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Quantum simulation is one of the key applications of quantum computing, which accelerates research and
development in the fields such as chemistry and material science. The recent development of noisy intermediate-
scale quantum (NISQ) devices urges the exploration of applications without the necessity of quantum error
correction. In this paper, we propose an efficient method to simulate quantum dynamics driven by a static
Hamiltonian on NISQ devices, named subspace variational quantum simulator (SVQS). SVQS employs the
subspace-search variational quantum eigensolver (SSVQE) [Phys. Rev. Res. 1, 033062 (2019)] to find a low-
lying eigensubspace and extends it to simulate dynamics within the subspace with lower overhead compared to
the existing schemes. We experimentally simulate the time-evolution operator in a low-lying eigensubspace of a
hydrogen molecule. We also define the subspace process fidelity as a measure between two quantum processes in
a subspace. The subspace time evolution mimicked by SVQS shows the subspace process fidelity of 0.896–0.989.
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I. INTRODUCTION

The dynamical properties of quantum systems are of great
scientific interest and practically important for applications,
and hence researchers have developed classical simulation
algorithms such as the time-dependent density functional the-
ory [1]. A controllable quantum system must be advantageous
in simulating such dynamics over a classical computer [2].
Simulations of quantum dynamics have been intensively stud-
ied as one of the most promising applications of quantum
computers [3].

Methods for simulating quantum dynamics on a quantum
computer were first proposed based on Trotterization [4–6]
and have been extended by incorporating linear combina-
tions of unitaries [7,8], truncated Dyson series [9], quantum
random walk [10,11], and quantum signal processing [12].
While these methods are based on rigorous algorithms with
error guarantees, they run only on a fault-tolerant quantum
computer and are not tolerant to device-specific errors with-
out error correction. The required circuits are also too deep
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to demonstrate their performance on the present NISQ de-
vices. While this problem is expected to be overcome in
future by quantum error correction [13,14], assessment of
the computational power of NISQ devices is also of great
interest [15–17].

A suitable approach for NISQ devices is quantum–classical
hybrid algorithms that utilize a variational method and shal-
low parameterized quantum circuits [18]. These algorithms,
such as variational quantum eigensolvers [19–22], gener-
ally do not guarantee the accuracy of solutions but can
be feasibly implemented on NISQ devices. Simulations of
quantum dynamics in the framework of quantum–classical hy-
brid algorithms originated in variational quantum simulation
(VQS) [23–26]. VQS approximates an arbitrary time evolu-
tion within the representational capability of a parameterized
quantum circuit by updating the variational parameters of
the circuit at each time step according to the time-dependent
variational principle. While VQS applies to the simulation
of time-dependent Hamiltonian dynamics, it requires ex-
periments using ancilla qubits and controlled operations to
update the variational parameters at each time step. An eas-
ier way to solve the time-independent Hamiltonian dynamics
without such an iterative procedure is to diagonalize the
given Hamiltonian. From the basis transformation matrix and
eigenvalues obtained by diagonalization, the time-evolution
operator can be easily reproduced. However, diagonalizing a
high-dimensional Hamiltonian generally requires the execu-
tion of a quantum circuit too deep for NISQ devices.
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Several hybrid quantum–classical algorithms have been
proposed to solve time-independent Hamiltonian dynamics on
NISQ devices [8,27–30]. A representative method is the so-
called variational fast-forwarding (VFF) [27,30]. In VFF, one
first trains a parameterized quantum circuit to mimic the short
time-evolution operator and then extrapolates the time evolu-
tion by updating the variational parameters, without calling
for additional quantum experiments. VFF fully approximates
the time-evolution operator with a parameterized quantum
circuit, which is as difficult as quantum optimal control with
a large number of qubits.

In this paper, we propose a quantum–classical hybrid algo-
rithm for efficiently simulating time-independent Hamiltonian
dynamics and experimentally demonstrate it on superconduct-
ing qubits. The method, named subspace variational quantum
simulator (SVQS), avoids the difficulties of Hamiltonian di-
agonalization described above by restricting itself to partial
diagonalization. First, we use subspace-search variational
quantum eigensolver (SSVQE) [31], one of the methods for
partially diagonalizing only a low-lying eigensubspace of
the Hamiltonian H [32–34]. In SSVQE, we find a unitary
U (θ∗) that maps k orthogonal input states {|ϕi〉}k

i=1 chosen
from the computational basis to the excited states up to the
kth {|Ei〉}k

i=1, each having the corresponding eigenenergy Ei.
It is expected that the representation capability of the param-
eterized quantum circuit required for a partial diagonalization
of the Hamiltonian is much lower than that for the full di-
agonalization, and can be realized in a shallower circuit. In
SVQS, the inverse of the unitary, U †(θ∗), maps each |Ei〉 to
a computational basis |ϕi〉, where we can easily apply phase
factors e−iEit . Unlike VFF, SVQS mimics the time-evolution
operator only for states in a specific eigensubspace. However,
it is expected that the cost required for training parameterized
quantum circuits is lower than VFF. SVQS and VFF have a
trade-off between the size of the simulatable eigensubspace
and the easiness of the implementation, and thus are comple-
mentary with each other.

The rest of this paper is organized as follows. In Sec. II,
we describe the method of SVQS in detail. In Sec. III, we
demonstrate SSVQE and SVQS on a system with two super-
conducting transmon qubits to simulate quantum dynamics
of a hydrogen molecule. To characterize the subspace time
evolution mimicked by SVQS, we define the subspace pro-
cess fidelity as a measure between two quantum processes
in a subspace. Even with the limited device performance, the
subspace time evolution in the low-lying eigensubspace of a
hydrogen molecule mimicked by SVQS shows the subspace
process fidelity of 0.896–0.989. SVQS is effective for exper-
iments on NISQ devices because of the modest requirement
for experimental devices.

II. METHODS

In this section, we first introduce the subspace-search
variational quantum eigensolver (SSVQE) [31], which is the
key ingredient for our proposal. We then describe our pro-
posal, the subspace variational quantum simulator (SVQS). In
the following subsections, H denotes a n-qubit Hamiltonian

transformed from the given Hamiltonian as follows:

H =
2n∑

j=1

Ej |Ej〉 〈Ej | , (1)

where Ej and |Ej〉 are the jth eigenenergy and eigenstate
of H, respectively. In applications for quantum chemistry,
Jordan-Wigner [35] or Bravyi-Kitaev [36] transformation can
be utilized to map a fermionic Hamiltonian to an n-qubit
Hamiltonian.

A. Subspace-search variational quantum eigensolver

SSVQE is an algorithm for finding the kth or up to the kth
excited states of Hamiltonian H [31]. To find excited states
up to the kth, SSVQE takes k orthogonal states as inputs of
a parameterized quantum circuit and minimizes the weighted
sum of the expected energies of the output states. The output
states become automatically an orthogonal set by the con-
servation of orthogonality under the unitary transformation.
Therefore, we find all the excited states up to the kth via a
single optimization procedure. The procedure of SSVQE is
summarized as follows:

(1) Construct a parameterized quantum circuit U (θ) and
prepare k initial states {|ϕ j〉}k

j=0 (k � 2n), which are orthogo-
nal to each other (〈ϕi|ϕ j〉 = δi, j).

(2) Minimize Lω(θ) = ∑k
j=0 ω j 〈ϕ j |U †(θ)HU (θ)|ϕ j〉,

where the weight vector ω is chosen such that ωi > ω j when
i < j.
Successfully optimizing θ of an appropriate parameterized
quantum circuit U (θ) by the procedure above, each output
state |ψ j (θ)〉 ≡ U (θ) |ϕ j〉 ( j = 0, 1, . . . , k) converges to the
following state:

|ψ j (θ
∗)〉 = eiδ j |Ej〉 , (2)

where δ j is an unknown global phase factor, and θ∗ denotes
the parameters that minimizes Lω(θ). Therefore, the obtained
circuit U (θ∗) corresponds to a map between the computa-
tional subspace Scom spanned by the orthogonal initial states
{|ϕ j〉}k

j=1 and the eigensubspace S‖ spanned by the excited
states {|Ej〉}k

j=1.

B. Subspace variational quantum simulator

The key idea of SVQS is to map a low-lying eigensubspace
S‖ of the target Hamiltonian H to a computational subspace
Scom spanned by the orthogonal initial states specified in
SSVQE. The procedure of the SVQS is summarized as fol-
lows:

(1) Construct a parameterized quantum circuit U (θ) and
prepare l input states {|ϕ j〉 | |ϕ j〉 = Xj |0〉⊗n}l

j=1 (l � n) such
that they are orthogonal to each other (〈ϕ j |ϕ j′ 〉 = δ j, j′ ).

(2) Minimize Lω(θ) = ∑l
j=1 ω j 〈ϕ j |U †(θ)HU (θ)|ϕ j〉,

where the weight vector ω is chosen such that ωi > ω j when
i < j.

(3) After convergence, get the jth eigenenergy Ej as
〈ϕ j |U †(θ∗)HU (θ∗) |ϕ j〉 with the converged variational pa-
rameter θ∗ = arg minLω(θ).

(4) Prepare an initial state |ψin〉 in the eigensubspace S‖.
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FIG. 1. Quantum circuit for SVQS. P(ξ ) denotes a phase gate
with the rotation angle ξ . The quantum circuit shown on the left
approximates the time-evolution operator within the eigensubspace
S‖.

(5) Encode the input state |ψin〉 on the eigensubspace S‖
into the computational subspace Scom by applying the Hermi-
tian conjugate of the obtained circuit U †(θ∗).

(6) Apply a single-qubit phase-rotation on each
qubit, namely, V (t ) = ⊗l

j=1 P(−Ejt ), where P(ξ ) =
|0〉 〈0| + eiξ |1〉 〈1| is a phase gate.

(7) Decode the state V (t )U †(θ∗) |ψin〉 on the computa-
tional subspace Scom into the eigensubspace S‖ by applying
U (θ∗). See also Fig. 1 showing the quantum circuit corre-
sponding to steps 4–6 of the procedure.

Let us explain how the above procedure works to simulate
the time evolution of a quantum system. The circuit U (θ∗)
obtained in step 2 corresponds to a map between S‖ and Scom.
Therefore, the circuit U (θ∗) can be denoted as follows:

U (θ∗) =
∑

j

eiδ j |Ej〉 〈ϕ j | + U⊥, (3)

where {δ j}l
j=1 are unknown phase offsets and U⊥ is an un-

known map between the subspaces complementary to S‖ and
Scom. The unknown phase offset occurs due to the nature of
SSVQE only evaluating the energy values. This offset makes
phase synchronization between the computational basis and
eigenbasis difficult. However, we can cancel this offset by
utilizing the inversed parameterized quantum circuit, as de-
scribed below. The tensor product of the single-qubit phase
rotations can be denoted as follows:

V (t ) =
l∑

j=1

e−iE jt |ϕ j〉 〈ϕ j | + U ′
⊥(t ), (4)

where U ′
⊥(t ) is again a map between the complementary sub-

spaces. Under the conjugation by Eqs. (3) and (4) transforms
as follows:

T (t ) = U (θ∗)V (t )U †(θ∗) (5)

=
l∑

j=1

e−iE jt |Ej〉 〈Ej | + U⊥U ′
⊥(t )U †

⊥. (6)

Equation (5) corresponds to the subspace time-evolution op-
erator on the l-dimentional eigensubspace with an unknown

time-dependent unitary operation on the complementary sub-
space. The single-qubit phase rotations can be implemented
with high-fidelity virtual Z gates [37]. Note that if we
could know the expansion coefficients of the initial state
on the eigenbasis efficiently, we could classically simulate
the time evolution for the state by using the eigenenergies
obtained in SSVQE. However, it is generally hard to run
state tomography for eigenstates with many qubits. SVQS
does not require state tomography of eigenstates, and can
directly generate a time-evolution operator on a quantum
circuit.

C. Extensions of SVQS

In this subsection, we propose extensions for SVQS. The
first extension is a method to extend the dimension of the
simulatable eigensubspace S‖. In Sec. II B, for a n-qubit target
Hamiltonian, the dimension of the simulatable eigensubspace
restricts to n, because there only exist n one-hot states in the n-
qubit system. In this extension, we introduce a-ancilla qubits
to extend the dimension of the simulatable eigensubspace to
n + a. The Hamiltonian of the (n + a)-qubit system is defined
in terms of n-qubit Hamiltonian Hn as follows:

H = Hn ⊗ Ia − EBIn ⊗
a∑

i=1

(Ii − Zi ), (7)

where In,a denote the identity operators for n- and a-qubit sub-
space, and Ii and Zi denote the identity and Pauli-Z operators
on the ith ancilla qubit, and EB is an energy constant much
larger than the (n + a)th excited-state eigenenergy. The first
term of the target Hamiltonian corresponds to the problem
Hamiltonian on the n-qubit system, and the second term cor-
responds to the static energy bias EB applied to the ancilla
qubits. If the energy bias EB is larger than the eigenenergy
of the (n + a)th excited eigenstate of the problem Hamilto-
nian, then the ith excited eigenstate of the total Hamiltonian
becomes

|ψ i〉 = |ψ i
n〉 ⊗ |0〉⊗a , (8)

where |ψ i
n〉 denotes the ith excited eigenstate of the n-qubit

Hamiltonian Hn. Note that such a method does not disturb
the low-lying eigenstates or eigenenergies of the problem
Hamiltonian. Therefore, by running SVQS with n data qubits
and a ancilla qubit, we can search up to the (n + a)th excited
state of the n-qubit Hamiltonian.

The second extension is controlled-SVQS. By replacing
the phase gates in the quantum circuits drawn in Fig. 1 with
controlled phase gates, the subspace time evolution obtained
with SVQS can easily be extended to the controlled subspace
time evolution. Simulation of the controlled time evolution is
useful for calculating the generalized Green functions [38,39],
out-of-time-order correlations [40], and Loschmidt echo sig-
nals [41].

III. EXPERIMENT

A. System

Here, we demonstrate SVQS using two superconducting
qubits (Q0 and Q1) capacitively coupled with each other. The
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TABLE I. Parameters of the two superconducting transmon
qubits (Q0 and Q1) used in the experiments: the qubit frequency ωq,
anharmonicity α, relaxation time T1, and echo dephasing time T echo

2 .

ωq/2π (GHz) α/2π (MHz) T1 (μs) T echo
2 (μs)

Q0 8.209 −380 4.3 8.9
Q1 8.965 −410 4.6 6.5

qubits are a part of a 16-qubit device [42]. The parameters of
the qubits are summarized in Table I. The static ZZ interaction
strength between the qubits is −230 kHz.

We calibrate and implement single-qubit gates,
RZ (θ ) = e−i θ

2 Z and RX (π/2) = e−i π
4 X , and a two-qubit gate

RZX (π/4) = e−i π
8 ZX . The RZ (θ ) gates are implemented

with the virtual Z gates [37]. The RX (π/2) gates are
implemented with the shaped microwave pulse [43] with
the total duration of 13.9 ns for Q0 and 14.1 ns for Q1. The
averaged gate fidelities of the single-qubit Clifford gates are
0.9974(4) and 0.9958(5) via the simultaneous randomized
benchmarking [44], where the coherence limits of both
qubits are 0.998. The RZX (π/4) gates are implemented with
a cross-resonance gate [45,46] with the total duration of
73.3 ns. The averaged gate fidelity of the RZX (π/2) gate is
determined to be 0.963(4) via the interleaved randomized
benchmarking [47], where the coherence limit is 0.961. The
experimental results of the randomized benchmarking are
shown in Fig. 2.

The multiplexed single-shot dispersive readout of the
qubits [49,50] are performed via readout resonators at 10.119
and 10.341 GHz for Q0 and Q1, respectively, and a common
Purcell filter [51,52]. The readout signal is amplified with an
impedance-matched Josephson parametric amplifier [53,54].
The thermal populations of the qubits in equilibrium are
7.84% and 11.72%. The assignment fidelities of the single-
shot readout are 0.946 and 0.922, respectively.

B. Subspace-search variational quantum eigensolver

First, we demonstrate SSVQE. The Hamiltonian of a hy-
drogen molecule in STO-3G basis can be converted into a
two-qubit Hamiltonian [55] as follows:

H = c0II + c1ZI + c2IZ + c3XX + c4YY + c5ZZ, (9)

where the coefficients ci are calculated with open-
fermion [56] and Psi4 [57]. In the following experiments, we
use a minimal clique cover [58–62] to reduce the number of
experiments required for the evaluation of the expectation
values of the Hamiltonian.

In the optimization protocol, we employ the hardware-
efficient ansatz U (θ) with 18 parameters shown in Fig. 3(a).
We optimize the parameterized quantum circuit on our exper-
imental system to incorporate the system imperfection with
the initial parameters given by the numerical simulation. We
prepare the initial states |ϕ j〉 by thermalizing the qubits to the
environment at a sufficiently low temperature (∼10 mK) for
a sufficiently longer time than the energy relaxation time and
then performing an X-gate on the jth qubit. Then, we operate
the parameterized quantum circuit and evaluate the energy

FIG. 2. Experimental results of (a) the single-qubit simultaneous
randomized benchmarking and (b) the two-qubit interleaved random-
ized benchmarking. To align the execution times of all the Clifford
gates, the single-qubit and two-qubit Clifford gates are constructed
based on Euler decomposition [37] and KAK decomposition [48], re-
spectively. Therefore, each single-qubit Clifford gate is implemented
with two RX (π/2) and three RZ (θ ) gates, and each two-qubit Clifford
gate is implemented with 28 RX (π/2), 27 RZ (θ ), and 6 RZX (π/4)
gates except the ones for the interleaved RZX (π/2) gates. We take
10 random circuits for each Clifford sequence length and have 104

sampling of measurements for each random circuit to obtain a single
data point. The ground-state populations of each qubit p0 and two
qubits p00 are fitted to the exponential decay.

expectation values for the final states. Finally, we calculate
the cost function by taking the linear sum of the energy ex-
pectation values for the final states with the weighting factors
ω0 = 2 and ω1 = 1.

To minimize the effect of imperfections in the circuit, we
use gate-error mitigation [23,63,64] and measurement-error
mitigation [64–67]. The former is a method to estimate the
measurement results for the ideal case without gate errors
by the linear extrapolation of experimental results obtained
for different gate execution times. The latter is a method
to estimate the ideal measurement results in the absence of
measurement errors by using a predetermined measurement
confusion matrix. We run the experimental SSVQE with 36
iterations. Both in the numerical and experimental SSVQEs,
we adopt the sequential minimal optimization method [68] as
the optimizer.

Figure 4 shows the experimental results of the SSVQE
for different atomic distances, where the evaluated eigenener-
gies match well to the theoretical values within ±0.1 h/Ha.
The details of the optimization procedures are shown in
Appendix A.
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FIG. 3. (a) Hardware efficient ansatz used in the SSVQE experi-
ments and (b) its Hermitian conjugate used in the SVQS experiments,
where U3(θ) (θ = {θi}; i = 1, . . . , 6) represents a parameterized
single-qubit rotation implemented with two RX (π/2) gates and
three parameterized RZ gates [37]. Each θi consists of three phase
parameters.

C. Subspace variational quantum simulator

Next, we demonstrate SVQS. In the following experi-
ments, the atomic distance is set to 1.0 Å, for simplicity.

As discussed in Sec. II B, the subspace time-evolution
operator for the low-lying eigensubspace S‖ can be systemat-
ically implemented with the quantum circuit drawn in Fig. 1,
where U (θ∗) obtained from SSVQE [Fig. 3(a)] and its Hermi-
tian conjugate U †(θ∗) [Fig. 3(b)] are used.
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FIG. 4. SSVQE for different atomic distances. Panels (a) and
(b) show the eigenergies and residual errors at the convergence
points, respectively. The blue and orange dots represent the
experimentally obtained ground and first-excited eigenenergies, re-
spectively. The error bars indicate the standard deviation of the
eigenenergies, where the shot number is 104. In panel (a), the black
dashed lines depict the theoretical eigenenergies of the hydrogen
molecule.

We perform quantum process tomography [69] for the sub-
space time-evolution operators mimicked by SVQS, where
we apply the gate-error mitigation and the measurement-
error mitigation. To estimate the quantum processes, we use
Quara [70], a software package for quantum characterization.
In Quara, quantum processes are estimated with the maxi-
mum likelihood method under a predetermined measurement
confusion matrix. We sweep the evolution time from 0 to
5.4 h/Ha, which roughly corresponds to one cycle of the
time evolution, T = 2π/(E1 − E0), in the low-lying eigen-
subspace.

To properly evaluate the performance of the time evolution
mimicked by SVQS, we introduce the subspace Pauli transfer
matrix (SPTM) and the subspace process infidelity (SPIF)
as a representation and error measure of the quantum pro-
cesses in a subspace, respectively. SPTM and SPIF are natural
derivatives of Pauli transfer matrix and process infidelity used
for quantum processes in the whole space, respectively. The
details of the definition of SPTM and SPIF are described
in Appendix B. Figure 5 shows the experimental results of
SVQS. Figure 5(a) shows the ideal and experimental SPTMs
of the subspace-time evolution operators mimicked by SVQS
while sweeping the evolution time. The SPTMs show that the
time evolution mimicked by SVQS corresponds to the sub-
space Pauli-Z rotation and is in good agreement with the ideal
time evolution. Figure 5(b) shows the experimental SPIF of
the subspace-time evolution operators. The SPIF takes values
of 0.011–0.104. In the two-dimensional low-lying eigensub-
space, subspace time evolution corresponds to a rotating
operation in SO(3). A detailed analysis in Appendix C reveals
the subspace time evolution corresponding to a 1.1% speed
error and a 19.3◦ axis error in the rotating operation.

IV. CONCLUSION

In this paper, we proposed an efficient algorithm, subspace
variational quantum simulator (SVQS), to simulate quantum
dynamics on a NISQ device. The circuit depth required in
SVQS is at most twice as large as that of the subspace-search
variational quantum eigensolver (SSVQE) on the same de-
vice. Recently, there have been proposals to implement VQE
for larger-scale quantum systems [71–75]. It is expected that
SVQS can also be implemented for larger-scale systems.

We experimentally demonstrated SVQS using a system
consisting of two superconducting qubits. Even with the
limited device performance, we approximated the quantum
dynamics in the two-dimensional low-lying eigensubspace
of a hydrogen molecule with subspace process fidelity of
0.896–0.989. This suggests that our proposal is effective for
experiments on NISQ devices because of the modest require-
ments for experimental devices.

In SVQS, we apply the parameterized quantum cir-
cuit obtained with SSVQE as a map between a low-lying
eigensubspace and a computational subspace and implement
subspace time evolution as phase rotations on the eigenbasis.
The relationship between SSVQE, which gives the desired
map, and SVQS, which utilizes the map, is similar to the rela-
tionship between quantum phase estimation [76–78] and HHL
algorithm [79]. The similarity suggests a possible path toward
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FIG. 5. SVQS for the evolution time from 0 to 5.4 h/Ha. (a) Ideal and experimental subspace Pauli transfer matrices, Ride (top) and Rexp

(bottom), of the subspace time-evolution operators in the low-lying eigensubspace S‖ for the evolution time t = 0 to 5.4 h/Ha. (b) Subspace
process infidelity Esub between the ideal and experimental subspace time-evolution operators. The details are found in Appendix C.

hybrid quantum–classical algorithms that can be applied to a
wider range of problems including linear equations.

The data that support the findings of this study are available
from the corresponding authors upon reasonable request.

The code that is deemed central to the conclusions are
available from the corresponding author upon reasonable re-
quest.
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APPENDIX A: DETAILED ANALYSIS
OF EXPERIMENTAL RESULTS IN SSVQE

In SSVQE, we use the gate-error and measurement-error
mitigations. To mitigate gate errors, we scale the effective gate

time by a factor of 1, 1.5, and 2, respectively, by adding a nec-
essary delay time to both ends of a control microwave pulse
for RX (π/2) and RZX (π/4). We conduct experiments for the
three cases. Then, we linearly extrapolate the experimental
results to the scale factor of 0 and obtained the mitigated
results. Figure 6 shows the experimental results with the gate-
error mitigation at the convergence point in SSVQE. The
linear extrapolation for the evaluated ground-state energies
works well, and the mitigated ground-state energies match
theoretical values within the standard deviation. In contrast,
except for the case with the atomic distance of 0.1 Å, the
evaluated first-excited-state energies are not much affected by
the insertion of the delay time. The mitigated first-excited-
state energies also deviate slightly from the theoretical values.
We guess that the deviation of the first-excited-state ener-
gies from the theoretical values originates in a bottleneck for
the convergence other than the incoherent error during the
pulse sequences. As shown in Fig. 4, while the ground-state
energies are well isolated from the other eigenenergies, the
first-excited-state energies are close to the second-excited-
state energies. Only in the case with the atomic distance of
0.1 Å, the first-excited-state energy is sufficiently isolated
from the second-excited-state energy, and thus the gate-error
mitigation works well. We conclude that the proximity of the
first and the second-excited-state energies slows the conver-
gence of SSVQE, resulting in a slight contamination of the
second excited state in the final states.

To mitigate the measurement error, we use a predeter-
mined measurement confusion matrix C. We estimate the
true histogram x which minimizes |y − Cx|2 for the measure-
ment histogram y obtained in the experiments. Here, we used
SLSQP [80] as an optimizer for the minimization.

Figure 7 shows the experimental traces of the residual
errors in SSVQE converging to the low-lying eigenenergies
for different atomic distances, where the residual errors almost
converge after 36 iterations. Figures 7(a) and 7(b) show the re-
sults with and without the gate-error mitigation, respectively.
In the mitigated optimization traces, some of the evaluated
ground-state energies are less than the true ground-state ener-
gies, which is due to the linear extrapolation in the gate-error
mitigation. With the averaging of 104 times, the shot-noise of
each Pauli observable is at most (1/

√
2)×10−2 ∼ 0.007. As
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FIG. 6. Gate-error mitigation results of SSVQE after convergence for different atomic distances d . The blue and orange dots represent
the residual errors of the ground and first-excited energies, respectively. The horizontal axis represents the scale factor corresponding to the
additional delay time for gate-error mitigation. The error bars indicate the standard deviation of the eigenenergies, where the shot number
is 104.

shown in Fig. 6, the larger error bars mainly arise from the
fitting in the linear extrapolation. We also find that the error
bar for d � 0.5 Å is larger on average than that for d � 1.0 Å.
As mentioned above, the larger error here is mainly due to the
fact that the experimental results obtained for the gate-error
mitigation no longer follow the linear model, suggesting that
the nature of the error in the ansatz circuit has changed.

As shown in Fig. 4, there is a structural transition from a
spin singlet to triplet at d ∼ 0.6 Å, where the first and second
excited energies intersect with each other. Here, we summa-
rize coefficients of the Hamiltonian for hydrogen molecule at
each atomic distance in Table II. Before and after the transi-
tion, low-lying eigenstates differ from each other as follows:

|E0〉d�0.5 Å ∼ |01〉 , (A1)

|E1〉d�0.5 Å ∼ |00〉 , (A2)

|E0〉d�1.0 Å ∼ |01〉 , (A3)

|E1〉d�1.0 Å ∼ |10〉 . (A4)

Therefore, the maps to be implemented with SSVQE also
differ as follows:

Ud�0.5 Å ∼ |10〉 〈10| + eiδ1 |00〉 〈01| + U ⊥
1 , (A5)

Ud�1.0 Å ∼ |10〉 〈10| + eiδ2 |01〉 〈01| + U ⊥
2 , (A6)

where δ1,2 and U ⊥
1,2 are unknown phase factors and unknown

maps between the complementary subspaces, respectively.
While Ud�1.0 Å is an identity operator, Ud�0.5 Å is an entangling
operation that rotates a qubit according to the state of the other
qubit. Therefore, the two RZX (π/4) gates contained in the
ansatz circuit need to interfere with each other constructively
in the former case and destructively in the latter case. The
noise of the ansatz circuit is mainly distributed to the two
RZX (π/4) gates, which account for 147 ns of the total duration
of the ansatz circuit of 213 ns. Therefore, the change in the
constraints imposed on the interference of the two RZX (π/4)
gates can significantly change the nature of the circuit noise.

FIG. 7. Optimization traces in SSVQE for different atomic distances d (a) with and (b) without the gate-error mitigation. The raw data
in panel (b) are taken at the scale factor of unity. The blue and orange dots represent the residual errors of the ground- and first-excited-state
energies, respectively. The error bars indicate the standard deviation of the eigenenergies, where the shot number is 104.
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TABLE II. List of coefficients {ci}5
i=0 of the Hamiltonian for hydrogen molecule at each atomic distance d .

d (Å) c0 (Ha) c1 (Ha) c2 (Ha) c3 (Ha) c4 (Ha) c5 (Ha)

0.1 5.46 0.60 −1.45 0.69 0.08 0.08
0.5 0.75 0.43 −0.74 0.62 0.08 0.08
1.0 −0.01 0.27 −0.26 0.52 0.10 0.10
1.5 −0.21 0.19 −0.07 0.44 0.11 0.11
2.0 −0.27 0.13 0.01 0.39 0.13 0.13
2.5 −0.30 0.11 0.05 0.35 0.14 0.14

APPENDIX B: SUBSPACE PROCESS FIDELITY
AND SUBSPACE PAULI TRANSFER MATRIX

Process fidelity is a typical measure of the closeness be-
tween two quantum processes. The definition of the process
fidelity is given as follows:

F (U ,V ) ≡ Tr[S†
USV ]

d2
, (B1)

where d is the dimension of the quantum processes, and SU ,V
is the superoperator representation on the maps U ,V , respec-
tively. In this subsection, we introduce a new fidelity measure
for quantum processes in subspaces, called subspace process
fidelity. The subspace process fidelity is defined as follows:

FDi,Do (U ,V ) ≡ F (Do ◦ U ◦ Di,Do ◦ V ◦ Di ), (B2)

where Di,o are the relaxation operators for the input and
output subspaces, respectively. To evaluate the subspace time
evolution in the low-lying eigensubspace, we introduce the
subspace perfect depolarizing channel D⊥ as follows:

D⊥(ρ) = P‖(ρ) + Tr[P⊥(ρ)]

d⊥
I⊥, (B3)

where P‖,⊥ are the projection operators on the low-lying
eigensubspace and its complementary subspace, respectively,
with the dimension d⊥ and the identity operator I⊥ on the

complementary subspace. The subspace process fidelity in
the low-lying eigensubspace is calculated as FD⊥,D⊥ (U ,V ).
The subspace process infidelity in the low-lying eigensub-
space is also calculated as 1 − FD⊥,D⊥ (U ,V ). In addition, we
introduce the subspace Pauli transfer matrix representation
to visualize the properties of the quantum processes in the
subspace defined as follows:

R‖
i j = Tr[σ ‖

i T (t )σ ‖
j ]

d‖
, (B4)

where R‖
i j is the (i, j) element of the subspace Pauli trans-

fer matrix, and σ
‖
i is the ith subspace Pauli operator. For

the two-dimensional low-lying eigensubspace of a hydrogen
molecule, the subspace Pauli operators are defined as follows:

σ
‖
0 = |E0〉 〈E0| + |E1〉 〈E1| , (B5)

σ
‖
1 = |E1〉 〈E0| + |E0〉 〈E1| , (B6)

σ
‖
2 = i(|E1〉 〈E0| − |E0〉 〈E1|), (B7)

σ
‖
3 = |E0〉 〈E0| − |E1〉 〈E1| , (B8)

and d‖ = 2 is the dimension of the low-lying eigensubspace.
Note that the interaction between the target subspace and the
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FIG. 8. Experimentally obtained Pauli transfer matrices of the time-evolution operator of a hydrogen molecule mimicked by SVQS for
different evolution times t .
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FIG. 9. Numerically obtained Pauli transfer matrices of the time-evolution operator of a hydrogen molecule for different evolution times t .

complementary subspace is regarded as the leakage, and the
obtained subspace Pauli transfer matrix generally does not
preserve the trace of the system. In the low-lying eigensub-
space, the Hamiltonian of a hydrogen molecule is given as
follows:

H‖ = E0 |E0〉 〈E0| + E1 |E1〉 〈E1| (B9)

= E0 + E1

2
σ

‖
0 + E0 − E1

2
σ

‖
3 . (B10)

Therefore, the subspace time-evolution operator corresponds
to a phase rotation gate in the low-lying eigensubspace as
follows:

T ‖(t ) = exp

{
−i

(
E0 − E1

2
t

)
σ

‖
3

}
. (B11)

APPENDIX C: DETAILED ANALYSIS OF EXPERIMENTAL
RESULTS IN SVQS

The experimentally obtained Pauli transfer matrices of the
subspace time-evolution operator mimicked by SVQS are
shown in Fig. 8. The Pauli transfer matrices are estimated
from the gate-error-mitigated results with the maximum like-
lihood estimation using the predetermined initial thermal
populations and measurement confusion matrix, which is sup-
ported by a quantum characterization toolkit, Quara [70].
Figure 9 shows the theoretical Pauli transfer matrices of
the ideal time-evolution operator. At first glance, the Pauli

transfer matrices shown in Figs. 8 and 9 look totally dif-
ferent. This is because SVQS mimics only the subspace
time-evolution operator within the low-lying eigensubspace
S‖. Therefore, for a proper comparison, we extract the sub-
space Pauli transfer matrices of the time-evolution operators
in the low-lying eigensubspace defined in Eq. (B4). Figure 5
shows the numerically and experimentally obtained subspace
Pauli transfer matrices of the time-evolution operator in the
low-lying eigensubspace S‖ for different evolution times t .
From the subspace Pauli transfer matrices, we can estimate the
Hamiltonian mimicked by SVQS. Here, we use the dynamics
generator analysis [81] to extract unitary components from
the quantum processes. For the extracted unitary components,
we numerically search for the approximate Hamiltonian of
subspace time-evolution operator mimicked by SVQS with
Powell method [82]. The ideal and fitted Hamiltonian in the
low-lying eigensubspace is written as follows:

H‖
ideal ∼ +0.00σ

‖
1 + 0.00σ

‖
2 − 0.57σ

‖
3 , (C1)

H‖
fit ∼ −0.19σ

‖
1 + 0.01σ

‖
2 − 0.54σ

‖
3 . (C2)

The fitted Hamiltonian approximates the unitary components
of the subspace time evolution with a process fidelity of
0.998(1). From the fitted Hamiltonian, we find that the time
evolution mimicked by SVQS has a rotation-speed error of
1.1% and a rotation-axis error of 19.3◦.
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