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Thermodynamic cost of erasing information in finite time
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The Landauer principle sets a fundamental thermodynamic constraint on the minimum amount of heat that
must be dissipated to erase one logical bit of information through a quasistatically slow protocol. For finite time
information erasure, the thermodynamic costs depend on the specific physical realization of the logical memory
and how the information is erased. Here we treat the problem within the paradigm of a Brownian particle in
a symmetric double-well potential. The two minima represent the two values of a logical bit, 0 and 1, and the
particle’s position is the current state of the memory. The erasure protocol is realized by applying an external
time-dependent tilting force. We derive analytical tools to evaluate the work required to erase a classical bit of
information in finite time via an arbitrary continuous erasure protocol, which is a relevant setting for practical
applications. Importantly, our method is not restricted to the average work, but instead gives access to the full
work distribution arising from many independent realizations of the erasure process. Using the common example
of an erasure protocol that changes linearly with time acting on a double-parabolic potential, we explicitly
calculate all relevant quantities and verify them numerically.
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I. INTRODUCTION

A central goal in information technology is to improve
the speed of computational processes. A problematic con-
sequence is the substantial unavoidable generation of heat,
with deleterious consequences for the devices themselves and
the environment at large. Moreover, improved functionality
and more complex computational tasks involve consumption
of a larger amount of electrical energy, which is eventually
dissipated in the computational devices themselves [1].

Beyond Ohmic dissipation in the electronic elements of the
computational device, there is an additional heat production
related to the irreversible logical steps that constitute the es-
sential “building blocks” of computational tasks [2]. Indeed,
fundamental thermodynamic principles link the manipulation
of bits of information to heat dissipation associated with an
increase in the entropy of the environment. This linkage is
known as “Landauer’s principle,” which states that erasing
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one logical bit of information dissipates at least an amount
kBT ln 2 of heat [3,4], where kB is Boltzmann’s constant and
T is the temperature of the environment. The Landauer bound
is only achieved when the erasure process is quasistatically
slow, whereas in any faster, or finite-time, process the heat
dissipated exceeds kBT ln 2. In addition to logical computa-
tion, the Landauer principle is relevant in the measurement
and storage of information, because erasure is required for
“reset to zero” operations [4,5].

Thermal noise plays a noticeable role when the memory
states representing a bit of information are implemented in
a “small” mesoscopic system consisting of only a few de-
grees of freedom with characteristic energies of the order of
the thermal energy kBT . Thus, the dissipated heat becomes
a fluctuating quantity [6] and the Landauer bound refers to
an average over many realizations of an erasure process. In
the context of stochastic thermodynamics in such mesoscopic
systems [7–10], the thermodynamic and information-theoretic
implications of the Landauer principle are a very active area
of research [4,6,11–30].

It is clear that for applications, rather than quasi-statically
slow erasure processes, it is essential to quantify the dissipated
heat when erasure occurs in finite time [19,21–23,26–30].
Thus a key goal is to find optimal protocols such that a bit of
information is erased quickly, reliably, and with the minimal
dissipation of heat [21–23,25–27] (see also [31]).

We can treat one-bit memory erasure physically as a
Brownian particle moving in a double-well potential [6,16–
18,22,24,26–29,32]. The two potential minima represent the
two values of the information bit, and the particle position
represents the current state of the memory, which can be
manipulated by applying external forces and executing the

2643-1564/2023/5(2)/023084(19) 023084-1 Published by the American Physical Society

https://orcid.org/0000-0002-7281-1123
https://orcid.org/0000-0002-1676-9645
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.5.023084&domain=pdf&date_stamp=2023-05-09
https://doi.org/10.1103/PhysRevResearch.5.023084
https://creativecommons.org/licenses/by/4.0/
https://www.kb.se/samverkan-och-utveckling/oppen-tillgang-och-bibsamkonsortiet/bibsamkonsortiet.html


L. T. GIORGINI et al. PHYSICAL REVIEW RESEARCH 5, 023084 (2023)

“erasure protocol.” Despite the apparent simplicity of this
model, theoretical results of the distribution of dissipated heat,
or the work required to perform the erasure procedure, are
limited. Indeed, as far as we are aware, for such classical
bi-stable systems the only theoretical predictions beyond the
Landauer bound produce bounds for the average work that
is required to erase one bit of information in finite time
[21,22,26,27]. Importantly, the minimum average work ex-
pended under optimal conditions is inversely proportional to
the protocol duration, with a system—and protocol—specific
proportionality factor [21–23,25–27]. This finding has been
reproduced experimentally [16–18,28,29].

First, in Sec. II, we describe our model for a Brownian
particle in a driven double-well potential and define our cen-
tral observable; the work required to erase one logical bit
of information. Second, we detail an analytical method of
calculating the average work, and the higher order moments
of the complete work distribution, for fast erasure protocols
with arbitrary (continuous) time dependence (Sec. III). Our
main results are explicit formulas for the average work (12)
and its variance (18). They are expressed in terms of the
statistics of the jump times between the two potential wells
that represent the memory states, and in terms of the shape of
these potential wells encoded in a partition function.1 We find
that the principal sources of randomness are the transitions
over the potential barrier between the two memory states,
whereas the fluctuations within the potential wells have neg-
ligible effects on the work distribution. Thirdly, we provide
a concrete recipe for calculating the jump-time distributions
(21) [or (23)] that can be applied to a wide range of potentials
and protocols.

By combining these results, the averages in (12) and (18)
reduce to simple numerical quadratures, which only require
the shape of the unperturbed double-well potential and the
time change of the applied erasure protocol as ingredients.
Our theoretical approach relies on an essential, but not very
restrictive, assumption: relaxation within the potential wells
represents the fastest deterministic timescale in the system.
This imposes an upper bound on the rate of change of
the erasure protocol. In fact, this assumption is obeyed ex-
tremely well in standard experiments on information erasure
[16–18], such that all our general analytical results are directly
applicable [33].

Finally, as specific example, we apply our general theory to
a double-well potential constructed of two harmonic traps and
an erasure protocol, which changes linearly in time (Sec. IV).
We calculate all relevant quantities and compare our analytical
predictions to numerical simulations.

II. THE SYSTEM, THE DYNAMICS AND THE CENTRAL
OBSERVABLE

A. Model structure

We consider the Brownian motion of a particle with po-
sition X (t ) within a double-well potential U (X, t ), with the

1in this case the partition function must be understood as a sum
over time-dependent, locally equilibrated states.

unperturbed potential U (X ) = U (X, t =0) having minima at
X = ±a and a relative maximum at X = 0. We construct
U (X ) from a single-well potential V (X ) with a unique min-
imum at X = 0 and with V (X → ±∞) → ∞,

U (X ) =
{

V (X + a) = V (a + X ) for X < 0,

V ( − (X − a)) = V (a − X ) for X � 0.
(1)

This construction will prove convenient when calculating
the moments of the work distribution; the condition V (X →
±∞) → ∞ is needed to ensure the existence of a station-
ary distribution within V (X ), but the details of how V (X )
approaches infinity, in particular beyond the point at which
V (a + X ) and V (a − X ) are joined, are irrelevant. Note that
Eq. (1) covers any mirror-symmetric double-well potential,
e.g., the quartic double well with a smooth maximum be-
tween the two wells [choose V (X ) = KX 2(X − 2a)2 for X �
a with some K > 0 and an arbitrary monotonically increas-
ing function “attached to” V (a) = Ka4 for X > a], or the
double-parabolic potential specified below in Eq. (3) with a
cusp-shaped maximum [choose V (X ) = (K/2)X 2].

The memory states 0 and 1 refer to the particle being
located in the left and right well of the potential respectively,
thereby characterizing the storage of one bit of information
[5]. We assume that initially (t = 0) the particle is in equi-
librium with an environment at temperature T , such that both
states 0 and 1 are occupied with equal probability 1/2. The
stability of the memory states requires the potential barrier
between the two wells to be much larger than the thermal
energy [5].

A standard protocol for erasing such information bits is
to force both states into the same final state [5]. This can
be achieved by applying an external forcing protocol F (t ),
which at the end of the erasure process must be “switched
off” or “reset” so that the double-well potential returns to
its initial, unperturbed configuration. Therefore, the forcing
protocol of total duration τ consists of an “erasure phase”
Ferase(t ) for 0 � t � τ ∗ (with τ ∗ < τ ), and a rapid “resetting
phase” Freset (t ) within a short time interval τ − τ ∗ � τ ∗, such
that

F (t ) =
{

Ferase(t ) for 0 � t � τ ∗,
Freset (t ) for τ ∗ < t � τ,

(2a)

which fulfills the two constraints

Ferase(0) = Freset (τ ) = 0, (2b)

Ferase(τ ∗) = Freset (τ
∗) = max

−a�X�0
[U ′(X )], (2c)

with the prime denoting differentiation with respect to X .
The condition (2c) is synonymous with choosing the right
well (state 1) as the final state of the erasure phase. For a
tilting force of Ferase(τ ∗) = max−a�X�0[U ′(X )] the left po-
tential well (state 0) disappears completely, leaving the right
well (state 1) as the only minimum of the potential, and thus
the particle ends up in state 1 independently of its initial
state. During the time interval (τ ∗, τ ] the potential is rapidly
brought back to its initial configuration, during which the
particle still resides in state 1.
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FIG. 1. Double-parabolic potential in dimensionless variables at
various times with a = 3. The solid line is the potential at the
beginning and end of the erasure protocol. The short-dashed, dashed-
dotted, and long-dashed lines are the potentials at intermediate times
t = 50, 100, 200, respectively.

A concrete example, which we study in detail in Sec. IV, is
a double-well potential constructed from two harmonic traps,

U (X ) = K

2
[X − sign(X )a]2, (3)

and a linear-in-time forcing protocol implemented as

Ferase(t ) = λt and (4a)

Freset (t ) = λτ ∗

τ − τ ∗ (τ − t ), (4b)

with λ = Ka/τ ∗ > 0 [cf. condition (2c)]; the constant K is
the curvature of the harmonic trap and sign(·) denotes the
sign function. The corresponding change in the potential (3)
induced by Ferase(t ) during the erasure phase is illustrated in
Fig. 1.

The evolution of the particle within the double-well po-
tential is given by an overdamped nonautonomous Langevin
equation [34],

γ Ẋ (t ) = −U ′(X (t )) + F (t ) +
√

2kBT γ ξ (t ), (5)

where ξ (t ) is an unbiased Gaussian white noise source with
correlations 〈ξ (t )ξ (s)〉 = δ(t − s). The curvature of the poten-
tial K = U ′′(±a) around the minima, or the “trap stiffness,”
and the viscous friction coefficient γ of the particle define
the timescale γ /K , characterizing relaxation processes within
each potential well.

As noted above, we assume that γ /K represents the fastest
timescale in the deterministic part of the stochastic sys-
tem, and thus the erasure force F (t ) evolves on time scales
much slower than γ /K . Therefore, a particle “equilibrates”
rapidly within a potential well, thereby guaranteeing that
a new memory state is rapidly occupied when being up-
dated by an externally imposed protocol. Despite this rapid
“local equilibration” the memory is far from “global equilib-
rium” conditions, and close-to-equilibrium concepts, like the
fluctuation-dissipation theorem [35], are not obeyed in gen-
eral. The intrawell relaxation time scale γ /K can be directly
controlled experimentally by adjusting the trap stiffness K

[16,17,28,29], so that our fast-relaxation assumption is hardly
restrictive, and hence is a reasonable prerequisite for an ef-
fective realization of memory [33]. We show below that the
associated “local equilibrium” behavior within the individual
potential wells is essential for calculating the energetic costs
of the erasure process (see also the discussion at the beginning
of Sec. II C). We note here that the opposite case, of external
forces F (t ) varying much faster than γ /K , corresponds to
“instantaneous” manipulations of the memory potential and
can be treated accordingly; we motivate the corresponding
physical arguments in the context of an “instantaneous” re-
setting procedure in the discussion surrounding (14).

We use the time γ /K , and the length
√

kBT /K , to nondi-
mensionalize the Langevin equation (5), which, in the same
notation as the original variables, becomes

Ẋ (t ) = −U ′(X (t )) + F (t ) +
√

2 ξ (t ), (6)

where the dimensionless force F (t ) is in units of
√

kBT K
and the dimensionless potential U (X ) in units of kBT . The
dimensionless condition that the potential barrier is much
larger than the thermal energy is U (0) − U (±a) � 1, and the
dimensionless condition that the erasure force varies much
more slowly than the relaxation of particles in the potential
wells is Ḟ (t ) � 1. From the dimensionless version of (2c)
we estimate a typical rate of change of the erasure protocol
as Ḟerase(t ) ≈ [U (0) − U (±a)]/a. Therefore, our theory of the
erasure process is valid when the combined constraint on the
system parameters is such that 1 � U (0) − U (±a) � aτ ∗.

B. Heat and work

The central observables are the heat dissipated into the
thermal bath Q and the total work received by the system dur-
ing the erasure procedure W . Stochastic energetics [36] and
thermodynamics [7–10] provide an established framework for
evaluating such quantities along individual particle trajecto-
ries, taking into account the influence of thermal fluctuations.
Therefore, we can quantify the distributions resulting from
many independent realizations of the erasure process. In our
case of a symmetric memory, the average system energy (for
the overdamped dynamics of Eq. (5) this corresponds to the
total potential energy [36]) is the same at the beginning and
at the end of the erasure process, implying that the average
work is exactly compensated by the average heat dissipated.
Therefore, since they sum to zero, it is sufficient to consider
one of these two quantities to fully characterize the thermo-
dynamics of the erasure process. Here we focus on the total
work exerted on the system.

The work is the change in the system energy driven by
external forcing integrated along the particle trajectory X (t )
[36]. Since the only external forcing of the system poten-
tial arises from the erasure protocol with potential energy
−F (t )X , we have

W = −
∫ τ

0
dt Ḟ (t )X (t )

= −
∫ τ ∗

0
dt Ḟerase(t )X (t ) −

∫ τ

τ ∗
dt Ḟreset (t )X (t ). (7)
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FIG. 2. Examples of trajectories (fluctuating blue lines) with one
(a), two (b), and three (c) transitions between the two potential wells,
together with the two minima of the potential (straight red lines), as
a function of time. The upper (lower) straight red line in each panel
corresponds to state 1 (state 0). For all plots the parameter values are
a = 3.5 and τ ∗ = 5000.

Our main goal is to characterize the distribution of W as a
function of the system parameters. Of particular relevance is
the duration of the erasure process, τ ∗.

C. Typical system dynamics

In Fig. 2, for the linear erasure protocol (4), we show
three typical trajectories of a Brownian particle from numer-
ical simulations of the dimensionless Langevin equation (6).
We see the principal consequence of both the fast relaxation
within the potential wells and the high barrier separating them:
(i) despite the slow drift of the potential, a particle is mainly
located near one of the potential minima in “local equilib-
rium” and (ii) occasionally the particle transitions between
the potential wells in an “instantaneous” jump. Our erasure
protocol in this example forces the particle to end up in state
1, but if it begins in state 0 (state 1), then in total it will
experience an odd (even) number of jumps, as illustrated in
Fig. 2 for one, two, and three jumps. Note that, for the pa-
rameters used here, observing more than three jumps is quite
exceptional. Clearly, these jumps are sufficiently rare, and
the location of the potential wells shifts significantly between
consecutive jumps, so that “global equilibrium conditions” are
not realized. Importantly, although our erasure protocol, F (t ),

varies slowly relative to relaxation within the potential wells,
it is still far from being “quasistatically slow” and hence will
not achieve the Landauer bound.

Given these results, we adopt the following strategy to
compute the energetic costs of information erasure in the
double-well potential under nonquasistatic conditions. As
noted above, our key observable is the work performed on the
system in order to erase one bit of information. We calculate
this work under the assumptions that (a) the particle is in
“local equilibrium” within a potential well and (b) the work
performed during the “instantaneous” transitions from one
potential well to the other is negligibly small (Sec. III A). We
quantify the contributions to the total work from the individual
wells by analyzing the statistics of the interwell jumps. In
Sec. IV we explicitly demonstrate this general approach for
the linear erasure protocol (4) applied to the double-parabolic
potential (3), for which we calculate all relevant quantities
analytically.

III. THE WORK DISTRIBUTION: GENERAL
FRAMEWORK

We characterize the work distribution by determining its
moments. The mean and the variance of the work are the most
practical quantities. Thus we now detail the general frame-
work by calculating 〈W 〉 and Var(W ) = 〈W 2〉 − 〈W 〉2, where
〈·〉 denotes the ensemble average over all possible trajectories.
It should then be clear how to extend our approach to higher
moments.

A. The average work

The average work follows directly from Eq. (7) as

〈W 〉 = −
∫ τ ∗

0
dt Ḟerase(t )〈X (t )〉 −

∫ τ

τ ∗
dt Ḟreset (t )〈X (t )〉. (8)

However, because transitions between the potential wells can
occur at any time, direct evaluation of 〈X (t )〉 is challenging,
particularly during the first phase of the erasure protocol.
Indeed, whereas we know that the particle is in the right
well (state 1) for τ ∗ � t � τ , we do not know within which
potential well the particle is located at a particular time in
0 � t � τ ∗. In contrast, within a specific potential well the
averages are straightforward to calculate.

Our approach is to collect all particle trajectories that “in-
stantaneously” jump from one well to the other at specific
times ti with 0 � t1 < t2 < · · · < ti · · · < tn � τ ∗. We remind
the reader that the number of jumps n is odd (even) when the
trajectories begin in state 0 (state 1). Thus we can decompose
the ensemble average 〈·〉 into an average over the subensemble
of trajectories with fixed transition times 0 � t1 < t2 < · · · <

ti · · · < tn � τ ∗, and an average over the distribution of these
transition times. For the subensemble, we calculate the aver-
age particle position within any of the time intervals [ti, ti+1]
by direct solution of the Langevin equation (6). Applying
the fast-relaxation assumption, we then find that the average
particle position is determined by the local “quasiequilibrium”
distribution for the current value of the erasure force within
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the potential well in which the particle resides during [ti, ti+1],
viz.,

〈X (t )〉± 
∫ +∞
−∞ dX X e−[V (a∓X )−Ferase (t )X ]∫ +∞
−∞ dX e−[V (a∓X )−Ferase (t )X ]

= ±
∫ +∞
−∞ dX (a − X )e−[V (X )∓Ferase (t )(a−X )]∫ +∞

−∞ dX e−[V (X )∓Ferase (t )(a−X )]

= ±a + ∂

∂Ferase(t )
ln Z±(Ferase(t )), (9a)

with the partition functions

Z±(Ferase(t )) =
∫ +∞

−∞
dx e−[V (x)±Ferase (t )x]. (9b)

The plus (minus) sign in 〈X (t )〉± and Z±(Ferase(t )) refers to
the right (left) well. Note that the abbreviation 〈·〉± denotes the
average over all trajectories located within a specific potential
well for the entire time interval over which the average is
taken, and  denotes the leading-order contribution in the
fast-relaxation approximation.

We can now determine the subensemble average in the
first integral of Eq. (8) by evaluating integrals over the time
intervals [ti, ti+1] between successive jumps as

−
∫ τ ∗

0
dt Ḟerase(t )〈X (t )〉

= −
〈

n∑
i=0

∫ ti+1

ti

dt Ḟerase(t )X (t )

〉

= −
〈

n∑
i=0

∫ ti+1

ti

dt Ḟerase(t )〈X (t )〉(−)i+n

〉
{ti}

 −
〈

n∑
i=0

∫ Ferase (ti+1 )

Ferase (ti )
dFerase(t )

×
[

(−1)i+na + ∂

∂Ferase(t )
ln Z(−)i+n (Ferase(t ))

]〉
{ti}

= a

〈
n∑

i=0

(−1)i+n[Ferase(ti) − Ferase(ti+1)]

+ ln
Z(−)i+n (Ferase(ti ))

Z(−)i+n (Ferase(ti+1))

〉
{ti}

= 2a

〈
n∑

i=1

(−1)i+nFerase(ti )

〉
{ti}

− Ferase(τ ∗)a

+
〈

n∑
i=0

ln
Z(−)i+n (Ferase(ti ))

Z(−)i+n (Ferase(ti+1))

〉
{ti}

, (10)

where we let t0 = 0 and tn+1 = τ ∗ to simplify notation. Here,
for each time interval [ti, ti+1], ti refers to the time “just after”
the jump into the current potential well, and ti+1 to the time
“just before” the next jump. The average over the distributions
of transition times for all possible n is denoted by the subscript
{ti}.

The second integral in Eq. (8) is the average work from the
resetting phase of the erasure protocol. As described above, at
the end of the “erasure phase” the particle is in the right well
(state 1). Now, to prevent the particle from jumping back to
state 0 during the “resetting” phase, it is desirable to minimize
the resetting interval, which at the very least should be much
shorter than the first phase of the protocol so that τ − τ ∗ �
τ ∗. However, employing the same reasoning as above, we
must ensure that the reset dynamics is still slow relative to the
relaxation processes within the potential wells, Ḟreset (t ) � 1.
This imposes a stronger constraint, (τ − τ ∗)/τ ∗ � 1, on the
rate of change of the external forcing protocol. Under these
conditions, the average particle position follows the potential
minimum of state 1, and we can evaluate the second term in
Eq. (8) similarly to the first term, which gives

−
∫ τ

τ ∗
dt Ḟreset (t )〈X (t )〉 = −

∫ τ

τ ∗
dt Ḟreset (t )〈X (t )〉+

= −
∫ τ

τ ∗
dt Ḟreset (t )

[
a + ∂

∂Ferase(t )
ln Z+(Ferase(t ))

]

= Freset (τ
∗)a + ln

Z+(Ferase(τ ∗))
Z+(Ferase(τ ))

= Freset (τ
∗)a + ln

Z+(Ferase(τ ∗))
Z+(Ferase(0))

, (11)

where, from condition (2b), we used Freset (τ ) = Freset (0). Fi-
nally, we combine Eqs. (10) and (11) to give the total average
work as

〈W 〉 = 2a

〈
n∑

i=1

(−1)i+nFerase(ti )

〉
{ti}

+
〈

n∑
i=0

ln

[
Z(−)i+n (Ferase(ti ))

Z+(Ferase(ti ))
Z+(Ferase(ti+1))

Z(−)i+n (Ferase(ti+1))

]〉
{ti}

.

(12)

We note that the average work depends on the shape of
the tilted double-well potential through the statistics of the
jump times {ti} (see also Sec. III E) and through the partition
functions Z±(Ferase(ti )), Eq. (9b). If V (X ) is symmetric, i.e.,
V (−X ) = V (X ), the latter dependence drops out, because
Z−(Ferase(t )) = Z+(Ferase(t )). For mirror-symmetric potential
wells like the one in Fig. 1, we thus find

〈W 〉 = 2a

〈
n∑

i=1

(−1)i+nFerase(ti )

〉
{ti}

. (13)

There is a finite, albeit very small, probability that the
particle might jump to state 0 during the resetting phase,
Freset (t ). To avoid such imperfect erasure processes, we con-
trol the external force by switching it from F (τ ∗) = Ferase(τ ∗)
to F (τ ) = 0 over an infinitesimal time interval, such that
practically τ = τ ∗. Thus, the particle does not move while
the potential is reset to its initial configuration, and the work
performed corresponds to the change in potential energy at a
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fixed particle position, allowing us to write the average as

−
∫ τ

τ ∗
dt Ḟreset (t )〈X (t )〉 = 〈U (X (τ )) − Freset (τ )X (τ )〉

− 〈U (X (τ ∗)) − Freset (τ
∗)X (τ ∗)〉

= Freset (τ
∗)〈X (τ ∗)〉+. (14)

The subsequent relaxation of the particle towards the mini-
mum does not contribute to the work, but is instead dissipated
as heat into the thermal bath. To compare the instanta-
neous work (14) with Eq. (11) for the average work in
the resetting phase of the erasure protocol, we evaluate
their difference using partial integration, Freset (τ ∗)〈X (τ ∗)〉+ +∫ τ

τ ∗ dt Ḟreset (t )〈X (t )〉+ = − ∫ τ

τ ∗ dt Freset (t ) d
dt 〈X (t )〉+ > 0. Pos-

itivity follows because Freset (t ) > 0 for all t > 0, which
implies that the average particle position decreases during
the resetting phase. Hence, when instantaneously resetting

the erasure protocol the total work required to erase one
bit of information is larger than that in (12) by an amount
− ∫ τ

τ ∗ dt Freset (t ) d
dt 〈X (t )〉+. This is because switching off the

erasure force during a finite time interval (τ ∗, τ ] using Freset (t )
where Ḟreset (t ) � 1, while the particle is solely confined to
state 1, corresponds to a quasi-static process under local equi-
librium conditions within the potential well representing state
1. In contrast, the instantaneous resetting is “maximally far”
from local equilibrium conditions.

B. The variance of the work

Using the same approach we used to calculate the average
work in Eq. (10), we can evaluate higher moments. We focus
on the variance and begin by determining the second moment
of the work exerted during the first phase of the erasure proto-
col, which is

〈(∫ τ ∗

0
dt Ḟerase(t )X (t )

)2〉
=
〈(

n∑
i=0

∫ ti+1

ti

dt Ḟerase(t )X (t )

)2〉

=
〈

n∑
i=0

∫ ti+1

ti

dt Ḟerase(t )
∫ ti+1

ti

ds Ḟerase(s)(〈X (t )X (s)〉(−)i+n − 〈X (t )〉(−)i+n〈X (s)〉(−)i+n )

〉
{ti}

+
〈(

n∑
i=0

∫ ti+1

ti

dt Ḟerase(t )〈X (t )〉(−)i+n

)2〉
{ti}

. (15)

As in Eq. (10), we split the ensemble average into an average over the fluctuations within a specific potential well, 〈·〉±,
and an average over the distribution of jump times from one well to the other, 〈·〉{ti}. Additionally, we assume that the
fluctuations within different potential wells are uncorrelated. In the first term, we solve the Langevin equation (6) to calculate the
autocorrelation 〈X (t )X (s)〉± − 〈X (t )〉±〈X (s)〉± within a given potential well. Under our fast-relaxation assumption, to lowest
order we obtain 〈X (t )X (s)〉± − 〈X (t )〉±〈X (s)〉±  δ(t − s) ∂2

∂Ferase (t )2 Z±(Ferase(t )), and hence the first term can be evaluated as

〈∑n
i=0

∫ ti+1

ti
dt Ḟ 2

erase(t ) ∂2

∂Ferase (t )2 Z(−)i+n (Ferase(t ))〉{ti}. In the second term, we use the result −∑n
i=0

∫ ti+1

ti
dt Ḟerase(t )〈X (t )〉(−)i+n =

2a
∑n

i=1(−1)i+nFerase(ti ) − aFerase(τ ∗) +∑n
i=0 ln

Z(−)i+n (Ferase (ti ))
Z(−)i+n (Ferase (ti+1 )) , which was derived above [see the development in Eq. (10)].

Therefore, we find that the variance of the work during the first phase of the erasure protocol is

〈(∫ τ ∗

0
dt Ḟerase(t )X (t )

)2〉
−
〈∫ τ ∗

0
dt Ḟerase(t )X (t )

〉2

〈

n∑
i=0

∫ ti+1

ti

dt Ḟ 2
erase(t )

∂2

∂Ferase(t )2
Z(−)i+n (Ferase(t ))

〉
{ti}

+
〈(

2a
n∑

i=1

(−1)i+nFerase(ti ) +
n∑

i=0

ln
Z(−)i+n (Ferase(ti))

Z(−)i+n (Ferase(ti+1))

)2〉
{ti}

−
〈

2a
n∑

i=1

(−1)i+nFerase(ti ) +
n∑

i=0

ln
Z(−)i+n (Ferase(ti ))

Z(−)i+n (Ferase(ti+1))

〉2
{ti}

. (16)

We use a similar approach to determine the variance of the work during the resetting phase. This is simpler, because the
particle stays in state 1 for all t ∈ (τ ∗, τ ], and we find

〈(∫ τ

τ ∗
dt Ḟreset (t )X (t )

)2
〉

−
〈∫ τ

τ ∗
dt Ḟreset (t )X (t )

〉2
=
∫ τ

τ ∗
dt Ḟ 2

reset (t )
∂2

∂Ferase(t )2
ln Z+(Ferase(t )). (17)
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We combine the two parts of the erasure protocol, Eqs. (16) and (17), with t ∈ [0, τ ∗] and t ∈ (τ ∗, τ ], under the assumption
that these two phases are uncorrelated, giving the variance of the total work, Var(W ) = 〈W 2〉 − 〈W 〉2, as

Var(W ) =
〈

n∑
i=0

∫ ti+1

ti

dt Ḟ 2
erase(t )

∂2

∂Ferase(t )2
ln Z(−)i+n (Ferase(t ))

〉
{ti}

+
∫ τ

τ ∗
dt Ḟ 2

reset (t )
∂2

∂Ferase(t )2
ln Z+(Ferase(t ))

+ Var

(
2a

n∑
i=1

(−1)i+nFerase(ti) +
n∑

i=0

ln
Z(−)i+n (Ferase(ti ))

Z(−)i+n (Ferase(ti+1))

)

=
〈

n∑
i=0

∫ ti+1

ti

dt Ḟ 2
erase(t )

∂2

∂Ferase(t )2
ln Z(−)i+n (Ferase(t ))

〉
{ti}

+
∫ τ

τ ∗
dt Ḟ 2

reset (t )
∂2

∂Ferase(t )2
ln Z+(Ferase(t ))

+ Var

(
2a

n∑
i=1

(−1)i+nFerase(ti) +
n∑

i=0

ln

[
Z(−)i+n (Ferase(ti ))

Z+(Ferase(ti ))
Z+(Ferase(ti+1))

Z(−)i+n (Ferase(ti+1))

])
. (18)

After adding the {ti}-independent constant ln Z+(Ferase (τ ∗ ))
Z+(Ferase (0)) =∑n

i=0 ln Z+(Ferase (ti+1 ))
Z+(Ferase (ti ))

, we see that the second term is the vari-
ance of the result we found for the average work, Eq. (12);
it is related to the variance of the jump-time distribution.
Moreover, there is an additional term involving Ḟ 2(t ), which
we expect to be negligibly small relative to the second term
because Ḟ (t ) � 1. In the example of a linear erasure proto-
col applied to a double-parabolic potential (Sec. IV A 1) we
show that this first term is related to the variance accumulated
from the fluctuating motion within the potential wells. Indeed,
because Z−(Ferase(t )) = Z+(Ferase(t )) for mirror-symmetric
potential wells V (−X ) = V (X ), Eq. (18) simplifies consid-
erably to

Var(W ) =
∫ τ

0
dt Ḟ 2(t )

∂2

∂Ferase(t )2
ln Z+(Ferase(t ))

+ 4a4 Var

(
n∑

i=1

(−1)i+nFerase(ti )

)
. (19)

The remaining averages 〈·〉{ti} in the mean work (12) and
its variance (18) involve the statistics of the jump times {ti},
and thus depend on the explicit form of the erasure protocol
Ferase(t ). Now we describe a general strategy to calculate these
averages.

C. Jump-time statistics

The main task is to find the probability density function
Pn(t1, t2, . . . , tn), or PDF, for the distribution of jump times
{ti} for any number of jumps n that a particle may perform
between the potential wells during the erasure phase of the
protocol. We express Pn(t1, t2, . . . , tn) in terms of the proba-
bilities P0�1(t, t ) that the particle jumps from state 0 to state
1 at t = t , given that it arrived in state 0 at t = t < t (up-
per arrow in the subscript), and analogously that the particle
jumps from state 1 to state 0 after having arrived in state 1 at
t = t < t (lower arrow). These are expressed as

P0�1(t, t ) = − ∂

∂t
S0,1(t, t ), (20)

where S0,1(t, t ) is the survival probability that the parti-
cle remains in state 0,1 from time t = t until time t = t >

t . The first (second) subscript in S0,1(t, t ) is connected to
the upper (lower) arrow in P0�1(t, t ). Given the ostensi-
bly instantaneous character of the jumps, we will associate
S0,1(t, t ) with a transition rate between the two wells (see
Sec. III E).

The probability of n jumps occurring at specific times 0 �
t1 < t2 < · · · < tn � τ ∗ is

Pn(t1, t2, . . . , tn)

= 1
2 P0�1(0, t1)P0�1(t1, t2) . . . P0→1(tn−1, tn)S1(tn, τ

∗).
(21)

The upper (lower) arrows in the subscripts refer to n odd
(even), with the particle starting in state 0 (state 1), so
that P0 = 1

2 S1(0, τ ∗), and the prefactor 1/2 accounts for
the particle starting in either state with identical 50% prob-
ability. The normalization of Pn(t1, t2, . . . , tn) involves the
probability �n of observing exactly n jumps within the
time interval [0, τ ∗] that takes into account all possible se-
quences of transition times 0 � t1 < t2 < · · · < tn � τ ∗ as
follows:

�n = 1

2

∫ τ ∗

0
dt1P0�1(0, t1)

∫ τ ∗

t1

dt2P0�1(t1, t2) · · ·

×
∫ τ ∗

tn−1

dtnP0→1(tn−1, tn)S1(tn, τ
∗). (22)

The �n are normalized with respect to an infinite number of
interwell jump transitions,

∑∞
n=0 �n = 1.

However, recalling our discussion surrounding Fig. 2, we
note that typically there are no more than a handful of tran-
sitions during the erasure phase. Thus, �n differs from zero
only for small n, and we show in Sec. III D that Eq. (22) can
be replaced by enforcing normalization for the relevant small
number of inter-well transitions. In that case the probabili-
ties �n are given, and we write Pn(t1, t2, . . . , tn), Eq. (21),
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for any n > 0 as

Pn(t1, t2, . . . , tn) = �n
P0�1(0, t1)P0�1(t1, t2) . . . P0→1(tn−1, tn)S1(tn, τ ∗)∫ τ ∗

0 dt1P0�1(0, t1)
∫ τ ∗

t1
dt2P0�1(t1, t2) . . .

∫ τ ∗
tn−1

dtnP0→1(tn−1, tn)S1(tn, τ ∗)
, (23)

where, as in Eqs. (21) and (22), the upper (lower) arrows in the
subscripts refer to n odd (even). The ratio guarantees normal-
ization of Pn(t1, t2, . . . , tn) independently of the normalization
of the �n.

Now we can use Eq. (21), or equivalently Eq. (23), to
calculate averages 〈·〉{ti} over the jump statistics as they appear
in Eqs. (12) and (18);

〈G({ti})〉{ti} =
∞∑

n=1

∫ τ ∗

0
dt1

∫ τ ∗

t1

dt2 . . .

×
∫ τ ∗

tn−1

dtn G({ti})Pn(t1, t2, . . . , tn), (24)

where G({ti}) is an arbitrary function of the transition times
{ti} and the number n of jumps between potential wells within
the interval [0, τ ∗], but we must respect the time ordering 0 �
t1 < t2 < · · · < tn � τ ∗.

D. Approximation for a finite number of jumps

As the duration of the erasure protocol increases, so too
does the typical number of transitions between the potential
wells. Moreover, as the potential tilt rate Ferase(t ) slows, so
too does the duration that exit rates from both potential min-
ima remain comparable, and hence there are a larger number
of jumps between states before the potential is sufficiently
tilted that transitions from state 1 back to state 0 are strongly
suppressed.

To determine the probabilities �n for n transitions occur-
ring in the interval [0, τ ∗], we focus on sufficiently rapid
erasure protocols that no more than three jumps are observed,
and the fast-relaxation requirement Ḟerase(t ) � 1, as discussed
in Sec. II A, is obeyed. We treat the cases of N = 1, N = 2, or
N = 3 transitions individually, and our central approximation
is to set the probability of observing more than N transitions
to zero, that is �n = 0 for n > N . At the beginning of the
protocol a particle can be found in either state with an equal
probability of 1/2, and at the end of the protocol in state 1
with probability 1. All �n with n even and all �n with n odd
separately sum to 1/2, whatever the total number N of jumps
we consider:

N∑
n=0

�2n = 1

2
,

N∑
n=0

�2n+1 = 1

2
. (25)

Finally, for an even (odd) number of transitions to occur the
particle must be in state 1 (state 0) at the beginning of the
erasure process.

1. Total number of jumps: N = 1.

We approximate the probability S1(0, τ ∗) that a particle
stays in state 1 when it starts in state 1 to be unity, and hence

we have

�0 = 1
2 ,

�1 = 1
2 .

(N = 1 transition) (26)

2. Total number of jumps: N = 2.

Here when a particle starts in state 1, it can either remain in
that state for the entire duration of the first part of the erasure
protocol, [0, τ ∗], or it can jump once to state 0 and then back
to state 1. The probability for the first case is S1(0, τ ∗), and
that for the second case is 1 − S1(0, τ ∗), and hence

�0 = 1
2 S1(0, τ ∗),

�1 = 1
2 ,

�2 = 1
2 [1 − S1(0, τ ∗)].

(N = 2 transitions) (27)

3. Total number of jumps: N = 3.

Here, the probabilities for an even number of jumps remain
unchanged, because the only additional process is that with 3
jumps starting in state 0. This implies that the probability for
just 1 transition is proportional to

∫ τ ∗

0 dt P0→1(0, t )S1(t, τ ∗).
Since our erasure protocol forces a particle starting in state
0 to jump to state 1 at some time within the interval
[0, τ ∗], the unknown proportionality constant is given by∫ τ ∗

0 dt P0→1(0, t ). Therefore, we find

�0 = 1
2 S1(0, τ ∗),

�1 = 1
2

∫ τ∗
0 dt P0→1(0,t )S1(t,τ ∗ )∫ τ∗

0 dt P0→1(0,t )
,

�2 = 1
2 [1 − S1(0, τ ∗)],

�3 = 1
2 − �1.

(N = 3 transitions)

(28)
Finally, we remark that the considerations leading to
Eqs. (26), (27), and (28) can easily be extended to N � 4.

E. Calculation of S0,1(t̄, t̄ ) and P0�1(t̄, t̄ )

The survival probabilities of a particle staying in state 0
(first subscript), or state 1 (second subscript), from time t to
time t > t are denoted S0,1(t, t ). From S0,1(t, t ) the probabil-
ity P0�1(t, t ) can be derived with respect to the final time t
[see also Eq. (20)].

The transitions between the two potential wells occur “in-
stantaneously” relative to the rate of change of the erasure
protocol, Ḟ (t ) � 1 for t > 0. So long as the potential barrier
between the wells is much larger than the thermal energy, we
can treat the interwell jumps as rate-driven escape processes
within a stationary potential, which is formed by the current
value of the erasure force Ferase(t ). Hence, we write the sur-
vival probability in terms of the escape rates r0,1(t ) from state
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0 (first subscript) or state 1 (second subscript),

S0,1(t, t ) = exp

[
−
∫ t

t
dt r0,1(t )

]
, (29)

and calculate these rates using the Kramers formula [37,38]:

r0,1(t ) = 1

2π

√|U ′′(Xmax(t ))|U ′′(X0,1(t )) e−
U0,1(t ). (30)

Here, the X0,1(t ) denote the minima of the potential wells in
state 0 (first subscript) and state 1 (second subscript), Xmax(t )
denotes the (smooth) potential maximum between the two
states, and 
U0,1(t ) = U (Xmax(t )) − U (X0,1(t )) is the height
of the potential barrier to be crossed when jumping from state
0 (first subscript) to state 1, or from state 1 (second subscript)
to state 0. In the case of a cusp shaped potential barrier, the
rate is [38]

r0,1(t ) =
√


U0,1(t )

π
U ′′(X0,1(t )) e−
U0,1(t ). (31)

Note that the rate expressions (30) and (31) are dimensionless
and are given in units of the inverse time K/γ .

The positions of the extrema of the perturbed potential
U (X, t ) at time t can be formally expressed by the inverse
of V ′(X ), that is (V ′)−1 [cf. Eq. (1)], but in general have to be
determined numerically. For the minima,

X0,1(t ) = ∓a ± (V ′)−1( ± Ferase(t )), (32a)

where the upper (lower) signs refer to state 0 (1), and
(V ′)−1(Ferase(0)) = (V ′)−1(0) = 0. For cusp shaped potentials
the inverse (V ′)−1 is usually unique. For potentials with
a smooth maximum there are typically two branches. The
branch including X = 0 gives the minima, and that including
X = a gives the maximum:

Xmax(t ) = −a + (V ′)−1(Ferase(t )), (32b)

with (V ′)−1(Ferase(0)) = (V ′)−1(0) = a.

IV. DOUBLE-PARABOLIC POTENTIAL AND LINEAR
ERASURE PROTOCOL

We now apply our general framework to bit erasure in
the double-parabolic potential from Eq. (3) using the linear
erasure protocol described in Eq. (4).

A. Calculating the work distribution

1. The average and variance of the work

The sum
∑n

i=1(−1)i+nFerase(ti) appears in both the average
work, Eq. (12), and its variance, Eq. (18). Upon substitution
of Eq. (4a) into the sum, we find λ

∑n
i=1(−1)i+nti. The times

at which a particle jumps from the left well (state 0) to the
right well (state 1) are denoted with a positive sign, while the

times at which a particle jumps from state 1 to state 0 are
denoted with a negative sign. (Recall that n is odd whenever a
particle is initially, t = t0 = 0, located in the left well and even
when it is initially located in the right well). Therefore, the
sum gives the total amount of time a particle spends in state 0
during the first phase [0, τ ∗] of the erasure protocol. Denoting
this time by τ0, we obtain from Eq. (12) the following simple
expression for the total average work required to erase one bit
of information with the linear protocol (4):

〈W 〉 = 2λa〈τ0〉 = 2a2 〈τ0〉
τ ∗ , (33)

where we used λ = a/τ ∗.
Similarly, the variance of Eq. (18) reduces ostensibly to the

variance of the residence time τ0,

Var(W ) = a2

(
1

τ ∗ + 1

τ − τ ∗

)
+ 4a4

〈
τ 2

0

〉− 〈τ0〉2

(τ ∗)2
, (34)

wherein the additional contribution appearing in the first term
represents the accumulated variance from the fluctuating mo-
tion within the potential wells. This contribution arises from
the first term in Eq. (18) by using the fact that Ḟ (t ) is constant
except for a jump at t = τ ∗. Since 〈τ 2

0 〉 − 〈τ0〉2 is typically
of the same order as (τ ∗)2, and since a/τ ∗ = λ � 1 the first
term in Eq. (34) is much smaller than the second term. There-
fore, the fluctuations within the potential wells are negligible
and the variance of the work is dominated by the distribution
of the sojourn time τ0 in state 0,

For completeness and convenience, we write Eqs. (33) and
(34) for the average work and its variance in dimensional
form:

〈W 〉 = 2Ka2 〈τ0〉
τ ∗ and (35a)

Var(W ) = a2kBT γ

(
1

τ ∗ + 1

τ − τ ∗

)
+ (2Ka2)2

〈
τ 2

0

〉− 〈τ0〉2

(τ ∗)2
.

(35b)

Finally, we emphasize that, for the averages 〈τ0〉 and 〈τ 2
0 〉,

only the total time that a particle spends in state 0 is rele-
vant, and no other details of the trajectory X (t ) are necessary.
Therefore, we can write these averages solely using the prob-
ability density function P (τ0) for τ0:

〈
τ k

0

〉 = ∫ τ ∗

0
dτ0 P (τ0)τ k

0 (k > 0), (36)

and hence we need not consider the full jump-time statistics
treated in Pn(t1, t2, . . . , tn), allowing us to simplify the nota-
tion by suppressing any subscript {ti}. Next, we show how to
specialize the approach described in Sec. III C to P (τ0). In
particular, starting from Pn(t1, t2, . . . , tn) we express P (τ0) in
terms of the probabilities P0�1(t, t ) from Eq. (20).

2. Evaluation of P (τ0)

Equipped with Eqs. (33) and (34), we have reduced the
problem of calculating the average work and its variance
to that of finding the probability density function P (τ0) for
the total residence time of a particle in state 0. The com-
plete statistics of jump times is contained in the functions
Pn(t1, t2, . . . , tn) for any number of jumps n > 0. Therefore,
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we derive P (τ0) from Pn(t1, t2, . . . , tn) by demanding that
(tn − tn−1) + (tn−2 − tn−3) + . . . = τ0 and hence constraining
the total residence time τ0 in state 0,

P (τ0) =
〈 ∞∑

n=1

δ(τ0 − tn + tn−1 − . . . ∓ t1)

〉
{ti}

=
∞∑

n=1

∫ τ ∗

0
dt1

∫ τ ∗

t1

dt2 . . .

∫ τ ∗

tn−1

dtn

× δ(τ0 − tn + tn−1 − . . . ∓ t1)Pn(t1, t2, . . . , tn),

(37)

where the minus (plus) sign at ∓t1 in the delta function refers
to n odd (even). Note that this distribution P (τ0) does not

contain the contributions for τ0 = 0, because in Eq. (37) we
assume that at least one jump will occur. Importantly, since
τ0 = 0 does not contribute to averages of the form (36) we can
incorporate it by simply adding 1

2δ(τ0)S1(0, τ ∗) to Eq. (37)
(see also Fig. 4).

Using Eq. (21) for Pn(t1, t2, . . . , tn) in Eq. (37), we can
write P (τ0) as a weighted average over all possible jumps,

P (τ0) =
∞∑

n=1

�nRn(τ0). (38)

Here, Rn(τ0) is the probability of observing n jumps during
the time interval [0, τ ∗] at times 0 � t1 < t2 < · · · < tn � τ ∗
amounting to a total residence time τ0 in state 0, relative to the
probability of observing n jumps at any arbitrary sequence of
times 0 � t1 < t2 < · · · < tn � τ ∗,

Rn(τ0) =
∫ τ ∗

0 dt1P0�1(0, t1)
∫ τ ∗

t1
dt2P0�1(t1, t2) . . . P0→1(tn−1, τ0 + tn−1 − . . . ∓ t1)S1(τ0 + tn−1 − . . . ∓ t1, τ ∗)∫ τ ∗

0 dt1P0�1(0, t1)
∫ τ ∗

t1
dt2P0�1(t1, t2) . . .

∫ τ ∗
tn−1

dtnP0→1(tn−1, tn)S1(tn, τ ∗)
, (39)

where, as in Eq. (22), the upper (lower) arrows in the sub-
scripts refer to n odd (even).

In terms of the rates r0,1(t ), the jump probabilities
P0�1(t, t ) and S0,1(t, t ) are defined in Eqs. (20) and (29)
respectively. For the double-parabolic potential (3) with a
cusp-shaped maximum that is perturbed using the linear era-
sure protocol (4), these rates follow from Eq. (31) as (see also
[39,40])

P0�1(t, t ) = a(1 ∓ t/τ ∗)

2
√

π
e− 1

2 a2(1∓t/τ ∗ )2

× exp

[
− τ ∗

√
2πa

e− 1
2 a2(1∓t/τ ∗ )2

+ τ ∗
√

2πa
e− 1

2 a2(1∓t/τ ∗ )2

]
, (40)

where the upper (lower) sign on the right-hand side refers to
the upper (lower) arrow in the subscript of P0�1.

B. Analysis of the work distribution

1. The work as a function of sojourn time τ0

We now examine Eqs. (33) and (34) for the average work
and its variance associated with erasing one bit of information
through the linear protocol Eq. (4). In Eq. (33), the complete
average over the thermal fluctuations and the associated en-
semble of trajectories is reduced to an average 〈τ0〉 of the
time τ0 that a particle spends in state 0 during the erasure
process. The variance of the work, Eq. (34), is a combination
of the variance of τ0 and the accumulated fluctuations that the
trajectories experience near the potential well minima in state
0 and in state 1. Therefore, we predict that for all trajectories
with the same τ0 the work depends linearly on τ0, where the
variations about the value 2λaτ0 stem from the fluctuations
within the potential wells.

We test this prediction with numerical simulations of the
Langevin equation (6) for many independent realizations of
the erasure process. First, we calculate the work for each
numerical trajectory X (t ) by evaluating the right-hand side of
Eq. (7). Second, we sort the resulting work values according to
the time τ0 a trajectory spent in state 0. In Fig. 3 we compare
the analytical prediction, 2λaτ0 = 2a2τ0/τ

∗, with the numer-
ical results for the work as a function of τ0, for various values
of τ ∗ and a. The comparison is splendid, with only minor
fluctuations around this linear behavior, the origin of which
is the relative magnitude of the two summands in Eq. (34)
as discussed above. Namely, the fluctuations associated with
the noise-driven transitions between the two states 0 and 1,
which are captured in the distribution P (τ0) of sojourn times
τ0, dominate the thermal fluctuations of the trajectories within
the potential wells.

2. Distribution of sojourn times τ0

We now test our analytical prediction for the distribution
P (τ0) of the sojourn times τ0, as given in Eqs. (38) and (39).
We use the approximation (28) for three transitions, which is
the most accurate of the alternatives discussed in Sec. III D.
Thus, to determine P (τ0) from Eq. (38) we truncate the sum
at N = 3 transitions and then evaluate the integrals in �n

and Rn(τ0), with n � 3, by numerical integration [cf. (28)
and (39)]. In Fig. 4 we again compare the simulations of the
Langevin equation (6), for many independent realizations of
the erasure process, to our analytical prediction for P (τ0), for
the same parameter values as in Fig. 3 [41].

The analytical results agree extremely well with the simu-
lations. The deviation between the simulation histograms and
the analytical results at τ0 = 0 is a consequence of excluding
the n = 0 term in the sum (38) of the analytic prediction.
Because the corresponding trajectories start and end in state
1 without ever jumping to state 0, they do not contribute to the
average work (33), and we excluded them in P (τ0) as shown
in Fig. 4.
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FIG. 3. Total work for 9600 different trajectories X (t ) as a function of τ0 evaluated from numerical simulations of the Langevin
equation (5) and Eq. (8) without taking the ensemble average 〈·〉 to obtain the trajectory-based work [36] (dots). This is compared to
the analytical prediction W = 2λaτ0 = 2a2τ0/τ

∗, namely the work before taking the average over the distribution of τ0 in (33) (solid red
line). We use a = 3.5 for (a)–(c); a = 3.75 for (d)–(f); a = 4 for (g)–(i); τ ∗ = 1000 for (a),(d),(g); τ ∗ = 5000 for (b),(e),(h); τ ∗ = 10000
for (c),(f),(i).

The dependence of P (τ0) on the values of a and τ ∗
is evident in Fig. 4. For small times τ ∗, P (τ0) is peaked
about intermediate values of the sojourn time τ0 (leftmost
column in Fig. 4). It is intuitive that, as the protocol dura-
tion decreases, the largest contribution to P (τ0) comes from
one-jump trajectories. The probability of a transition from
state 0 to 1 increases rapidly due to the rapid tilting of
the potential, thereby decreasing the survival probability in
state 0 accordingly. Clearly, since the contribution to P (τ0)
from one-jump trajectories is the product of these rapidly
increasing and decreasing quantities, we observe the τ0 and
τ ∗ dependent peaks in P (τ0). As τ ∗ increases (middle and
right columns of Fig. 4), the two minima of the poten-
tial have similar energies for a longer time period at the
beginning of the erasure protocol, during which the proba-
bilities of the system jumping from state 0 to state 1 and
vice versa remain comparable. This feature increases the
relative weight of a larger number of interwell transitions
and is the origin of the spread of P (τ0) for longer protocol
duration.

Finally, increasing a (the three rows in Fig. 4) increases
the height of the potential barrier between the wells at X =
0. Therefore, a longer time is required to tilt the potential
sufficiently far to drive transitions from state 0 into state 1,
thereby shifting the characteristic features of P (τ0) towards
larger values of τ0.

3. Erasing bits in finite-time

As seen in Eq. (38), an exact calculation of P (τ0) involves
an infinite number of terms; summing the contributions from
any number n of transitions. However, the results of Fig. 4
show that we need only consider three jumps between the
two potential wells in order to obtain an accurate estimate
of P (τ0). We now analyze the influence of the number of
jumps on the average work and its variance by comparing
the cases of one, two and three transitions: Eqs. (26), (27),
and (28). In Fig. 5 we show 〈W 〉 and Var(W ) as a function of
τ ∗, as predicted for these three cases from Eqs. (33) and (34)
(solid lines). We also show the results from direct numerical
simulations of the Langevin equation (6) (dots), for which we
calculated the work using Eq. (8), with no restriction on the
number of jumps.

First, as expected, both 〈W 〉 and Var(W ) are decreas-
ing functions of τ ∗ and, consistent with previous findings
[16,17,21,26–29], the average work approaches the lower
Landauer bound only for quasistatically slow erasure pro-
cesses. Second, we see the striking energetic costs—increased
work or thermal dissipation—as information is erased more
rapidly. Third, very few jumps are required to give extremely
accurate predictions of the average work for rapid erasure
processes. For example, for N = 1 jump between state 0 and
1, our theory provides very accurate estimates for τ ∗ � 1000,
which is improved over a longer range of times for N = 2
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FIG. 4. Comparison of P (τ0 ) obtained by direct numerical simulations (blue histogram) to our analytical prediction Eq. (38) with three
jumps [Eq. (28)] (solid red line) [41]. We did not include the contribution n = 0 of zero transitions in theoretical curves from (38) plotted
here, which are thus restricted to positive times τ0. Note that this contribution is irrelevant for averages of the form 〈τ k

0 〉 (k > 0)[see also the
discussion following Eq. (37)]. The parameter values are the same as in Fig. 3: a = 3.5 for (a),(b),(c); a = 3.75 for (d),(e),(f); a = 4 for (g)–(i);
τ ∗ = 1000 for (a),(d),(g); τ ∗ = 5000 for (b),(e),(h); τ ∗ = 10000 for (c),(f),(i).

jumps, ostensibly saturating for N = 3 jumps. These results
are consistent with our intuition that three-jump processes
(0 → 1 → 0 → 1) are significantly less likely to occur than
one- or two-jump processes. Finally, for Var(W ) all of the
predictions are indistinguishable.

The analytical predictions will become less accurate as τ ∗
increases and the number of interwell transitions increases.
In particular, any finite-transition approximation will under-
estimate the average work, because trajectories with many
transitions between the two states increase the total average
time 〈τ0〉 the particle spends in state 0, as seen in Eq. (33).
Therefore, in principle, accurate reproduction of the Landauer
bound [3,4] from Eqs. (33) and (38) should treat infinitely
many transitions for a quasistatically slow (τ ∗ → ∞) erasure
protocol.

4. The Landauer bound

Now we derive the Landauer bound from Eq. (33) without
explicitly evaluating the average 〈τ0〉. To display the role of
the thermal energy, kBT , we use dimensional quantities. As
noted throughout, the Landauer bound [3,4] is reached for
quasistatically slow erasure protocols: λ → 0 and τ ∗ → ∞,
with λτ ∗ = Ka fixed to achieve perfect erasure. The slow
erasure protocol implies that the particle distribution at any

time t ∈ [0, τ ∗] is governed by the momentary equilibrium
Boltzmann distribution,

pqs(X ) = 1

Zqs
exp

[
−Uqs(X (t ))

kBT

]
, (41a)

with potential Uqs(X (t )) ≡ K
2 [X (t ) − sign(X (t ))a]2 − λtX

and normalization

Zqs =
√

πkBT

2K
e

λt (λt−2Ka)
2KkBT

(
1 + erf

[
Ka − λt√

2KkBT

])

+
√

πkBT

2K
e

λt (λt+2Ka)
2KkBT

(
1 + erf

[
Ka + λt√

2KkBT

])
, (41b)

where erf (x) = 2√
π

∫ x
0 dy e−y2

is the error function.
Under such equilibrium conditions the ratio of state 0 to

state 1 sojourn times is identical to the ratio of probability
weights within the corresponding potential wells. Let dt be
the time increment around a specific time t during the era-
sure protocol. Hence, the fraction of time spent in state 0 is
dt
∫ 0
−∞ dX pqs(X ) and we find that the average time a particle

spends in state 0, relative to the duration τ ∗ of the full erasure
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FIG. 5. Total average work, 〈W 〉 [(a),(c),(e)], and its variance, 〈W 2〉 − 〈W 〉2 [(b),(d),(f)], for different durations of the erasure protocol
obtained from numerical simulation of the erasure process (black dots) and analytically from Eqs. (33) and (34) [41], with one [green dotted
lines, (26)], two [red dashed lines, (27)], and three [blue solid lines, (28)] transitions between the two states. Clearly, the approximations for
these three transitions are indistinguishable in the variance [(b),(d),(f)]. Here we use a = 3.5 for (a),(b); a = 3.75 for (c),(d); a = 4 for (e),(f).

procedure, is

〈τ0〉
τ ∗ =

∫ τ ∗

0

dt

τ ∗

∫ 0

−∞
dX pqs(X )

=
∫ τ ∗

0

dt

τ ∗

⎧⎪⎨
⎪⎩
(
1 + e

2aλt
kBT
)1 + erf

[
Ka+λt√
2KkBT

]
1 + erf

[
Ka−λt√
2KkBT

]
⎫⎪⎬
⎪⎭

−1

. (42)

Evaluation of Eq. (42) appeals to the theory underlying
our main result Eq. (33), which is valid when the poten-
tial barrier between the two memory states is much larger
than the thermal energy (see Sec. II A). We examine this
constraint for quasistatic information erasure by first observ-
ing the consequence of kBT � Ka2 in Eq. (42). The poorly
converging series representation of erf (x) precludes a useful
formal asymptotic expansion, but, because Ka > λt , we take

erf (x) = 1 for x � 1, so that Eq. (42) becomes

〈τ0〉
τ ∗ ≈ 1

τ ∗

∫ τ ∗

0

dt

1 + e
2aλt
kBT

= 1 + kBT ln 2 − kBT ln
[
1 + e

2aλτ∗
kBT
]

2aλτ ∗

≈ kBT ln 2

2aλτ ∗ , (43)

where the final expression results from λ � 1, τ ∗ � 1, with
λτ ∗ = Ka fixed. Substitution in Eq. (35a) with λτ ∗ = Ka
yields the Landauer bound,

〈W 〉 = kBT ln 2, (44)

which is the minimal amount of work required, on average,
to quasistatically erase one bit of information or, equivalently,
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FIG. 6. Mean work obtained from numerical simulations of the Langevin equation (6) (blue dots), compared to the analytical approximation
Eq. (47) (solid red lines), the improved approximation obtained by replacing P0→1(0, t ) with g(t ) from the Appendix A in Eq. (45) (black dashed
lines), and the power-law approximation Eq. (48a) (blue short-dashed lines) [41]. In the left (right) column we use a linear (log-log) scale, with
a = 3.5 [(a),(b)], a = 3.75 [(c),(d)], and a = 4 [(e),(f)].

the least average amount of heat dissipated into the thermal
environment [42].

5. Erasing bits rapidly

Here we consider the rapid erasure of information: the limit
opposite to that of the Landauer bound. In our framework,
the fastest possible linear erasure protocol is realized when
Ferasure(t ) is changing so rapidly that the probability a particle
will jump from state 1 to state 0 within the erasure phase
t ∈ [0, τ ∗] is negligibly small, even though Ḟerasure(t ) � 1. If
a particle is in state 0 at the beginning of the erasure process it
will jump only once to state 1, a process accurately described
by Eq. (26) for one interwell transition. See also Fig. 5,
where we demonstrate that the N = 1 approximation provides
excellent accuracy for fast erasure protocols. Therefore, we
restrict the sum in (38) to one transition and use the explicit
expression for R1(τ0) to write the average work (33) as

〈W 〉  a2

τ ∗

∫ τ ∗

0 dτ0 P0→1(0, τ0)τ0∫ τ ∗
0 dt P0→1(0, t )

, (45)

where S1(τ0, τ
∗)  1 for all τ0 � 0 in R1(τ0). This is the same

approximation of S1(0, τ ∗) leading to the probabilities of zero
or one interwell transition in Eq. (26).

The blue curves in Fig. 7 show that for smaller values of τ ∗,
or faster erasure protocol, P0→1(0, τ0) becomes more symmet-
ric about the maximum at τmax, ostensibly independent of a.
Were P0→1(0, τ0) perfectly mirror symmetric about τ0 = τmax,

then
∫ τ∗

0 dτ0 P0→1(0,τ0 )τ0∫ τ∗
0 dt P0→1(0,t )

= τmax exactly. We now assume mirror

symmetry to calculate the average work in Eq. (45) with
P0→1(0, τ0) given in Eq. (40). Using the linear protocol of
Eq. (4) we obtain

τmax = τ ∗
(

1 − 1

a

√
2 ln

[
τ ∗

a
√

2π

])
(46)

as the value of τ0 where P0→1(0, τ0) is a maximum. Therefore,
we find that the average work for rapid erasure protocols is
approximately

〈W 〉  a2 − a

√
2 ln

[
τ ∗

a
√

2π

]
. (47)
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FIG. 7. Comparison between P0→1(0, τ0 ) (solid blue lines) and g(τ0 ) (red dashed lines) from Eqs. (40) and (A2) respectively. The values of
a and τ ∗ used are a = 3.5 for (a)–(c); a = 3.75 for (d)–(f); a = 4 for (g)–(i); τ ∗ = 100 for (a),(d),(g); τ ∗ = 500 for (b),(e),(h); and τ ∗ = 1000
for (c),(f),(i).

Although this is not an asymptotically exact approximation, in
the sense that it is not obtained from a systematic expansion
procedure, Fig. 6 shows how well it reproduces the numerical
results for 〈W 〉 for rapid-erasure conditions. Thus, it provides
a simple functional form of the average work for small τ ∗. In
the Appendix A we describe a more accurate approximation,
which, although significantly more complicated, also allows
estimation of the variance of the work. Figures 6 and 8 show
that this improved approximation is nearly identical to the
numerical simulation results.

The right (log-log) column of Fig. 6 shows a roughly linear
〈W 〉 vs τ ∗ behavior. Extracting the corresponding exponent
from Eq. (47), we find that for rapid erasure protocol we can
further approximate 〈W 〉 as

〈W 〉  C(a) (τ ∗)−
4

a2 , (48a)

with

C(a) = a2

2

√
e(2πa2)

2
a2 . (48b)

Rewriting (48a) in dimensional form,

〈W 〉  C(a) (τ ∗)−
4kBT

Ka2 , (49)

we find that the exponent is twice the inverse of the height
of the potential barrier between the two memory states, mea-
sured in units of the thermal energy kBT . Therefore, as τ ∗
decreases and erasure becomes more rapid, the average work
increases with a rate set by the barrier height. Since our
fast-relaxation assumption requires τ ∗ � 1, this dependence

on τ ∗ is significantly weaker than the known optimal bound,
∝ 1/τ ∗, obtained when minimizing the dissipation for non-
quasistatic transitions of duration τ ∗ between two system
states [21–23,25–27,43,44]. For information erasure this pro-
vides the optimal approach to the Landauer limit as τ ∗ → ∞
[21–23,26,27]. However, optimal erasure processes typically
require complicated deformations of the double-well potential
with steep gradients or even discontinuities [21–23,26,27]. In
contrast, our result, Eq. (48a), is valid for the nonoptimized,
strictly linear erasure protocol of Eq. (4). Note that the ex-
ponent in Eq. (48a) becomes −1 for a = 2 (or, dimensionally,
Ka2 = 4kBT ), and therefore cannot be valid for smaller values
of a. This cutoff is consistent with the high potential barrier
between the memory states, which is guaranteed by a2 � 1
(see Sec. II A).

V. CONCLUSIONS

We have examined the statistical thermodynamics of eras-
ing a classical bit of information when thermal fluctuations
play a significant role. Our general framework is the com-
mon representation of bits of information in small systems
[5,16,17,21,26–29]. The bits of information are states—zero
or one—in a double well potential, and their trajectories are
treated as a Brownian particle governed by a Langevin equa-
tion. Our specific approach allowed us to derive analytical
results characterizing the distribution of the work required to
erase a classical bit of information in finite time. The work
so derived is the heat dissipated into a thermal bath during
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FIG. 8. Variance of the work obtained numerically by solving the Langevin equation (6) (blue dots), and theoretically by replacing
P0→1(0, t ) with g(t ) in Eq. (A1b) (black lines) [41]. In the left (right) column we use a linear (log-log) scale. The three values of a used
are a = 3.5 [(a),(b)], a = 3.75 [(c),(d)], and a = 4 [(e),(f)].

the erasure process. For the symmetric memories considered
here, where the initial probabilities of finding the memory in
state 0 or 1 are equal, the average work and the average heat
dissipated are identical.

A key step in our analytical approach is to connect the
work performed during the erasure process to the temporal
statistics of particle jumps from one memory state to the other.
In consequence, we derived formulas for the average work
[Eq. (12)] and its variance [Eq. (18)], where the averages
are taken over the jump-time distribution for arbitrary era-
sure protocols. We find that these quantities are dominated
by the jump statistics between the potential wells and that
fluctuations within the wells play only a minor role. The jump
statistics are generated from the survival probability within the
individual states, for which analytical expressions are given in
terms of the escape rates. For the case of a linearly increasing
erasure force [Eq. (4)] we showed that the work is propor-
tional to the cumulative time that a particle spends in state
0, while jumping back and forth between the two potential
wells, leading to simple proportionalities between the average
work and its variance and the average sojourn time in state 0
[Eqs. (33) and (34)].

We find excellent agreement between our theoretical pre-
dictions and direct numerical simulations of Brownian particle

motion during the erasure process. Perhaps surprisingly, this
agreement holds even when restricting the theoretical analysis
to a maximum of three transitions between memory states 0
and 1 rather than summing over an infinite number of tran-
sitions. The numerical analysis confirmed the dominant role
of the interwell jump statistics over the fluctuations within
the potential wells in determining the work distribution (cf.
Figs. 3 and 4). Hence, our theory captures the essential char-
acteristics of particle trajectories. Finally, we reproduce the
Landauer bound in the appropriate limits of a quasistatically
slow erasure process and an “infinitely” high potential barrier
between the memory states.

Our central ideas can be generalized. For example, to (a)
asymmetric memories; (b) erasure protocols that merge the
two potential minima by shifting them towards their common
mirror symmetry point without tilting the potential [28,29];
(c) physical realizations of one-bit memory in underdamped
settings [28,29]; (d) rapidly fluctuating potential wells (es-
cape rates may then be calculated using instantons [45,46],
or related recently developed methods from stochastic res-
onance and early warning quantifiers [40,46–48]); and (e)
devising finite-time erasure protocols that minimize the ther-
modynamic costs of information erasure. In this last case, in
the context of optimal protocols for fast memory erasure, we
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may seek to reduce heat generation during computation or
minimize the variance of the work required to erase one bit of
information. More speculative settings in which our approach
would be useful include (f) assessing the stability of memory
states through the statistics of transitions that alter a specific
state (one could then quantify the tradeoffs between the relia-
bility and accuracy of memory [25] versus the heat dissipated
when manipulating the memory state) and (g) associating
transient information loss or gain in black holes with a rate-
dependent heat dissipation or generation. Tolman [49] showed
that in a weak static gravitational field the equilibrium temper-
ature depends on the gravitational potential, �, as T (1 + �

c2 ),
where c is the speed of light. It was recently argued that this
effect shifts the Landauer bound [50], which may have an in-
fluence on the black hole information paradox [51]. However,
although the irreversibility of black hole evaporation may be
constrained by the transient effects that we have shown here
are a requirement of statistical mechanics, the consequences
of the conformity of transient thermodynamics and relativistic
causality [52] will play out in a black-hole-model dependent
manner. Clearly, there are many implications of our analytical
framework for finite-time information erasure. We hope that
readers will pursue the scientific tendrils discussed here and
the many yet to be recognized.
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APPENDIX: ANALYTICAL APPROXIMATIONS FOR
SHORT DURATION OF THE LINEAR PROTOCOL

Here we derive an analytical approximation of the integrals
in Eqs. (33) and (34) for rapid erasure protocol, which yield
corresponding approximations for the mean and the variance
of the work respectively. The brevity of the protocol insures
that the contribution to the mean and variance of the work
from trajectories with more than one interwell transition is
negligible. Using the same approximations as in Sec. IV B 5,
the two quantities of interest, 〈W 〉 and Var(W ), are

〈W 〉  a2

τ ∗

∫ τ ∗

0 dτ0 P0→1(0, τ0)τ0∫ τ ∗
0 dt P0→1(0, t )

and (A1a)

〈W 2〉 − 〈W 〉2  2a4

(τ ∗)2

∫ τ ∗

0 dτ0 P0→1(0, τ0)τ 2
0∫ τ ∗

0 dt P0→1(0, t )
− 〈W 〉2.

(A1b)

In Sec. IV B 5 we approximated 〈W 〉, Eq. (A1a), by assum-
ing that P0→1(0, τ0) is perfectly symmetric about its maximum
value, τ0 = τmax, given by Eq. (46). Here we derive a more
accurate analytical approximation by explicitly using the fact
that P0→1(0, τ0) is symmetric only for very small τ ∗.

First, we note that because limτ0→0 P0→1(0, τ0) is a Gaus-
sian the moments follow easily. However, for τ0 → ∞ all
the terms in P0→1(0, τ0) are relevant, but the analytical mo-
ments are confounded by the presence of exponentials of
exponentials. Therefore, in order to facilitate calculation of
the moments we approximate the probability P0→1(0, τ0) with
the function g(τ0), which is a combination of Gaussians, viz.,

g(τ0) = g1(τ0)
a(1− τ0/τ

∗)

2
√

π
e− 1

2 a2(1−τ0/τ
∗ )2+ g2(τ0)αeβ(τ0−τmax )2

,

(A2)
such that

lim
τ0→0

g(τ0) = a(1 − τ0/τ
∗)

2
√

π
e− 1

2 a2(1−τ0/τ
∗ )2

and

lim
τ0→τmax

g(τ0) = αeβ(τ0−τmax )2
,

(A3)

requiring that g1(τ0) and g2(τ0) satisfy the following four
constraints;

lim
τ0→0

g1(τ0) = 1, lim
τ0→τmax

g1(τ0) = 0,

lim
τ0→0

g2(τ0) = 0, lim
τ0→τmax

g2(τ0) = 1.
(A4)

Moreover, the constants α and β follow from the expansion

lim
τ0→τmax

P0→1(0, τ0) = α + αβ(τ0 − τmax)2 + O(τ0 − τmax)3

(A5)
and are

α = a
√

2π

τ ∗ exp

[
τ ∗

a
√

2π
e−a2/2 − 1

]
and (A6a)

β = 2a2

(τ ∗)2
ln

[
a
√

2π

τ ∗

]
. (A6b)

Finally, so long as g1(τ0) and g2(τ0) satisfy Eqs. (A4), we
are free to choose their form, which we do as follows:

g1(τ0) = �

(
1

4
− τ0

)
+
(

3

2
− 2τ0

)
�

(
3

4
− τ0

)

×�

(
τ0 − 1

4

)
and (A7a)

g2(τ0) = �

(
τ0 − 3

4

)
+
(

2τ0 − 1

2

)
�

(
3

4
− τ0

)

×�

(
τ0 − 1

4

)
, (A7b)

where �(·) is the Heaviside theta function.
We approximate P0→1(0, τ0) using g(τ0), which is a sum

of Gaussians multiplied by a first-order polynomial and thus
easily integrable upon substitution into Eqs. (A1a) and (A1b).
In Fig. 7 we compare P0→1(0, τ0) with g(τ0), which clearly
shows that the approximation provides an excellent match
with the original function. Therefore, as seen in Figs. 6–8,
when replacing P0→1(τ0) with g(τ0) in Eqs. (A1a) and (A1b),
we obtain a robust analytical approximation for the mean and
the variance of the work for fast erasure protocols.

023084-17



L. T. GIORGINI et al. PHYSICAL REVIEW RESEARCH 5, 023084 (2023)

[1] D. Chiucchiú, M. C. Diamantini, Miquel López-Suárez, I. Neri,
and L. Gammaitoni, Fundamental Limits in Dissipative Pro-
cesses during Computation, Entropy 21, 822 (2019).

[2] J. R. Gregg, Ones and Zeros: Understanding Boolean Algebra,
Digital Circuits, and the Logic of Sets (John Wiley & Sons, New
York, 1998).

[3] R. Landauer, Irreversibility and heat generation in the comput-
ing process, IBM J. Res. Dev. 5, 183 (1961).

[4] R. Landauer, Dissipation and noise immunity in computation
and communication, Nature (London) 335, 779 (1988).

[5] J. M. R. Parrondo, J. M. Horowitz, and T. Sagawa, Thermody-
namics of information, Nat. Phys. 11, 131 (2015).

[6] R. Dillenschneider and E. Lutz, Memory Erasure in Small Sys-
tems, Phys. Rev. Lett. 102, 210601 (2009).

[7] C. Jarzynski, Equalities and inequalities: Irreversibility and the
second law of thermodynamics at the nanoscale, Annu. Rev.
Condens. Matter Phys. 2, 329 (2011).

[8] U. Seifert, Stochastic thermodynamics, fluctuation theorems
and molecular machines, Rep. Prog. Phys. 75, 126001
(2012).

[9] C. Van den Broeck and M. Esposito, Ensemble and trajec-
tory thermodynamics: A brief introduction, Physica A 418, 6
(2015).

[10] U. Seifert, Stochastic thermodynamics: From principles to the
cost of precision, Physica A 504, 176 (2018).

[11] B. Piechocinska, Information erasure, Phys. Rev. A 61, 062314
(2000).

[12] A. B. Boyd, D. Mandal, and J. P. Crutchfield, Thermodynamics
of Modularity: Structural Costs Beyond the Landauer Bound,
Phys. Rev. X 8, 031036 (2018).

[13] T. Sagawa and M. Ueda, Minimal Energy Cost for Thermody-
namic Information Processing: Measurement and Information
Erasure, Phys. Rev. Lett. 102, 250602 (2009).

[14] S. Toyabe, T. Sagawa, M. Ueda, E. Muneyuki, and M. Sano, Ex-
perimental demonstration of information-to-energy conversion
and validation of the generalized Jarzynski equality, Nat. Phys.
6, 988 (2010).

[15] M. Esposito and C. Van den Broeck, Second law and Lan-
dauer principle far from equilibrium, Europhys. Lett. 95, 40004
(2011).
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