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Quantum neural networks form one pillar of the emergent field of quantum machine learning. Here quantum
generalizations of classical networks realizing associative memories—capable of retrieving patterns, or mem-
ories, from corrupted initial states—have been proposed. It is a challenging open problem to analyze quantum
associative memories with an extensive number of patterns and to determine the maximal number of patterns the
quantum networks can reliably store, i.e., their storage capacity. In this work, we propose and explore a general
method for evaluating the maximal storage capacity of quantum neural network models. By generalizing what is
known as Gardner’s approach in the classical realm, we exploit the theory of classical spin glasses for deriving
the optimal storage capacity of quantum networks with quenched pattern variables. As an example, we apply
our method to an open-system quantum associative memory formed of interacting spin-1/2 particles realizing
coupled artificial neurons. The system undergoes a Markovian time evolution resulting from a dissipative
retrieval dynamics that competes with a coherent quantum dynamics. We map out the nonequilibrium phase
diagram and study the effect of temperature and Hamiltonian dynamics on the storage capacity. Our method
opens an avenue for a systematic characterization of the storage capacity of quantum associative memories.
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I. INTRODUCTION

Neural networks (NNs) constitute a powerful machine-
learning paradigm to solve computationally demanding
tasks [1–4], ranging from pattern recognition to deep learning.
Motivated by the advancements in quantum information and
quantum many-body systems there has been an increasing
interest in designing and characterizing quantum NNs [5],
which form a backbone of quantum machine learning [6].
Research efforts to harness the potential power of quantum
NNs are focusing on quantum algorithms and quantum circuit
settings [7–17], e.g., through so-called feed-forward quan-
tum NNs, as well as on many-body physics and condensed
matter scenarios. For instance, suitably tailored spin-boson
systems have been analyzed for the accomplishment of NNs
tasks [18–24].

Our work focuses on Hopfield-type NNs [25] generalized
via open quantum systems [26,27]. Classical Hopfield-type
NNs can implement associative memories and belong to the
class of attractor NNs, which can be modeled as classical spin
systems subject to thermal fluctuations. The retrieval mecha-
nism follows a classical nonequilibrium dynamics, memories
correspond to stationary solutions of a stochastic dynamics,

*l.boedeker@fz-juelich.de

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

and patterns are written in the interconnections among neu-
rons via proper learning prescriptions [28].

A key figure of merit of Hopfield-type NNs is the storage
capacity, α ≡ p/N , quantifying the number p of patterns that
can be stored in a network of N constituents. The storage ca-
pacity varies, depending on how the interconnections among
neurons are parametrized in terms of the patterns, i.e., depend-
ing on the chosen learning rule. For example, adopting the
widely known Hebb’s prescription and random patterns, the
NN can store on the order of 0.138N memories [29]; for mod-
els with very correlated patterns, some prescriptions permit
storing order of N2/ ln(N2) patterns. The problem of eval-
uating the optimal storage capacity has been formulated by
Gardner and coworkers in a series of seminal works [30–33]
for deterministic dynamics and subsequently generalized for
stochastic dynamics [34,35]. The paradigm, often referred to
as Gardner’s program, consists in requiring a set of patterns
to be stationary solutions of the dynamics, while the learning
rule is left as free parameter. The quantity of interest is the
typical volume of parameter space fulfilling the condition of
retrieval. This represents a statistical mechanics model that
can be tackled via, e.g., spin glass techniques. By combining
Gardner’s program with the general framework of quantum
maps [36], recent findings formally show the possibility of
a quantum advantage in the storage capacity of quantum NNs
over their classical counterparts. However, applications to spe-
cific models do not provide conclusive results with regard to
enhanced quantum storage advantage [37–39], and a general
method to derive the storage capacity of concrete instances of
quantum Hopfield-type NN families is lacking. In this paper
we introduce such a technique: In the spirit of Gardner’s
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program, we require the quantum dynamical evolutions to
display a number of stationary solutions, or stable quantum
memories, without specifying any learning rule. The typi-
cal fractional volume of quantum evolutions fulfilling such
a constraint represents a generalized partition function. This
enables us to map the evaluation of the optimal storage ca-
pacity of a quantum NN to a classical statistical mechanics
model. We apply this method to an open quantum spin-based
associative memory, introduced in Refs. [26,27], and analyzed
in the limit of vanishing storage capacity only. The dynamics
of the model is governed by a quantum master equation, where
the classical out-of-equilibrium dynamics is embedded via
the dissipative contribution, while a coherent term permits to
account for quantum effects. We establish for the first time,
as far as we know, that robust storage of an extensive number
of patterns is possible under Hamiltonian perturbations and
furthermore consistently recover the classical NN behavior in
absence of coherent dynamics. Our method can be further ex-
ploited for (i) studying the optimal storage capacity of a wider
class of QNN models, some of them potentially revealing a
quantum advantage, or (ii) selecting optimal parameters for
maximizing storage capacity of quantum associative mem-
ories that have been proposed for near-term experimental
realizations [40].

II. THE METHOD: GENERALIZED
GARDNER’S PROGRAM

Our generalization of the Gardner’s program to open quan-
tum evolutions representing associative memories allows one
to determine the maximal asymptotic number of stationary
states, or quantum memories, which can be stored, irrespec-
tive of the concrete set of model parameters, here representing
the learning rule. To do so, we map the constraints for the
desired quantum memories to be stationary states into an
auxiliary statistical mechanics model, the learning rule play-
ing the role of degrees of freedom. We consider a quantum
system of N components described by a set of local op-
erators x = (x1, . . . , xN ), whose discrete time evolution is
given by x(t + dt ) = f θ[x(t )]. The one-step dynamical gen-
erator, f θ[·], is specified by a set of parameters θ. In the
spirit of Gardner’s program, we want to determine the max-
imal storage capacity αc, i.e., the maximum value of the
number p of stationary states of the above-defined dynam-
ical generator. First, we identify a set of order parameters
{Oμ}μ=1,...,p, defined as expectation values of some macro-
scopic operators, Oμ = 〈gμ(x)〉. Here gμ identifies a generic
function, which allows one to pass from the microscopic de-
scription in terms of N local operators to some macroscopic
ones, acting on an extensive subset of the N components.
It is chosen such that Oμ ∈ [0, 1], with Oμ �= 0 signaling
the (partial) storage of the μth pattern. Second, we consider
the case where a finite number, say, r, of additional scalar
quantities is needed to derive a closed set of equations of
motion of the order parameters. Under this assumption, the
evolution of the order parameter Oμ = (Oμ

1 , . . . , Oμ
r ) reads

Oμ(t + dt ) = 〈gμ( f θ[x(t )])〉 ≈ Fμ

θ
[Oμ(t )] for μ = 1, . . . , p.

The stationary states Oμ,∗ are then determined by the sta-
ble fixed-point solutions (denoted by ∗) of the map Fμ

θ
[·],

satisfying

Oμ,∗ = Fμ

θ
[Oμ,∗],

∣∣∂Fμ

θ

∂Oμ

∣∣
|Oμ=Oμ,∗ < 1, (1)

where the last condition guarantees stability. A given θ-
parametrized model admits p stable stationary states if at least
one fixed-point solution fulfills Oμ � ε > 0, ∀μ, namely if
the number of solutions of Eqs. (1), with a value larger than ε,

N μ

θ
=
∫ 1

ε

d pO
δ
(
Oμ − Fμ

θ
[O]
)

∣∣1 − ∂Fμ

θ

∂Oμ

∣∣−1
�

(
1 −

∣∣∣∣∂Fμ

θ

∂Oμ

∣∣∣∣
)

, (2)

is nonvanishing, ∀μ. In Eq. (2), we introduced the step func-
tion �(x) = 1, ∀x � 0, and 0 otherwise. We want to derive
the maximum number of these solutions, regardless of a given
θ parametrization. Thus, we consider the typical fractional
volume of the space of the parameters θ fulfilling the condition
�μN μ

θ
�= 0. For large storage capacity values, such a volume

can be written as

V (ε) =
∫

D dθ �μ�
(
N μ

θ

)∫
D dθ

, (3)

where D identifies the space of the parameters θ. Thus, eval-
uation of the optimal storage capacity reduces to calculating
V (ε). As illustrated in Fig. 1(a), as the number of stationary
solutions approaches the maximum value αcN , the volume
shrinks, implying that fewer and fewer typical parametriza-
tions θ yield a finite number of solutions �μN μ

θ �= 0. The
point of a vanishing volume signals that αc has been reached,
meaning that there are no longer typical parametrizations θ

fulfilling the stationarity condition for all p patterns.

III. OPEN QUANTUM HOPFIELD MODEL

We will now apply this method to a quantum Hopfield-type
NN model, of which we outline here the main properties. The
classical Hopfield NN is described [28,41] as an Ising model
exhibiting all-to-all connectivity of N binary spins, {si =
±1}N

i=1, according to the energy E{si} = − 1
2N

∑N
i, j Ji jsis j .

Here Ji j represents the coupling matrix encoding a set of
p binary configurations {ξμ

i = ±1}N,p
i=1,μ=1, which correspond

to the patterns. Different learning prescriptions can be con-
structed in such a way that patterns represent minima of the
energy function E . The storage mechanism is accomplished
through a single spin-flip stochastic dynamics, or Glauber
process, on considering the NN in contact with a thermal bath
at temperature T = 1/β, with kB = 1.

To generalize the Hopfield NN to the quantum realm, as
illustrated by Fig. 1(b), we replace the N Ising spins with
an open quantum spin-1/2 system, described by Pauli op-
erators σ a

i , a = x, y, z, ∀i = 1, . . . , N . The system state ρ

evolves according to a Markovian master equation in Lind-
blad form [42], ρ̇ = LQ[ρ] + LHopf [ρ]. Here LHopf induces a
purely dissipative spin-flip dynamics, which stems from the
classical Glauber process, and is given by the jump opera-
tors [26,27],


n,± = fn,±σ±
n , fn,± = exp (±β/2�En)√

2 cosh (β�En)
. (4)
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FIG. 1. (a) Schematics of maximal storage capacity. The first row
represents the volume of NNs [Eq. (3)] admitting a set of patterns
as stable stationary states. This volume is evaluated with respect
to the phase space of the model parameters θ, corresponding to
the learning rule. On increasing the number of stored patterns, the
volume shrinks, as the set of suited models looses degeneracy. In
Hopfield-type NNs, patterns represent minima of an energy land-
scape, as depicted in the second row. Pattern retrieval is generically
captured by a low-temperature Glauber dynamics and works below
the maximal capacity αc. Conversely, above αc, typical learning
rules allowing the retrieval of any of the p patterns cease to exist.
(b) The open quantum Hopfield NN of spin 1/2-particles undergoing
a Markovian quantum dynamics: Coherent dynamics, induced by a
transverse field of strength �, competes with dissipative spin-flip
dynamics with operator-valued rates 
i,± [Eq. (4)]. These depend on
the spin-spin coupling matrix Ji j and encode the learning rule, i.e.,
the model parametrization θk in (a).

The spin-1/2 ladder operators σ±
n account for single spin

flips, and operator-valued rates fn,± are determined by the
energy difference induced by a single flip. Note that the en-
ergy function of the Hopfield NN becomes an operator, E =

1
2
√

N

∑
i j Ji jσ

z
i σ z

j , as does the energy difference for flipping

the nth spin, �En = 1√
N

∑
j �=n Jn jσ

z
j . With these definitions,

Hopfield-type NN dynamics is thus governed by the generator

LHopf [·] =
∑

n,τ=±

n,τ · 
†

n,τ − 1

2
{
†

n,τ
n,τ , ·}, (5)

so that at low values of both temperature T and capacity α,
depending on the initial configuration, the system is able to
thermally relax into either of the patterns, which play the
role of stationary states. Quantum effects can be included
by coherent Hamiltonian dynamics LQ[·] = −i [H, ·], where
we choose H = �

∑N
i σ x

i , corresponding to a homogeneous
transverse field. This dynamical evolution is designed so as to
compete with the dissipative dynamics, which can lead the

system into one of the pattern configurations, whereas the
quantum drive permanently rotates the system out of it.

A. Dynamics of macroscopic overlap operators

The retrieval of patterns is quantified by the finite value
assumed by the macroscopic overlaps between the spin con-
figuration and the patterns, Mμ

a = 1
N

∑N
i ξ

μ
i σ a

i , a = x, y, z.
A finite set of closed equations of motion (EoMs) for the
overlap operators Mμ

a can be derived by applying some ap-
proximations that we outline here, leaving the details in
Appendix A. Proceeding similarly to Ref. [35], we employ (i)
a mean-field approximation, 〈Mμ

a Mν
b 〉 ≈ 〈Mμ

a 〉 〈Mν
b 〉, allowing

us to focus on evolution of expectation values of operators
only. For a lighter notation we omit the bracket 〈·〉, as it
is understood that from now on we deal with expectation
values only. We restrict our analysis (ii) to a regime of high
overlap along the z direction, i.e., 〈Mμ

z 〉 ≈ 1, and we assume
(iii) a homogeneous distribution of the misalignment between
patterns and spins, i.e., 〈σ z

i 〉 = ξ
μ
i 〈Mμ

z 〉. Last, for the inter-
nal field, or local energy, of the pattern configurations, hμ

i =
ξ

μ
i /

√
N
∑

j �=i Ji jξ
μ
j , we employ (iv) a spatial homogeneity

approximation, assuming that hi does not depend strongly on
the site index, hμ

i ≈ 1
N

∑
j hμ

j . Under these assumptions, we
obtain the closed set of EoMs,

Ṁμ
z = −Mμ

z + 1

N

∑
i

tanh
(
βhμ

i Mμ
z

)+ 2�Mμ
y

Ṁμ
y = −2�Mμ

z − Mμ
y

2

1

N

×
∑

i

{
1 + β2

2

[
1 + Mμ

z tanh
(
βhμ

i Mμ
z

)]

× [
1 − tanh

(
βhμ

i Mμ
z

)2]}
, (6)

with the evolution of Mμ
x completely decoupled (see Ap-

pendix A). The EoMs of the overlaps along z and y are coupled
via �-dependent terms, allowing us to recover the classical
case for vanishing �.

IV. STORAGE CAPACITY OF OPEN QUANTUM
HOPFIELD MODELS

We now compute the maximal capacity αc of the quantum
Hopfield NN, at given temperature T and quantum drive �. To
this end, first, we set the patterns as stable stationary solutions
of the dynamics by requiring a minimal finite value m for the
overlap Mμ

z , applying the general condition (1) to the dynam-
ical map (6). This yields Ṁμ,∗

z = Ṁμ,∗
y = 0, with Mμ,∗

z > m.
The stability of the latter is guaranteed by the Jacobian of the
time derivatives with respect to the overlaps of Eq. (6) being
negative definite. Thus, by Eq. (2), the number of solutions
of a coupling-dependent model equipped with p patterns as
stable stationary configurations reads

N μ =
∫ 1

m
dMμ

z

∫ 1

−1
dMμ

y

δ(Ṁ
μ

)∣∣∣ ∂Ṁμ

∂Mμ

∣∣∣−1 �

(
−∂Ṁ

μ

∂Mμ

)
, (7)
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with μ = 1, . . . , p. The explicit expression of the latter can
be read in Appendix B. To derive the maximum number of
these solutions, regardless of any learning rule, we consider
the typical volume of quantum Hopfield models that can store
p patterns in the space of the couplings Ji j . This volume reads

V =
∫

�i �= j{dJi j}�μN μ �i δ

⎛
⎝∑

j

J2
i j − N

⎞
⎠, (8)

where we enforced a spherical normalization constraint for
the coupling constants, so that the latter are nonextensive in
N , i.e., Ji j = O(1).

The volume defined by Eq. (8) can be viewed as the
partition function of a classical statistical mechanics model,
depending on a given set of p patterns. By taking the latter as
independent and identically distributed random variables, we
introduce disorder in V ({ξμ}). To obtain general statements
on the capacity, we calculate the quenched pattern average of
the volume V = exp(〈〈log(V )〉〉ξ ), where 〈〈·〉〉ξ is the average
over disordered pattern configurations. To deal with the latter,
we employ methods from the classical theory of disordered
systems and spin glasses. In particular, we apply the replica
trick [43], summarizing here the main steps, and leaving the
details in Appendix C. Let us start by considering n copies
of the system, of which the pattern-averaged volume reads
〈〈V n〉〉ξ . Employing the analytical continuation of n to the real

numbers, through the limit n−1 log〈〈V n〉〉 n→0−→ 〈〈log(V )〉〉, we
will then recover V . On performing the pattern average of the
replicated volume V n, we have to evaluate〈〈

exp

⎛
⎝− i√

N

∑
iα

ĥμ,α
i ξ

μ
i

∑
j �=i

Jα
i jξ

μ
j

⎞
⎠〉〉

ξ

=: 〈〈ez〉〉ξ , (9)

where all variables except the patterns are replicated. Here α

denotes the replica index, and ĥμ,α
i is a Lagrange multiplier

enforcing the definition of the local field hμ,α
i . This average

is difficult to perform for non-Gaussian pattern distributions.
For going ahead, we assume to deal with an extremely diluted
network [35,44]: For each spin, we consider a finite num-
ber C of matrix elements Ji j , where C < ln(N ). This means
that, after an appropriate reordering, Ji, j>C = 0 ∀i. Notice
that all normalization factors of affected sums are changed
appropriately as 1/

√
N → 1/

√
C. With this assumption, the

pattern average can be performed in terms of a cumulant
expansion, 〈〈ez〉〉ξ = e

∑∞
k ck , ck being the kth cumulant. One

can show [44] (see also Appendix C) that the pattern average
of the replicated volume reduces to the one of the second
cumulant, which reads

〈〈z2〉〉ξ = − 1

2C

∑
αβi j

ĥμα
i

[
ĥμβ

i Jα
i jJ

β
i j + ĥμβ

j Jα
i jJ

β
ji

]
. (10)

Here an interaction among the replicated systems is induced,
their coupling matrix being referred to as replica matrix.
Correlations among replicas are quantified by the Edwards-
Anderson-like order parameters [43], qαβ

i = 1
C

∑
j Jα

i jJ
β
i j ,

which we assume to be symmetric with respect to replicas,
qαβ

i = qi, ∀α �= β, and to sites qi = q,∀i. The latter assump-
tion is reminiscent of spacial homogeneity of the local energy

FIG. 2. Map of the maximal storage capacity αc in the parameter
space of temperature and quantum drive (T, �) for a fixed minimal
overlap m = 0.95. The lines (solid, dashed, and dotted) in the αc = 0
plane correspond to projections of the maximal Hamiltonian drive
�c(T ) of nonvanishing storage capacity for different minimal over-
lap values (m = 0.95, 0.93, 0.9).

hμ
i . Under these assumptions, the replica limit n → 0 is per-

formed, and 〈〈V n〉〉ξ is given in terms of multiple, nested,
and non-Gaussian integrals of the form

∫
doeNCS(o), where o

identify replicated variables. Finally, we employ the saddle-
point method, according to which, in the thermodynamic
limit,

∫
doeNCS(o) ∼ eNCS(o∗ ), with o∗ given by the saddle-

point equations d
doS(o)|o=o∗ = 0. The details of the calculation

can be found in Appendix D. The resulting pattern-averaged
volume we find reads

V = exp

[
NC

2(1 − q)

(
1 − α

αc(m, T,�)

)]
. (11)

The maximal capacity αc(m, T,�) is reached in the limit of
maximal replica correlation q → 1.

V. RESULTS

We compute the maximal capacity for a fixed minimal
overlap, m, on varying the temperature T and the quantum
drive �. The results are displayed in Fig. 2 for a mini-
mal overlap of m = 0.95. In the classical limit � = 0, at
vanishing temperature we consistently obtain the classical

result originally derived by Gardner [30,33], i.e., αc
T,�→0−−−−→

[
∫ √

2erf−1(m)
0

dt√
2π

e− 1
2 t2

t2]
−1 m→1−−→ 2, and at finite tempera-

tures, the classical results given in Ref. [35], assuming large
overlaps (1 − m) � 1. We find that the maximal storage
capacity decreases monotonically on increasing both temper-
ature and coherent drive, which indicates that both quantities
introduce noise with respect to the pattern retrieval capabil-
ity. For any fixed temperature, there exists a critical value,
�c(T ), at which a discontinuous crossover from a finite to
zero maximal storage capacity takes place. The corresponding
transition lines �c(T ) are displayed in Fig. 2 as projections for
different values of minimal overlap. For large temperatures,
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the maximal capacity decreases as αc ∼ β2, and the criti-
cal Hamiltonian drive is given by a temperature-independent

constant �c(T ) = 1
2

√
1
2 ( 1

m − 1). Finally, for � � 1 and finite
temperature, the Hamiltonian drive has a quadratic per-
turbative effect on classical storage capacity [αc(� = 0) −
αc(�)] ∼ �2; see Appendix E for more details. We have thus
established the robustness of storage capability on perturbing
the retrieval mechanism via a Hamiltonian drive.

VI. CONCLUSIONS AND OUTLOOK

We have introduced a general method to assess the storage
capacity of quantum Hopfield-type NNs and have bench-
marked it by applying it to an open driven-dissipative quantum
NN model, which acts as an associative memory. Our tech-
nique, which relies on an extension of Gardner’s program and
spin-glass techniques for classical NNs to the quantum realm,
is applicable to a wider class of quantum associative mem-
ories [23,37,40]. It will be interesting to identify QNNs that
allow for storage of quantum-mechanical patterns and assess
their maximum storage capacity, as well as to investigate the
potential of many-body systems, such as cavity QED systems
endowing associative memory behavior, which have been pro-
posed for near-term experimental realizations [40]. Moreover,
formulating quantum associative memories capable of storing
quantum states and understanding their storage capacity are
of direct interest to the field of quantum error correction,
in which quantum memories realized via engineered open
quantum many-body systems are under exploration [45].
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APPENDIX A: DERIVATION OF THE MEAN-FIELD
EQUATIONS

In this section we will present the derivation of the
mean-field equations (6) that describe the macroscopic time
evolution of the open quantum Hopfield model introduced in
the main text. The goal is thus to obtain a closed set of EoMs
for the overlap operators defined as

Mμ
a = 1

N

N∑
i

ξ
μ
i σ a

i , a ∈ {x, y, z}. (A1)

This represents the starting point for obtaining the optimal
storage capacity of the model, as shown in the next sections.

Given a Lindblad equation with a Hamiltonian H and a set
of jump operators {
}, the time evolution of any operator O is
given by the following equation of motion:

d

dt
O = i[H, O] +

∑
n,τ

(

†

n,τ O
n,τ − 1

2
{
†

n,τ
n,τ , O}
)

.

(A2)
For the model we consider, the jump operators are chosen so
as to perform a stochastic Hopfield-type dynamics parame-
terized by the couplings Ji j . As shown by Eq. (4), the jumps
operator read


n,± = fn,±σ±
n , fn,± = exp (±β/2�En)√

2 cosh (β�En)
, (A3)

where �En = 1√
N

∑
j �=n Jn jσ

z
j represents the energy differ-

ence for flipping of the nth spin. With these definitions, the
dissipative part of the Lindblad equations induces a spin-flip
dynamics that, stemming from the classical Glauber process,
endows a retrieval dynamics. As described in the main text,
explicitly shown by Eq. (8), and consistently with previous
works [35,44], we take Ji j to obey a spherical normalization.
The Hamiltonian that we consider is given by a transverse
field, H = ��iσ

x
i . With such a choice, the dissipative term

competes with the Hamiltonian one, this possibly giving rise
to quantum effects.

First, we will obtain the equations of motion of all the
degrees of freedom σ a

i , a ∈ {x, y, z} of the open quantum
Hopfield model, with general coupling matrix Ji j . We begin by
treating the equation of motion of the Pauli-z operator of the
ith spin, σ z

i . We note that the latter commutes with the jump
process on any other spin j, i.e., [σ z

i , 
 j,±] = 0 for i �= j,
as 
 j,± depends only on the operators {σ z

k }k �= j and σ±
j . This

simplifies the EoM for σ z
i , which takes the form

d

dt
σ z

i = i�
[
σ x

i , σ z
i

]+
∑
τ=±

exp
[
β
(
τ 1√

N

∑
j �=i Ji jσ

z
j

)]
2 cosh

(
β√
N

∑
j �=i Ji jσ

z
j

) (σ−τ
i σ z

i σ τ
i − 1

2
{σ−τ

i σ τ
i , σ z

i }). (A4)

Now we apply the identity (σ−τ
i σ z

i σ τ
i − 1

2 {σ−τ
i σ τ

i , σ z
i }) = −σ z

i + τ and obtain

d

dt
σ z

i = 2�σ
y
i − σ z

i + tanh

⎛
⎝ β√

N

∑
j �=i

Ji jσ
z
j

⎞
⎠. (A5)
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For any finite �, the set of EoMs for {σ z
i }{i=1,...,N} does not close, and we need to consider also the EoMs for σ

x/y
i or, equivalently,

for σ±
i . We will proceed with the latter and consider the rate operator fn,± introduced by Eq. (A3). This quantity is an operator-

valued rate function that does not commute with σ±
k for i �= k. As σ±

k anticommutes with σ z
k , it holds instead

σ±
k f±

({
σ z

j

}
j �=i

) = f±
(
σ z

1 , σ z
2 , . . . ,−σ z

k , . . . , σ z
i−1, σ

z
i+1, . . . , σ

z
N

)
σ±

k . (A6)

The alteration of the rate fn,± when commuted with σ±
k has an effect of order O(N−1/2) with respect to the original fn,±, and the

altered rate reads

f (k)
n,± = f±

(
σ z

1 , σ z
2 , . . . ,−σ z

k , . . . , σ z
i−1, σ

z
i+1, . . . , σ

z
N

) =
exp

[± β

2
√

N

(∑
j �=i Ji jσ

z
j

)∓ β√
N

Jikσ
z
k

]
√

2 cosh
(

β√
N

∑
j �=i Ji jσ

z
j − 2 β√

N
Jikσ

z
k

) . (A7)

In the thermodynamic limit (TDL), where Jik/
√

N → 0, we can perform a series expansion of f (k)
n,±. At the 0th order the non-

commutativity of Eq. (A7) is effectively omitted, as f (k)
n,± = fn,± + O(N−1/2). The 0th order term contributes to the equation of

motion as ∑
τ,k

f †
k,τ

fk,τ

(
σ−τ

k σ±
i σ τ

k − 1

2

{
σ−τ

k σ τ
k , σ±

i

}) = −1

2
δik

∑
τ

f †
k,τ

fk,τ

{
σ−τ

i σ τ
i , σ±

i

} = −1

2
σ±

i , (A8)

where the identities f †
n,τ = fn,τ and f 2

n,τ + f 2
−τ,i = 1 were employed. Notice that also the identity f 2

n,τ − f 2
−τ,i =

tanh(τ β√
N

∑
j �=i Ji jσ

z
j ) holds. From the above expression, we can see that at 0th order only the diagonal part, k = i, is present.

Moreover, the latter does not contribute to higher-order terms, as [σ±
i , fn,τ ] = 0. Indeed, for what concerns higher orders

n = 1, 2, . . . , in O(N−1/2)n, only off-diagonal terms are nonvanishing, leading to a total contribution that is of order O(1)
for n = 1. Higher-order corrections than this first-order contribution in O(N−1/2) do vanish in the TDL. Following these
observations, we rewrite the dissipator term distinguishing the 0th order, diagonal term from the higher-order, off-diagonal
one, ∑

τ,k

f †
k,τ

σ−τ
k σ±

i σ τ
k fk,τ − 1

2

{
f †
k,τ

fk,τ σ
−τ
k σ τ

k , σ±
i

}

= −1

2
σ±

i +
∑
τ,k �=i

(
fk,τ f (i)

k,τ
− 1

2
f 2
k,τ − 1

2

[
f (i)
k,τ

]2)
σ−τ

k σ τ
k σ±

i = −1

2
σ±

i − 1

4

∑
τ,k �=i

[
fk,τ − f (i)

k,τ

]2
(τσ z

k − 1)σ±
i . (A9)

Now we perform the expansion of f (i)
k,τ

to first order in N−1/2, and the relevant expanded term reads

[
fk,τ − f (i)

k,τ

]2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

τβJki√
N

σ z
i

exp
[
τ

β

2
√

N

(∑
j �=k Jk jσ

z
j

)]
√

2 cosh
(

β√
N

∑
j �=k Jk jσ

z
j

)− βJki√
N

σ z
i tanh

(
β√
N

∑
j �=k

Jk jσ
z
j

)
exp

[
τ

β

2
√

N

(∑
j �=k Jk jσ

z
j

)]
√

2 cosh
(

β√
N

∑
j �=k Jk jσ

z
j

)+O(1/N )

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

2

= β2J2
ki

N

⎡
⎣τ − tanh

⎛
⎝β

∑
j �=k

Jk jσ
z
j

⎞
⎠
⎤
⎦

2

f 2
k,τ + O(N−3/2). (A10)

Here the leading term is of order O(N−1), and there are N − 1 of such off-diagonal contributions in the sum. They jointly
contribute to the same order of the diagonal term. All higher-order terms of the expansion can be neglected in the TDL. On
performing the sum over τ , the dissipator applied to the ladder operators becomes∑

τ,k

f †
k,τ

fk,τ

(
σ−τ

k σ±
i σ τ

k − 1

2

{
σ−τ

k σ τ
k , σ±

i

})

= −1

2
σ±

i − β2

4N
σ±

i

∑
k �=i

J2
ki

{
1 + tanh2

(
β
∑
j �=k

Jk jσ
z
j

)
+ 2σ z

i tanh

(
β
∑
j �=k

Jk jσ
z
j

)
− tanh

(
β
∑
j �=k

Jk jσ
z
j

)

×
[
σ z

i + σ z
i tanh2

(
β
∑
j �=k

Jk jσ
z
j

)
+ 2 tanh

(
β
∑
j �=k

Jk jσ
z
j

)]}

= −σ±
i

2

{
1 + β2

2N

∑
k �=i

J2
ki

[
1 + σ z

i tanh

(
β
∑
j �=k

Jk jσ
z
j

)][
1 − tanh2

(
β
∑
j �=k

Jk jσ
z
j

)]}
=: −σ±

i

2
Ci, (A11)
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where we have introduced the positive semidefinite operator Ci as

Ci = 1 + β2

2N

∑
k �=i

J2
ki

[
1 + σ z

i tanh

(
β
∑
j �=k

Jk jσ
z
j

)][
1 − tanh2

(
β
∑
j �=k

Jk jσ
z
j

)]
� 0. (A12)

We can now write the equations of motion of the 3N Pauli
matrices in a compact from. They read

d

dt
σ z

i (t ) = −σ z
i (t ) + tanh

[
β√
N

∑
j �=i

Ji jσ
z
j (t )

]
+ 2�σ

y
i (t ),

d

dt
σ

y
i (t ) = −Ci

2
σ

y
i (t ) − 2�σ z

i (t ),

d

dt
σ x

i (t ) = −Ci

2
σ x

i (t ), (A13)

where the last equation is completely decoupled from the
others. Moreover, Ci being positive, the expectation values of
all σ x

i (t ) will vanish at long times. For this reason, we will
focus only on the set of EoMs of σ

z,y
i (t ).

From Eq. (A13), we will now construct the EoMs of the
relevant overlap operators, which are defined by Eq. (A1). The
expectation values of the operators Mz/y

μ evolve according to

d

dt

〈
Mμ

z

〉
(t ) = −〈Mμ

z

〉
(t ) + 2�

〈
Mμ

y

〉
(t )

+ 1

N

∑
i

ξ
μ
i

〈
tanh

[
β√
N

∑
j �=i

Ji jσ
z
j (t )

]〉
,

(A14)
d

dt

〈
Mμ

y

〉
(t ) = − 1

2N

∑
i

ξ
μ
i

〈
Ciσ

y
i

〉
(t ) − 2�

〈
Mμ

z

〉
(t ). (A15)

Notice, however, that this set of equations does not close
within the quantities Mz/y

μ . In order to find a set of equa-
tions that is closed, we will perform a series of suited
approximations, adopted also in the classical context [35]. We
begin by considering the mean-field approximation regard-
ing the expectation values of operators, i.e., 〈σ z

j (t )σ z
k (t )〉 ≈

〈σ z
j (t )〉〈σ z

k (t )〉. This leads to〈
tanh

[
β√
N

∑
j �=i

Ji jσ
z
j (t )

]〉
≈ tanh

[
β√
N

∑
j �=i

Ji j
〈
σ z

j (t )
〉]

.

(A16)

As a next step, we are going to restrict the regime of possible
solutions to the case 〈Mν

z (t > t∗)〉 ≈ 1, where the average spin
configuration 〈σ z

i (t )〉 becomes locally close to the νth pattern
in the stationary state, for almost all spins at large times. Here
we refer to t∗ as such a large timescale, and we will not be
interested in the dynamics before this time. Following these
assumptions, we introduce the approximation〈

σ z
i (t > t∗)

〉 ≈ ξν
i

〈
Mν

z

〉
(t > t∗). (A17)

In the following, we omit the expectation value brackets 〈·〉,
and the time argument (t > t∗). Let us introduce the definition
of local energy, hμ

i , of the ith spin while the whole system is

in the pattern configuration μ. It reads

hμ
i := ξ

μ
i√
N

∑
j �=i

Ji jξ
μ
j , (A18)

and it can be understood as a local energy, as its sum over
the spin sites corresponds to the negative classical Hopfield
energy, E{si = ξ

μ
i } = −∑i hμ

i .
Employing these approximations and notation, the

EoMs (A15) can be written as
d

dt
Mμ

z = −Mμ
z + 2�Mμ

y + 1

N

∑
i

tanh
(
βhμ

i Mμ
z

)
,

d

dt
Mμ

y = −2�Mμ
z − 1

2N

∑
i

ξ
μ
i Ciσ

y
i

= −2�Mμ
z − Mμ

y

2
− β2

4N2

∑
i,k �=i

ξ
μ
i σ

y
i J2

ki

× [1 + Mμ
z tanh

(
βhμ

k Mμ
z

)][
1 − tanh2

(
βhμ

k Mμ
z

)]
.

(A19)

Notice that the second line of the above expression does
not close yet with respect to the overlap expectation values.
In order to achieve this, we further employ a homogeneity
approximation with respect to the site dependency of the
local energy. This approximation reads 1/N

∑
i hμ

i ≈ hμ
i ∀i,

meaning that we assume that the local energies in the
pattern configurations have similar values. This assumption
is reasonable for a system exhibiting pattern retrieval, as the
local energies in one of the pattern configuration corresponds
to an energy minima, to which all site contributions are
of equal importance. Thus, we perform the replacement
[1+ Mμ

z tanh(βhμ

k Mμ
z )][1 − tanh2(βhμ

k Mμ
z )] → 1/N

∑
j[1 +

Mμ
z tanh(βhμ

j Mμ
z )][1 − tanh(βhμ

j Mμ
z )2] for every spin. Then,

the spherical normalization of the coupling matrix (8) is used
explicitly. The EoM of the y overlap reads now

d

dt
Mμ

y ≈ −2�Mμ
z − Mμ

y

2
− β2Mμ

y

4N

×
∑

i

[
1 + Mμ

z tanh
(
βhμ

i Mμ
z

)][
1 − tanh2

(
βhμ

i Mμ
z

)]
.

(A20)

In order to write the EoMs in a compact form, we introduce
the functions A and B, depending on the z overlap as well as
on all local energies and temperature,

A(Mμ
z ) = 1

N

∑
i

tanh
(
βhμ

i Mμ
z

)
,

B
(
Mμ

z

) = 1 + β2

2N

∑
i

[
1 + Mμ

z tanh
(
βhμ

i Mμ
z

)]
× [1 − tanh2 (βhμ

i Mμ
z

)]
. (A21)
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Hence, the EoMs read
d

dt
Mμ

z = −Mμ
z + 2�Mμ

y + A
(
Mμ

z

)
,

d

dt
Mμ

y = −2�Mμ
z − 1

2
Mμ

y B
(
Mμ

z

)
. (A22)

It is worth noticing that from the above equation we can
clearly see that the presence of the quantum drive � couples
the EoMs of Mμ

z and Mμ
y . In the limit � = 0, Mμ

y vanishes
and the classical Hopfield dynamics for Mμ

z is recovered.

APPENDIX B: CALCULATION OF THE NUMBER
OF ATTRACTIVE SOLUTIONS

Following the main text, we aim to calculate the number of
fixed-point solutions to the EoMs (6) that further admit a finite
overlap in z direction, i.e., Mμ

z > m. This number of solutions,
N μ, defined by Eq. (7) of the manuscript, reads

N μ =
∫ 1

m
dMμ

z

∫ 1

−1
dMμ

y

δ
(
Ṁ

μ)∣∣ ∂Ṁμ

∂Mμ

∣∣−1 �

(
−∂Ṁ

μ

∂Mμ

)
, (B1)

where Mμ = (Mμ
z , Mμ

y )T . The above equation involves a con-

straint of negative definiteness of the Jakobian, ∂Ṁμ

∂Mμ , of the
EoMs, ensuring the stability of the fixed-point solutions. The
Jakobian is given by the following 2 × 2 matrix

∂Ṁ
μ

∂Mμ =
[

A′ − 1 2�

−2� − B′Mμ
y /2 − 1

2 B

]
, (B2)

and its eigenvalues read

λ± = 1

2

[
A′ − 1 − 1

2
B

±
√(

A′ − 1 + 1

2
B

)2

− 4�B′Mμ
y − 16�2

]
, (B3)

where the notation A′ = ∂Mμ
z
A is used as a shorthand to indi-

cate the derivative by Mμ
z . The negative definiteness condition

becomes therewith

Max Re λ± = Reλ+ < 0. (B4)

First we consider the case of a weak quantum drive, in which
the root is real and the stability condition (B4) can be refor-
mulated in terms of the determinant and trace of the matrix,
as follows:

Dμ : = det

(
∂Ṁ

μ

∂Mμ

)
= λ+λ−

= −1

2
(A′ − 1)B + �B′Mμ

y + 4�2 > 0,

Tμ : = Tr

(
∂Ṁ

μ

∂Mμ

)
= λ+ + λ− = A′ − 1 − 1

2
B < 0. (B5)

Note that in the classical limit � = 0 the stability condition
reads

1 > A′ = 1

N

∑
i

βhμ
i

[
1 − tanh2

(
βhμ

i Mμ
z

)]

= 1

N

∑
i

xi
[
1 − tanh2 (xiM

μ
z

)]
. (B6)

This condition is fulfilled for Mμ
z � 0.4478, which is al-

ready guaranteed by our approximation of large overlap.
Indeed, the validity of the EoMs is restricted to a regime where
Mμ

z > m → 1. That implies that, in this regime, stability is
always granted in the classical limit. Further, the condition for
the trace Tμ < 0 is also fulfilled for all � values, as B > 0.
Consequently, the stability condition for finite quantum drive
� �= 0 reduces to ensuring positivity of the determinant of the
Jacobian, i.e., Dμ > 0. In the case of strong quantum drive, the
discriminate of the root in λ+ may turn negative, in which case
the stability condition modifies, and we demand the maximum
of the real parts of the eigenvalues to be negative. In this case
the condition becomes Tμ < 0, which is again fulfilled in the
regime that we are interested in. In the following, we continue
to work in the low-quantum-drive regime, stressing that for
larger quantum drive stability would still be ensured by the
previous argument.

We can now focus on the calculation of the number of
fixed-point solutions defined by Eq. (B1). It can be written
as

Nμ =
∫ 1

−1
dMμ

y

∫ 1

m
dMμ

z δ
(
Mμ

z

)
δ
(
Mμ

y

)|Dμ|�(Dμ)

=
∫ 1

−1
dMμ

y

∫ 1

m
dMμ

z

∫ i∞

−i∞

dλμ

(2iπ/N )3

∫ 0

−∞
dDμ|Dμ|exp

{
Nλ1,μ

[−Mμ
z + A

(
Mμ

z

)+ 2�Mμ
y

]

+ Nλ2,μ

[
−1

2
Mμ

y B
(
Mμ

z

)− 2�Mμ
z

]
+ Nλθ,μ

[
Dμ − 1

2
(A′ − 1)B + �B′Mμ

y + 4�2

]}
. (B7)

In the second line we expressed the δ and � constraints in the
integral, by writing them in Fourier space as

θ (x − κ ) =
∫ ∞

−κ

dy δ(x − y),

δ(x − y) =
∫ i∞

−i∞

dλ

2iπ
exp[λ(x − y)]. (B8)

The integrals over the new variables λ1 and λ2 correspond
thereby to the δ distributions δ(Mz ) and δ(My), whereas the
variable λθ corresponds to the Heaviside function. Later, the
integrals over the overlap variables and the three Lagrange
multipliers λ will be solved employing the saddle-point
method. Note that the latter becomes exact in the TDL as
the exponents of the integrand scale as N . Assuming that the
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saddle-point value of λθ,μ lies on the non-negative real axis,
i.e., λθ,μ → |λθ,μ|, the integral over Dμ can be performed, and
it reads

∫∞
0 dDμDμe−N |λθ,μ|Dμ = 1

N2|λθ,μ|2 . As the latter evalu-
ates to a term that is subleading in the system size N , it can be
omitted in the TDL and will be dropped in the following. If the
saddle-point value of λθ,μ were negative, the number of solu-
tions and therewith the volume and the capacity would vanish.
Note that the integrals over λ are along the imaginary axis,
therefore the saddle-point method involves the minimization
of the exponent of the integral exponential. In particular for
λθ,μ → |λθ,μ| the stability condition can be recovered easily

as Min
λθ,μ

|λθ,μ|det( ∂Ṁμ

∂Mμ ), and either has the solution λθ,μ = 0 if

the stability condition is fulfilled or λθ,μ = ±∞ if the stability
is violated. The latter would cause the capacity to vanish.

Considering further the result of the saddle-point method, the
integrals are given in terms of the integrand at the saddle-point
value. These resulting terms become factorizable over the sites
i, if we assume that the saddle-point values do not depend
strongly on the microscopic structure of the local energy, i.e.,
if we repeat the homogeneity approximation hμ

i ≈ 1
N

∑
i hμ

i ,
and likewise for the functions A and B that depend on {hμ

i }.
Employing this treatment, Nμ factorizes over the sites, i.e.,
Nμ = �iNi,μ. By introducing the following definitions:

ai := tanh
(
βMμ

z hμ
i

)
,

bi := 1 + β2

2

[
1 + Mμ

z tanh
(
βhμ

i Mμ
z

)][
1 − tanh2 (βhμ

i Mμ
z

)]
,

(B9)

the quantity Ni,μ reads

Ni,μ ∼ exp
{
λ1,μ

[−Mμ
z + ai

(
Mμ

z

)+ 2�Mμ
y

]+ λ2,μ

[− 1
2 Mμ

y bi(M
μ
z ) − 2�Mμ

z

]+ |λθ,μ|[− 1
2 (a′

i − 1)bi + �b′
iM

μ
y + 4�2

]}
,

(B10)

where the values M and λ have to be understood as the saddle-point solutions. The latter expression, as well as the approximation
leading to the factorization Nμ = �iNi,μ will be employed in the next section.

APPENDIX C: REPLICA CALCULATION

In the following, we are going to present the calculation of the (not normalized) volume of attractive quantum Hopfield
models in the space of coupling matrices. The volume, defined by Eq. (8) in this paper, reads

V ∼
∫

�i �= j{dJi j}�μNμ�iδ

⎛
⎝∑

j

J2
i j − N

⎞
⎠, (C1)

where we have also replaced �μ�(Nμ) → �μNμ, following the assumption [35] that the number of solutions Nμ approaches
zero as α → αc. As the volume depends on a concrete set of stored patterns, we will consider averages over the latter. To this
end, patterns are now assumed to be identically and independently distributed variables according to the distribution

P(ξ) = 1

2N p
�i,μ

[
δ
(
ξ

μ
i + 1

)+ δ
(
ξ

μ
i − 1

)]
. (C2)

Furthermore, V can be considered as the partition function of a statistical mechanics model, and its average can be performed with
respect to quenched disorder variables, i.e., the patterns. In this setting, one can focus on the pattern average of the corresponding
cumulant generating function, or free energy, logV . It can be computed employing the replica trick, based on the identity

n−1 log〈〈V n〉〉 n→0−→ 〈〈log(V )〉〉, where 〈〈·〉〉 identifies the quenched disorder average. This computation involves as a first step the
calculation of the pattern average of the n times replicated volume 〈〈V n〉〉ξ , and, eventually, the analytic continuation of n to the
real numbers, so as to perform the limit n → 0.

Let us start by evaluating the n times replicated volume 〈〈V n〉〉ξ . To this end, we enforce the definition (A18) via an additional
delta constraint,

δ

⎛
⎝hμ

i − ξ
μ
i√
N

∑
j �=i

Ji jξ
μ
j

⎞
⎠ =

∫
�i,μ

{
dĥμ

i

2π

}
exp

⎡
⎣iĥμ

i

⎛
⎝hμ

i − ξ
μ
i√
N

∑
j �=i

Ji jξ
μ
j

⎞
⎠
⎤
⎦, (C3)

and we add the according integrations
∫

�i,μ{dhμ
i } over the real axis. Thus, the averaged, replicated volume is expressed as

〈〈V n〉〉ξ =
∫

�i �= j,α
{
dJα

i j

}
�i,μ,α

{
dĥμ,α

i dhμ,α
i

2π

}
�μ,αN α

μ

({
hμ,α

i

})
�i,μ,αeiĥμ,α

i hμ,α
i

× �μ

〈〈
exp

(
− i
∑
i,α

ĥμ,α
i

ξ
μ
i√
N

∑
j �=i

Jα
i jξ

μ
j

)〉〉
ξ

∫
�i,α

{
dEα

i

4iπ

}
exp

⎡
⎣−1

2

∑
i j,α

Eα
i

(
Jα

i j

)2 + 1

2

∑
i,α

Eα
i

⎤
⎦, (C4)

023074-9



BÖDEKER, FIORELLI, AND MÜLLER PHYSICAL REVIEW RESEARCH 5, 023074 (2023)

where α = 1, 2, . . . , n is called the replica index and tracks
the instances of replication of the partition function. Accord-
ingly, all sums and products over α go from 1 to n. Further,
the spherical constraint of the coupling matrix elements is
expressed in Fourier domain, introducing the Lagrange pa-
rameter Eα

i . Note that the pattern average 〈〈·〉〉 only affects
one factor of the volume integrand, i.e., the quantity

�μ

〈〈
exp

(
− i
∑
i,α

ĥμ,α
i

ξ
μ
i√
N

∑
j �=i

Jα
i jξ

μ
j

)〉〉
ξ

. (C5)

This average is hard to compute, as we deal with a highly non-
Gaussian distribution P of N p independent binary random
variables, as defined by Eq. (C2). Additionally, the quantity
to be averaged involves products of all possible combinations
of the μth pattern values at different sites. Nonetheless, we
are going to perform such an average by means of a cumulant
expansion that will be cut off. Such a cutoff can be indeed
justified in the limit of diluted networks.

To apply the dilution to the coupling matrix J ∈ RN×N ,
we set a number of matrix elements to zero such that there
are only NC finite elements in the matrix, with C < N . The
latter can then be reordered such that Ji, j>C = 0∀i. We fur-
ther choose C < log(N ), which is referred to as logarithmic
dilution, as it is proven [44] that in this case the cumulant
expansion converges, in the TDL, with a finite number of
terms. Technically, by diluting the network, we remove all
the integrals over matrix entries which vanish by the dilution
constraint itself. Accordingly, all the sums over the second
index of J (mostly j) run now up to C, instead of N . Moreover,
we modify as well the normalization of all sums that run
over the second index of J as 1/

√
N → 1/

√
C. The cumulant

expansion is then performed as

〈〈
exp

(
− i√

C

∑
i,α

ĥμ,α
i ξ

μ
i

∑
j �=i

Jα
i jξ

μ
j

)〉〉
ξ

= 〈〈ez〉〉ξ = e
∑∞

k ck ,

(C6)

where ck denotes the kth cumulant. It can be shown that only
cumulants up to order 2 are finite in the TDL for the diluted
networks [44]. The first cumulant vanishes explicitly because
P is symmetric. Consequently, one can perform the pattern
average by inserting the second cumulant that corresponds to
c2 = 〈〈z2〉〉ξ , and reads

〈〈z2〉〉ξ = − 1

2C

∑
αβ,i

ĥμα
i ĥμβ

i

∑
j

Jα
i jJ

β
i j

− 1

2C

∑
αβ,i

ĥμα
i

∑
j

ĥμβ
j Jα

i jJ
β
ji. (C7)

We simplify the second term by replacing ĥμβ
j by its average

value over all sites, ĥμβ
j → 1/N

∑
j ĥμβ

j . This approximation
is in accordance with the previously employed approximation
that assumes the conjugate variable of ĥμβ

j , i.e., the local

energy hμβ
j , to be homogeneous over the sites. On performing

such an approximation the second cumulant reads

〈〈z2〉〉ξ = −1

2

∑
αβ,i

ĥμα
i ĥμβ

i qαβ
i − 1

2N

∑
αβ,i j

ĥμα
i ĥμβ

j rαβ
j , (C8)

where have defined

qαβ
i := 1

C

∑
j

Jα
i jJ

β
i j, (C9)

rαβ
i := 1

C

∑
j

Jα
i jJ

β
ji. (C10)

We also employ these definitions by means of new delta con-
straints,

δ

⎛
⎝qαβ

i − 1

C

∑
j

Jα
i jJ

β
i j

⎞
⎠, δ

⎛
⎝rαβ

i − 1

C

∑
j

Jα
i jJ

β
ji

⎞
⎠, (C11)

and express them in Fourier space, with conjugate variables
Qαβ

i and Rαβ
i . As a next step, the Gaussian integrals over ĥ and

J can be solved. Before doing so, we state the full replicated
volume, where all δ constraints are expressed in Fourier space:

〈〈V n〉〉ξ =
∫

�α,i

{
dEα

i

4iπ

}
�α<β,i

{
dQαβ

i dqαβ
i

2iπ/C

}
�αβ,i

{
dRαβ

i drαβ
i

4iπ/C

}
exp

⎛
⎝C

2

∑
α,i

Eα
i + C

∑
α<β,i

Qαβ
i qαβ

i + C

2

∑
αβ,i

Rαβ
i rαβ

i

⎞
⎠

×
∫

�α,i �= j
{
dJα

i j

}
exp

⎛
⎝−1

2

∑
α,i j

Eα
i

(
Jα

i j

)2 −
∑

α<β,i j

Qαβ
i Jα

i jJ
β
i j − 1

2

∑
αβ,i j

Rαβ
i Jα

i jJ
β
ji

⎞
⎠∫ �α,μ,i

{
dhμα

i dĥμα
i

2π

}

× �α,μ

{
N α

μ

({
hμα

i

})}
exp

⎡
⎣i
∑
α,μ,i

hμα
i ĥμα

i − 1

2

∑
α,μ,i

(
ĥμα

i

)2 − 1

2

∑
αβ,μ,i

ĥμα
i ĥμβ

i qαβ
i − 1

2N

∑
αβ,μ,i j

ĥμα
i ĥμβ

j rαβ
j

⎤
⎦

=
∫

�α,i

{
dEα

i

4iπ

}
�α<β,i

{
dQαβ

i dqαβ
i

2iπ/C

}
�αβ,i

{
dRαβ

i drαβ
i

4iπ/C

}
eCG. (C12)
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In the last line we defined the action G that does not scale with the number of couplings per spin. We will further use the
definition α = p/C for the capacity and reformulate the action employing the following definitions:

G : = 1

2

∑
α,i

Eα
i +

∑
α<β,i

Qαβ
i qαβ

i + 1

2

∑
αβ,i

Rαβ
i rαβ

i + GJ + αGh, (C13)

GJ : = 1

C
log

⎧⎨
⎩
∫

�α,i �= j
{
dJα

i j

}
exp

⎡
⎣−1

2

∑
α,i j

Eα
i

(
Jα

i j

)2 −
∑

α<β,i j

Qαβ
i Jα

i jJ
β
i j − 1

2

∑
αβ,i j

Rαβ
i Jα

i jJ
β
ji

⎤
⎦
⎫⎬
⎭, (C14)

Gh : = log

⎛
⎝∫ �α,i

{
dhα

i dĥα
i

2π

}
�i,α

{
N α
({

hα
i

})}
exp

⎡
⎣i
∑
α,i

hα
i ĥα

i − 1

2

∑
α,i

(ĥα
i )2 − 1

2

∑
αβ,i

ĥα
i ĥβ

i qαβ
i − 1

2N

∑
αβ,i j

ĥα
i ĥβ

j rαβ
j

⎤
⎦
⎞
⎠,

(C15)

where GJ and Gh are partial actions. Note that defining Gh

involves a factorization over the pattern index μ for the vari-
ables h and ĥ and their integrals.

We will now perform the Gaussian integral over J , h, and
ĥ, so as to compute the partial actions GJ and Gh. We first
employ the saddle-point method on the integration variables
Eα

i , Qαβ
i , qαβ

i , Rαβ
i , and rαβ

i over which eCG is to be integrated.
Note that in the TDL, where N → ∞, also C < log(N ) → ∞
is chosen to diverge logarithmically. Consequently, the saddle-
point method becomes exact in the TDL. We assume to find
solutions of the corresponding saddle-point equations that
feature a saddle point on the real axis. For these solutions, we
assume replica symmetry and a site symmetry to be fulfilled
as in the classical treatment [35],

Eα
i = E , ∀α, i

Qαβ
i = Q, ∀α �= β, i

qαβ
i = q, ∀α �= β, i

Rαβ
i = R, ∀α �= β, i

rαβ
i = r, ∀α �= β, i

Rαα
i = S, ∀α, i

rαα
i = s, ∀α, i. (C16)

Now we employ this symmetry assumption to perform the two
Gaussian integrals in GJ and Gh. We begin with the source-
free integral over the Jα

i j variables by defining the replica
matrix � that describes the coupling among the Jα

i j as

�
α,β

i j,kl := δαβ (δi jδ jl E + δilδ jkS)

+ (1 − δαβ )(δi jδ jlQ + δilδ jkR), (C17)

this being a rank-6 tensor representation, which can be re-
shaped into a matrix � ∈ RnNC×nNC taking Jα

i j = Jk as a vector
component with superindex k = (i, j, α). One can determine
the eigenvalues and their algebraic multiplicities by guessing
the eigenvectors. The former are given by Table I. We can thus
perform the Gaussian integral

∫
d (nNC)J e−1/2 �JT � �J and obtain

the partial action GJ as

GJ = − 1

2C
log(det�) + const. = −n

N − 1

4

{
log(E − Q − R + S) + log(E − Q + R − S)

+ log[E + (n − 1)Q − (n − 1)R − S] − log(E − Q + R − S)

n

+ log[E + (n − 1)Q + (n − 1)R + S] − log(E − Q − R + S)

n

}
, (C18)

where all constants in the action, i.e., factors of the volume,
can be omitted.

TABLE I. Eigenvalues of the replica matrix �

Eigenvalue Multiplicity

E − Q − R + S (n − 1)C(N−1)
2

E − Q + R − S (n − 1)C(N−1)
2

E + (n − 1)Q + (n − 1)R + S C(N−1)
2

E + (n − 1)Q − (n − 1)R − S C(N−1)
2

Regarding the replica calculation, the analytical continua-
tion of n to the real number can now be performed. Notice that
only the limit n → 0 is of interest for the replica calculation.
As such, we can expand GJ to the first order in n and neglect
all higher orders. The linear order in n will then contribute to
the averaged volume, V . We also perform the simplification
N − 1 ≈ N and obtain

GJ = −Nn

4

[
log(E − Q − R + S) + log(E − Q + R − S)

+ Q + R

E − Q + S − R
+ Q − R

E − Q − S + R

]
+ O(n2).

(C19)
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The solutions for replica and site symmetric variables E , Q, R, S are now given by algebraic equations that are obtained by
extremizing the partial action,

G̃J = GJ + nN

2
E + n(n − 1)N

2
Qq + n(n − 1)N

2
Rr + nN

2
Ss

= GJ + Nn

2
(E + Ss − Qq − Rr) + O(n2). (C20)

The four stationarity equations read

0 = ∂E G̃J ∼ 1 + 1

2

[
Q + R

(E − Q + S − R)2
+ Q − R

(E − Q − S + R)2
− 1

E − Q + S − R
− 1

E − Q − S + R

]
,

0 = ∂QG̃J ∼ q + 1

2

[
Q + R

(E − Q + S − R)2
+ Q − R

(E − Q − S + R)2

]
,

0 = ∂RG̃J ∼ r + 1

2

[
− Q + R

(E − Q + S − R)2
+ Q − R

(E − Q − S + R)2

]
,

0 = ∂SG̃J ∼ s + 1

2

[
Q + R

(E − Q + S − R)2
− Q − R

(E − Q − S + R)2
− 1

E − Q + S − R
+ 1

E − Q − S + R

]
, (C21)

and can be solved algebraically and reinserted in G̃J . By doing so, this part of the action takes the form

G̃J = Nn

2

⎧⎨
⎩log(1 − q) + 1

2
log

[
1 −

(
s − r

1 − q

)2
]

+
q − r s−r

1−q

(1 − q)
[
1 − ( s−r

1−q

)2]
⎫⎬
⎭

= Nn

2

[
log(1 − q) + 1

2
log(1 − x2) + q − rx

(1 − q)(1 − x2)

]
, (C22)

where we have used the definition x := s−r
1−q . To obtain the maximal capacity we will investigate the regime of large replica

correlations, measured by q. The reason for this is that in this regime it is seemingly hard to find a parametrization of J such that
the storage requirements are fulfilled. This corresponds to the regime of storing many patterns. Accordingly, we will consider
the limit q → 1, in which G̃J further simplifies as only the strongest diverging term must be considered,

G̃J
q→1−−→ 1 − rx

(1 − q)(1 − x2)
+ O[log(1 − q)]. (C23)

To proceed, we need to treat the second Gaussian integral over ĥα
i in the partial action Gh. As this integral has the local energy

as a source term, we proceed in a different manner, introducing the new Gaussian variables t0, tα
1 , and t2,i. In this way, we lift

the couplings among different sites and replicas of the ĥα
i and turn them into further source terms so as to obtain a diagonal

self-coupling of ĥα
i . Indeed, the partial action reads now

Gh = log
∫

�α,i

{
dĥα

i dhα
i

2π

}
�i,α

{
N α

i

(
hα

i

)}
exp

[
i
∑
α,i

hα
i ĥα

i − 1

2

∑
α,i

(
ĥα

i

)2
(1 − q) − 1

2

∑
αβ,i

ĥα
i ĥβ

i q

− 1

2N

∑
αβ,i j

ĥα
i ĥβ

j r − 1

2N

∑
α,i j

ĥα
i ĥα

j (s − r)

]

= log
∫

�α,i

{
dĥα

i dhα
i

2π

}
�α

{
N α
({

hα
i

})} dt0√
2π/N

e− N
2 (t0 )2

�α

{
dtα

1√
2π/N

e− N
2 (tα

1 )2

}
�i

{
dt2,i√

2π
e− 1

2 (t2,i )2

}

× exp
[

− 1 − q

2

∑
α,i

(ĥα
i )2 + i

∑
α,i

ĥα
i

(
hα

i + √
rt0 + √

s − rtα
1 + √

qt2,i
)]

= log
∫

dt0√
2π/N

e− N
2 (t0 )2

�i

{
dt2,i√

2π
e− 1

2 (t2,i )2

}[∫
dt1√
2π/N

�i

{
e− 1

2 (t1 )2 dĥidhi

2π
Ni
(
hi
)

exp
[

− 1 − q

2
(ĥi )

2

+ iĥα
i (hi + √

rt0 + √
s − rt1 + √

qt2,i )
]}]n

, (C24)
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where we factorized all terms of replicated variables and applied the factorization approximation over sites for the number of
solutions, N ({hi}) = �iNi(hi), in the last step. To proceed forward, we prepare the limit n → 0 by expanding to the first order
in n and obtain

Gh = n
∫

dt0√
2π/N

e− N
2 (t0 )2

�i

{
dt2,i√

2π
e− 1

2 (t2,i )2

}
log
∫

dt1√
2π/N

�i

{
e− 1

2 (t1 )2 dĥidhi

2π
Ni(h

i )

× exp

[
−1 − q

2
(ĥi )

2 + iĥα
i (hi + √

rt0 + √
s − rt1 + √

qt2,i )

]}
+ O(n2). (C25)

Note that the variance of the Gaussian variable t0 scales as 1/N . Therefore we replace t0 → 0 and omit this integral in the TDL.
Formally, this corresponds to a simple saddle-point approximation of the variable t0, as the non-Gaussian part of the integrand
scales only to subleading order in N due to the logarithm. This could be seen explicitly if the integral over t1 in the logarithm
did not mix the t2,i variables and let the whole argument of the logarithm factorize. Indeed, that this is really the case can be
shown by considering the saddle-point solution for the variables r and x applied to both parts of the action G = Gh + G̃J and
utilizing

√
s − r = x

√
1 − q. By doing so the transformation of the integration s → x adds only a term to the action that is of

order O[log(1 − q)] and can be omitted, such that before applying the saddle-point method, the joint action reads

G/(nN ) = 1

2

[
log(1 − q) + 1

2
log(1 − x2) + q − rx

(1 − q)(1 − x2)

]
+ 1

N

∫
�i

{
dt2,i√

2π
e− 1

2 (t2,i )2

}
log
∫

dt1√
2π/N

× �i

{
e− 1

2 (t1 )2 dĥidhi

2π
Ni(h

i ) exp

[
− 1 − q

2
(ĥi )

2 + iĥi(hi + x
√

1 − qt1 + √
qt2,i )

]}
. (C26)

The stationarity condition for r reads ∂rG = 0 and is equivalent to x = 0. As a result, the variable r drops out and the integral
over t1 can be performed trivially such that the action becomes

G/(nN )

= 1

2

[
log(1 − q) + q

1 − q

]
+ α

N

∫
�i

{
dti√
2π

e− 1
2 (ti )2

}
log

(∫
�i

{
dĥidhi

2π
Ni(h

i ) exp

[
1 − q

2
(ĥi )

2 + iĥα
i (hi + √

qt2,i )

]})

= 1

2

[
log(1 − q) + q

1 − q

]
+ α

∫
dt√
2π

e− 1
2 t2

log

{∫
dĥdh

2π
N (h) exp

[
−1 − q

2
ĥ2 + iĥ(h + √

qt )

]}
, (C27)

where the addressing of different sites by the index i yielded a summation over equal terms, which is consistent to the site
symmetric approximation we performed multiple times before. Now we perform the integral over ĥ and obtain

G/(nN ) =1

2

q

1 − q
+ α

∫
dt√
2π

e− 1
2 t2

log

{∫
dh√
2π

N (h) exp

[
− (h + √

qt )2

2(1 − q)

]}
. (C28)

APPENDIX D: SADDLE-POINT EQUATIONS AND OPTIMAL CAPACITY

To evaluate the optimal capacity for the open quantum Hopfield model, we are interested in the limit where the saddle point
corresponds to high replica correlation, q → 1. This limit carries the notion that finding a suited coupling matrix encoding all
patterns faithfully becomes hard. Indeed, the replica correlation, q = 1

N

∑
j〈Jα

i jJ
β
i j〉, is a measure of the degree of degeneracy of

the suited coupling matrices. On increasing the capacity α, the task of finding a suited coupling matrix is supposed to become
more difficult, therefore the degeneracy decreases, and q approaches 1, which is its maximum value. On enforcing the limit
q → 1 one therefore obtains the optimal load.

The first summand of the action diverges as (1 − q)−1, and we assume the same for the second one, such that a rescaling
λ → λ/(1 − q) can be introduced. The action takes the form

1 − q

nN
G = q

2
+ α

∫
dt√
2π

e− 1
2 t2

(1 − q) log

{∫
dh√
2π

exp

[
1

q − 1

(
− (h + √

qt )2

2
+ λ1[−Mz + a(Mz, h) + 2�My]

+ λ2

[
−1

2
Myb

(
Mμ

z , h
)− 2�Mz

]
+ |λθ |

{
−1

2
[a′(Mz, h) − 1]b(Mz, h) + �b′(Mz, h)My + 4�2

})]}
. (D1)

Performing a last saddle-point approximation for the h integral, the prefactor (1 − q)−1 serves as the large parameter that ensures
the exactness of this treatment in the limit q → 1. Note that we perform such a limit explicitly wherever no divergences are
involved. Furthermore, we define a function Y (h, t ) that is to be maximized over h, given a fixed t , in order to obtain the
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saddle-point value of h as

Y (h, t ) := − (h + t )2

2
+ λ1a(Mz, h) − λ2

2
Myb(Mz, h)+ |λθ |

{
−1

2
[a′(Mz, h) − 1]b(Mz, h)+ �b′(Mz, h)My

}
Max

h
Y (h, t ) ⇒ h(t ).

(D2)

On inserting the saddle-point solution, the action modulo constants can be written as

1 − q

nN
G

q→1−−→ 1

2
+ α

[
λ1(−Mz + 2�My) − 2λ2�Mz + |λθ |16�2 +

∫
Dt Y (t, h(t ))

]
, (D3)

where the logarithm could be applied to the inner exponential and the normalized integral
∫

dt√
2π

e− 1
2 t2 = ∫ Dt only resides

with the t and h(t ) depend terms, which are summarized in Y . Now we consider solving for the saddle-point values
{Mz, My, λ1, λ2, λθ } by imposing stationarity on G. We begin by discussing the stationarity equations for the Lagrange parameters
λ, which should lead to a minimization of G as they stem from solving integrals over the imaginary axis. The equations regarding
λ1,2 and My read

0 = ∂G

∂λ1
= −Mz + 2�My +

∫
Dt tanh(βMzh(t )),

0 = ∂G

∂λ2
= −2�Mz − My

2

(
1 + β2

2

∫
Dt{1 + Mz tanh[βMzh(t )]}{1 − tanh2[βMzh(t )]}

)
,

0 = ∂G

∂My
= 2�λ1 − λ2

2

(
1 + β2

2

∫
Dt{1 + Mz tanh[βMzh(t )]}{1 − tanh2[βMzh(t )]}

)

+ 2|λθ |β�

∫
Dt{1 − tanh2[βMzh(t )]}[(1 − 2βh(t ))] tanh[βMzh(t )] + βh(t )Mz{1 − 3 tanh[βMzh(t )]}. (D4)

As for λθ , it can take two different values to minimize the action depending on D

|λθ | =
{

0 D � 0

∞ else
, (D5)

corresponding to fulfilling and violating the stability constraint, where

D = 16�2 +
∫

Dt

[
−2(βh(t ){1 − tanh2[βMzh(t )]} − 1)

(
1 + β2

2
{1 + Mz tanh[βMzh(t )]}{1 − tanh2[βMzh(t )]}

)

+ 2β�My{1 − tanh2[βMzh(t )]}([1 − 2βh(t )] tanh[βMzh(t )] + βh(t )Mz{1 − 3 tanh[βMzh(t )]})

]
. (D6)

The second case leads directly to a vanishing volume, i.e., zero storage capacity. Therefore, we enforce D � 0 while solving the
equations. Inserting back the saddle-point equations, the replicated averaged volume becomes

〈V n〉ξ n→0−−→ = nNC

2(1 − q)

{
1 + α

∫
Dt[h(t ) + t]2

}
, (D7)

where h(t ) depends on the saddle-point solutions. Before addressing the saddle-point solutions, the replica calculation is

concluded as n−1〈V n〉ξ n→0−−→ 〈log(V )〉ξ , and we can state the condition for which the averaged volume is finite as follows:

exp(〈log(V )〉ξ ) = exp

(
NC

2(1 − q)

{
1 − α

∫
dt√
2π

e− 1
2 t2

[h(t ) + t]2

})
�= 0 ⇐⇒ α < αc :=

{∫
dt√
2π

e− 1
2 t2

[h(t ) + t]2

}−1

,

(D8)

where we defined the critical load αc. From Eq. (D8), we thus recover Eq. (11) of the manuscript, i.e.,

V = exp

{
NC

2(1 − q)

[
1 − α

αc(m, T,�)

]}
. (D9)

The maximal capacity αc can be calculated numerically and depends only on the external parameter {T,�, m}. Its behavior in
certain parameter regimes with respect to {T,�, m} will be shown and commented on in the next section. Before doing this, we
give more details on how the maximal capacity can be actually computed.

For evaluating αc, the saddle-point equations, d
doS(o)|o=o∗ = 0, have to be solved. These are a self-consistent set of equations,

of two types: algebraic equations and integral equations. While the former can be solved analytically, the latter can be solved
numerically. Indeed, in order to numerically compute the integrals over t , which depend on the functions h(t ), Y (h, t ), it must
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be maximized for every t that is sampled, and simultaneously the saddle-points of λ and M must be determined. The latter is
achieved by noting the following algebraic relation for λ2:

λ2 = −λ1
My

Mz
, (D10)

that is the solution of one of the coupled saddle-point equations. The remaining equations read

Mz = 2�My +
∫

Dt tanh[βMzh(t )], My = −4�Mz

(
1 + β2

2

∫
Dt{1 + Mz tanh[βMzh(t )]}{1 − tanh2[βMzh(t )]}

)−1

,

(D11)

where h(t ) depends on the solution of λ1 and Mz. Under the assumption that the stability condition is fulfilled, i.e., λθ = 0, the
stationarity condition ∂hY = 0 for the maximization of Y can be expressed as

h(t ) = − t + λ1βMz

{1 − tanh2[βMzh(t )]}−1

⎡
⎢⎣1 + 4β2�2Mz

Mz(1 − 2 tanh[βMzh(t )]) − tanh2[βMzh(t )] − 2 tanh[βMzh(t )](
1 + β2

2

∫
Dt{1 + Mz tanh[βMzh(t )]}{1 − tanh2[βMzh(t )]}

)2

⎤
⎥⎦.

(D12)

We will find that αc(Mz ) and therefore the action is strictly
decreasing with Mz, and therefore the saddle-point value for
Mz is given by the lower bound m. In other words, we replace
Mz by m, and we just need to numerically solve for My and
λ1 numerically. This is done by a modified Newton method,
where the first equation is solved by optimizing λ1, while
new values for My are given by the fixed-point value of the
second equation for My. Such a fixed-point value is obtained
by reinserting the previous value for My multiple times, given
an iteration, in the λ1 optimization. On convergence of this
solving algorithm, the function h(t ) is fully determined, and,
by maximizing Y , the maximal capacity is calculated as given
by Eq. (D8).

APPENDIX E: LIMITING CASES

1. Classical Gardner limit

Based on the results of the previous calculation, we now
focus on the case � = 0. By means of the saddle-point equa-
tions (D10) and (D11) we find that My = λ2 = 0 holds, as
expected. Hence, the numerical computation reduces to solv-
ing the equations

Mz =
∫

Dt tanh[βMzh(t )],

h(t ) = −t + λ1β{1 − tanh2[βMzh(t )]}. (E1)

The last line yields h(t ) by finding the maximum of Y , defined
by Eq. (D2), which is done by setting 0 = ∂hY (h, t ). This set
of equations corresponds to the known classical results [35]
and can be solved numerically. We focus first on the limit of
zero temperature, β → ∞, where the equations take the form

Mz =
∫

Dt sgn[h(t )], (E2)

h(t ) = −t + 2λ1βMzδT [h(t )]. (E3)

Here δT denotes a Dirac sequence for small T . For t < 0 this
equation leads to the solution h(t ) = −t . For t � 0 there are
two possible solutions, h(t ) = −t , and h(t ) = 0+, for which

λ1 can be chosen accordingly. Further, the solution h(t ) = 0+
must be chosen in a certain regime t ∈ [0, a] in order to fulfill
Eq. (E2). Thus, the solution for h(t ) reads

h(t ) =
{

0+, 0 < t < a

−t, else
. (E4)

The constant a is determined by solving Eq. (E2) as a =√
2erf−1(Mz ). As a result, the capacity at zero temperature is

given by

αc(T = � = 0) =
[∫ √

2erf−1(Mz )

0

dt√
2π

e− 1
2 t2

t2

]−1

. (E5)

By setting Mz = m, which corresponds to the maximal value
of the action, we derive the limit obtained by Gardner [30],

αc(T = � = 0)
m→1−−→ 2.

2. Large temperature behavior

We now proceed to consider the large-temperature case,
while keeping � = 0. It is to be expected that for large tem-
perature the capacity vanishes on demanding a large minimal
overlap m. We intend to use the following calculation in a tem-
perature regime where an expansion in β � 1 is reasonable
and at the same time the capacity is finite. We resort to the
saddle-point equations (D11) and expand them to first order
in β,

Mz = 2�My + βMz

∫
Dt h(t ) + O(β2),

My = −4�Mz + O(β2). (E6)

On combing these equations, and further setting Mz = m, we
obtain

m(1 + 8�2) = mβ

∫
Dt h(t ) + O(β2) < 1, (E7)

which sets a maximal value for the Hamiltonian drive up to
which a solution can still be found. This critical value is given
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by

�c(m) = 1

2

√
1

2

(
1

m
− 1

)
. (E8)

In order to proceed and derive the maximal storage capacity,
we employ a large temperature expansion of the equation 0 =
∂hY (h, t ). At the first order we obtain

h(t ) = −t + βλ1m + O(β2). (E9)

Combining the latter with Eq. (E7), one finds λ1 = 1+8�2

mβ2 , and
therewith

h(t ) = − t + 1 + 8�2

β
, αc =

(
β

1 + 8�2

)2

, (E10)

which shows a quadratic decay of the maximal capacity at
large temperature.

3. Behavior for weak Hamiltonian drive

In order to investigate the dependency of the maximal
capacity regarding a perturbative Hamiltonian drive, � � 1,
we separate h(t ) and λ1 into a classical contribution and a
quantum contribution as follows:

h(t ) = hc(t ) + �hq(t ) + O(�2),

λ1 = λ1,c + �λ1,q + O(�2). (E11)

Here the functions hc(t ), hq(t ) and the constants λ1,c, λ1,q are
independent of the Hamiltonian drive �, and thus only the
term hq(t ), λ1,q contributes at first order in �. The classical
parts, denoted by the label ()c, should thereby correspond to
the solution � = 0.

The saddle-point equations can be written as

Mz =
∫

Dt tanh[βMzhc(t )] + �βMz

∫
Dt hq(t ){1 − tanh2[βMzhc(t )]} + O(�2),

My = − 4�Mz

1 + β2

2

∫
Dt{1 + Mz tanh[βMzhc(t )]}{1 − tanh2[βMzhc(t )]}

+ O(�2), (E12)

implying that ∫
Dt hq(t ){1 − tanh2[βMzhc(t )]} = 0. (E13)

Further, on expanding the equation 0 = ∂hY (h, t ) to first order in �, it is

0 = −hc − t + βMzλ1,c{1 − tanh2[βMzhc(t )]} + �{−hq + βMzλ1,q(1 − tanh2[βMzhc(t )])} + O(�2), (E14)

from which we derive

hq = βMzλ1,q(1 − tanh2[βMzhc(t )]). (E15)

This last equation means that hq has a fixed sign on varying t , and therefore λ1,q = 0 must hold in order to fulfill Eq. (E13). As a
consequence, the first-order contribution in � to h(t ) vanishes, i.e., it is hq = 0, and the lowest-order contribution to the maximal
capacity can only scale as �2. Indeed, the expansion of h(t ) to second order reads

h(t ) = hc(t ) + �hq1 (t ) + �2hq2 (t ) + O(�3), (E16)

and we can insert it to calculate the maximal storage capacity as

αc(m, T,�) =
{∫

Dt [hc(t ) + t + �hq1 (t ) + �2hq2 (t ) + O(�3)]2

}−1

=
{∫

Dt [hc(t ) + t]2

}−1

− 2�

∫
Dt [hc(t ) + t]hq1 (t ){∫

Dt [hc(t ) + t]2
}2

− �2{∫
Dt [hc(t ) + t]2

}2

(∫
Dt
{
h2

q1
(t ) + 2hq2 (t )[hc(t ) + t]

}− 8

∫
Dt (hc + t )2h2

q1
(t ){∫

Dt [hc(t ) + t]2
}
)

+ O(�3). (E17)

Employing hq1 = 0 that expression of the maximal storage capacity at small Hamiltonian drive reads

αc(m, T,�) = αc(m, T,� = 0) − 2�2αc(m, T,� = 0)2
∫

Dt hq2 (t )[hc(t ) + t] + O(�3), (E18)

for which we still need to determine hq2 . Similarly to before, we expand the relevant saddle-point equations,

Mz =
∫

Dt tanh[βMzhc(t )] + �2βMz

∫
Dthq2 (t ){1 − tanh2[βMzhc(t )]} + O(�3), (E19)
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which yield
∫

Dt hq2 (t ){1 − tanh2[βMzhc(t )]} = 0. Further, the equation 0 = ∂hY (h, t ) is expanded as

0 = −hc − t + βMzλ1,c[1 − tanh2(βMzhc)] + �2

(
−hq2 + βMzλ1,q2 [1 − tanh2(βMzhc)]

+ 4β3(Mz )2λ1,c
[1 − tanh2(βMzhc)]{Mz[1 − 2 tanh(βMzhc) − tanh2(βMzhc)] − 2 tanh(βMzhc)}{

1 + β2

2

∫
Dt[1 + Mz tanh(βMzhc)][1 − tanh2(βMzhc)]

}2

)
. (E20)

This implies that the second-order contribution in �, given by the last angular bracket, has to vanish. Together with the previous
condition, one can determine λ1,q2 formally as

λ1,q2 = −4λ1,cβ
2Mz

∫
Dt[1 − tanh2(βMzhc)]2{Mz[1 − 2 tanh(βMzhc) − tanh2(βMzhc)] − 2 tanh(βMzhc)}{∫

Dt[1 − tanh2(βMzhc)]2
}{

1 + β2

2

∫
Dt[1 + Mz tanh(βMzhc)][1 − tanh2(βMzhc)]

}2 . (E21)

Thereby the function hq2 (t ) is fully determined by the solution of the classical problem, and furthermore it is in general
nonvanishing, i.e., hq2 (t ) �= 0. In conclusion, this shows that the effect of the Hamiltonian drive to the maximal storage capacity
is quadratic in �. This behavior is confirmed by the results we find from numerically solving the system dynamics.
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