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Quantum computers are expected to accelerate solving combinatorial optimization problems, including al-
gorithms such as Grover adaptive search and quantum approximate optimization algorithm (QAOA). However,
many combinatorial optimization problems involve constraints which, when imposed as soft constraints in the
cost function, can negatively impact the performance of the optimization algorithm. In this paper, we pro-
pose fermionic quantum approximate optimization algorithm (FQAOA) for solving combinatorial optimization
problems with constraints. Specifically, FQAOA tackles the constrains issue by using fermion particle number
preservation to intrinsically impose them throughout QAOA. We provide a systematic guideline for designing
the driver Hamiltonian for a given problem Hamiltonian with constraints. The initial state can be chosen to be
a superposition of states satisfying the constraint and the ground state of the driver Hamiltonian. This property
is important since FQAOA reduced to quantum adiabatic computation in the large limit of circuit depth p and
improved performance, even for shallow circuits with optimizing the parameters starting from the fixed-angle
determined by Trotterized quantum adiabatic evolution. We perform an extensive numerical simulation and
demonstrate that proposed FQAOA provides substantial performance advantages against existing approaches
in portfolio optimization problems. Furthermore, the Hamiltonian design guideline is useful not only for QAOA
but also Grover adaptive search and quantum phase estimation to solve combinatorial optimization problems
with constraints. Since software tools for fermionic systems have been developed in quantum computational
chemistry both for noisy intermediate-scale quantum computers and fault-tolerant quantum computers, FQAOA
allows us to apply these tools for constrained combinatorial optimization problems.
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I. INTRODUCTION

Quantum optimization algorithms have attracted attention
because of the potential for quantum computation to establish
advantages in practical problems. The targets are combina-
torial optimization problems in industry, such as financial
optimization [1,2], logistics and distribution optimization
[3,4], and energy optimization [5]. In these practical prob-
lems, it is necessary to find a combination that gives the
minimization cost while satisfying the constraints.

A standard quantum approach to solving these optimiza-
tion problems is quantum annealing based on the adiabatic
theorem [6–8]. This approach slowly transforms a system
Hamiltonian from a driver Hamiltonian Ĥd to a cost function-
based problem Hamiltonian Ĥp, which leads to optimal
solutions of the cost function from the ground state (g.s.) of
Ĥd . However, the problems that can be solved with quantum
annealing are limited to quadratic unconstrained binary opti-
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mization problems, whereas in practical industrial problems
some constraints are imposed on general variables that are
not restricted to binary values. Thus, in quantum annealing, a
penalty function of quadratic form must be incorporated into
the Ĥp as a soft constraint. Since this constraint is treated as
an approximation, it may occasionally encounter states that
are out of the solution space, making the computation inac-
curate [2,9,10]. Furthermore, for problems with large realistic
sizes and complex interactions, the first excitation gap in the
adiabatic time evolution becomes smaller and the adiabatic
dynamics is time consuming [11].

Next, we will introduce the quantum approximate op-
timization algorithm (QAOA) [12], a variational algorithm
for solving combinatorial optimization problems utilizing the
controllability of a universal quantum computer. In principle,
there are no hardware connectivity limitations, and quan-
tum gates can handle higher-order interactions as well as
second-order [13], which allows efficient encoding of general
variables [14]. This method covers the quantum adiabatic al-
gorithm (QAA) by taking a large circuit depth p [7,12]. Owing
to this property, the variational parameters can be presumed
to some extent, which may be an advantage even in shallow
circuits [15–17]. However, the same problems as in quantum
annealing exist here for constrained optimization problems.
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To solve these problems, Hadfield et al. proposed a hard
constraint approach: a quantum alternating operator ansatz
[18,19], which enforces the generated quantum states into
the feasible subspace. In particular, XY -QAOA using a mixer
with an XY Hamiltonian [20] has been applied to graph-
coloring problems [10], portfolio optimization problems [2],
extractive summarization problems [9], etc. In these problems,
constraints are imposed on the bit strings that keep the ham-
ming weight constant, and the initial states are based on Dicke
states [21] that satisfy the constraints.

According to these previous studies, the algorithms im-
prove the computational accuracy by restricting the com-
binatorial search space, however, they have the following
common problems. Due to generality of the mixer, there is
no systematic description of an ansatz incorporating the hard
constraints, and the relations between the initial states and
the driver Hamiltonian are not explored enough. Therefore,
the algorithm does not guarantee that it will result in QAA
in the limit of large p. In addition, although the number of
variational parameters remains the same as in conventional
methods, no special effort has been made to handle the pa-
rameter optimization. Therefore, a systematic and efficient
method of solving constrained optimization problems with
guaranteed convergence is required.

In this paper, we developed a systematic framework called
fermionic QAOA (FQAOA) for constrained optimization
problems using fermionic formulation. The FQAOA translates
the problem Hamiltonian and the driver Hamiltonian of a
conventional spin system into the representation of fermion
systems, and the equality constraint is naturally incorporated
as a constant number of particles condition, and hence no
penalty function is needed. We also show that the g.s. of the
driver Hamiltonian can be prepared as an initial state, thus
FQAOA will be QAA in the large p limit, allowing us to
execute the time-discretized QAA. The parameters used here
can then be set as initial parameters for variational quantum
algorithms and efficiently computed using gradient descent
methods, including parameter shifting methods [22,23]. This
FQAOA framework is reduced to QAA in the limit of large p.

As a representative example, we will take a portfolio
optimization problem. This is a second-order, equality-
constrained, three-variable problem. Numerical simulations
demonstrate that the proposed FQAOA provides a significant
performance improvement. In particular, the computational
accuracy at p = 1 of FQAOA with fixed-angles determined
by Trotterized QAA outperforms the results of the XY -QAOA
using parameter optimization at p = 4 in the previous study
[2] by about half of gate operations. In addition, the FQAOA
with parameter optimization at p = 4 improves the probability
of achieving low-energy states by a factor of 40 compared to
the results of XY -QAOA at p = 4 in Ref. [2]. Our algorithm
enables us to simulate a wide variety of constraint optimiza-
tion problems with high accuracy by using the platforms of
quantum chemical computation both for noisy intermediate-
scale quantum computers (NISQs) and fault-tolerant quantum
computers (FTQCs).

This paper is organized as follows. In Sec. II, we intro-
duce the constrained polynomial optimization problems. We
formulate the FQAOA for these problems in Sec. III and
introduce the quantization of the problems by the fermionic

TABLE I. Encoding function fd in zl = ∑D
d=1 fd xl,d [1,24] and

the required number of bits D to represent the largest integer I of zl ,
where �x� is the ceiling function of x.

Encoding fd D Requirement

Binary fd = 2d−1 �log2(I + 1)�
Unary fd = 1 I
Sequential fd = d �[

√
(1 + 8I ) − 1]/2�

One-hot fd = d I + 1
∑D

d=1 xl,d = 1

representation. In Sec. IV, we present the general framework
for portfolio optimization problems and evaluate the numer-
ical results of the FQAOA, where we compare our results
with the computational results of other QAOAs, including the
previous study. A summary is provided in Sec. V.

II. CONSTRAINED OPTIMIZATION PROBLEMS

The cost function E (z) for polynominal optimization prob-
lems with N integer variables zl ∈ {0, 1, 2, . . . , I} takes the
following form:

E (z) =
K∑

k=1

∑
〈l1,l2,··· ,lk〉

αl1,l2,...,lk zl1 zl2 . . . zlk ,

s.t.
∑
l∈Vj

zl = Mj for ∀ j, (1)

where αl1,l2,...,lk represent k-body interactions and Vj is the jth
subset of vertex l . zl can be embedded in binary xl,d ∈ {0, 1}
as [1,24]

zl =
D∑

d=1

fd xl,d , (2)

where encoding function fd is shown in Table I. In this paper,
we do not employ one-hot encoding since it introduces an ex-
tra constraint originating from the encoding shown in Table I.
For the remaining three encodings using fd , the cost function
is transformed into the following:

E (x) =
K∑

k=1

∑
〈l1,l2,··· ,lk〉

αl1,l2,...,lk

k∏
j=1

⎛
⎝ D∑

d j=1

fd j xl j ,d j

⎞
⎠, (3)

s.t.
∑
l∈Vj

D∑
d=1

fd xl,d = Mj for ∀ j. (4)

Our goal is to find a bit string x∗ = arg min
x

E (x) under the

constraints in Eq. (4).

III. FRAMEWORK OF FERMIONIC QAOA

We construct a framework of FQAOA shown in Fig. 1,
which is a hybrid quantum-classical algorithm for solving
constraint optimization problems expressed in fermion form
within the unary encoding. The cost function and constraints
in Eqs. (3) and (4) are mapped to the problem Hamiltonian Ĥp

with a fixed number of localized fermions. A parametrized
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FIG. 1. Framework of FQAOA, where (γ (0),β(0)) are the parameters in the time-discretized QAA and (γ∗, β∗) are the parameters resulting
from the parameter update, and Ûp(γ ) = exp(−iγ Ĥp), Ûm(β ) = exp(−iβĤd ), and Ûinit is the unitary operator for preparing the ground state
of the driver Hamiltonian Ĥd .

quantum circuit with (γ,β) is used to compute the expecta-
tion value Ep(γ,β) of Ĥp, which is minimized by the outer
parameter update loop. An FQAOA ansatz |φp(γ,β)〉 consists
of an initial state preparation unitary Ûinit and a phase rotation
unitary Ûp(γ ) and a mixing unitary Ûm(β ),

Ûp(γ ) = exp(−iγ Ĥp), (5)

Ûm(β ) = exp(−iβĤd ), (6)

where Ĥd is the driver Hamiltonian describing the nonlocal
fermions. By carefully designing Ĥd and Ûinit , the constraints
are satisfied at any steps without additional penalty function.
As will be explained below, the framework is constructed so
it comes down to QAA in the large p limit. The components
of the FQAOA ansatz are described in detail in the following
subsections.

A. Mapping to fermionic formulation

In this paper, the binary xl,d are mapped to the number
operators of fermions on the (l, d) site as

xl,d 
−→ n̂l,d = ĉ†
l,d ĉl,d , (7)

where ĉ†
l,d (ĉl,d ) is the creation (annihilation) operator on (l, d)

site, which satisfies the anticommutation relations:

ĉl,d ĉ†
l ′,d ′ + ĉ†

l ′,d ′ ĉl,d = δl,l ′δd,d ′ ,

ĉl,d ĉl ′,d ′ + ĉl ′,d ′ ĉl,d = ĉ†
l,d ĉ†

l ′,d ′ + ĉ†
l ′,d ′ ĉ

†
l,d = 0. (8)

The computational basis corresponding to the bit string x ∈
{0, 1}ND can be written

|φx〉 = (
ĉ†

ND

)xND · · · (ĉ†
2

)x2(ĉ†
1

)x1 |vac〉, (9)

n̂i|φx〉 = xi|φx〉 for ∀ i, (10)

where the subscript (l, d ) is collectively denoted as i and |vac〉
is a vacuum satisfying ĉi|vac〉 = 0. Note that the operators
have the anticommutation relations in Eqs. (8), so the se-
quence of operators in Eq. (9) follows a fixed order. In this
paper, we apply the snake type Jordan-Wigner (JW) ordering

shown in Fig. 2, in which the relation between i and (l, d ) can
be explicitly denoted by

di =
⌈

i

N

⌉
,

li = N + 1 − (−1)di (N − 1)

2
+ (−1)di (Ndi − i), (11)

for i = 1, 2, · · · ND and, conversely,

il,d = (−1)d−1l + (d − 1)N + 1 − (−1)d−1

2
(N + 1). (12)

B. Problem Hamiltonian with linear constraints

The cost function with constraints in Eq. (3) with (4) are
mapped to the following eigenvalue problems:

Ĥp|φx〉 = E (x)|φx〉, (13)

Ĉj |φx〉 = Mj |φx〉 for ∀ j, (14)

FIG. 2. The orderings of operators in the Jordan-Wigner (JW)
encoding [26] used in this paper, so-called snake-type JW ordering,
where sequential numbers i = 1, 2, . . . , ND shown in blue are as-
signed in the order according to Eqs. (11) and (12).
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where Ĥp and Ĉj is problem Hamiltonian and jth constraint
operator, respectively, which can be explicitly expressed as
follows:

Ĥp =
K∑

k=1

∑
〈l1,l2,...,lk〉

αl1,l2,...,lk

k∏
j=1

⎛
⎝ D∑

d j=1

n̂l j ,d j

⎞
⎠, (15)

Ĉj =
∑
l∈Vj

D∑
d=1

n̂l,d , (16)

where Ĥp is a model with k = 1, 2 . . . , K-body interactions
of localized fermions. Thus, the constrained optimization
problems have been replaced by the eigenvalue problems
of obtaining the g.s. |φx∗ 〉 and its energy Emin = E (x∗) =
minx E (x) under the constraints of Eq. (14).

C. Driver Hamiltonian and initial states

We address the design of the driver Hamiltonian Ĥd

and initial states |φ0〉 = Ûinit|vac〉. First, we assume that
[Ĥd , Ĥp] = 0 to introduce hybridization between different
basis states |φx〉, Thus Ĥd represent nonlocal fermions rep-
resented by hopping terms, while Ĥp denote localized ones.
Conditions that Ĥd and |φ0〉 must satisfy are as follows:

(1) Condition I: The following conditions are imposed as
necessary conditions to satisfy the constraints at any approx-
imation level p all times during the time evolution process:

[Ĥd , Ĉj] = 0 for ∀ j. (17)

(2) Condition II: A series of hopping terms allows tran-
sitions between any two localized states |φx′ 〉 and |φx〉 that
satisfy the constraints

|〈φx′ |(Ĥd )n|φx〉| > 0. (18)

(3) Condition III: The initial state |φ0〉 = Ûinit is the g.s. of
Ĥd and at the same time satisfies the constraints

Ĥd |φ0〉 = E0|φ0〉, (19)

Ĉj |φ0〉 = Mj |φ0〉 for ∀ j, (20)

where E0 is the g.s. energy of Ĥd .
By using the designed Ĥd and its g.s. as the initial state

|φ0〉, the constrained optimization problems can be solved by
performing adiabatic time evolution from the nonlocal initial
state to the desired localized state. It is expected that FQAOA
in this setting will allow more efficient solving of constrained
optimization problems with shallow circuits.

D. Fermionic QAOA ansatz

The FQAOA ansatz satisfying the hard constraint is written
in the following:

|ψp(γ,β)〉 =
⎡
⎣ p∏

j=1

Ûm(β j )Ûp(γ j )

⎤
⎦Ûinit|vac〉. (21)

The Ûm(γ ) is the mixer that changes the fermion configura-
tions, the generator of which is the driver Hamiltonian Ĥd

satisfying conditions I and II in Sec. III C. The initial state
|φ0〉 = Ûinit|vac〉 satisfies condition III in Sec. III C. For effi-
cient quantum computation, it is important that Ûinit can be
implemented in polynomial time. We will see this is actually
the case for linear order in terms of the number of qubits
in the next section with a concrete example of the portfolio
optimization problem.

The FQAOA contains the QAA [7] in the limit of
large p. Taking the time-dependent Hamiltonian as Ĥ(t ) =
(1 − t/T )Ĥd + (t/T )Ĥp, discretizing time t by t j = (2 j −
1)T/2p ( j = 1, 2, . . . , p) with the execution time T = p�t ,
the parameters assigned are as follows:

γ
(0)
j = 2 j − 1

2p
�t,

β
(0)
j =

(
1 − 2 j − 1

2p

)
�t, (22)

the derivation of which by QAA is shown in Appendix A.
As there, the key condition for performing the above QAA
is that the initial state must be the g.s. of Ĥd under the con-
straint, which is satisfied by condition III. Previous studies on
constrained optimization problems [9,10] often use the Dicke
state as the initial state, and some of them do not satisfy this
condition.

E. Parameter optimization for fermionic QAOA

The objective of FQAOA is to obtain a bit string that gives
the lowest energy. To this end, the energy expectation value
Ep(γ,β) needs to be computed, which is obtained as the
output of the FQAOA ansatz in Eq. (21) as

Ep(γ,β) = 〈ψp(γ,β)|Hp|ψp(γ,β)〉. (23)

The minimum energy at the approximation level p is deter-
mined by the following parameter optimization [12]:

Ep(γ∗,β∗) = min
γ,β

Ep(γ,β), (24)

where the parameter set (γ∗,β∗) determines the approximate
variational wave function of the g.s. as |ψp(γ∗,β∗)〉. The wave
function |ψp(γ,β)〉 determines a probability Px(γ,β) that a
bit string x is observed as

Px(γ,β) = |〈φx|ψp(γ,β)〉|2. (25)

In this paper, to avoid the difficulty of parameter optimiza-
tion, the parameters in Eqs. (22) are used as initial values for
the parameter optimization. The above mentioned calculation
procedure is summarized in Fig. 1.

IV. PORTFOLIO OPTIMIZATION PROBLEM

As an example of the application of FQAOA, we take a
portfolio optimization problem and evaluate its performance
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by comparing with a previous study [2]. The cost function
for the optimization problem under the constraint of the total
number of stock holdings being M is defined by [1,2,25]

E (w) = λ

M2

N∑
l,l ′=1

σl,l ′wlwl ′ − 1 − λ

M

N∑
l=1

μlwl , (26)

s.t.
N∑

l=1

wl = M, (27)

where the subscripts l and l ′ are the indices of the stocks and
σl,l ′ and μl denote the asset covariance and average return,
respectively. An integer wl is the discrete portfolio asset posi-
tion to be held, representing long (wl � 1), short (wl � −1),
or no-hold (wl = 0) position. The parameter λ for 0 � λ � 1
adjusts the asset manager’s risk tolerance. The first and second
terms represent risk and return, respectively. Thus, if λ is
large, risk is reduced.

There are two cases in the portfolio optimization prob-
lems: one in which short position is not considered, where
wl ∈ {0, 1, . . . , I}, and the other in which it is, where wl ∈
{−I/2,−I/2 + 1, . . . , I/2}. The encoding into binary for
each problem is

wl =
{∑D

d=1 fd xl,d without short positions
I
2 −∑D

d=1 fd xl,d with short positions.

(28)

(29)

In this paper, the latter is investigated with unary encoding
fd = 1 and I = D, where D is defined to be even. The cost
function and constraint in Eqs. (26) and (27) can be rewritten
explicitly in the binary form as follows:

E (x) = λ

M2

N∑
l,l ′=1

σl,l ′

D∑
d,d ′=1

(
xl,d − 1

2

)(
xl ′,d ′ − 1

2

)

+ 1 − λ

M

N∑
l=1

μl

D∑
d=1

(
xl,d − 1

2

)
, (30)

s.t.
N∑

l=1

D∑
d=1

xl,d = M ′, (31)

where M ′ = ND/2 − M. To convert these problems to the
fermionic formulation, we can simply let xl,d 
−→ n̂l,d for
both cases in Eq. (29).

A. Problem Hamiltonian with particle number conservation

We present the problem Hamiltonian Ĥp and the eigen-
value problems for solving the portfolio optimization prob-
lems using quantum computation. The eigenvalue problems
with Ĥp are as follows:

Ĥp|φx〉 = E (x)|φx〉, (32)

s.t. Ĉ|φx〉 = M ′|φx〉, (33)

TABLE II. Mapping of stock positions to variables and quantum
states when short, no-hold, and long positions are considered (D=2).
|φl〉 (|sl,1, sl,2〉) is the state ket of the occupation (spin) representation
for lth stock, where |vac〉 represents a vacuum.

Variables Quantum states

Position wl xl,1 + xl,2 |φl〉 |sl,1sl,2〉l

Long 1 0 |vac〉 |↑, ↑〉l

c†
l,2|vac〉 |↑, ↓〉l

No hold 0 1
c†

l,1|vac〉 |↓, ↑〉l

Short −1 2 c†
l,1c†

l,2|vac〉 |↓,↓〉l

with

Ĥp = λ

M2

N∑
l,l ′=1

σl,l ′

D∑
d,d ′=1

(
n̂l,d − 1

2

)(
n̂l ′,d ′ − 1

2

)

+1 − λ

M

N∑
l=1

μl

D∑
d=1

(
n̂l,d − 1

2

)
, (34)

Ĉ =
N∑

l=1

D∑
d=1

n̂l,d , (35)

where E (x) is energy eigenvalue defined in Eq. (30), M ′ =
ND/2 − M, and |φx〉 is the same as Eq. (9). The correspon-
dence between the stock positions, variables, and quantum
states for a specific stock is shown in Table II, where the map-
ping to the spin-1/2 quantum states are also shown. Details of
mapping to spin systems are described in Sec. IV D 1.

B. Driver Hamiltonian and initial states on D-leg ladder lattice

Following the three guidelines in Sec. III C, we propose
a driver Hamiltonian Ĥd and an initial state |φ0〉 for unary
encoding. First, from condition I, Ĥd is assumed to be a
tight-binding model consisting of hopping terms. Next, from
condition II, the hopping terms are ĉ†

l,d ĉl±1,d and ĉ†
l,d ĉl,d±1.

The Ĥd designed in this way is the tight-binding model on a
D-leg ladder lattice. Finally, from the condition III, the |φ0〉 is
set to the g.s. of Ĥd with particle number M ′.

The tight-binding Hamiltonian on the D-leg ladder lattice,
which is adopted as Ĥd in this paper, is defined as follows:

Ĥt = −t‖
N∑

l=1

(ĉ†
l,d ĉl+1,d + ĉ†

l+1,d ĉl,d )

− t⊥
D−1∑
d=1

(ĉ†
l,d ĉl,d+1 + ĉ†

l,d+1ĉl,d ) (36)

=
N∑

k=1

D∑
m=1

εk,mα̂
†
k,mα̂k,m, (37)

where t‖ and t⊥ are the longitudinal and transverse hopping
integrals in the tight-binding model, respectively. The corre-
spondence between lattice labels and hopping is shown by
the colored bonds in Fig. 3(a), where the periodic boundary
condition ĉN+1,d = ĉ1,d is imposed.
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FIG. 3. (a) Hopping terms of Ĥt in Eq. (37), and that of Ûδ (β )
for δ = I, II, III, IV, and BC in Eq. (56) and (b) FSWAP gate network
of F̂δ for δ = I and II in Eq. (62) on the D-leg ladder lattice.

The energy eigenvalues εk,m and the quasiparticles α̂k,m in
Eq. (37) have the following form:

εk,m = −2t‖ cos

(
2π

N
k

)
− 2t⊥ cos

(
π

D + 1
m

)
(38)

and

α̂
†
k,m =

N∑
l=1

D∑
d=1

[φ0](k,m),(l,d )ĉ
†
l,d , (39)

[φ0](k,m),(l,d ) =
√

2

(D + 1)N
exp

(
i
2lπ

N
k

)
sin

(
dπ

D + 1
m

)
,

(40)

respectively, where k = 1, 2, . . . , N and m = 1, 2, . . . , D.
The initial state (the g.s. of Ĥd = Ĥt ) in FQAOA is as follows:

|φ0〉 =
M ′∏
j=1

α̂
†
(k,m) j

|vac〉, (41)

where the product for j is taken such that
∑M ′

j=1 ε(k,m) j is
minimal.

C. Implementation on quantum circuits

Here we describe how to implement the ansatz shown in
Eq. (21) on quantum circuits as Fig. 1. The ansatz can be
divided into two parts: initial state preparation Ûinit and phase
rotation (mixing) unitary Ûp(γ ) [Ûm(β )]. The JW transfor-
mation [26] is needed to implement Fermionic operators. In
this paper, we follow the transformation shown by Babbush
et al . [27]. The number of gates required for the calculation is
summarized in Table V of Appendix B.

1. Initial state preparation

The initial states |φ0〉 of the FQAOA on the D-leg ladder
lattice are explicitly expressed by the Slater determinant in
Eq. (41). The states can be prepared by quantum circuits by
using Givens rotations. Algorithms to prepare this initial state
examined using quantum devices [28,29]. In this paper, the
algorithm of Jiang et al. [30] is used to prepare the initial state
on quantum circuits, where the general Slater determinant for
n qubits can be computed efficiently at a circuit depth of at
most n for particle number n/2 [30]. In the following, we will
first present the general concepts and then demonstrate their

implementation on actual quantum circuit through a specific
example.

Following Jiang et al. [30], the general construction of Ûinit

is explained below. First, to reduce the number of operations
in the quantum circuit, a unitary matrix V acts as follows:

|φ0〉 =
M ′∏
j=1

[φ0ĉ†] j |vac〉

= [det(V )]−1
∏

j=1M′
[Vφ0ĉ†] j |vac〉, (42)

where ĉ† = (ĉ†
1, ĉ†

2 · · · ĉ†
ND)T . The unitary matrix V is deter-

mined so the components of the upper right triangular region
of the matrix φ0 are set to zero and the contribution of det(V )
can be ignored since it only changes the global phase. Next,
with unitary matrix U satisfying the following equation:

[Vφ0U
†]i, j = eiλiδi, j, (43)

the following transformation is performed on Eq. (42):

|φ0〉 =
M ′∏
j=1

ND∑
i=1

[Vφ0U†] j,i[Uĉ†]i|vac〉

= ei
M ′∏
j=1

[Uĉ†] j |vac〉, (44)

where the influence of  = ∑M ′
j=1 λ j can be ignored. The

U satisfying Eq. (43) can be constructed using a sequence
of Givens rotations as U = GNG · · · G2G1 [30], which can be
written by

Gk =

⎛
⎜⎜⎜⎜⎜⎜⎝

i i + 1
1 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...

i 0 . . . cos θk −eiϕk sin θk . . . 0
i + 1 0 . . . sin θk eiϕk cos θk . . . 0

. . .
...

...
. . .

...

0 . . . 0 0 . . . 1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(45)
which is a generalization of the usual Givens rotation to a
complex matrix [30]. The transformation of the basis ĉ† by
Gk can be written using the operator Ĝk as follows:

Ĝk ĉ†Ĝ†
k = Gk ĉ†, (46)

where

Ĝk = exp

[
−iϕk

(
1

2
− n̂i+1

)]
exp

[
θk (ĉ†

i ĉi+1 − ĉ†
i+1ĉi )

]
.

(47)
Therefore, the transformation of the basis ĉ† by U in Eq. (44)
can be written as

Û ĉ†Û† = Uĉ†, (48)

using Û = Ĝ1Ĝ2 · · · ĜNG . Thus, the initial state can be written
in the following form:

|φ0〉 = e−i�Û
M ′∏
j=1

ĉ†
j |vac〉, (49)
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where the influence of � = ∑NG
k=1 ϕk/2 can be ignored. Fi-

nally, the unitary operator used for the initial state preparation
can be written as

Ûinit = Ĝ1Ĝ2 · · · ĜNG

M ′∏
j=1

ĉ†
j . (50)

The following is an example of a circuit for initial state
preparation with M ′ = 4 particles on a ND = 4 × 2 ladder
lattice. First, as shown in Eq. (42), to shorten the circuit depth,
the components in the upper right triangular region of the
matrix φ0 in Eq. (40) are set to zero by the unphysical unitary
transformation V as

Vφ0 =

⎛
⎜⎜⎝

∗ 7 4 2 1 0 0 0
∗ ∗ 11 8 5 3 0 0
∗ ∗ ∗ 14 12 9 6 0
∗ ∗ ∗ ∗ 16 15 13 10

⎞
⎟⎟⎠. (51)

The matrix elements assigned numbers j ( j = 1, 2, · · · 16) in
the above matrix can be zeroed by acting G†

k in Eq. (45) to
the right in numeric order. Putting a series of Givens rotations
as U = G16 · · · G2G1, we obtain

Vφ0U
† =

⎛
⎜⎜⎝

eiλ1 0 0 0 0 0 0 0
0 eiλ2 0 0 0 0 0 0
0 0 eiλ3 0 0 0 0 0
0 0 0 eiλ4 0 0 0 0

⎞
⎟⎟⎠,

(52)
which corresponds to Eq. (43), and the initial state can be
written by Eq. (44), which can be rewritten in the form of
Eq. (49). Finally, the quantum circuit for preparing the initial
state |φ0〉 = Ûinit|vac〉 can be written as

(53)

where

(54)

The correspondence between i and (l, d) is denoted in
Eqs. (11) and (12). Note that this operation is only valid
between adjacent sites along the JW ordering in Fig. 2.

2. Phase rotation and mixing unitary

This section describes how to implement unitary operators
of the phase rotation Ûp and the mixing Ûm on the D-leg ladder
lattice in Fig. 3 in a quantum circuit.

First, we show the implementation of Ûp(γ ). In portfo-
lio optimization problems, the polynominal interactions are
two-body terms. In the fermionic representation, the corre-
spondence n̂l,d ↔ (1 − Ẑl,d )/2 allows us to implement the
interaction term as

(55)

Next, we describe the implementation of Ûm(β ) =
exp(−iβĤt ). In this paper, Ûm(β ) is implemented using the
Trotter decomposition to keep the level of approximation the
same as in the previous studies being compared. The effective-
ness of this method has been demonstrated in quantum devices
[29]. Another technique to deal with this has been proposed
using fermionic fast fourier transformation [10,31,32], which
transforms Ĥt into a diagonal representation and performs the
computation efficiently.

The following are specific decompositions of Ûm(β ) =
exp(−iβĤt ) used in this paper,

Ûm(β ) = ÛIV(β )ÛIII(β )ÛBC(β )ÛII(β )ÛI(β ), (56)

where Ûδ (δ = I, II, III, IV, and BC) consists of a set of
commutable hopping pairs, which are shown as color-coded
bonds in Fig. 3(a). ÛI,II causes hopping in the leg direction
along the JW ordering shown in Fig. 2. which can be written
as

ÛI =
∏

d even
l even

ĥil,d
t‖ (β )

∏
d odd
l odd

ĥil,d
t‖ (β ), (57)

ÛII =
∏

d even
l odd

ĥil,d
t‖ (β )

∏
d odd
l even

ĥil,d
t‖ (β ), (58)

where il,d is defined by Eq. (12) and

ĥi
t (β ) = exp

[
iβt

(
ĉ†

i ĉi+1 + ĉ†
i+1ĉi

)]
, (59)

where t is the hopping integral with t = t‖ or t⊥.
The hopping terms in Ûδ (β ) (δ = III and IV) in Fig. 3(a)

that are out of the JW ordering in Fig. 2 can be efficiently
computed using the network of fermionic swap (FSWAP)
gates introduced in the literature [33]. The implementation in
this paper followed the method in Ref. [34]. ÛIII(β )ÛIV(β ) can
be written with V̂ (β ) to the N th power as ÛIVÛIII = V̂ (β )N

with

V̂ (β ) =
∏

d even

ĥi1,d

t⊥ (β )
∏

d odd

ĥiN,d

t⊥ (β )F̂IIF̂I, (60)

F̂I =
∏

d even
l even

f̂ il,d
swap

∏
d odd
l odd

f̂ il,d
swap, (61)

F̂II =
∏

d even
l odd

f̂ il,d
swap

∏
d odd
l even

f̂ il,d
swap, (62)
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where F̂δ (δ = I and II) are depicted in Fig. 3(b) and f̂ i
swap is

the FSWAP operator [27,35]:

f̂ i
swap = 1 + ĉ†

i ĉi+1 + ĉ†
i+1ĉi − ĉ†

i ĉi − ĉ†
i+1ĉi+1, (63)

which exchanges fermionic quantum states between i and
i + 1 sites in the leg direction, taking into account the anti-
commutation relation.

The hopping terms ÛBC(β ) in Fig. 3(a) can be embedded
into ÛIVÛIII where the quantum states at l = 1 and N are
adjacent in the FSWAP network as

ÛIVÛIIIÛBC = V̂ (β )�(3N−1)/4�ÛBCV̂ (β )�(N+1)/4�, (64)

with

ÛBC(β ) =
∏

d even

ĥ
iq,d

t‖ (β )
∏

d odd

ĥ
ip,d

t‖ (β ), (65)

where p = �(N + 1)/2� and q = p + 1.
As an example, the first part of the Ûm in Eq. (56) in the

case of M ′ = 4 particles on a ND = 4 × 2 ladder lattice with
t‖ = t⊥ ≡ t is shown below:

(66)

where

(67)

and

(68)

The correspondence between i and (l, d) is denoted in
Eqs. (11) and (12). Note that Eqs. (67) and (68) are only valid
between adjacent sites along the JW ordering in Fig. 3(b).

D. Numerical evaluation of FQAOA

In this section, the validity of our proposed computational
framework FQAOA is investigated through numerical simula-
tions. First, we examine the proposed driver Hamiltonian in
the conventional adiabatic time-evolution framework. Next,

TABLE III. Comparison of calculation methods, where the driver
Hamiltonian Ĥd , initial states |φ0〉, and optimization methods of
variational parameters are shown. In FQAOA, Broyden-Fletcher-
Goldfarb-Shanno (BFGS) and conjugate gradient (CG) method give
the same results.

Method Ĥd |φ0〉 Variational optimizer

X -QAOA ĤX g.s. of ĤX stochastic BFGS
XY -QAOA-I [2] |φI〉 Nelder-MeadĤXYXY -QAOA-II |φII〉 stochastic BFGS
FQAOA Ĥt g.s. of Ĥt BFGS or CG

by comparing the statistical data obtained by FQAOA with
other methods, we evaluate the performance of FQAOA as-
suming the use of NISQ devices.

1. Computational frameworks to be compared

Our proposed FQAOA is compared with two computa-
tional frameworks: the conventional X -QAOA [7] with soft
constraint and the XY -QAOA with hard constraint [2]. These
are based on spin representations with spin-1/2 operator ŝα

i
for directions α = x, y, and z at the i site. In the X -QAOA,
the initial state |φ0〉, which does not satisfy the constraints,
is transferred to the approximate optimal solution indicated
by the problem Hamiltonian Ĥp with a penalty term Ĥpen

added. In the XY -QAOA, on the other hand, the Ĥpen is not
required, because an eigenstate of the constraint operator Ĉ is
chosen as an |φ0〉 and a mixer Û XY

m = exp(−iĤd ) satisfying
the commutation relation [Ĥd , Ĉ] = 0 in Eq. (17) is applied.

The problem Hamiltonian Ĥp and the constraint operator
Ĉ are obtained by applying the mapping n̂l,d ↔ 1/2 − ŝz

l,d to
Eqs. (34) and (35) as

Ĥp = λ

M2

N∑
l,l ′=1

σl,l ′

D∑
d,d ′=1

ŝz
l,d ŝz

l ′,d ′ − 1 − λ

M

N∑
l=1

μl

D∑
d=1

ŝz
l,d ,

(69)

Ĉ = ND

2
−

N∑
l=1

D∑
d=1

ŝz
l,d , (70)

respectively. The driver Hamiltonian Ĥd and initial state |φ0〉
explained below are summarized in Table III.

In the X -QAOA, Ĥd = ĤX is used, where

ĤX = −2
N∑

l=1

D∑
d=1

ŝx
l,d . (71)

The g.s. of ĤX is simply expressed as {[|↑〉 + |↓〉]/√2}⊗ND,
which is used as the initial state |φ0〉. Since [Ĥd , Ĉ] = 0 a
penalty Hamiltonian Ĥpen has to be added to the Ĥp as

Ĥ′
p = Ĥp + AĤpen, (72)

Ĥpen =
(

N∑
l=1

D∑
d=1

sz
l,d − M

)2

, (73)

where A is a parameter that adjusts the strength of the penalty.
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FIG. 4. Exchange terms of Û XY
δ (β ) for δ = I, II, and BC on a D

circle lattice.

Another comparison (referred as XY -QAOA-I and -II) is
based on the quantum alternating operator ansatz [18], which
Hodson et al. applied to the portfolio optimization problem
[2]. We here introduce the following XY Hamiltonian on a D
circle lattice shown in Fig. 4 as

ĤXY = −2
N∑

l=1

D∑
d=1

(
ŝx

l,d ŝx
l+1,d + ŝy

l,d ŝy
l+1,d

)
, (74)

where the condition [ĤXY , Ĉ] = 0 is satisfied. In this case,
the hard constraint can be imposed on the ansatz in Eq. (21)
by preparing an initial state that satisfies the constraints. In
Ref. [2], the special case of D = 2 is applied. For implemen-
tation of the mixer Û XY

m (β ) = exp(−iβĤXY ), the following
Trotter decomposition is applied:

Û XY
m (β ) = Û XY

BC (β )Û XY
II (β )Û XY

I (β ), (75)

where U XY
δ (δ = I, II, and BC) consists of sets of commutable

exchange pairs, which are shown as color-coded bonds in left
panel of Fig. 4.

Next, we explain the initial state |φ0〉 used in the methods
XY -QAOA-I and -II. Hodson et al. [2] adopted |φ0〉 with long
positions for M specific stocks and no-hold positions for the
others as

|φI〉 =
M⊗

l=1

|↑,↑〉l

N⊗
l=M+1

[
1√
2

(|↑,↓〉l + |↓,↑〉l )

]
, (76)

where the correspondence between spin states and positions
is shown in Table II. We refer to their method using this
initial state as XY -QAOA-I, in which the simulation results
strongly depend on the initial stock holdings. Therefore, we
introduce another method XY -QAOA-II, in which the initial
stock position of XY -QAOA-I are superposed in all cases as

|φII〉 = 1√
N!

∑
P

M⊗
l=1

|↑,↑〉Pl

×
N⊗

l=M+1

[
1√
2

(|↑,↓〉Pl + |↓,↑〉Pl )

]
, (77)

where P is permutation of N symbols for the index l . Note
that since neither |φI〉 nor |φII〉 is a g.s. of the ĤXY , the QAA
calculation cannot be applied.

FIG. 5. Comparison of the residual energy �E =
Ep(γ (0), β(0) ) − Emin for fixed-angle FQAOA and X -QAOA,
where (γ (0), β(0)) is obtained by the discrete-time QAA in Eqs. (22)
and Emin is the ground-state energy of Ĥp under the constraint. As
a reference, the data for p = 1, 2, . . . , 10 at W̃ �t = 10 are shown
by the open circles. Two bold gray lines represent the power law of
�E ∝ T −1/2 for execution time W̃ T = pW̃ �t .

2. Computational details

In the following, we compare our results with a previous
study by Hodson et al. [2]. To compare with the previous
study, the case where short positions can be taken (D = 2) for
eight stocks (N = 8) and the total number of stocks held (M =
4) are used in the calculations. In Eq. (26), the parameters
σl,l ′ and μl are the values in Fig. 2 and Table IV of Ref. [2],
respectively. We also set λ = 0.9 and A = 0.003 according to
the paper. The energy is scaled by W , which is the energy
range of Ĥp in Eq. (34) under the constraints of Eq. (33). The
hopping parameters in Ĥt are set to t‖ = t⊥ = W/Wt , where
the Wt is the energy range of Ĥt at t‖ = t⊥ = 1.

Numerical simulations have been performed using the
fast quantum simulator qulacs [36]. For the parameter
optimization to obtain Ep(γ∗,β∗) in Eq. (24), the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) and conjugate gradient
(CG) algorithm has been applied in our FQAOA. On the
other hand, in X -QAOA and XY -QAOA-II, the BFGS with
100 basin hopping is applied to avoid trapping in the local
minimum. The Nelder-Mead method has been applied in the
previous studies (XY -QAOA-I) [2]. The methods used for the
parameter optimization are summarized in the fourth column
of the Table III.

3. Simulation results using fixed-angle FQAOA

Hereafter, we will show the simulation results of our
proposed FQAOA. First, we compare the results of the fixed-
angle FQAOA with that of the X -QAOA, where the variational
parameters are fixed to (γ,β) = (γ (0),β(0) ) in Eqs. (22) for
various W̃ �t . We then show that FQAOA is reduced to QAA
in the large p limit.

The simulation results of the residual energy �E =
Ep(γ (0),β(0) ) − Emin for various p by using fixed-angle
QAOA are shown in Fig. 5. This corresponds to a
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FIG. 6. Energy dependence of cumulative probability F (E ) in Eq. (78) obtained by using (a) fixed-angle QAOA with (γ, β) = (γ (0), β(0) )
in Eqs. (22) at W �t = 10 and (b) FQAOA with (γ, β) = (γ∗, β∗), which is obtained from (γ (0), β(0) ) via optimization. The data shown as
XY -QAOA-I are extracted from Fig. 8 in Ref. [2] and random in constraint indicates the distribution of random sampling under the constraints.
Rectangles represent the cumulative probability in the exact ground state.

time-discretized QAA with execution time T = p�t and the
discretized time width �t is adjusted for verification. These T
and �t are scaled by W̃ , which is the energy range of Ĥ′

p in
Eq. (72) for X -QAOA and W̃ = W for FQAOA.

According to the results in Fig. 5, the computational
error of fixed-angle FQAOA is smaller than that of the con-
ventional method X -QAOA for all pW̃ �t region. This is
because the FQAOA ansats strictly satisfies the constraint at
all approximation levels p, whereas that of X -QAOA treats
the constraints approximately and the penalty imposed on
states out of the solution space increases the energy. The
data in FQAOA for sufficiently small W̃ �t = 0.1 lie on the
power law �E (T ) ∝ T −1/2, which confirms the asymptotic
approach to the g.s. by QAA [37–39]. Also in X -QAOA, the
asymptotic lines are parallel and their prefactors are 1000
orders of magnitude larger. Therefore, we can conclude that
the FQAOA method, which intrinsically treats the constraints
as particle number conservation laws, is superior to the con-
ventional X -QAOA method. As a point of reference, open
circles represent the results of fixed-angle FQAOA for p =
1, 2, . . . , 10 at W̃ �t = 10. The results obtained here at p = 1
are superior to the previous study of XY -QAOA-II as will be
seen next.

4. Simulation results using FQAOA with parameter optimization

Here we present simulation results from the framework
of FQAOA. First, to see the effect of parameter optimiza-
tion, the results of the cumulative probability F (E ) obtained
by (a) fixed-angle FQAOA and (b) FQAOA with parameter
optimization are shown in Fig. 6. The scaled variational pa-
rameters used in each calculation are presented in Fig. 7.

The F (E ) is expressed by the following equations:

F (E ) =
∫ E

0
P(E ′)dE ′, (78)

with probability distribution P(E ) = ∂F (E )/∂E , which is de-
rived from

P(E ) =
∑

x

Px(γ,β)δ{E − [E (x) − Emin]}, (79)

where Px(γ,β) is the probability of observing bit string x
defined by Eq. (25). By a simple calculation, the error �E

FIG. 7. The variational parameters (γ∗, β∗), which are obtained
from (γ (0),β(0) ) via optimization. The optimized parameters (γ∗,β∗)
(solid lines) for FQAOA obtained by Broyden-Fletcher-Goldfarb-
Shanno (BFGS) or conjugate gradient (CS) algorithm. The initial
parameters (γ (0),β(0)) in Eqs. (22) at W �t = 10 are shown by
dashed lines.
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FIG. 8. Statistical analysis of computational errors �E in Eq. (81) depending on the QAOA level p. In each box plot, the box shows
quartiles, the divider is the median, and the ends of the whisker indicate a range where the cumulative probability is between 0.05 to 0.95.
Circles with broken lines represent the expectation values �E/W = [Ep(γ∗, β∗) − Emin]/W , where Emin is the g.s. energy of Ĥp under the
constraint. The inset in (c) shows expectation values �E/W in log scale, where �E using Ep(γ (0), β(0) ) at W �t = 10 are shown by the open
circles.

can be obtained by the following equation:

�E =
∫ W

0
dE ′[1 − F (E ′)]. (80)

Since the area enclosed by the rectangle and the resulting
curve in Fig. 6 corresponds to the �E , the smaller this area
is, the smaller the expected value of the error.

First, we investigate the results of fixed-angle FQAOA
shown in Fig. 6(a). The F (E ) at p = 0 is derived from the
initial state |φ0〉, where the probability distribution is close to
that of the randomly sampled under the constraint, so the |φ0〉
is represented by a superposition of all classical states satisfy-
ing the constraint. The F (E ) of fixed-angle FQAOA at p = 1
is larger than the value of the previous study XY -QAOA-I at
p = 4 shown in Fig. 8 of the Ref. [2], so the computational
error �E in the former is smaller than that in the latter. As
a result, the fixed angle FQAOA at p = 1 outperforms the
XY -QAOA-I at p = 4 [2] in the following three respects: the
computational accuracy, the number of gate operations, and
no need for variational parameter optimization. The actual
number of gate operations for fixed angle FQAOA at p = 1
is about half the number of those for XY -QAOA-I at p = 4;
specifically, the number of operations for single- and two-
qubits is 556 and 656 for the former, respectively, while the
latter is 936 and 1092. These values are derived from the
Table VI in Appendix B.

We now turn to the results in Fig. 6(b). We see that the area
between the rectangle and the curves decreases at each p com-
pared to that in Fig. 6(a), indicating that the �E in Eq. (80)
decreases for all p. In particular, P(E ) = ∂F (E )/∂E increases
in the low-energy region. This means that the parameter op-
timization of FQAOA increases the probability of realization
of low-energy (low-cost) states. Indeed, it can be seen that the
probability of obtaining a solution in the low-energy region
0 � E � W/100, represented by F (E/100), increases from
0.357 to 0.521 by parameter optimization at p = 10.

We would like to make mention of the parameter optimiza-
tion in Eq. (24). In the previous study of XY -QAOA-I [2],
the Nelder-Mead method was applied, which is not realistic
to implement in real devices because it requires multiple trials
for initial parameter settings. In addition, there is no guarantee
that the accuracy will improve with an increase in p for a small
number of trials [2]. On the other hand, in the FQAOA of this
study, by setting (γ (0),β(0) ) as initial parameters, the accuracy
of the fixed-angle FQAOA is at least guaranteed. This appro-
priate initial parameter settings also allow the parameter to be
updated efficiently in a single local search using the BFGS
and CG methods. Figure 7 shows the results of the updated
variational parameters. The optimized parameters scale well
for increasing p, suggesting that (γ (0),β(0) ) is a good starting
point for any p. The value of E (γ∗,β∗) is checked to be in
agreement with the value obtained by the stochastic method
with 100 times basin hopping.

Finally, we compare the calculation accuracy of FQAOA
with other calculation methods X -QAOA and XY -QAOA-I
and -II. In Fig. 8, the statistical data of error �E are shown
by box-and-whisker diagram, which are obtained from the
following sufficiently large number of sampling:

�E =
∑

x
sampling

[E (x) − Emin]Px(γ∗,β∗), (81)

in a noiseless environment, where Px(γ∗,β∗) is the proba-
bility in Eq. (25) with the optimized variational parameter.
The �E in Fig. 8 decreases monotonically for each method
as p increases. In particular, the �E of FQAOA shown in
Fig. 8(c) can be significantly suppressed compared to the other
methods. In the case of X -QAOA, the energy increase due to
the penalty term in the problem Hamiltonian Ĥ′

p in Eq. (72)
causes �E > W for p � 3. For p � 7, it becomes difficult
to find the optimal (γ∗,β∗) by parameter optimization. Next
we look at the XY -QAOA-I and -II results in Fig. 8(b)
with black and orange plots, respectively. The former �E
takes a value smaller than X -QAOA, however, it is strongly
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TABLE IV. Comparison of computational accuracy, where the
error �E/W = [Ep(γ∗, β∗) − Emin]/W and the probability of re-
alization F (W/100) of low-energy states for 0 � E � W/100
are shown. In the fixed-angle FQAOA, (γ∗, β∗) is replaced by
(γ (0), β(0) ).

�E/W F (W/100)

Method p = 4 p = 10 p = 4 p = 10

X -QAOA 0.913 0.418 0.004 0.005
XY -QAOA-I [2] 0.3 – 0.007 –
XY -QAOA-II 0.120 0.089 0.092 0.237
Fixed-angle FQAOA 0.094 0.043 0.127 0.357
FQAOA 0.047 0.017 0.275 0.521

dependent on the initial state of the particular set of stocks
holdings. To eliminate the initial state dependence, the latter
uses an initial state that is a symmetric operation on the former
one shown in Eq. (77). In this case, the computational error is
reduced, however, the convergence for increasing p is worse
than for FQAOA. Compared to these results, for p � 1, the
error of FQAOA is the smallest and its variance is also largely
suppressed.

A summary of comparison is shown in the inset of Fig. 8
(c), where the fixed-angle FQAOA results are also shown
by open circles. It can be seen that the fixed-angle results
of FQAOA for p � 3 are below the computational errors of
the parameter-optimized XY -QAOA-I and -II. The parameter-
optimized FQAOA results have the smallest error compared
to all other methods for a given p in the region of p �
1. Quantitative comparisons at p = 4 and 10 are shown in
Table IV. The error �E and the probability of realization
F (W/100) of the low-energy state monotonically decrease
and increase, respectively, from the X -QAOA to the FQAOA,
indicating that the calculation accuracy improves in terms of
both �E and F (W/100). Comparing the results of FQAOA
at p = 4 with those of previous study XY -QAOA-I [2], the
calculation error is reduced to 1/6 and the probability of
realization of low-energy states is increased by a factor of 40.
The largest low-energy probability is F (W/100) = 0.521 for
the parameter-optimized FQAOA at p = 10.

The FQAOA also shows superiority in variational parame-
ter optimization calculations. In the XY -QAOA methods, the
fixed-angle QAOA reduced to QAA is not applicable. There-
fore, stochastic methods have to be applied for parameter
optimization due to the lack of a policy for setting initial
parameters, which increases the computation time by the num-
ber of initial parameter sampling. On the other hand, as we
have seen above, FQAOA provides good accuracy without pa-
rameter optimization and, moreover, the parameter-optimized
results as variational algorithm can be obtained without initial
parameter sampling. This property is a significant advantage
in performing calculations on real devices.

V. SUMMARY AND DISCUSSION

In this paper, we proposed fermionic QAOA (FQAOA)
for constrained optimization problems. This algorithm obtains
the optimized solution by changing the physical system from

the nonlocal fermions described by the driver Hamiltonian
to the localized fermions corresponding to the optimization
problem, where the constraint condition is regarded as the
number of fermions. In this paper, we express the design
guideline of the driver Hamiltonian in a fermionic formulation
and propose a strategy to set the ground state of the driver
Hamiltonian as the initial state. We also proposed to use the
parameters of the fixed-angle QAOA corresponding to the
time-discretized QAA as the initial variational parameters. As
a demonstration of this algorithm, a portfolio optimization
problem was taken up. The fixed-angle QAOA calculation
confirms that the residual energy calculated by the FQAOA
and the X -QAOA ansatz decays at similar powers, however,
the FQAOA method, which essentially treats the constraint
as a particle number conservation law, is superior to the
conventional X -QAOA method. The resulting computational
accuracy of the fixed-angle FQAOA at p = 1 exceeded that of
the parameter-optimized XY -QAOA at p = 4 in the previous
study [2] in about half the number of gate operations. Further-
more, the parameter-optimized FQAOA at p = 4 improved
the probability of achieving low-energy states by a factor of
40 compared to that in the XY -QAOA at p = 4 [2].

In the present paper, noninteracting fermions were set as
the initial state. On the other hand, the initial state preparation
using Givens rotation allows the implementation of any Slater
determinant. Thus, for example, the Hartree-Fock solution
can be set as the initial state. In the most promising field of
quantum chemical calculations, such calculations have been
realized on quantum devices [28]. Therefore, our algorithm is
expected to significantly improve the computational accuracy
of constrained combinatorial optimization problems by using
the quantum chemical computing tools such as OpenFermion
[40], both for NISQs and FTQCs.

We note here that the unary encoding was applied in the
portfolio optimization problem. For other encodings, FQAOA
can be performed by preparing the initial state in a way
that satisfies Eq. (31). However, since fd = 1, the constraint∑

l xl,d = md is imposed independently for each d , where∑
d md = M ′. Correspondingly, since there are multiple ini-

tial states that depend on the assignment of md , multiple
FQAOAs must be attempted to search for the optimal solution.
In addition, one-hot encoding and other efficient encodings
may impose restrictions on embedding general variables into
binary values. In this case, FQAOA can be performed in the
same way by imposing constraints in encoding.

Finally, it is necessary to mention the quantum advantage.
This is not limited to QAOA, but is an open problem in the
field of quantum computing. In the context of QAOA, for
example, warm-start techniques have been shown to improve
the performance of the algorithm for some optimization prob-
lems [41,42], where the quantum algorithm can inherit the
performance guarantees of classical algorithms. However, the
effectiveness of this strategy is a future challenge as it depends
on the available resources.
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APPENDIX A: QUANTUM ADIABATIC ALGORITHM

We explain the general QAA [6–8]. It consists of a problem
Hamiltonian Ĥp and a driver Hamiltonian Ĥd and satisfies
[Ĥp, Ĥd ] = 0. Taking the initial state |φ0〉 as the g.s. of Ĥd ,
the approximate g.s. |ψ (T )〉 of Ĥp for a sufficiently large T is
obtained by the following calculation:

|ψ (T )〉 = Û (T )|φ0〉, (A1)

where Û (T ) is the time evolution operator for execution time
T . Suppose the schedule of the time-dependent Hamiltonian
is Ĥ(t ) = (1 − t/T )Ĥd + (t/T )Ĥp, then the time-evolution
operator Û (t ) can be written in the following form:

Û (t ) = Tt ′ exp

{
−i

∫ t

0

[(
1 − t ′

t

)
Ĥd + t ′

t
Ĥp

]
dt ′
}
,

(A2)

where T ′
t is the time ordering product for t ′.

According to Ref. [12], we introduce an approximate form
of Eq. (A2), which is obtained by discretizing time t by �t
and then performing the following Trotter decomposition:

Û (T ) ∼
p∏

j=1

exp

[
−i

(
1 − t j

T

)
Ĥd�t

]
exp

[
−i

t j

T
Ĥp�t

]
,

(A3)

where t j = (2 j − 1)�t/2 with T = p�t . The approximate
g.s. and the expectation value of Ĥp are given by

|ψ (T )〉 = Û (T )|φ0〉 ∼
p∏

j=1

Ûm(β (0)
j )Ûp

(
γ

(0)
j

)|φ0〉 (A4)

and

E (T ) = 〈ψ (T )|Hp|ψ (T )〉 ∼ Ep
(
γ (0),β(0)), (A5)

with

γ
(0)
j = 2 j − 1

2p
�t, (A6)

β
(0)
j =

(
1 − 2 j − 1

2p

)
�t . (A7)

The accuracy of the approximate time evolution operator in
Eq. (A3) is characterized by an execution time T = p�t and
a discrete time width �t . By taking the �t small enough
and the T large enough, the circuit inevitably becomes deeper
and the accuracy of the approximation can be improved. The
expectation value E (T ) in Eq. (A5) can be used to evaluate
the performance of ansatz. Using a well-designed ansatz,
a pure quantum algorithm, such as the present fixed-angle
FQAOA in Fig. 6(a) and the previous studies [15], gives good
performance.

TABLE V. Numbers of single- and two-qubit gates of Ûinit , Ûp,
and Ûm in FQAOA ansatz.

Operator Single-qubit gate Two-qubit gate

Ûinit
1
4 (ND + 2M + 2)(ND − 2M ) 3

4 [(ND)2 − 4M2]

Ûp
1
2 ND(ND + 1) ND(ND − 1)

Ûm 2N2D + 10ND − 6N 2N2D + 2ND − 2N

APPENDIX B: COMPARISON OF GATE COUNTS

The number of gate operations for FQAOA obtained by
counting the number of gates in Sec. IV C is shown in Ta-
ble V. As a comparison, the counts for the four methods
(X -QAOA, XY -QAOA-I and -II, and FQAOA) at D = 2 are
also shown in Table VI. For Ûp = exp(−iγ Ĥp), all meth-
ods are implemented with the same quantum circuit, and
the number of single- and two-qubit gate operations are as
follows:

N (2N + 1), 2N (2N − 1),

respectively. The only difference between XY -QAOA-I and
-II is the initial state. In XY -QAOA-I, N − M triplet states are
generated for specific unowned shares as shown in Eq. (76).
On the other hand, XY -QAOA-II requires the generation of
a superposition of unowned shares as shown in Eq. (77).
This initial state can be prepared by the following unitary
operation:

Ûinit = exp

(
i
π

2

N∑
l=1

ŝz
l,1

)

× exp

[
−i

π

2

N∑
l=1

(
ŝx

l,1ŝx
l,2 + ŝy

l,1ŝy
l,2

)]
ĈN,N−M, (B1)

where ĈN,N−M is the operator that generates a Dicke state of
hamming weight N − M on N qubits with d = 2. The num-
ber of gate operations for single- and two-qubits in ĈN,N−M ,
respectively, are as follows [43]:

4NM − 4M2 − 2N + 1, 5NM − 5M2 − 2N.

Also, since
∑N

l=1 ŝz
l,1 is commutative with both Ĥp and ĤXY ,

the Rz gate in the first line of Eq. (B1) can be ignored.

TABLE VI. Comparison of the gate counts of Ûinit and Ûm at D =
2. The numbers of single- and two-qubit gates for each method are
shown in the upper and lower rows, respectively.

Method Ûinit Ûm

X -QAOA 2N 2N
0 0

XY -QAOA-I [2] 2(N − M ) 12N
N − M 4N

XY -QAOA-II 4NM − 4M2 + 4N + 1 12N
5M(N − M ) 4N

FQAOA (N + M + 1)(N − M ) 4N2 + 14N
3(N2 − M2) 4N2 + 2N
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