ(F |�+〉〈�+| + (1 − F )|�−〉〈�−|) (B5)

has the following density matrix in the basis (B2):

� = 1

4

⎛
⎜⎜⎜⎝

1 − μ 0 0 0
0 1 + μ 2μ(2F − 1) 0
0 2μ(2F − 1) 1 + μ 0
0 0 0 1 − μ

⎞
⎟⎟⎟⎠.

(B6)
Taking the Kronecker product of two states of this form,
Eq. (B1) together with the relations Eqs. (B3) and (B4) lead
to the final form of the distributed state in Eq. (11).

APPENDIX C: COMPUTING PGFs OF
THE SEQUENTIAL SCHEME

In the sequential scheme, the number of steps Kn and the
dephasing Dn are given by

Kn = N1 + · · · + Nn, Dn = N2 + · · · + Nn. (C1)

Their PGFs are thus the nth and (n − 1)th power of the single-
segment PGF:

Gn(t ) =
(

pt

1 − qt

)n

, G̃n(t ) =
(

pt

1 − qt

)n−1

. (C2)

In the case of a cutoff, the process of entanglement dis-
tribution is visualized in Fig. 15. There are zero or more
failure parts, with number of steps generating function B[m]

n (t ),
and one and only one success part, with generating function
A[m]

n (t ). The total PGF G[m]
n (t ) of the number of steps K [m]

n is
thus given by

G[m]
n (t ) = A[m]

n (t )

1 − B[m]
n (t )

. (C3)

We start with the derivation of the failure part’s PGF. The PGF
of the top line is clearly

G0(t ) = pt

1 − qt
. (C4)

Among the rest n − 1 lines there are i lines that succeed,
where 0 � i � n − 2, so we have to put i p’s into m places
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FIG. 15. A visualization of the entanglement distribution process with the sequential scheme for n = 4. (a) The general structure of failure
periods (if any) and the success period. (b) A detailed view of the failure part generating function B(t ). (c) A detailed view of the success part
generating function A(t ).

and the rest m − i places will be taken by q’s. We thus have

B[m]
n (t ) = G0(t )

n−2∑
i=0

(
m

i

)
piqm−itm. (C5)

For the success part’s PGF, we have

A[m]
n (t ) = G0(t )

m∑
j=n−1

(
j − 1

n − 2

)
pn−1q j−n+1t j, (C6)

since the length of the success part can vary from n − 1 to
m (we need to put at least n − 1 p’s there). The position of
the last p is fixed, so we need to place n − 2 p’s into j − 1
places and the rest j − n + 1 will be taken by q’s. Making
substitution j → j − n + 1, we arrive to the expression (27)
of the main text.

The random variable for the waiting time of the scheme
involving multiple cutoffs is given by

K seq,m
n = Ñ (mn−1 ) − mn−1 +

Tn−1∑
j=1

(Kn−1, j + mn−1). (C7)

Exploiting that sums of independent random variables corre-
spond to products of their PGFs and using [[63], Satz 3.8] for
the sum one immediately obtains the result in the main text.

APPENDIX D: COMPUTING DEPHASING
PGFs FOR PARALLEL SCHEMES

In this section, we derive explicit expressions for the PGFs
of the dephasing random variables Dn for different schemes
considered in the main text. All these schemes have the same
property—if the order of Ni’s is known then one can obtain an
analytical expression for the corresponding random variable
Dn explicitly. Having an explicit expression for Dn, we can
compute a part of its PGF corresponding to a given order of
arguments. Combining these parts for all possible ordering of
arguments, we get the expression for PGF of Dn.

More formally, the space � = Nn of elementary events
consists of all n vectors N = (N1, . . . , Nn) of positive integers.
The components Ni are independent identically distributed
(i.i.d.) random variables with geometric distribution with suc-
cess probability p, so Ni is the number of attempts (including
the last successful one) of the ith segment to distribute en-
tanglement. The failure probability we denote q = 1 − p. To
every point N = (N1, . . . , Nn) ∈ �, we assign the probability

P(N) = pqN1−1 . . . pqNn−1 = pnqN1+...+Nn−n. (D1)

The sum of these probabilities is obviously 1, so we have a
valid probability space (�, P).

The PGF of every component Ni is given by the following
simple expression:

gNi (t ) = pt

1 − qt
. (D2)

To find PGFs of more complicated random variables involving
several components, we appropriately partition �, compute
the partial PGF on each part and then combine these partial
results into the full expression. For every permutation π ∈ Sn,
we define a subset of � which is determined by the corre-
sponding relations between n arguments. For n = 2, we have
two permutations (12) and (21) with corresponding relations
N1 � N2 and N2 < N1. For n = 3, we have six permutations
and six corresponding relations

N1 � N2 � N3, N1 � N3 < N2, N2 < N1 � N3,

N2 � N3 < N1, N3 < N1 � N2, N3 < N2 < N1. (D3)

To make all these subsets nonoverlapping, we use strict in-
equality between an inversion and nonstrict inequality in other
positions between numbers in permutations. We thus have the
following decomposition:

� =
⊔
π∈Sn

�π, (D4)
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TABLE VII. Explicit expressions for the optimal and doubling
dephasing for all possible relations between arguments in the case of
n = 4.

Permutation D�
4(N) Ddbl

4 (N)

N1 � N2 � N3 � N4 N4 − N1 2N4 − N1 − N3

N1 � N2 � N4 < N3 2N3 − N1 − N4 2N3 − N1 − N4

N1 � N3 < N2 � N4 N2 + N4 − N1 − N3 2N4 − N1 − N3

N1 � N3 � N4 < N2 2N2 − N1 − N3 2N2 − N1 − N3

N1 � N4 < N2 � N3 2N3 − N1 − N4 2N3 − N1 − N4

N1 � N4 < N3 < N2 2N2 − N1 − N4 2N2 − N1 − N4

N2 < N1 � N3 � N4 N4 − N2 2N4 − N2 − N3

N2 < N1 � N4 < N3 2N3 − N2 − N4 2N3 − N2 − N4

N2 � N3 < N1 � N4 N4 − N2 2N4 − N2 − N3

N2 � N3 � N4 < N1 N1 − N2 2N1 − N2 − N3

N2 � N4 < N1 � N3 2N3 − N2 − N4 2N3 − N2 − N4

N2 � N4 < N3 < N1 N1 + N3 − N2 − N4 2N1 − N2 − N4

N3 < N1 � N2 � N4 N2 + N4 − N1 − N3 2N4 − N1 − N3

N3 < N1 � N4 < N2 2N2 − N1 − N3 2N2 − N1 − N3

N3 < N2 < N1 � N4 N4 − N3 2N4 − N2 − N3

N3 < N2 � N4 < N1 N1 − N3 2N1 − N2 − N3

N3 � N4 < N1 � N2 2N2 − N1 − N3 2N2 − N1 − N3

N3 � N4 < N2 < N1 N1 − N3 2N1 − N2 − N3

N4 < N1 � N2 � N3 2N3 − N1 − N4 2N3 − N1 − N4

N4 < N1 � N3 < N2 2N2 − N1 − N4 2N2 − N1 − N4

N4 < N2 < N1 � N3 2N3 − N2 − N4 2N3 − N2 − N4

N4 < N2 � N3 < N1 N1 + N3 − N2 − N4 2N1 − N2 − N4

N4 < N3 < N1 � N2 2N2 − N1 − N4 2N2 − N1 − N4

N4 < N3 < N2 < N1 N1 − N4 2N1 − N2 − N4

where �π is the subset determined by the relations corre-
sponding to π . For any point N ∈ �π , we can obtain an
explicit expression for Dn for any scheme. In Table VII, we
show all possible relations between four arguments and the ex-
pression corresponding to the optimal and doubling schemes
in the case of n = 4. Expressions corresponding to different π

might be the same, as can be seen for the doubling scheme.
The PGF of Dn is defined as

G̃n(t ) =
+∞∑
d=0

P(Dn = d )t d =
∑
N∈�

P(N)tDn (N). (D5)

Using the decomposition in Eq. (D4), we introduce the partial
PGFs via

G̃n(π |t ) =
∑

N∈�π

pnqN1+...+Nn−ntDn(N1,...,Nn ), (D6)

where Dn(N1, . . . , Nn) is given explicitly as an appropriate
linear combination of Ni’s. The total PGF G̃n(t ) is then just
the sum of all of these partial PGFs:

G̃n(t ) =
∑
π∈Sn

G̃n(π |t ). (D7)

We demonstrate computing these sums by an example for n =
4. We have the correspondence

π = (2134) → N2 < N1 � N3 � N4 (D8)

and the explicit expressions

D�
4(N1, N2, N3, N4) = N4 − N2,

Ddbl
4 (N1, N2, N3, N4) = 2N4 − N2 − N3. (D9)

For the partial PGFs, we have

G̃�
4(π |t ) =

+∞∑
N2=1

+∞∑
N1=N2+1

+∞∑
N3=N1

+∞∑
N4=N3

p4qN1+N2+N3+N4−4tN4−N2

= p4

1 − q4

q3t

(1 − qt )(1 − q2t )(1 − q3t )
,

G̃dbl
4 (π |t ) =

+∞∑
N2=1

+∞∑
N1=N2+1

+∞∑
N3=N1

×
+∞∑

N4=N3

p4qN1+N2+N3+N4−4t2N4−N2−N3

= p4

1 − q4

q3t

(1 − q2t )(1 − q3t )(1 − qt2)
. (D10)

Summing up the expression for all π ∈ S4, we obtain the
expressions for G̃�

4(t ) and G̃dbl
4 (t ) presented in the main text.

For completeness, we also give the optimal PGFs for n = 2
and n = 3:

G̃�
2(t ) = p2

1 − q2

1 + qt

1 − qt
,

G̃�
3(t ) = p3

1 − q3

1 + (q + 2q2)t − (2q2 + q3)t3 − q4t4

(1 − qt )(1 − q2t )(1 − qt2)
.

The size of the expressions grows rather quickly with n, so we
do not present them explicitly for n > 4. We see that obtaining
G̃n(t ) reduces to computing sums of many geometrical series,
which is a rather trivial task. The only nontrivial part of
this algorithm is its superexponential n!-complexity. So, this
algorithm is applicable only for small n; we used it up to a
practically relevant n = 8.

APPENDIX E: OPTIMALITY FOR THREE SEGMENTS

Here we will compare the secret key rates of all possible
schemes for a three-segment repeater, when swapping is ap-
plied as soon as possible. We will not consider any scheme
that delays swapping and swaps at the end, further increasing
the dephasing. For each scheme we calculate the random
variables for the waiting time and the dephasing. In case of the
dephasing the probability generating function is most useful,
whereas for the waiting time we only have to consider the
expectation value. Moreover, we will examine two different
types of schemes. The first type, indicated by “imm,” de-
scribes schemes where Alice and Bob measure their qubits
immediately. This scenario is useful for QKD applications.
The second type of schemes is indicated by a subscript “non.”
Here, Alice and Bob no longer measure immediately and this
type of schemes is important in applications beyond QKD. A
possible application is transferring quantum information be-
tween quantum computers by exchanging entangled photons.
In this case, Alice and Bob will not measure their qubits until
they share an entangled state.
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FIG. 16. Sequential arrangements of entanglement generation in
a three-segment repeater. The number in each segment corresponds
to the order when it starts.

Note that for schemes adapted to QKD, there is another
variation that would indeed allow to achieve higher secret
key rates than our optimal scheme, namely when Alice and
Bob send their signals at a high clock rate and the memory
stations can locally decide how to process the arriving qubits,
i.e., in a “node receives photon” (NRP) setting [29]. In our
model and optimization here, we assume throughout that the
distribution attempts in every segment are treated equally and
hence are limited by the same elementary time unit τ = L0/c f

incorporating all necessary signaling times. This also means
that we may overestimate the fixed swapping schemes, since
these can require signaling beyond neighboring stations.

1. Sequential schemes

Let us start with sequential schemes, where entanglement
generation only takes places in one segment after another.
There are three possibilities. First, one starts generating en-
tanglement in Alice’s or Bob’s segment and always connects
adjacent segments after the previous one has finished success-
fully. Note that here entanglement swapping is performed as
soon as possible. We will call this scheme “sequential a,” see
Fig. 16(a). The second possibility is given by starting with the
left or right segment, followed by the segment on the opposite
side. Thus no entanglement swapping is possible. Finally, the
middle segment is connected. Let us call this scheme “sequen-
tial b,” see Fig. 16(b). The third possible arrangement is given
by starting in the middle, continuing with the left or right
segment and finishing with the remaining segment on the op-
posite side, see Fig. 16(c). All other sequential arrangements
for three segments are equivalent to those three schemes.

These three sequential schemes share the same waiting
time, which is

K seq
3 = N1 + N2 + N3, (E1)

and has the expectation value

E
[
K seq

3

] = 3

p
. (E2)

Obviously, the dephasing of the schemes differs, and we
also have to distinguish between schemes measuring immedi-
ately and nonimmediately. At first, let us consider immediate
schemes, as it will turn out the random variables of the nonim-
mediate schemes are just scaled by a factor of two, although
it might not be the random variable of the same scheme. We

find

Dseq,a
3,imm = N2 + N3, Dseq,b

3,imm = 2N2 + N3,

Dseq,c
3,imm = 2N1 + N3. (E3)

Since N2 and N3 are i.i.d., the probability generating func-
tion (PGF) of Dseq,a

3,imm is given by

G̃seq,a
3,imm(t ) = gN2 (t ) · gN3 (t ) =

(
pt

1 − qt

)2

. (E4)

Due to the general relation

g2X (t ) = E[t2X ] = E[(t2)X ] = gX (t2) (E5)

valid for any discrete random variable X , we have

G̃seq,b
3,imm(t ) = gN2 (t2) · gN3 (t ) = p2t3

(1 − qt )(1 − qt2)
. (E6)

The same holds true for the PGF of the immediate measure-
ment scheme “sequential c,” because N1 and N2 are i.i.d.. Thus
its PGF is also given by

G̃seq,c
3,imm(t ) = p2t3

(1 − qt )(1 − qt2)
, (E7)

which shows, that this scheme is actually equivalent to “se-
quential b” and will not be considered separately in the later
comparison.

On the other hand, for nonimmediate measurements, we
find the random variables to be

Dseq,a
3,non = 2Dseq,a

3,imm = 2(N2 + N3),

Dseq,b
3,non = 2Dseq,b

3,imm = 2(2N2 + N3),

Dseq,c
3,non = 2Dseq,a

3,imm = 2(N1 + N3). (E8)

By using the same argument as before, we find the corre-
sponding PGFs

G̃seq,a
3,non(t ) = G̃seq,a

3,imm(t2), G̃seq,b
3,non(t ) = G̃seq,b

3,imm(t2),

G̃seq,c
3,non(t ) = G̃seq,a

3,imm(t2). (E9)

Again, the scheme “sequential c” is equivalent to another
scheme, but now it is “sequential a.” Therefore the nonimme-
diate version of “sequential c” will not be treated separately
from “sequential a.”

2. Two segments simultaneously at the start

When we generate entanglement in two segments simulta-
neously, we can do that by starting with these two segments
or by finishing with these two. Here we will consider the case
where one starts with them and we only have two different
arrangements. However, we still have to distinguish between
measuring immediately or not.

For the first scheme in consideration, the middle and the
left (or equivalently right) segment start generating entangle-
ment at once. They swap as soon as both are done and then the
last segment starts generating entanglement, see Fig. 17(a).
Let us call this scheme “start a.” The dephasing random vari-
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FIG. 17. Possible arrangements of entanglement generation in a
three-segment repeater, when two segments start simultaneously. The
number in each segment corresponds to the order when it starts.

ables in this case are

Dstart,a
3,imm =

{
N2 − N1 + N3 N1 � N2

2(N1 − N2) + N3 N2 < N1
,

Dstart,a
3,non = 2|N1 − N2| + 2N3. (E10)

The PGF of Dstart,a
3,non obviously reads as

G̃start,a
3,non (t ) = G̃2(t2) · gN3 (t2) = p3t2(1 + qt2)

(1 − q2)(1 − qt2)2
. (E11)

For immediate measurements, we use the methods pre-
sented in the previous section and derive the PGF of Dstart,a

3,imm,

G̃start,a
3,imm(t ) = p3t (1 − q2t3)

(1 − q2)(1 − qt )2(1 − qt2)
. (E12)

The second scheme is realized when we start with both the
left and the right segment at once. As in the second sequential
scheme there is no swapping possible, when both segments
finished and one has to wait for the middle segment. We will
call this scheme “start b.” Schematically, it can be seen in
Fig. 17(b). Here we have for the dephasing random variables

Dstart,b
3,imm = |N1 − N3| + 2N2,

Dstart,b
3,non = 2|N1 − N3| + 4N2 = 2Dstart,b

3,imm. (E13)

We can simplify the calculation, by considering the immediate
scheme first and using g2X (t ) = gX (t2). The PGF is given by

G̃start,b
3,imm(t ) = G̃2(t ) · g2N3 (t ) = p3t2(1 + qt )

(1 − q2)(1 − qt )(1 − qt2)
.

Hence, the PGF of the nonimmediate version is simply

G̃start,b
3,non (t ) = G̃start,b

3,imm(t2). (E14)

The waiting time is the same for both schemes in this
section and amounts to

K simult.
3 = max(N1, N2) + N3, (E15)

with an expectation value of

E[K simult.
3 ] = 5 − 3p

(2 − p)p
. (E16)

3. Two segments simultaneously at the end

Finally, the last possible arrangement of two simultaneous
segments is to start them in the last step. The waiting time
stays the same as in the previous case, but again, there are
two possibilities for the dephasing and two to perform mea-
surements,i.e., immediate or nonimmediate. The first scheme

FIG. 18. Possible arrangements of entanglement generation in a
three-segment repeater, when only one segment starts and the rest
finishes simultaneously. The number in each segment corresponds to
the order when it starts.

is realized, when we start with the segment in the middle and
when it finishes, the left and right segment start generating
entanglement simultaneously. We will call this scheme “end
a” and it is shown schematically in Fig. 18(a). In this case, the
dephasing random variables are given by

Dend,a
3,imm = N1 + N3, Dend,a

3,non = 2 max(N1, N3), (E17)

with the PGFs

G̃end,a
3,imm(t ) = G̃seq,a

3,imm(t ) =
(

pt

1 − qt

)2

,

G̃end,a
3,non(t ) = G̃par

n (t2) = p2t2(1 + qt2)

(1 − qt2)(1 − q2t2)
. (E18)

The second possibility is to start with the left or right
segment and after it finished generate entanglement simulta-
neously in the remaining segments. The schemes and random
variables are equivalent independent whether one starts with
the left or right segment. We will call this scheme “end b”
and its schematic representation, when starting with the left
segment, is shown in Fig. 18(b). Similarly to the scheme “start
a,” the dephasing random variables depended on the order of
successful entanglement generation.

Let us consider the scheme where we do not measure
immediately as an example. First, assume that we started with
the left segment and it finished successfully after N1 attempts.
Then both the middle and the right segment start generating
entanglement simultaneously. If the middle segments suc-
ceeds first after N2 attempts, we can swap immediately and
again have only one segment waiting. Eventually, the right
segment will succeed after N3 attempts, and we can also swap
it. In total the dephasing will equal Dend,b

3,non = 2N3, because 2N2

cancels out. This is the optimal case of this scheme.

FIG. 19. Possible arrangements of entanglement generation in
a three-segment repeater, when two segments start simultaneously
and the remaining segment starts as soon as one is successful. The
number in each segment corresponds to the order when it starts and
the star indicates that this segment starts as soon as one of the others
finished.
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TABLE VIII. The values of D�
3,non and D�

3,imm on the domains of
the partition.

Domain D�
3,non D�

3,imm

N1 � N2 � N3 2(N3 − N1) N3 − N1

N1 � N3 < N2 2(2N2 − N1 − N3) 2N2 − N3 − N1

N2 < N1 � N3 2(N3 − N2) N1 + N3 − 2N2

N2 � N3 < N1 2(N1 − N2) N1 + N3 − 2N2

N3 < N1 � N2 2(2N2 − N1 − N3) 2N2 − N3 − N1

N3 < N2 < N1 2(N1 − N3) N1 − N3

Alternatively, it could also happen that the right segment
finishes first, and we have two segments waiting for the middle
to succeed. In this case, we have Dend,b

3,non = 4N2 − 2N3. Hence,
in total the dephasing is

Dend,b
3,non =

{
2N3 N3 � N2

4N2 − 2N3 N3 < N2
. (E19)

A similar consideration yields the dephasing random variable
of the immediate measurement scheme to be

Dend,b
3,imm =

{
N3 N3 � N2

2N2 − N3 N3 < N2
. (E20)

As mentioned a few times so far, we can exploit that g2X (t ) =
gX (t2), and thus we calculate the PGF of the immediate

scheme first, which reads as

G̃end,b
3,imm(t ) = p2t (1 − q2t3)

(1 − qt )(1 − q2t )(1 − qt2)
. (E21)

Therefore the PGF of Dend,b
3,non is given by

G̃end,b
3,non(t ) = G̃end,b

3,imm(t2), (E22)

and we covered all possibles schemes of this section.

4. Overlapping schemes

Let us now turn our attention to mixed schemes, not only
combining sequential and parallel distributions as before, but
even “overlapping” them. Therefore, we will call the schemes
of this section overlapping schemes. The procedure is as
follows. We start generating entanglement in two segments
simultaneously and as soon as one of the two segments fin-
ishes, we start with the remaining one as well. Thus, the
two processes of entanglement generation are overlapping,
explaining the naming. In Fig. 19, a schematic version of the
overlapping schemes can be seen.

There are two different possible arrangements presented in
Figs. 19(a) and 19(b). In the former, the left (or equivalently
the right) and the middle segments start from the beginning.
This scheme will be called “overlapping, a.” The latter scheme
starts with both outer segments and will be called “overlap-
ping, b.”

FIG. 20. Comparison of secret key rates of three-segment repeaters performing immediate measurements for a total distance L and different
experimental parameters: (a) plink = 0.05, μ = μ0 = 0.97; (b) plink = 0.05, μ = μ0 = 1; (c) plink = 0.7, μ = μ0 = 0.97; (d) plink = 0.7, μ =
μ0 = 1; and (e) plink = μ = μ0 = 1. For all figures, a coherence time of τcoh = 0.1 s has been used.
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FIG. 21. Comparison of secret key rates of three-segment repeaters performing immediate measurements for a total distance L and different
experimental parameters: (a) plink = 0.05, μ = μ0 = 0.97; (b) plink = 0.05, μ = μ0 = 1; (c) plink = 0.7, μ = μ0 = 0.97; (d) plink = 0.7, μ =
μ0 = 1; and (e) plink = μ = μ0 = 1. For all figures, a coherence time of τcoh = 10 s has been used.

For the scheme “overlapping, a” we find with immediate
measurements the dephasing random variable to be

Dover,a
3,imm =

⎧⎪⎨
⎪⎩

N3 �1

2(N2 − N1) − N3 �2

N1 − N2 + N3 �3

, (E23)

where we have chosen the partition � = N3 = �1 � �2 � �3

given by the following inequalities:

�1 = N1 � N2, N2 − N1 � N3,

�2 = N1 < N2, N2 − N1 > N3,

�3 = N2 < N1. (E24)

The dephasing varies depending on the order in which the
segments finish, since one cannot swap or measure depending
on which segment is done first. Thus we have three different
cases. One can calculate the full PGF of the dephasing in a
similar way to the previous schemes and finds

G̃over,a
3,imm(t ) = p3t (1 + q − 2q2t − qt2 + q4t4)

(1 − q2)(1 − qt )2(1 − q2t )(1 − qt2)
. (E25)

For the nonimmediate version of the scheme “overlapping,
a,” we do not have to take the measurements into account,
but this still does not result in more symmetries simplifying
the expression. Hence, one has to consider all possible orders

separately and we find the dephasing

Dover,a
3,non =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2N3 �1

2(2(N2 − N1) − N3) �2

2N3 �3

2(N1 − N2) �4

, (E26)

where the partition in this case is given by

�1 = N1 � N2, N2 − N1 � N3,

�2 = N1 < N2, N2 − N1 > N3,

�3 = N2 < N1, N1 − N2 � N3,

�4 = N2 < N1, N1 − N2 > N3. (E27)

The resulting PGF reads as

G̃over,a
3,non (t ) = p3t2(1 + 2q − q(1 + q)t4 − q3t6)

(1 − q2)(1 − qt2)(1 − q2t2)(1 − qt4)
.

The other overlapping scheme possesses more symmetry,
thus we find more compact expressions for the random vari-
ables. It mainly depends on the relative difference of steps
between the outer segments. We find for the immediate and
nonimmediate schemes:

Dover,b
3,imm =

{
2N2 − |N1 − N3| |N1 − N3| < N2

|N1 − N3| |N1 − N3| � N2
,

Dover,b
3,non =

{
4N2 − 2|N1 − N3| |N1 − N3| < N2

2|N1 − N3| |N1 − N3| � N2
. (E28)

023086-43



KAMIN, SHCHUKIN, SCHMIDT, AND VAN LOOCK PHYSICAL REVIEW RESEARCH 5, 023086 (2023)

FIG. 22. Comparison of secret key rates of three-segment repeaters performing nonimmediate measurements for a total distance L and
different experimental parameters: (a) plink = 0.05, μ = μ0 = 0.97; (b) plink = 0.05, μ = μ0 = 1; (c) plink = 0.7, μ = μ0 = 0.97; (d) plink =
0.7, μ = μ0 = 1; and (e) plink = μ = μ0 = 1. A coherence time of τcoh = 0.1 s has been used throughout.

By case analyses, we derive the PGFs

G̃over,b
3,imm(t ) = p3t (t + q(2 − t2(1 + q + q2t )))

(1 − q2)(1 − qt )(1 − q2t )(1 − qt2)
,

G̃over,b
3,non (t ) = G̃over,b

3,imm(t2). (E29)

Finally, the only missing piece is the waiting time of the
overlapping schemes and its expectation value. The random
variable of the waiting time is

Kover
3 = min(N1, N2) + max(|N1 − N2|, N3). (E30)

Its expectation value is found to be

E
[
Kover

3

] = 8 − 3p(3 − p)

p(2 − p)2 . (E31)

5. Parallel schemes

Here we only consider the potentially optimal scheme,
since all parallel schemes posses the same raw rate, but differ
in dephasing. In the optimal scheme, the dephasing is mini-
mized, such that it has the best secret key rate of all schemes
of this class.

The waiting time is Kpar
3 = max(N1, N2, N3) and following

(37) or Appendix A its expectation value is

E
[
Kpar

3

] = 1 + q(4 + 3q(1 + q))

1 + q − q3 − q4
. (E32)

The dephasing PGF can be computed with our partitioning
approach. The six domains and the values of the dephasing

variables in these domains are given in Table VIII. The final
result reads as

G̃�
3,non(t ) = p3

1 − q3

1 + q(1 + 2q)t2 − q2(2 + q)t6 − q4t8

(1 − qt2)(1 − q2t2)(1 − qt4)
,

G̃�
3,imm(t ) = p3

1 − q3

1 + q2t − 2q3t2 − 2q2t3 + q3t4 + q5t5

(1 − qt )2(1 − q2t )(1 − qt2)
.

6. Comparisons

Finally, as we have calculated all necessary statistical
quantities we are able to compare the previously discussed
schemes. Again as a remark, we only considered schemes
here, which swap as soon as possible, as delaying the en-
tanglement swapping increases the dephasing, which in turn
decreases the SKR.

First, we consider the immediate measurement schemes.
In Fig. 20 (τcoh = 0.1 s) and Fig. 21 (τcoh = 10 s), one can
see a comparison of all immediate measurement schemes
for a three-segment repeater using the previously discussed
schemes. In both figures, the SKR of the “optimal” scheme
is represented in orange. As mentioned earlier, the scheme
“seq, c” is equivalent to “seq, b” in this setting and thus not
considered separately. For both coherence times, the optimal
schemes outperforms all other schemes. Especially for shorter
distances, the optimal scheme performs clearly better than
others. Only for longer distances, where the rate of any three-
segment repeater drops, the schemes “over, b,” “over, a,” and
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FIG. 23. Comparison of secret key rates of three-segment repeaters performing nonimmediate measurements for a total distance L and
different experimental parameters: (a) plink = 0.05, μ = μ0 = 0.97; (b) plink = 0.05, μ = μ0 = 1; (c) plink = 0.7, μ = μ0 = 0.97; (d) plink =
0.7, μ = μ0 = 1; and (e) plink = μ = μ0 = 1. A coherence time of τcoh = 10 s has been used throughout.

“end, b” catch up, but do not surpass it. Typically, one would
not use this regime of a repeater, as the rates are too low.
Additionally, in the limit of increasing hardware parameters,
i.e., plink → 1, μ → 1, μ0 → 1, the optimal scheme keeps
performing the best. Thus we conclude that the immediate
measurement version of the optimal scheme is truly optimal
for n � 3.

Next, in Fig. 22 (τcoh = 0.1 s) and Fig. 23 (τcoh = 10 s),
one can see the same comparison of different swapping
schemes using nonimmediate measurements. Again, the “op-
timal” scheme is presented in orange. This time the sequential
schemes “seq, a” and “seq, c” are equivalent and thus are not
considered separately. As one can see, the optimal scheme
outperforms all other schemes in the ideal case when μ =
μ0 = 1 for all choices of τcoh and plink. Furthermore, it also
provides the highest secret key rate in the nonideal case until
close to the drop-off. The scheme “end a” surpasses it only at
those distances either close to where or after both start declin-
ing dramatically, thus increasing the achievable distance. As
discussed before, one would typically not operate the repeater
in this regime. However, if the main goal is to obtain the
longest achievable distance possible, then the scheme “end a”
performs the best. Overall, again our optimal scheme provides
the best secret key rate for the most realistic use scenarios.
Moreover, it is truly optimal in the limit of increasing hard-
ware parameters, i.e., plink → 1, μ → 1, and μ0 → 1. Thus
it will be beneficial to use the “optimal” scheme as technology
progresses and hardware improves. Hence, our conclusion for
nonimmediate schemes is again that the “optimal” scheme

is optimal with increasing hardware parameters for n � 3.
On the whole, we conjecture that the same is true for both
immediate and nonimmediate measurement schemes for all
n � 3-segment repeaters. This should be further investigated
in future research.

APPENDIX F: COMPARISON OF “OPTIMAL”
WITH FULLY SEQUENTIAL AND ALICE

IMMEDIATELY MEASURING (n = 8)

The fully sequential scheme, in which repeater segments
are sequentially filled with entangled pairs from, for example,
left to right is the overall slowest scheme leading to the small-
est raw rates. However, a potential benefit is that parallel qubit
storage can be almost entirely avoided. More specifically,
when the first segment on the left is filled and waiting for the
second segment to be filled too, the first segment waits for
a random number of N2 steps, whereas the second segment
always only waits for one constant dephasing unit (for each
distribution attempt in the second segment). Thus omitting the
constant dephasing in each segment, the accumulated time-
dependent random dephasing of the fully sequential scheme
has only contributions from a single memory pair subject to
memory dephasing at any elementary time step. On average,
this gives a total dephasing of (n − 1)/p, which is the sum
of the average waiting time in one segment for segments 2
through n, as discussed in detail in the main text.

In a QKD application, Alice’s qubit can be measured im-
mediately (and so can Bob’s qubit at the very end when the
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FIG. 24. Comparison of eight-segment repeaters for a total distance L and different experimental parameters: (a) τcoh = 0.1 s, plink = 0.05,
μ = μ0 = 0.99; (b) τcoh = 0.1 s, plink = 0.05, μ = μ0 = 1; (c) τcoh = 0.1 s, plink = 0.7, μ = μ0 = 0.99; (d) τcoh = 0.1 s, plink = 0.7, μ =
μ0 = 1; (e) τcoh = 10 s, plink = 0.05, μ = μ0 = 0.99; (f) τcoh = 10 s, plink = 0.05, μ = μ0 = 1; (g) τcoh = 10 s, plink = 0.7, μ = μ0 = 0.99;
and (h) τcoh = 10 s, plink = 0.7, μ = μ0 = 1. The “optimal” scheme (red) performing BB84 measurements at the end is compared with the
fully sequential scheme (orange without the memory cutoff, green with the cutoff) performing immediate measurements on Alice’s/Bob’s
sides.

entangled pair of the most right segment is being distributed).
This way there is another factor of 1/2 improvement possible
for the effective dephasing, since at any elementary time step
there is always only a single memory qubit dephasing instead
of a qubit pair. In Fig. 24, for eight repeater segments, we
compare this fully sequential scheme and immediate measure-
ments by Alice and Bob with the “optimal” scheme (parallel
distribution and swap as soon as possible) where Alice and
Bob store their qubits during the whole long-distance distri-
bution procedure to do the BB84 measurements only at the
very end. We see that a QKD protocol in which Alice and
Bob measure their qubits immediately can be useful in order

to go a bit farther. However, note that in the “optimal” scheme
Alice and Bob may also measure their qubits immediately,
resulting in higher rates but also requiring a more complicated
rate analysis.

APPENDIX G: MIXED STRATEGIES FOR
DISTRIBUTION AND SWAPPING

In this Appendix, we shall illustrate that our formalism
based on the calculation of PGFs for the two basic random
variables is so versatile that we can also obtain the rates for
all kinds of mixed strategies. This applies to both the initial
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entanglement distributions and the entanglement swappings.
In fact, for the case of three repeater segments (n = 3), we
have already explicitly calculated the secret key rates for all
possible schemes with swapping as soon as possible, but with
variations in the initial distribution strategies, see Appendix E.
This enabled us to consider schemes that are overall slower
(exhibiting smaller raw rates), but can have a smaller accu-
mulated dephasing. While swapping as soon as possible is
optimal with regards to a minimal dephasing time, it may
sometimes also be useful to consider a different swapping
strategy. The most commonly considered swapping strategy
is doubling which implies that it can sometimes happen that
neighboring, ready segments will not be connected, as this
would be inconsistent with a doubling of the covered repeater
distances at each step. A conceptual argument for doubling
could be that for a scalable (nested) repeater system one can
incorporate entanglement distillation steps in a systematic
way. A theoretical motivation to focus on doubling has been
that rates are more easy to calculate—a motivation that is ren-
dered obsolete through the present work, at least for repeaters
of size up to n = 8. Nonetheless we shall give a few examples
for mixed strategies for n = 4 and n = 8 segments.

For n = 4 segments, in addition to those schemes discussed
in the main text, let us consider another possibility where
we distribute entanglement over the first three segments in
the optimal way and then extend it over the last segment.
Note that this scheme is a variation of the swapping strat-
egy, while the initial distributions still occur in parallel. As
a consequence, it can happen that either segment 4 waits
for the first three segments to accomplish their distributions
and connections or the first three segments have to wait for
segment 4. The scheme serves as an illustration of the rich
choice of possibilities for the swapping strategies even when
only n = 4. We have D31

4 (N1, N2, N3, N4) = D�
3(N1, N2, N3) +

| max(N1, N2, N3) − N4| and the PGF of this random variable

reads as G̃31
4 (t ) = p4

1−q4
P31

4 (q,t )
Q31

4 (q,t )
, with the following numerator

and denominator,

P31
4 (q, t ) = 1 + (q2 + 3q3)t + (q + 3q2 − q4 − q5)t2

+ (−2q2 − 4q3 − 4q4 + q5 + q6)t3

+ (−q2 − 3q3 − q4 − 3q6 − 3q7)t4

+ (−2q2 − q3 + 2q4 − 2q6 + q7 + 2q8)t5

+ (3q3 + 3q4 + q6 + 3q7 + q8)t6

+ (−q4 − q5 + 4q6 + 4q7 + 2q8)t7

+ (q5+ q6− 3q8− q9)t8− (3q7+ q8)t9 − q10t10,

Q31
4 (q, t ) = (1 − qt )(1 − q2t )(1 − q3t )(1 − qt2)

× (1 − q2t2)(1 − qt3).

If we take the derivatives [see Eq. (16)], we can obtain the
following relation:

E
[
Ddbl

4

] = E
[
D31

4

]
. (G1)

This means that the two random variables have the same
expectation values, even though their distributions are differ-

FIG. 25. The ratio given by Eq. (G2) as a function of α for p =
0.01 (corresponding to a segment length of 100 km for ideal link
coupling).

ent. For the secret key fraction, we need the averages of the
exponential of these variables, which essentially leads to the
values of the corresponding PGFs [see Eq. (17)]. These do
differ, as Fig. 25 illustrates. It shows the ratio

E
[
e−αD31

4
]

E
[
e−αDdbl

4
] = G̃31

4 (e−α )

G̃dbl
4 (e−α )

, (G2)

as a function of α. The two random variables have the
same average, but the average E[e−αD31

4 ] is larger than the
other, so in the scheme corresponding to the random variable
D31

4 (N1, N2, N3, N4) the distributed state has a higher fidelity
than the final state in the doubling scheme.

For the case n = 8, among a large number of other possi-
bilities to swap the segments, we consider the following three
(in addition, the doubling and optimal schemes are discussed
in the main text). The first scheme is to swap the two halves
of the repeater in the optimal way (for four segments) and
then swap the two larger segments. We loosely denote the
dephasing variable of these scheme as D44

8 , whose definition
reads as

D44
8 (N1, . . . , N8) = D�

4(N1, . . . , N4) + D�
4(N5, . . . , N8)

+ | max(N1, . . . , N4)

− max(N5, . . . , N8)|. (G3)

Another possibility is to divide the repeater in four pairs, swap
them and then swap the four larger segments optimally. The
expression for this dephasing variable D2222

8 is a straightfor-
ward translation of this description:

D2222
8 (N1, . . . , N8) = |N1 − N2| + . . . + |N7 − N8|

+ D�
4(max(N1, N2), . . . , max(N7, N8)).

(G4)

Finally, we can divide the segments into three groups, consist-
ing of two, four, and two segments. The middle group we swap
optimally (for four segments), and then we swap the three
larger segments in the optimal way (for three segments). The
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FIG. 26. The ratio in Eq. (G7) for sch = dbl (blue), 2222 (or-
ange), 242 (green), and 44 (red), as a function of α and for p = 0.01
(100 km segment length).

definition of the corresponding random variable D242
8 reads as

D242
8 (N1, . . . , N8) = |N1 − N2| + |N7 − N8|

+ D�
4(N3, . . . , N6) + D�

3(max(N1, N2),

× max(N3, . . . , N6), max(N7, N8)).
(G5)

The PGFs of all these variables have all the same form,

p8

1 − q8

P(q, t )

Q(q, t )
, (G6)

with appropriate polynomials P(q, t ) and Q(q, t ). The nu-
merator polynomials P(q, t ) are quite large and contain

FIG. 27. The ratio in Eq. (53) for sch = dbl (blue), 2222 (or-
ange), 242 (green), and 44 (red), as a function of p.

around one thousand terms, so we do not present them
here.

We can compare the performances of different schemes by
plotting the ratios

E
[
e−αDsch

8
]

E
[
e−αDopt

8
] = G̃sch

8 (e−α )

G̃opt
8 (e−α )

, (G7)

similar to Eq. (G2), for sch = dbl, 2222, 242, 44. We see that
among the five schemes the doubling scheme is the worst with
regards to dephasing, and the scheme 44 is the closest to the
optimal scheme, see Figs. 26 and 27. This means that the
commonly used parallel-distribution doubling scheme, though
fast in terms of K8, is inefficient in terms of dephasing D8 by
disallowing to swap when neighboring segments are ready on
all “nesting” levels [36].

APPENDIX H: TWO-SEGMENT “NODE-RECEIVES-PHOTON” REPEATERS

Figure 28 shows the BB84 rates in a two-segment quantum repeater based on the NRP concept with one middle station
receiving optical quantum signals sent from two outer stations at Alice and Bob. By circumventing the need for extra classical
communication and thus significantly reducing the effective memory dephasing, the minimal state and gate fidelity values can
even be kept constant over large distance regimes. For the experimental clock rate, we have chosen τclock = 10 MHz, limited by
the local interaction and processing times of the light-matter interface at the middle station.

APPENDIX I: CALCULATION FOR CABRILLO’S SCHEME

First, we consider two entangled states of a single-rail qubit with a quantum memory (γ ∈ R)

1

1 + γ 2
[|↑,↑, 0, 0〉 + γ |↑,↓, 0, 1〉 + γ |↓,↑, 1, 0〉 + γ 2|↓,↓, 1, 1〉]. (I1)

After applying a lossy channel with transmission parameter η = plink exp(− L0
2Latt

) to both optical modes, we obtain the following
state after introducing two additional environmental modes

1

1 + γ 2
[γ 2|↓,↓〉 ⊗ (η|1, 1, 0, 0〉 +

√
η(1 − η)(|1, 0, 0, 1〉 + |0, 1, 1, 0〉) + (1 − η)|0, 0, 1, 1〉)

+ γ |↑,↓〉 ⊗ (
√

η|0, 1, 0, 0〉 +
√

1 − η|0, 0, 0, 1〉) + γ |↓,↑〉 ⊗ (
√

η|1, 0, 0, 0〉 +
√

1 − η|0.0, 1, 0〉) + |↑,↑, 0, 0, 0, 0〉].
(I2)
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FIG. 28. Contour plots illustrating the minimal fidelity requirements to overcome the PLOB bound by a two-segment NRP repeater for
different experimental parameters: (a) τcoh = 0.1 s, plink = 0.05, m = 1500; (b) τcoh = 0.1 s, plink = 0.7, m = 1500; (c) τcoh = 10 s, plink =
0.05, m = 1.5 × 105; and (d) τcoh = 10 s, plink = 0.7, m = 1.5 × 105. In all contour plots, μ = μ0, τclock = 10 MHz, and F0 = 1 has been
used.

We apply a 50:50 beam splitter to the (nonenvironmental) optical mode and obtain the state

1

1 + γ 2

[
γ 2|↓,↓〉 ⊗

√
η(1 − η)

2
(|1, 0, 0, 1〉 + |0, 1, 0, 1〉 + |1, 0, 1, 0〉 − |0, 1, 1, 0〉)

+ γ 2|↓,↓〉 ⊗ η

2
(|2, 0, 0, 0〉 − |0, 2, 0, 0〉) + γ 2|↓,↓〉 ⊗ (1 − η)|0, 0, 1, 1〉

+ γ |↑,↓〉 ⊗
(√

η

2
(|1, 0, 0, 0〉 − |0, 1, 0, 0〉) +

√
1 − η|0, 0, 0, 1〉

)

+ γ |↓,↑〉 ⊗
(√

η

2
(|1, 0, 0, 0〉 + |0, 1, 0, 0〉) +

√
1 − η|0, 0, 1, 0〉

)
+ |↑,↑, 0, 0, 0, 0〉

]
. (I3)

We can obtain entangled memory states by postselecting sin-
gle photon events at the detectors. If we detect a single photon

at the first detector and no photon at the other, we obtain
the following (unnormalized) two-memory reduced density
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operator (see Ref. [[45], Appendix E])

γ 2η

(1 + γ )2
[|�+〉〈�+| + γ 2(1 − η)|↓,↓〉〈↓,↓|]. (I4)

When using simple on/off detectors instead of photon number
resolving detectors (PNRD) two-photon events will also lead
to a detection event. The two-memory state after a two-photon
event is given by

γ 4η2

4(1 + γ 2)2
|↓,↓〉〈↓,↓|. (I5)

Thus the probability of a successful entanglement genera-
tion is given by pPNRD = 2γ 2η

(1+γ 2 )2 (1 + γ 2(1 − η)), when using

PNRD, and pon/off = 2γ 2η

(1+γ 2 )2 (1 + γ 2(1 − 3
4η)), when using

on/off detectors. The factor 2 comes from the possibility to
detect the photon at the other detector instead, although in this
case the memory state differs by a single-qubit Z-operation.
After a suitable twirling, we can find a one-qubit Pauli channel
which maps the state |�+〉〈�+| to the actual memory state,
i.e., we can claim that the loss channel acting on the optical
modes induces a Pauli channel on the memories. We can

parametrize this Pauli channel by the tuple of error probabil-
ities (pI , pX , pY , pZ ) and for the case with PNRDs this tuple
is given by

1

1 + γ 2(1 − η)

(
1,

γ 2

2
(1 − η),

γ 2

2
(1 − η), 0

)
, (I6)

and for on/off detectors it is given by

1

1 + γ 2
(
1 − 3

4η
)(

1,
γ 2

2

(
1 − 3

4
η

)
,
γ 2

2

(
1 − 3

4
η

)
, 0

)
.

(I7)

When we consider an n-segment repeater, we have to consider
a concatenation of n such Pauli channels and we finally obtain
the error rates

ex = 1

2

(
1 − μn−1μn

0
(2F0 − 1)nE[e−αDn ]

(1 + γ 2(1 − η))n

)
, (I8)

ez = 1

2

(
1 − μn−1μn

0

(
1 − γ 2(1 − η)

1 + γ 2(1 − η)

)n
)

, (I9)

in the case of PNRDs. When we consider on/off detectors, we
can simply replace η by 3

4η in the error rates.
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