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Prototype of a phonon laser with trapped ions
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We propose a tunable phonon laser prototype with a large trapped ion array, where some of the ions are
effectively pinned by optical tweezers, thus isolating a subset of ions that mimics an acoustic cavity used as a
phonon lasing resonator. The cavity loss can then be controlled by the tweezer strength and the “wall thickness”,
the number of pinned ions for isolation. We pump the resonator by applying blue-sideband lasers, and investigate
the lasing dynamics of the “cavity” motional modes such as threshold behavior, population distribution, the
second-order coherence, and linewidth narrowing. This scheme can be generalized to multimode resonators,
for which we report the mode competition phenomenon and lasing mode multistability. Our work provides an
excellent platform for acoustic quantum state manipulation, paving the way towards phonon-mediated quantum
computing, communications, and metrology.
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I. INTRODUCTION

Laser technology has been one of the most critical com-
ponents in contemporary scientific research, industry, and
consumer electronics. The remarkable properties of optical
lasers, such as quantum coherence and the capability to travel
long distances, make them a unique tool in modern quantum
engineering and communication applications. Recently, the
acoustic analog of lasing phenomena has drawn growing in-
terest. This line of research extends our understanding beyond
ordinary quantum optics to other physical degrees of freedom
for their mathematical frameworks share essential similarities.
Acoustic waves usually have much slower dynamics than
light, providing an opportunity to manipulate constituent ele-
ments within a period for precise phase control. Furthermore,
the interaction between atoms and phonons can be turned on
deterministically through state-dependent kicks as in trapped
ion quantum computing and simulation [1] while the photon-
atom interface usually relies on probabilistic processes. These
features make phononic state control and a phonon laser a new
playground for quantum computing [2–11], communications
[12,13], and metrology [14–20].

The first phonon laser was realized in a trapped ion system
driven by optical forces [21], where a single ion presents
self-sustained oscillation beyond a threshold gaining energy
from optical sources. Since then, many proposals have been
studied and demonstrated in similar platforms [22,23] and
others such as quantum dots [24–26] and optomechanical
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systems [26–35]. Many intriguing properties of ordinary
lasers have also been reported in phonon systems, includ-
ing oscillation threshold [21,27,29,30,32,34–36], Poissonian
distribution [34], linewidth narrowing [27–29,32,34,36], in-
jection locking [22,23], mode competition [30,35], and phase
control [37]. Most of the schemes, however, are based on
sophisticated designs of architecture and cannot be easily
scaled up to include more modes. The parameters of the lasing
resonator are typically fixed upon fabrication, limiting the
opportunities of exploring rich phonon physics.

Here, we propose a prototype of a tunable phonon laser
based on a large uniform ion crystal and optical tweezers.
Such an ion crystal can be constructed in a long Paul trap [38],
or microtrap arrays [39–41]. Notably, many proposed schemes
with trapped ions have been recently focused on incorporat-
ing optical tweezers to introduce extra control for quantum
computing and simulation [42–45]. Here, we apply optical
tweezers on one or a few ions in a row so that they form a
“wall” for acoustic waves. We then consider a small subset of
ions being contained by two such walls, forming an effective
phonon cavity as shown in Fig. 1(a). Note that, for a uniform
ion crystal, the frequency scale characterizing momentum
exchange between adjacent ions is ω0 ≡ [e2/(4πε0md3

0 )]1/2,
obtained by matching the energy scales of local oscillation and
mutual Coulomb interaction, where e is the charge carried by
an ion of mass m. For ion separation d0 about a few microns,
ω0 is of order of magnitude about hundreds of kilohertz to a
few megahertz. Therefore, the application of optical tweezers
of strength larger than ω0 by about an order of magnitude can
significantly modify the motional spectrum [38], resulting in
a collection of local modes formed within the “cavity”. This
remarkable feature allows us to view the system as a phonon
laser resonator.

The beauty of this proposed scheme is its simplicity and
flexibility of reconfiguration. Note that optical tweezers can
be switched on and off easily at a timescale of nanoseconds,

2643-1564/2023/5(2)/023082(11) 023082-1 Published by the American Physical Society

https://orcid.org/0000-0003-2091-5737
https://orcid.org/0000-0003-1560-0917
https://orcid.org/0000-0002-2243-9490
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.5.023082&domain=pdf&date_stamp=2023-05-08
https://doi.org/10.1103/PhysRevResearch.5.023082
https://creativecommons.org/licenses/by/4.0/


LEE, LIN, AND LIN PHYSICAL REVIEW RESEARCH 5, 023082 (2023)

FIG. 1. (a) Architecture of an effective phonon resonator con-
structed near the middle of a large-scale ion crystal. The tweezered
ions act as partial mirrors of the resonator. (b) Mode decay rates
against varied wall thickness of an NS = 5 cavity. The collective
normal modes are ordered according to their frequencies (1: lowest;
5: highest). These results are calculated based on an N ≈ 2000 40Ca+

ion crystal with ion separation 7 µm. The tweezer frequency is
ftw = ωtw/(2π ) = 3 MHz.

without altering the spatial equilibrium of the array. Further,
the “cavity size” is scalable on demand. The reflectivity of
a partial mirror can be tuned by varying tweezer frequencies
and/or numbers of tweezers. In the following discussion, we
demonstrate the idea by looking into the lasing dynamics
assuming that the ion array is only Doppler cooled.

II. EFFECTIVE PHONON RESONATOR

We consider NS ions within the effective resonator, and
only focus on NS longitudinal modes. This is because the
rest of the array contributes to a bath of a broader dispersion
band in the longitudinal modes than the transverse ones. A
wall thickness w is represented by the number of tweezered
ions. We use wL + wR to denote the thicknesses of the left
and right walls. Without altering the general conclusion, in
this work we look at the symmetric cases with wL = wR. The
number of bath ions is NB = N − wL − wR − NS , where N is
the total number of ions. It is assumed that NB � NS such that
the discrete bath spectrum approximates a continuous band
and is treated as Markovian.

The motional Hamiltonian is described by Hm =∑
i p2

i /(2m) + ∑
i, j Ai jziz j , where z labels the longitudinal

direction, zi is coordinate operator with respect to the
equilibrium position of the ith ion, and pi the associated
momentum operator. The coupling matrix elements Aii =
ν2

i + ν2
tw,i + ∑N

l=1,l �=i 2/|ui − ul |3 and Ai j = −2/|ui − u j |3
for i �= j, where ui is the equilibrium z position of the ith ion
in units of d0 [46]. Also, νi = ωi/ω0 and νtw,i = ωtw,i/ω0

are dimensionless frequencies introduced by the global trap
and optical tweezers of strength ωtw,i, respectively. Here, we
use the trap configuration discussed in [38], a large linear

Paul trap with a box-like potential so that ωi ≈ 0 except those
near the edges. Our system can be chosen to be anywhere in
the middle of the uniform part. We also assume that optical
tweezers are applied transversely to the array so ωtw,i > 0 for
tweezered ions; otherwise, ωtw,i = 0.

By dividing the whole array into the system C and the bath
B, and using the phononic field operator representation, the
motional Hamiltonian can be recast into (see Appendix A)

Hm =
∑
q∈C

h̄ωqa†
qaq +

∑
k∈B

h̄ωka†
kak

+
∑

q∈C,k∈B

gqk (aqa†
k + H.c.), (1)

where aq (ak) and a†
q (a†

k) are phononic annihilation and cre-
ation operators, respectively, of the qth (kth) normal mode
of C (B) with frequency ωq (ωk). H.c. stands for the Her-
mitian conjugate. The system-bath mode coupling gqk =

h̄
2m

∑
i∈C, j∈B U T

C,qiAi jUB, jk/
√

m2ωqωk , where the matrices UC

and UB diagonalize the corresponding submatrices in matrix
A ≡ [Ai j]. Since NB � NS, the excitation within the cavity
can dissipate to the bath’s degrees of freedom, and will not
revive until the timescale ∼NBω−1

0 , determined by the elapsed
time of motion propagation to the edge and back. Before the
revival happens, the dissipation of the cavity modes can be
characterized by the decay rates

κq ≈ 2π ḡ2
qqρB(ωq) (2)

according to the standard Fermi golden rule approach. Here,
we have taken the continuous limit for B and numerically
computed the density of states ρB(ω) of the bath. We obtain
ḡ2

qq by coarse-graining |gqk|2 over a small range of ωk ≈ ωq,
that is, ḡ2

qq ≡ 〈|gqk|2〉ωk≈ωq . Note that this approach is valid
as long as the Markovian bath assumption holds. For a large
but finite N ∼ O (103), we also numerically check the time
evolution of the cavity mode population, and extract the decay
rates by fitting to an exponential profile. Our results show
very good agreement with Eq. (2). See Appendix A for more
details. It can be expected that increasing the wall thickness
and/or tuning up the tweezer strength enhance isolation of
the cavity from the rest of the ion crystal, and therefore de-
crease the decay rate of the cavity modes. This provides some
arbitrariness for system preparation given the state-of-the-art
physical constraints [47]. We present the decay rates for an
NS = 5 cavity in Fig. 1(b). A typical κ ∼ 10−3ω0 implies
that one cavity mode survives for about a thousand times of
momentum exchanges.

III. SINGLE-MODE PHONON LASING

We now look into the phonon lasing mechanism of a
resonator containing only NS = 1 ion, which is pumped
by shining optical lasers resonant with the blue sideband.
Typically, the cavity mode frequency is about hundreds of
kilohertz to a few megahertz, the sidebands are assumed re-
solvable from the carrier transition by Raman transitions of a
few kilohertz in linewidth. We describe the evolution of the
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system by a master equation

ρ̇ = − i

h̄
[HS, ρ] −

∑
α=±

κα
th

2
L α

a [ρ] − γ

2
L −

σ [ρ], (3)

where ρ is the system density matrix governed by the sys-
tem Hamiltonian HS/h̄ = −δbσz/2 + η(a†σ+ + σ−a) in the
rotating frame with σ− = |g〉〈e| and σ+ = |e〉〈g| the atomic
lowering and raising operators, respectively, between the
ground state |g〉 and excited one |e〉 separated by energy
h̄ωeg; σz = |e〉〈e| − |g〉〈g|; γ is the natural linewidth; blue
sideband detuning δb ≡ ωL − ωeg − ω with driving laser fre-
quency ωL and cavity mode frequency ω; η is the Lamb-Dicke
parameter;  is the Raman Rabi frequency. The Lindblad
superoperators are given by L ±

a [ρ] = a±a∓ρ + ρa±a∓ −
2a∓ρa± (here, we denote a− = a and a+ = a† for con-
venience) and L −

σ [ρ] = σ+σ−ρ + ρσ+σ− − 2σ−ρσ+ with
κ+

th = nthκ and κ−
th = (nth + 1)κ , where the noise level nth

accounts for nonzero cavity temperature contribution [48] and
can be estimated by nth = [exp(h̄ω/kBT ) − 1]−1. Note that
the dynamics of the internal states are much faster than the
motional ones. We can thus assume that the internal degrees
of freedom adiabatically follow the motional operators. The
dynamics of the phononic operator is of the form ȧ = (G −
κ )a/2 + (noise terms), which can be obtained by integrating
the Heisenberg equations, with the gain given by

G =γ
s

2
〈σz〉 =

∑
n

γ s

2(1 + ns)
Pn, (4)

where s = 2|η|2/[δ2
b + (γ /2)2]. We take δb = 0 for simplic-

ity. To determine the population distribution, we recast the
master equation (3) into the rate equations (see Appendix A):

Ṗn = − [κ−
th n + κ+

th (n + 1)]Pn

+ κ−
th (n + 1)Pn+1 + κ+

th nPn−1

− γ s

2

(
n + 1

1 + ns
Pn − n

1 + (n − 1)s
Pn−1

)
(5)

for the probability Pn in the motional n state.
Figure 2(a) shows the gain as a function of pumping

strength in the steady state, where we clearly see the lasing
behavior with G /κ → 1 as the driving strength η overpasses
a threshold ηc = 0.25ω0. To quantify the degree of las-
ing, we calculate 〈n〉s and second-order coherence g(2)(0) ≡
|〈a†(0)a†(τ )a(τ )a(0)〉/〈a†a〉2|τ=0. The results are presented
in Fig. 2(b). At low pumping level below the threshold, g(2)(0)
appears to be around 2 as the phonon number is small, sug-
gesting a thermal chaotic phonon state. When η > ηc, the
phonon number significantly builds up while the g(2) curve
abruptly drops to unity, signaling the emergence of a coher-
ent state, consistent with the gain profile. The steady-state
phonon number distribution is also obtained from Eq. (5)
and plotted in Fig. 2(c) for various noise levels. At zero
temperature, the distribution is exactly Poissonian. The ris-
ing noise level gradually broadens the distribution, which
becomes super-Poissonian. This is also commonly observed
in ordinary optical lasers. We also investigate the linewidth
narrowing effect of the lasing mode. The lineshape is given
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FIG. 2. (a) Gain as a function of driving strength in terms of η

on blue sideband resonance δb = 0. The lasing threshold is at ηc =
0.25ω0. (b) Second-order coherence g(2) (left axis) and mean phonon
number (right axis) of the cavity mode for varied η. (c) Number
distribution for η = 0.4ω0 = 2π×0.2 MHz with 〈n〉s = 2200. The
distribution is broadened by increasing the noise level. For com-
parison, the Poisson distribution (nth = 0) is plotted in red dashed
line. (d) Spectral lineshape for varied η with the peak value nor-
malized to one. In all cases (a)–(d), we choose κ = 6.1×10−3ω0 =
2π×3.1 kHz given by 2 + 2 tweezers of frequency 2π×2.4 MHz.
The cavity mode frequency ω = 2.0ω0 = 2π×1.0 MHz. For (a), (b),
and (d), all the results are under the noise level set by the Doppler
temperature nth = 10 corresponding to the 40Ca+ ion with natural
linewidth γ = 2π×21.6 MHz.

by

S(ν) = 〈n〉s

(ν − ω)2 + �ν2/4
(6)

with �ν = κ nth
〈n〉s

+ γ

2〈n〉s

s
1+〈n〉ss (see Appendix D). One can

clearly see from Fig. 2(d) that the spectral linewidth becomes
significantly narrowed when η exceeds ηc = 0.25ω0 due
to a drastic increase in the phonon number.

IV. MULTIMODE PHONON LASING

We now examine a multi-mode cavity. In the master-
equation approach, the computationally involved Hilbert-
space grows exponentially with the number of modes as the
exponent and with the number of phonon states after trunca-
tion as the base. Even for NS = 2, the calculation becomes
very demanding for lasing phonon numbers larger than 1000.
Fortunately, certain quantities such as mean phonon num-
bers and correlations can still be obtained by turning to the
Heisenberg-Langevin equations considering the quadrature
operators Xq ≡ a†

q + aq and Pq ≡ i(a†
q − aq) for cavity mode

q. We leave the detailed derivation in Appendix E and just
summarize the results here. Note that this method can be
directly adapted to accommodate NS > 2 with minor modi-
fications, for which the results for three and four-mode cases
are also presented in Appendix E.

For clarity, we will use the example of NS = 2, where
the cavity has two longitudinal collective modes, the
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center-of-mass (COM) mode and the breathing (BR) mode so
q = COM or BR. We drive the blue-sideband resonances of
the cavity modes by applying Raman beams on one of the two
ions. Though the two modes (typically separated by several
kilohertz) is optically resolvable in experiments, they can ex-
change energy through common atomic excitation. This can
be seen in the gain Eq. (4), where its linewidth is comparable
to the atomic one ∼20 MHz, making the result insensitive to
the laser detuning.

The system dynamics can be characterized by a parameter
corresponding to the classical energy associated with each
mode:

Eq(t ) ≡ 1

2
[〈Xq(t )〉2 + 〈Pq(t )〉2], (7)

which in fact approximately corresponds to 2 times of
the mean phonon number. We now demonstrate an exem-
plary case with wL + wR = 1 + 1 tweezers of frequency
2π×3 MHz, yielding ωCOM = 1.6ω0 and ωBR = 2.5ω0 with
decay rates κCOM = 0.05ω0 and κBR = 0.01ω0, respectively.
Here, we have set η = ηCOM the Lamb-Dicke parameter for
the COM mode and ηBR = √

ωCOM/ωBRη for the BR mode.
We then plot the trajectories of Eq for given lasing pa-
rameters starting from an initial state with specific energies
[ECOM(0),EBR(0)]. Our results show that the two modes can-
not sustain lasing simultaneously. The emergence of lasing in
one mode with a significant phonon excitation depletes the
other mode. To see that, we plot the evolution trajectories of
classical energies. Figure 3(a) shows a case where the driving
strength is slightly above both thresholds. If we start with
an initial state of very low excitation, after a rapid growth
and then decrease in the COM mode, the system reaches a
steady state of the BR mode exclusively. This is consistent
with the single-mode calculation ηBR

c < ηCOM
c so the BR

mode seems to dominate. When the driving strength becomes
sufficiently strong, the system exhibits a bistability where the
resultant lasing mode is determined by the initial distribution
of excitation between the two modes, as shown in Fig. 3(b).

A phase is then defined by the “macroscopic” excitation of
one (lasing) mode. We map out the phase diagrams for various
initial classical energies and driving strength. Figure 4 shows
the COM and BR phonon number curves, respectively. As
the driving strength increases, one can see that the BR mode
builds up macroscopically when η exceeds ηBR

c . Even
when η surpasses ηCOM

c , the COM mode remains dormant
due to cross-mode competition [30]. We meet a sharp-edged
threshold at a stronger driving strength η ≈ 1.5ω0, beyond
which the COM mode starts to lase and immediately pro-
hibits the BR mode. The discontinuity in phonon numbers
signals a first-order phase transition. We also calculate the
second-order coherence, and find g(2)(0) = 1.0 (≈2.0) for the
lasing (nonlasing) mode, consistent with the phase diagram.
Such features persist in the three- and four-mode cases (see
Appendix F).

V. DISCUSSION AND CONCLUSION

We examine the conditions to observe the presented re-
sults in an experiment. The feasibility mostly relies on the
tweezer strength, the operating temperature, and the finite-size

0

1

2

3

4

0.0 0.5 1.0 1.5 2.0

2.01.31.00.50

BR
(0) = 0.50

=
COM

B
R

COM

= 1.0 
0

0.20

0

1

2

3

4

0 1 2 3 4 5 6 7 8

0.18 0.04
0.034

0.03
0.020.001

B
R

COM

BR
(0) = 0.50

=
COM

= 2.0 
0

(a)

(b)

FIG. 3. Temporal classical-energy trajectories showing the evo-
lution of the two modes for (a) η = 1.0ω0 and (b) η = 2.0ω0.
The destination of each trajectory corresponds to the lasing mode. In
(a), every trajectory evolves into the BR mode with 〈nBR〉s = 1780.
In (b), depending on the initial distribution of EBR(0) and ECOM(0),
the system evolves into the BR mode with 〈nBR〉s = 2050 or the
COM mode with 〈nCOM〉s = 370. Here, we choose the pump laser
to be blue sideband resonant of the COM mode so δ = ωL − ωeg =
ωCOM. The number labeling each trajectory represents ECOM(0) while
EBR(0) = 0.5 is the same. For reference, the single-mode thresholds
are ηBR

c = 0.4ω0 and ηCOM
c = 0.75ω0.

effect. Take 40Ca+ ions for example. It can be shown that the
tweezer strength can reach 2π×3 MHz with a red-detuning
of 2π×50 THz, given the state-of-the-art focused beam size
of 0.7 µm [47] and a typical laser power 100 mW. Here we
only assume the Doppler temperature for the whole array.
We find the reported properties can also be observed in a
smaller, currently accessible system of N ≈ 100 under the
following consideration: The finite-size nature introduces a
non-Markovian effect when the out-coupled wave hits the
boundary and rebounces back to the resonator, invalidating
our model (see Appendix B). This can be circumvented by
only looking at the time span no longer than the time that
allows such non-Markovianity to take effect. For instance,
it takes about 270 f −1

0 ∼ 0.5 ms, shorter than the rebounce
time 350 f −1

0 ∼ 0.7 ms, where f0 = ω0/(2π ), to arrive at the
steady-state single lasing mode of 〈n〉s = 334, corresponding
to a displacement of 0.3 µm, significantly larger than 0.05
µm given by thermal noises. In an array of N ≈ 2000, a
steady-state lasing mode of 〈n〉s ≈ 2000, corresponding to
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FIG. 4. Steady-state phase diagram in terms of phonon numbers
of (a) the COM mode and (b) the BR mode for various ECOM and driv-
ing strength η. Here, we choose EBR(0) = 0.5 and δ = 1.0ωCOM.
The phonon number of the non-lasing mode is comparable to the
thermal level nth,COM = 13 or nth,BR = 8.2. The phonon number of
each mode against driving strength is shown in (c), following the
line cut in (a) and (b). We find that the BR phase builds up when
driving strength surpasses the threshold ηBR

c ≈ 0.4ω0, given by
the single-mode calculation. A sharp boundary is observed at η ≈
1.5ω0 (significantly larger than ηCOM

c ≈ 0.75ω0), beyond which the
lasing phase switches to the COM mode.

a displacement of 0.7 µm, takes 2300 f −1
0 ∼ 4.5 ms, shorter

than the rebounce time 7000 f −1
0 ∼ 14 ms. Although such a

long array has not been implemented in reality yet, a feasible
architecture has been discussed in detail in [38], where the
optical tweezers are uniformly distributed to segment the long
array for easy stabilization and more efficient cooling. The
optical tweezers can then be turned off except those that con-
stitute the partial mirrors for phonon lasing experiments. Laser

cooling can be constantly applied to suppress heating of the
environment [49] in order to observe the predicted properties.
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APPENDIX A: DECAY RATES OF CAVITY MODES

In this section we present the detailed calculation of the ef-
fective decay rates for the cavity phonon modes. We divide the
system into the cavity part (C) and the environment (B) so that
the motional Hamiltonian under the harmonic approximation
reads

Hm =
∑
i∈C

p2
i

2m
+

∑
i, j∈C

Ai jziz j

︸ ︷︷ ︸
HC

m

+
∑
i∈B

p2
i

2m
+

∑
i, j∈B

Ai jziz j

︸ ︷︷ ︸
HB

m

+
∑

i∈C, j∈B

Ai jziz j

︸ ︷︷ ︸
V CB

m

, (A1)

where the elements Ai j (see main text) form the coupling
matrix A = AC ⊕ AB + ACB, where AC and AB are NC×NC

and (N − NC )×(N − NC ) submatrices describing the cou-
pling within the cavity part and environment, respectively; ⊕
denotes the direct sum and ACB is an NC×(N − NC ) matrix
containing the interaction between the two subsystems. Each
subsystem’s coupling matrix can be diagonalized separately to
find the normal modes represented by the annihilation and cre-
ation operator pair: (aq, a†

q) for the cavity part, where the mode
index q = 1, . . . , NC with NC = NS + wR + wL the number of
ions participating in the cavity and two walls; (ak , a†

k) for
the environment, where the mode index k = 1, . . . , N − NC

with N the total number of ions of the entire array. Note that
here we also include the tweezered ions in the subsystem C
in order to retain the smoothness of the dispersion relation of
the bath and secure the Markovianity. However, by doing so,
the subsystem C has wL + wR more modes than the supposed
NS ones. Fortunately, those wL + wR modes mainly resulting
from tweezered ions are well separated from the others in
frequency, corresponding to spatial wave vectors very local-
ized on the tweezered sites. This allows us to identify the
rest as the cavity modes with one-to-one correspondence. In
the discussion of phonon lasing, we will only focus on these
cavity modes.

Under the rotating wave approximation, the Hamiltonian
(A1) can then be rewritten into

Hm =
NC∑

q=1

h̄ωqa†
qaq +

N−NC∑
k=1

h̄ωka†
kak

+
∑

q∈C,k∈B

gqk (aqa†
k + aka†

q), (A2)
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where ωq and ωk are the eigenfrequencies of the cavity
and environment modes, respectively, and gqk deals with the
coupling matrix between mode q in C and mode k in B.
Explicitly, gqk = h̄

2m

∑
i j U T

C,qiAi jUB, jk/
√

m2ωqωk also forms
an NC×(N − NC ) matrix, where UC and UB are the transfor-
mation matrices that diagonalize AC and AB, respectively.

The Heisenberg equations of motion for the field operators
then read

ȧq = −iωqaq − i
∑
k∈B

gqkak, (A3)

ȧk = −iωkak − i
∑
q∈C

gqkaq. (A4)

By integrating out the bath’s degrees of freedom, we obtain
the following equation for mode q ∈ C:

ȧq = − iωqaq − i
∑
k∈B

gqkak (0)e−iωkt

−
∑
k∈B

|gqk|2aq

∫ t

0
dt ′e−i(ωk−ωq )(t−t ′ ). (A5)

The second line corresponds to the decay process, which can
be characterized by the rate

κq ≈ 2
∑
k∈B

|gqk|2
∫ ∞

0
dt ′e−i(ωk−ωq )t ′ ≈ 2π ḡ2

qqρB(ωq). (A6)

For a given finite N , since the cavity and environment de-
grees of freedom are both discrete and these modes may not
overlap, we have calculated the above summation numerically
by plugging in the actual parameters. As long as N � NC ,
we find the results have been found to be consistent with the
last approximation, where we have taken the continuum limit
and numerically computed the density of states ρB(ω) for the
bath’s degrees, and obtained ḡ2

qq by coarse-graining |gqk|2 over
a small range of ωk ≈ ωq, that is, ḡ2

qq ≡ 〈|gqk|2〉ωk≈ωq . This
amounts to the justification of the validity of the Markov ap-
proximation. Also, it should be emphasized that here we only
focus on longitudinal modes so that the bath modes constitute
a broadband-like spectrum. The approximation breaks down
for transverse modes for its extreme narrow-band spectral
structure.

To verify our calculation, we also look at the real-time
population profile numerically by explicitly including the all
motional degrees of the entire array without approximation.
As shown in Fig. 5, when the tweezer frequency ωtw is not
strong enough compared to ω0, we find visible large oscil-
lations causing a certain degree of non-Markovianity. Here,
ω0 ≡ [e2/(4πε0md3

0 )]1/2 is the frequency scale characterizing
momentum exchange between adjacent ions separated by d0,
where e is the charge carried by an ion of mass m. But the non-
Markovianity can be gradually removed when we increase the
tweezer frequency up to approximately an order of magnitude
larger than ω0. In Fig. 5(d), where ωtw/ω0 = 5.9, we recover
the evolution based on Markovian bath assumption. In this
case, we choose d0 = 7 µm for more than 1000 40Ca+ ions so
ω0 = 2π×0.5 MHz.
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FIG. 5. We show the real-time population profiles (blue curves)
of a single-ion resonator given varied tweezer frequencies ftw =
ωtw/(2π ). These curves are fitted to exponential profiles (red dashed
lines) characterized by the decay rates calculated according to
Eq. (A6). These results are based on calculation considering an ion
crystal of more than 1000 40Ca+ ions with a uniform separation
7 µm. Here, the unit f0 = ω0/(2π ) = 0.5 MHz.

APPENDIX B: FINITE-SIZE EFFECT

In a more realistic smaller system, the finite size of the
system also introduces a non-Markovian effect such that the
out-coupled waves hit the boundary and rebounce back to
the cavity, which leads to a revival of the local excitation.
Fortunately, this can be circumvented if one only looks at
the time span no longer than the time that allows such an
effect to occur. In the case of N ≈ 100, we show the ex-
citation dynamics of the cavity mode for longer times in
Fig. 6. The revival takes place in about 350 f −1

0 ∼ 0.7 ms
(rebounce time), where f0 = ω0/(2π ) = 0.5 MHz. To evolve
into the steady state of single-mode lasing of 〈n〉s = 334, it
takes about 270 f −1

0 ∼ 0.5 ms, shorter than the rebounce time,
leaving a sufficient time difference for measurement. Note that
〈n〉s = 334 corresponds to a displacement of 0.3 µm, signifi-
cantly larger than 0.05 µm given by thermal noises.

We then calculate the relevant lasing properties in this
case and plot them in Fig. 7. It can be clear seen that the
threshold behavior persists with the critical driving strength
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FIG. 6. Relaxation (0 ∼ 100 f −1
0 ) and revival (after 350 f −1

0 ) of
the cavity ion (50th ion) excitation for an array of N = 100. Here,
we choose κ = 0.056ω0 = 2π×28.3 kHz given by 1 + 1 tweezers of
frequency 2π×3.0 MHz. The cavity mode frequency ω = 2.0ω0 =
2π×1.0 MHz.
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FIG. 7. (a) Second-order coherence g(2) (left axis) and mean
phonon number (right axis) of the cavity mode for varied η on
an array of N ≈ 100, under the noise level nth = 10 set by the
Doppler temperature with a natural linewidth γ = 2π×21.6 MHz.
(b) Number distributions for varied noise levels corresponding to
〈n〉s = 334 with a pumping strength η = 1ω0 = 2π×0.5 MHz.
Here, we choose κ = 0.056ω0 = 2π×28.3 kHz given by 1 + 1
tweezers of frequency 2π×3.0 MHz. The cavity mode frequency
ω = 2.0ω0 = 2π×1.0 MHz.

ηc = 0.45ω0. The second-order correlation function ap-
proaches to a value slightly above unity. The deviation from
unity is typically larger in smaller systems than bigger ones.
The Poisson number distribution and the broadened profiles
by different thermal levels can also be observed.

APPENDIX C: PROBABILITY RATE
EQUATION AND GAIN

In this section, we derive the master equation and the cor-
responding probability rate equations considering the phonon
cavity being pumped by blue-sideband lasers. To simplify
our discussion, here we only focus on the single mode case
with NS = 1 ion. Under the Lamb-Dicke approximation, the
Heisenberg equations of motion for the relevant operators are
given by

ȧ = −κ

2
a − iησ+, (C1)

σ̇+ =
(

− iδb − γ

2

)
σ+ − iηaσz, (C2)

σ̇z = −γ (σz + 1) + 2iη(σ−a − a†σ+), (C3)

where σ− = |g〉〈e| and σ+ = |e〉〈g| are the atomic lower-
ing and raising operators, respectively, between the ground

state |g〉 and excited one |e〉 separated by energy h̄ωeg; σz =
|e〉〈e| − |g〉〈g|; γ is the natural linewidth; blue side-band de-
tuning δb ≡ ωL − ωeg − ω with driving laser frequency ωL

and cavity mode frequency ω; η is the Lamb-Dicke parameter;
 is the Raman Rabi frequency. Note that the dynamics of the
internal states are much faster than the motional ones, we can
thus assume that the internal degrees of freedom adiabatically
follow the motional operators. By taking σ̇+ ≈ 0, we imme-
diately obtain

σ+ ≈ − ηaσz

δb − i γ

2

(C4)

and therefore

ȧ = − κ

2
a − 1

2

γ |η|2
δ2

b + (
γ

2

)2 σza + shift + noise. (C5)

Note that the noise term must be present in order to assure a
a valid field operator that satisfies [a, a†] = 1. Both the shift
and noise terms are irrelevant for current discussion. The gain
can now be identified as

G = − γ |η|2
δ2

b + (
γ

2

)2 σz. (C6)

Also, by substitution of Eq. (C4) into Eq. (C3) as σ̇z ≈ 0, we
have

σz = −
(

I + 2

δ2
b + (

γ

2

)2 |η|2a†a

)−1

= −
∑

n

1

1 + ns
|n〉〈n|

(C7)

and

ησ+ = s

2
(δb + iγ )b, (C8)

where s = 2|η|2
δ2

b+( γ

2 )2 and b ≡ ∑
n

√
n+1

1+ns |n〉〈n + 1|. Plugging the

atomic operators back to the master equation Eq. (3) in the
main text, we finally arrive at

Ṗn = − κ

2
(nth + 1)(2nPn − 2(n + 1)Pn+1)

− κ

2
nth(2(n + 1)Pn − 2nPn−1)

− γ s

2

(
n + 1

1 + ns
Pn − n

1 + (n − 1)s
Pn−1

)
. (C9)

Here, we have added the thermal contribution characterized
by the noise level nth, which can be estimated by nth =
[exp(h̄ω/kBT ) − 1]−1 [48]. In the steady state, the probability
can be computed

Pn = P0

n∏
k=1

κnth + 1
2

γ s
1+(k−1)s

κ (nth + 1)
(C10)

with P0 the normalization factor such that
∑

n Pn = 1.

APPENDIX D: LINEWIDTH NARROWING

To find out the spectral lineshape of the phonon field, we
first look at the mean phonon number equation d〈a†a〉/dt =
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∑
n nṖn. By substitution of Eq. (C10), we obtain [48]

d

dt
〈n〉 =

∑
n

{(
γ

2

s

1 + n · s
− κ

)
nPn

+
(

κnth + γ

2

s

1 + ns

)
Pn

}
≈

(
γ

2

s

1 + 〈n〉s − κ

)
〈n〉

+ κnth + γ

2

s

1 + 〈n〉s , (D1)

where we have approximated n in the denominator of the
summand by its instantaneous mean value 〈n〉. We thus can
identify the gain G (t ) = γ

2
s

1+〈n〉s , consistent with Eq. (C6)
except n is taken to be the mean value. In the steady state,
〈n〉 → 〈n〉s, and

G → κ

(
1 − nth

〈n〉s

)
− γ

2〈n〉s

s

1 + 〈n〉ss
. (D2)

On the other hand, the Langevin equation reads

ȧ(t ) =
[
G −

(
κ

2
+ i(ω − ν)

)]
a(t ) + noise terms, (D3)

where ν is the probe frequency understood as a Fourier com-
ponent. By the quantum regression theorem, we can acquire
the spectral lineshape

S(ν) = F [〈a†(τ )a(0)〉] = 〈n〉s

(ν − ω)2 + �ν2/4
(D4)

with �ν = κ nth
〈n〉s

+ γ

2〈n〉s

s
1+〈n〉ss

, and F denotes the Fourier
transform.

APPENDIX E: HEISENBERG-LANGEVIN FORMALISM
OF QUADRATURES

To describe a multimode phonon laser, the master equa-
tion (3) in the main text needs to accommodate all modes and
their interaction with the atomic state. The Hamiltonian now
reads

H/h̄ = − δ

2
σ z

i +
∑

q

ωqa†
qaq +

∑
q

ciηqi(σ
+
i a†

q + aqσ
−
i ),

(E1)

where δ = ωL − ωeg; aq and a†
q are phonon field operators of

the qth cavity mode with frequency ωq; σ−
i and σ+

i are atomic
operators of the ith atom driven by a laser of frequency ωL

and Rabi frequency i; ηq is the corresponding Lamb-Dicke
parameter of the qth mode; ci is the coefficient determined
by the eigenvectors of the system. However, the dimension of
the required Hilbert space of the master equation grows expo-
nentially with the number of modes, making the calculation
intractable even for NS = 2. Here, we adopt another method
based on the normal-mode quadrature operators [35].

We define the normal-mode quadrature operators{
Xq = a†

q + aq

Pq = i(a†
q − aq).

(E2)

Then the Langevin equations of the quadrature operators of
different orders are given by

d

dt

(
Pn

q X m
q

) = −nωq
(
Pn−1

q X m+1
q + i(n − 1)Pn−2

q X m
q

) + mωq
(
Pn+1

q X m−1
q + i(m − 1)Pn

q X m−2
q

)
−1

2
κqnPn

q X m
q + 1

2
κq(2nth,q + 1)

(
n(n − 1)Pn−2

q X m
q

) − 1

2
κqmPn

q X m
q + 1

2
κq(2nth,q + 1)

(
m(m − 1)Pn

q X m−2
q

)
−n

∑
q

ciηqi(σ
−
i + σ+

i )Pn−1
q X m

q − im
∑

q

ciηqi(σ
−
i − σ+

i )Pn
q X m−1

q , (E3)

d

dt
σ−

i =
(

iδ − γ

2

)
σ−

i + i
1

2

∑
q

ciηqiσ
z
i (Xq − iPq), (E4)

d

dt
σ z

i = −γ
(
σ z

i + 1
) − i

∑
q

ciηqi(σ
+
z,i(Xq − iPq) − H.c.). (E5)

Note that different modes decay independently but are still
coupled through the sharing of atomic states, as revealed
by the last terms of Eqs. (E6) and (E7). The second-order
coherence can be calculated directly by g(2)

q (0) = (〈n2
q〉 −

〈nq〉)/〈nq〉2, where

〈nq〉 =1

4

(〈
X 2

q

〉 + 〈
P2

q

〉) − 1

2
(E6)

and 〈
n2

q

〉 = 1

16

(〈
X 4

q

〉 + 〈
P4

q

〉 + 2Re
〈
P2

q X 2
q

〉)
− 1

4

(〈
X 2

q

〉 + 〈
P2

q

〉 + 2Im〈PqXq〉 + 1
)
. (E7)

APPENDIX F: MULTIMODE LASING
AND MODE COMPETITION

This Heisenberg-Langevin method calculates relevant
quadrature-related quantities, such as mean phonon num-
bers and correlation functions, for multi-mode cases. As
the two-mode results have been discussed in the main text,
this section presents the results for up to four modes,
showing the typical features of mode competition. In the
following discussion, we take the parameters given in
Tables I and II as examples. We also list the correspond-
ing pumping thresholds obtained from the single-mode
model for comparison. As expected, the higher the mode
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TABLE I. The mode frequency, decay rate, thermal noise, and
threshold for the three-mode cavity.

Mode frequency Decay rate Thermal noise Threshold

ω1 = 1.3 ω0 κ1 = 0.05 ω0 nth,1 = 23 0.80 ω0

ω2 = 2.1 ω0 κ2 = 0.01 ω0 nth,2 = 13 0.33 ω0

ω3 = 2.6 ω0 κ3 = 0.005 ω0 nth,3 = 10 0.23 ω0

frequency is, the smaller the decay rate, and the lower the
threshold.

As in the two-mode cases, we define the classical energy,
equivalent to the mode population, to track the evolution of
the system:

Ei(t ) ≡ 1

2
[〈Xi(t )〉2 + 〈Pi(t )〉2] (F1)

for the ith normal mode. Determined by the pumping strength
η, the system evolves into a steady state with one dominant
lasing mode, i.e., mode competition. But which lasing
mode depends subtly on the choice of the initial Ei. If one,

TABLE II. The mode frequency, decay rate, thermal noise, and
threshold for the four-mode cavity.

Mode frequency Decay rate Thermal noise Threshold

ω1 = 1.1 ω0 κ1 = 0.06 ω0 nth,1 = 27 0.80 ω0

ω2 = 1.8 ω0 κ2 = 0.02 ω0 nth,2 = 16 0.46 ω0

ω3 = 2.3 ω0 κ3 = 0.008 ω0 nth,3 = 12 0.29 ω0

ω4 = 2.6 ω0 κ4 = 0.001 ω0 nth,4 = 11 0.10 ω0

TABLE III. The lasing modes with different pumping strengths
for three-mode case.

Pumping strength Lasing mode

η � 0.85 ω0 3rd
0.85 ω0 � η � 2.6 ω0 2nd or 3rd
η � 2.6 ω0 All modes

two, three, or more different lasing mode(s) can be found by
varying the initial mode populations, the lasing phase is called
monostable, bistable, tristable, or multistable, respectively.
Figure 8 presents monostable (a), bistable (b), (c), tristable
(d)–(f) cases for three cavity modes. The results suggest
that the mode with the highest frequency achieves lasing
most easily because it has the lowest pumping threshold.
But if the initial population of one mode is sufficiently high,
it will be forced to lase and suppress other modes. These
features remain in the four-mode cases. Tables III and IV
provide pumping strength boundaries that separate different
multistabilities.

TABLE IV. The lasing modes with different pumping strengths
for four-mode case.

Pumping strength Lasing mode

η � 0.55 ω0 4th
0.55 ω0 � η � 1.6 ω0 3rd or 4th
1.6 ω0 � η � 1.8 ω0 2nd, 3rd, or 4th
η � 1.8 ω0 All modes
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FIG. 8. Classical-energy evolution of the three modes for (a) η = 0.8ω0, (b), (c) η = 1.5ω0, (d)–(f) η = 2.7ω0 with detuning δ = ω1.
The temporal Ei=1,2,3 curves are shown in the inset.
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