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Intrinsic anomalous Hall effect across the magnetic phase transition
of a spin-orbit-coupled Bose-Einstein condensate
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We study theoretically the zero-temperature intrinsic anomalous Hall effect in an experimentally realized
two-dimensional spin-orbit-coupled Bose gas. For anisotropic atomic interactions and as the spin-orbit-coupling
strength increases, the system undergoes a ground-state phase transition from states exhibiting a total in-plane
magnetization to those with a perpendicular magnetization along the z direction. We show that finite frequency,
or ac, Hall responses exist in both phases in the absence of an artificial magnetic field, as a result of finite
interband transitions. However, the characteristics of the anomalous Hall responses are drastically different in
these two phases because of the different symmetries preserved by the corresponding ground states. In particular,
we find a finite dc Hall conductivity in one phase, but not the other. The underlying physical reasons for this are
analyzed further by exploring relations of the dc Hall conductivity to the system’s chirality and Berry curvatures
of the Bloch bands. Finally, we discuss an experimental method of probing the anomalous Hall effect in trapped
systems.
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I. INTRODUCTION

The attempts to understand the origins of various nonordi-
nary Hall effects have played an important role in establishing
the field of electronic topological materials [1–3]. Indeed,
the famous work by Thouless et al. [4], which was the first
to introduce the concept of a topological invariant for mag-
netic Bloch bands, originated from an analysis of the integer
quantum Hall effect. Another phenomenon that has generated
great interest in the context of topological materials is the
anomalous Hall effect (AHE) [5,6], which refers to strong
Hall responses in the absence of a magnetic field and was orig-
inally discovered in ferromagnetic materials with spin-orbit
(SO) couplings. Central to the study of both effects is the idea
that the Bloch bands occupied by the electrons have nontrivial
geometric and topological features which can significantly
affect transport properties such as the Hall conductivity [6].

In recent years, much progress has been made in the area
of quantum gases to generate such band structures [7], by
introducing artificial magnetic fields, engineering synthetic
spin-orbit couplings, or some other means. In addition to
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simulations of noninteracting fermionic topological phases
[8–11], this has enabled the creation of bosonic topological
systems where atomic interactions are essential for the emer-
gence of topological properties [12–25]. In parallel, many
probing methods have also been devised and implemented to
measure the transport properties of the quantum gas systems
[26–28]. These developments have led us to ask whether
nontrivial Hall responses such as the AHE can be found in
these bosonic topological systems and, if so, how they can
be detected in experiments. In the context of charge-neutral
atomic gases, the AHE refers to the phenomenon where the
application of a uniform force induces a transverse current,
in the absence of an artificial magnetic field [29]. Indeed,
some of us have recently predicted [30] that a ground-state
AHE exists in a bosonic chiral superfluid in a boron nitride
optical lattice [25] and may be probed with currently available
experimental techniques. Here the AHE is intrinsic as the cold
atomic system is naturally free of impurities. Indeed, we have
shown that the superfluid’s chirality and the Berry curvature of
the condensate mode are two factors underlying the intrinsic
AHE [30].

The main purpose of this paper is to apply the ideas and
methods developed in Ref. [30] to investigate another recently
realized bosonic topological system, a two-dimensional (2D)
spin-orbit-coupled (SOC) Bose gas in an optical lattice [22].
As we are interested in the AHE, we focus on the situation
where the Zeeman field is absent. In this case, it was shown
earlier that the interplay of atomic interactions and the SOC
can give rise to nontrivial excitation band topology as well
as gapless edge states [31], both of which are also found in
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the bosonic chiral superfluid [25]. More importantly, a care-
ful analysis of the ground states of the SOC system shows
that it carries a finite, global angular momentum in one of
the phases, making it also a chiral superfluid similar to that
in Ref. [25]. Motivated by these similarities, we perform a
systematic calculation on the ground-state Hall conductivity
of the SOC system and reveal surprisingly even richer phe-
nomenology of the AHE compared to the chiral superfluid
studied in Ref. [30].

The rest of the paper is organized as follows. In Sec. II,
we provide a detailed discussion of the system’s Hamiltonian
and the various symmetries exhibited by the Hamiltonian.
In Sec. III, we calculate the ground state of the system
and demonstrate the existence of a magnetic phase transition
driven by the spin-orbit-coupling strength. The two magnetic
phases are distinguished not only by different directions of
the magnetization, but, more importantly, by different sym-
metries preserved by the ground state. The consequence of
these distinctions are explored in Sec. IV in the context of the
anomalous Hall effect, where we find contrasting structures
of the ac Hall conductivity in these two phases. In particular,
the dc Hall conductivity is finite in the perpendicular mag-
netization phase, but vanishes in the in-plane magnetization
phase. The underlying causes for this are analyzed in Sec. V.
In Sec. VI, we discuss an experimental proposal to observe the
intrinsic AHE in the SOC system using the center-of-mass os-
cillations. The main results are summarized again in Sec. VII.

II. QUAsI-2D SPIN-ORBIT-COUPLED BOSE GAS

A. Hamiltonian

The system of interest is a quasi-2D two-component Bose
gas confined in a square optical lattice potential, where a
robust spin-orbit coupling is realized by means of a Raman
lattice scheme [22]. Our model is based on the system imple-
mented by Ref. [22], although the effect of a trapping potential
is not considered for the moment. The noninteracting part of
the Hamiltonian is

Ĥ0 =
∫

dr ψ̂
†
(r)h0ψ̂(r). (1)

Here we adopt a spinor notation ψ̂ = (ψ̂↑, ψ̂↓)T , where ψ̂σ is
the field operator with σ =↑,↓ as the spin index. The single-
particle Hamiltonian is given by

h0 =
[

p2

2m
+ Vlatt(r)

]
I + VR,1(r)σx + VR,2(r)σy, (2)

where I is the unit matrix in the spin space and σx, σy are
Pauli matrices. Here, Vlatt(r) = V0(cos2 kLx + cos2 kLy) is the
2D square optical potential with lattice depth V0 and lattice
spacing π/kL [see Fig. 1(a)]; VR,1(r) = M0 sin(kLx) cos(kLy)
and VR,2(r) = M0 sin(kLy) cos(kLx) are the Raman potentials
coupling the spin to the motional degrees of freedom [see
Figs. 1(c) and 1(d)], where the coupling strength M0 can be
experimentally tuned. The Raman lattices are commensurate
with the square optical lattice, but have a unit cell twice
as large. The primitive vectors of the composite lattice po-
tential are thus given by those of the Raman lattices, i.e.,
a1 = π/kL(1, 1) and a2 = π/kL(−1, 1). The original square
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FIG. 1. (a) Illustration of the optical square lattice potential.
(b) The dihedral point group symmetry D4 for the single-particle
Hamiltonian in the absence of the Raman potentials. (c), (d) Illus-
trations of the Raman potentials VR,1(r) and VR,2(r), respectively. The
Wigner-Seitz cell and primitive vectors of the Raman potentials are
also shown.

lattice can then be divided into two sublattices, A and B, distin-
guished by the local Raman potentials around the lattice sites.
Note that we have not included any Zeeman field in Eq. (2) in
order to explore effects in which the atomic interactions play
a fundamental role. The latter are described by

Ĥint = 1

2

∑
σσ ′

gσσ ′

∫
dr ψ̂†

σ (r)ψ̂†
σ ′ (r)ψ̂σ ′ (r)ψ̂σ (r), (3)

where gσσ ′ are species-dependent interaction strengths. We
shall consider the case of anisotropic interactions found in
experiments, more specifically the case where the intraspecies
interaction strengths g↑↑ = g↓↓ are greater than the inter-
species ones g↑↓ = g↓↑. As we shall see later, for such an
interaction, the system experiences a ground-state magnetic
phase transition as the spin-orbit-coupling strength increases.
For the purpose of symmetry analysis, it is useful to rewrite
Eq. (3) as

Ĥint = 1

2

∫
dr : [ḡ(ψ̂

†
ψ̂)2 + δg(ψ̂

†
σzψ̂)2] :, (4)

where ḡ ≡ (g↑↑ + g↑↓)/2, δg ≡ (g↑↑ − g↑↓)/2 and : · · · : de-
notes normal order of the field operators.

Lastly, we mention that the total Hamiltonian Ĥ = Ĥ0 +
Ĥint can be mapped to one that has the periodicity of the
optical lattice potential by means of a unitary transformation
[32],

U ψ̂(r)U −1 =
(

1 0
0 e−ikLx−ikLy

)(
ψ̂↑(r)
ψ̂↓(r)

)
. (5)

However, we will not adopt such a transformation here.
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B. Symmetry

A thorough analysis of the symmetries exhibited by the
Hamiltonian is crucial to the understanding of the magnetic
phase transition since different phases can be distinguished
by, in addition to the order parameter, the specific symmetries
that are spontaneously broken. Furthermore, knowledge of
these symmetries is rather useful in the calculation of various
dynamical response functions of the system, as they ultimately
determine the selection rules obeyed by the relevant dynami-
cal transitions between the states. Pertinent to our study are the
following three types of symmetries (or symmetry groups):
the pseudo PT symmetry, the modified dihedral D̃4 symmetry
group, and the nonsymmorphic symmetry. In the following,
we describe each of these symmetries separately.

Pseudo PT symmetry. For genuine spin-1/2 particles, the
PT symmetry operation is defined as

PT = iσyKI, (6)

where I is the space inversion operator and K is the com-
plex conjugation operator. Because the spin in our system
is pseudospin, we refer to this as the pseudo PT sym-
metry. It is straightforward to show that the single-particle
Hamiltonian h0 in Eq. (2) is indeed invariant under such a
transformation, i.e., (PT )h0(PT )−1 = h0, which ensures that
PT commutes with Ĥ0 in Eq. (1). In addition, it is clear that
PT also commutes with Ĥint in Eq. (4) due to the fact that
(PT )σz(PT )−1 = −σz.

Modified dihedral symmetry. In the absence of the SO
coupling, h0 has the usual point group D4 symmetry, which
consists of fourfold rotation operations rn and twofold reflec-
tion operations sn (n = 1, . . . , 4), as illustrated in Fig. 1(b).
Here, rn denotes the counterclockwise rotation of nπ/2
around the z axis at the origin and sn denotes the reflection
across a line that makes an angle of nπ/4 with the x axis.
With SO coupling, however, the Hamiltonian h0 no longer
commutes with these operations because the Raman potentials
are not fully invariant under D4 operations. Instead, as can be
easily checked, it commutes with what we will refer to as the
modified dihedral symmetry operations,

r̃n ≡ e−i nπ
4 σz rn, s̃n ≡ e−i π

2 �sn·�σ sn, (7)

for n = 1, . . . , 4, and

r̃n ≡ e−i nπ
4 σz rn−4, s̃n ≡ ei π

2 �sn−4·�σ sn−4, (8)

for n = 5, . . . , 8, where �sn is the unit vector along the re-
flection axis of the sn operation. These 16 operations form
a symmetry group of h0 denoted by D̃4, which is a double
group of the D4 point group [33,34]. Again, since each of the
operators in D̃4 either commutes or anticommutes with σz, the
whole D̃4 group commutes with Ĥint .

Nonsymmorphic symmetry. Certain crystal structures are
invariant under a combination of point group rotation and
nonprimitive lattice translation, which is known as the non-
symmorphic symmetry. An analogous symmetry exists for our
system, where the symmetry operations are described by

�i = Ti(π/kL )e−i π
2 σz , (9)

where Ti(l ) (i = x, y) is a translation along the i direction
of a distance l . It can be checked again that such operations

( )( )(a) (b)

FIG. 2. The first 12 energy bands of the single-particle Hamilto-
nian: (a) without SO coupling and (b) with SO coupling. The bands
are doubly degenerate due to the PT symmetry. Here, V0 = 4Er

and M0 = 2Er , where Er is the recoil energy. Note that the folded
structure of the energy bands for the Hamiltonian without the SO
coupling is due to the fact that it is plotted within the first Brillouin
zone of the SOC Hamiltonian, which is half the size of that without
SO coupling.

commute with Ĥ0 and Ĥint . In fact, any combination of �i and
a rotation operator in D̃4 group, i.e.,

�iR ∀R ∈ D̃4, (10)

is also a nonsymmorphic symmetry operation.

III. MAGNETIC PHASE TRANSITION: IN-PLANE
VS PERPENDICULAR MAGNETIZATION

As the SO-coupling strength M0 increases, the condensate
in the optical lattice undergoes a phase transition [22] which is
analogous to the stripe-to-plane-wave phase transition found
in translationally invariant SOC systems [35]. However, since
the atoms in our system neither condense at finite crystal mo-
menta nor form density waves, the nomenclature “plane-wave
phase” and “stripe phase” are not entirely appropriate here
[36]. Instead, we shall see that the phases are characterized by
different types of the magnetization, i.e., in-plane vs perpen-
dicular magnetization. In this section, we provide a detailed
discussion of this phase transition and reveal important prop-
erties of these phases which, upon comparison to those of a
recently studied chiral superfluid, suggest that the anomalous
Hall effect may exist in this system.

To begin, we first calculate the noninteracting bands of the
SOC gas determined by

h0φnk(r) = εnkφnk(r), (11)

under the periodic boundary condition, where εnk, mea-
sured in recoil energy Er = h̄2k2

L/2m, is the band dispersion
and φnk(r) = [φnk↑(r), φnk↓(r)]T is the corresponding two-
component Bloch state. Figure 2(b) is an example of the band
structure obtained from solving Eq. (11); as a comparison, the
band structure in the absence of the SO coupling is shown in
Fig. 2(a). An important property of the noninteracting SOC
bands is that they are doubly degenerate due to the PT sym-
metry, much like the familiar Kramer’s degeneracy. This is
because (PT )2 = −1 and, as a result, PT φn,k 	= φn,k. The
degeneracy is reflected in Fig. 2(b), which contains the lowest
12 bands. In practice, it is necessary to work with a specific
set of single-particle wave functions. This can be obtained
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FIG. 3. Magnetization as a function of the SO-coupling strength
M0. Inset: the critical M0,cr as a function of the interaction anisotropy
g↑↓/g↑↑.

by adding an infinitesimal, PT symmetry breaking Zeeman
energy term ±ησz to h0 when solving Eq. (11), where η is
a positive infinitesimal number. For concreteness, the states
determined by +ησz (−ησz) are denoted by φ+

m,k (φ−
m,k) and

are referred to as the spin-up (spin-down) polarized states. As
a result of the PT symmetry, these states are related to each
other by φ+

m,k = PT φ−
m,k.

For weak atomic interactions and at zero temperature, the
atoms naturally condense at k = 0 of the Brillouin zone (

point); the specific condensate wave function can be deter-
mined by minimizing the Gross-Pitaevskii (GP) functional
with respect to the trial wave function ψ(r) consisting of
superpositions of φn0(r) from different bands. Namely, we
minimize the following GP functional:

E [ψ] =
∫

dr
[
ψ†h0ψ + ḡ

2
(ψ†ψ)2 + δg

2
(ψ†σzψ)2

]
,

under the normalization
∫

drψ†(r)ψ(r) = N , where N is the
total number of atoms. The normalized condensate wave func-
tion so obtained will be denoted by � = (�↑,�↓)T , for which∫

dr�†(r)�(r) = 1.
To describe the magnetic properties, we define the magne-

tization per particle,

M =
∫

dr m(r) =
∫

dr �†(r)σ�(r), (12)

where σ ≡ (σx, σy, σz ). For weak SO-coupling strengths,
the system favors a ground state which minimizes the
interaction energy term associated with spin polarization,
δg
2

∫
dr(ψ†σzψ)2. Recalling that δg = (g↑↑ − g↑↓)/2 > 0, we

then expect a ground state with Mz = 0. As the SO-coupling
strength increases, the Raman potential energy may be grad-
ually lowered by the spin flip induced by the SO coupling
term; the amount lowered eventually compensates for the in-
crease of the interaction energy, leading to a state with a finite
magnetization along the z direction. This picture is indeed
confirmed by our calculation. In Fig. 3, we plot the magnitude
of |Mz| as a function of the SO coupling strength M0 for V0 =
4Er , ρg↑↑ = 0.35Er , and ρg↑↓ = 0.3Er , where ρ = N/A is
the density per unit area. We see that a transition from a

phase with a vanishing Mz to that with a finite Mz occurs
at a SO-coupling strength M0,cr ≈ Er . The critical value of
the SO-coupling strength depends significantly on the degree
of interaction anisotropy, as shown in the inset of Fig. 3.
Interestingly, the former phase is in fact not characterized
by a vanishing total magnetization, but rather by a finite in-

plane magnetization |M‖| ≡
√

M2
x + M2

y . In other words, our

calculations show a transition from in-plane magnetization
to perpendicular magnetization driven by the SO-coupling
strength. The properties of these two phases will be examined
more closely below.

In the perpendicular magnetization phase, the ground state
has a twofold degeneracy as the direction of the magnetization
can be either along the +z or the −z direction. For Mz > 0,
the condensate wave function is given by � = ∑

m(c+
mφ+

m0 +
c−

mφ−
m0), where the φ+

m0 components are dominant. Clearly, the
ground states with opposite Mz are related to each other by the
PT symmetry operation. Let us take a specific value of M0 =
2.5Er as an example and consider the case of Mz > 0. The
spin-up and spin-down components of this condensate wave
function are shown in Figs. 4(a)–4(d). The most conspicuous
property of the wave function is that the spin-down component
contains a significant mixture of the p orbitals of the square
optical lattice, which is clearly reflected by the phase winding
shown in Fig. 4(d). In fact, the spin-down component forms a
vortex lattice with the vortex cores located at the optical lattice
sites [see Fig. 4(c)]. The spin-up component, on the other
hand, consists of dominantly s orbitals; its phase variation
shown in Fig. 4(b) indicate very small mixtures of higher
orbitals. A direct implication of the vortex lattice is that the
condensate carries a macroscopic angular momentum, which
can, in principle, be calculated by

Lz = N
∑

σ

∫
dr�†

σ (r)(xpy − ypx )�σ (r). (13)

As is expected, the angular momentum is mostly carried by
the spin-down component in this case, which is shown in
Fig. 5. The fact that Lz < 0 is consistent with the phase wind-
ing of the wave function shown in Fig. 4(d).

In addition, from the condensate wave function shown in
Figs. 4(a)–4(d), we find that the ground state breaks the D̃4

symmetry but still retains the C̃4 symmetry, the latter of which
is formed by all the r̃n operations. It can be shown that as
a consequence, the magnetization density m(r) must have
the C4 symmetry and M‖ = 0, which are confirmed by the
calculation shown in Fig. 4(e). Finally, the condensate wave
function also preserves the nonsymmorphic symmetry �i and
�iR for R ∈ C̃4. Specifically, we find

�x� = −i�, �y� = −i�. (14)

Now we turn to the in-plane magnetization phase, where
the condensate wave function is found to be a superposi-
tion of +ησz and −ησz states with equal weight, namely,
� = ∑

m(c+
mφ+

m0 + c−
mφ−

m0) with |c+
m | = |c−

m |. Our calculations
show that there are four degenerate ground states in this phase,
characterize by four possible directions of the in-plane magne-
tization, i.e., along ±�s1 and along ±�s3. The condensate wave
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FIG. 4. Condensate wave function �(r) (normalized within the Wigner-Seitz cell) and magnetization density m(r). Upper panels: perpen-
dicular magnetization phase with SO-coupling strength M0 = 2.5Er . Lower panels: in-plane magnetization phase with SO-coupling strength
M0 = 0.8Er . Other parameters are V0 = 4Er , ρg↑↑ = 0.35Er , and ρg↑↓ = 0.3Er . These values will be used in the calculations throughout the
paper, unless indicated otherwise.

function for these states can be distinguished by the relative
phase of the dominant coefficients c+

1 and c−
1 , which assume

values of (2q − 1)π/4, with q = 1, 2, 3, 4. As a specific ex-
ample, the condensate wave function corresponding to q = 1
is shown in Figs. 4(f)–4(i). From these results, we find that
wave function is invariant under the symmetry group D̃1 =
{e = r̃8, s̃1, s̃2

1 = r̃4, s̃3
1 = s̃5}. Indeed, it can be confirmed that

the wave function satisfies

s̃1� = −i�. (15)

This allows us to show that the direction of the magnetization
is along the �s1 axis, as can be seen in Fig. 4(j). In addition,
because

s̃1L̂zs̃
−1
1 = −L̂z, (16)

0 0.5 1 1.5 2 2.5 3
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FIG. 5. Angular momentum of the SOC condensate as a function
of the SO-coupling strength M0. Here, the center of the Wigner-Seitz
cell is chosen as the origin in the calculation.

where L̂z = ∑
σ

∫
drψ̂†

σ (r)(xpy − ypx )ψ̂σ (r), the total angu-
lar momentum of the state vanishes due to this symmetry.
This is also confirmed by the calculations shown in Fig. 5,
where we see that the up and down component carries oppo-
site angular momentum. Lastly, the condensate wave function
preserves the nonsymmorphic symmetries �i r̃2 and �i r̃2R for
R ∈ D̃1, as can be easily checked that

�xr̃2� = −�, �yr̃2� = −�. (17)

IV. FINITE-FREQUENCY ANOMALOUS HALL EFFECT

Previous calculations of the ground-state properties reveal
that in the perpendicular magnetization phase, the SOC gas
contains a vortex lattice in one of the spin components and,
consequently, carries a global angular momentum. This is
reminiscent of the bosonic chiral superfluid in the boron ni-
tride lattice where an intrinsic AHE was predicted recently
[30]. Motivated by this observation, we now explore the
prospects of the anomalous Hall effect in the SOC system and
calculate the frequency-dependent Hall conductivity by means
of the Kubo formula and the Bogoliubov theory. First, we
make use of the spectral representation of the Kubo formula,
which expresses the Hall conductivity in terms of the energies
of the collective excitations and the transition matrix elements
of the current operator. These latter quantities are then calcu-
lated using the Bogoliubov theory, aided by group symmetry
analysis. We find that the current matrix elements obey cer-
tain selection rules determined by the symmetry properties
of the Bogoliubov Hamiltonian, which in turn are dependent
on those of the condensate wave function. These selection
rules can be used to understand the overall structure of the
frequency-dependent Hall conductivity and to explain the ex-
istence of the dc AHE in the perpendicular magnetization
phase and the absence of it in the in-plane magnetization
phase.
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A. Hall conductivity: Spectral representation

The Kubo formula for the Hall conductivity is

σH (ω) ≡ − i

Aω
χ J

x,y(ω), (18)

where A is the system’s area, χO
x,y(ω) is the Fourier transform

of the retarded correlation function of operator Ô,

χO
x,y(t − t ′) = −ih̄−1θ (t − t ′)〈[Ôx(t ), Ôy(t ′)]〉, (19)

and the total current operator is

Ĵ = h̄

mi

∑
σ

∫
drψ̂†

σ (r)∇ψ̂σ (r). (20)

Quite generally, the Hall conductivity can be written in a form
of spectral representation as

σH (ω) = −i
1

Aωh̄2

∑
n 	=0

[
Jx,0nJy,n0

h̄ω − En + E0 + i0+

− Jy,0nJx,n0

h̄ω + En − E0 + i0+

]
, (21)

where En denotes the energy of the many-body eigenstate
|n〉 and Ji,0n = 〈0|Ĵi|n〉 denotes the current matrix element
between the ground state and the excited state |n〉.

As can be seen in Eq. (21), the Hall conductivity is a
complex quantity; its real and imaginary parts are related to
each other by the Kramer-Kronig relation,

ReσH (ω) = 1

π
P

∫ ∞

−∞
dω′ ImσH (ω′)

ω′ − ω
. (22)

Writing the matrix product Jx,0nJy,n0 in terms of its real and
imaginary part as

Jx,0nJy,n0 = In + iI ′
n, (23)

where In and I ′
n are now real, we can explicitly obtain the real

and imaginary parts as

Re σH (ω) = 1

Aωh̄2

∑
n 	=0

{
2h̄ω

(h̄ω)2 − (En − E0)2
I ′
n

+ π [δ(h̄ω + En − E0) − δ(h̄ω − En + E0)]In

}

(24)

and

Im σH (ω) = − 1

Aωh̄2

∑
n 	=0

{
2(En − E0)

(h̄ω)2 − (En − E0)2
In

+π [δ(h̄ω + En − E0) + δ(h̄ω − En + E0)]I ′
n

}
.

(25)

Later we shall see that the symmetry of the Hamiltonian
places various constraints on the current matrix elements. For
the purpose of such symmetry analysis, it is useful to write
the real and imaginary parts of the matrix elements product in
Eq. (23) in slightly different forms. Introducing the operators

Ĵ± = 1
2 (Ĵx ± iĴy), (26)

we arrive at

In = −i(J+,0nJ+,n0 − c.c.), (27)

I ′
n = −(|J+,n0|2 − |J−,n0|2), (28)

where J±,nm ≡ 〈n|Ĵ±|m〉. We note that the dc conductivity,
defined by Re σH (0), is given by

Re σH (0) = − 2

Ah̄

∑
n 	=0

I ′
n

(En − E0)2
. (29)

B. Bogoliubov theory

For the SOC condensate, the above matrix elements will be
evaluated using the Bogoliubov approximation, under which
the current operator is given by

Ĵ ≈ h̄
√

N

mi

∑
σ

∫
dr[�∗

σ∇δψ̂σ − �σ∇δψ̂†
σ ]. (30)

Here the fluctuation operator δψ̂σ can be expressed as

δψ̂σ (r) =
∑

nk

unkσ (r)α̂nk − v∗
nkσ (r)α̂†

nk, (31)

where n = 0, 1, 2 . . . is now the band index (to be dis-
tinguished from that used previously to denote a general
excited state), α̂

†
nk is the creation operator for the Bogoliubov

quasiparticle, and unkσ and vnkσ are the Bogoliubov ampli-
tudes. These amplitudes are determined by the Bogoliubov–de
Gennes (BdG) equation,

τzHB(r)V nk(r) = EnkV nk(r), (32)

where τz = σz ⊗ I , Enk is the band dispersion of the quasi-
particle, V nk ≡ (uT

nk,−vT
nk)T is the corresponding amplitude

with the normalization
∫

drV †
mk(r)τzVnk(r) = τz,mn, and HB(r)

is the Bogoliubov Hamiltonian,

HB(r) =
(
M + h0 − μ N

N ∗ M∗ + h∗
0 − μ

)
. (33)

Here, μ is the chemical potential determined earlier along
with the condensate wave function �,

M = ρA
(

2g↑↑|�↑|2 + g↑↓|�↓|2 g↑↓�∗
↓�↑

g↑↓�∗
↑�↓ 2g↓↓|�↓|2 + g↑↓|�↑|2

)

and

N = ρA
(

g↑↑�2
↑ g↑↓�↓�↑

g↑↓�↑�↓ g↓↓�2
↓

)
.

Examples of the Bogoliubov quasiparticle spectrum obtained
by solving Eq. (32) in the perpendicular and in-plane magne-
tization phases are shown in Fig. 6 and Fig. 9, respectively.
We note that there is a gapless solution to the BdG equa-
tion in both phases as a result of the well-known Goldstone
theorem. The corresponding eigenvector, for which n = 0 and
k = 0, reproduces the GP wave function and takes the form of
V 00 = (�T ,−�†)T .

Since the total current conserves the crystal momentum,
the relevant current matrix elements within the Bogoliubov
theory are those between the ground state and the excited
states with one quasiparticle of zero crystal momentum. Using
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FIG. 6. Bogoliubov bands in the perpendicular magnetization
phase. On the right side, the 
n and the λn value corresponding to
the k = 0 state of the nth band are given. According to the selection
rule explained in the text, the transition is forbidden from the ground
state to those bands indicated by dashed lines.

Eqs. (30) and (31), we find that the matrix elements J±,n0 are
given by

J±,n0 = h̄
√

N

mi

∑
σ

∫
dr(u∗

n0σ ∂±�σ + v∗
n0σ ∂±�∗

σ )

≡
√

N〈V n0|J±|V 00〉, (34)

where

J± ≡ (h̄/mi)diag(∂±, ∂±, ∂±, ∂±), (35)

with ∂± ≡ (∂x ± i∂y)/2. Although it is straightforward to cal-
culate Eq. (34) using the solutions from the Bogoliubov
equation, such a task can be greatly simplified if we make use
of the symmetry properties of the Bogoliubov Hamiltonian
and its eigenstates. First, it can be shown by such symmetry
analysis that the matrix elements product Jx,0nJy,n0 in Eq. (23)
is purely imaginary in the perpendicular magnetization phase
and purely real in the in-plane magnetization phase. This
property alone indicates that the dc AHE is absent in the
latter phase. Furthermore, these matrix elements obey selec-
tion rules governed by the symmetry group of the Bogoliubov
Hamiltonian; these selection rules determine the overall struc-
ture of the complex Hall conductivity.

In order to demonstrate the above properties, we first dis-
cuss the symmetry of the Bogoliubov Hamiltonian, which
crucially depends on that of the condensate wave function �.
We found earlier that even though � breaks the D̃4 symmetry,
it nevertheless preserves a symmetry subgroup of D̃4. Suppose
that � is invariant under a symmetry operation R ∈ D̃4, i.e.,

R� = eiθR�. (36)

Then, it is straightforward to show that

f1(R) =
(

e−iθR R
Ke−iθR RK

)
(37)

is a symmetry operator of HB, namely,

f1(R)HB f −1
1 (R) = HB. (38)

TABLE I. Character table of C̃4.

C̃4 e r̃1 r̃2 r̃3 r̃4 r̃5 r̃6 r̃7

A1 1 1 1 1 1 1 1 1
A2 1 i −1 −i 1 i −1 i
A3 1 −i −1 i 1 −i −1 i
A4 1 −1 1 −1 1 −1 1 −1
A5 1 e−iπ/4 e−iπ/2 e−i3π/4 e−iπ ei3π/4 eiπ/2 eiπ/4

In addition, the condensate wave function may also retain
certain nonsymmorphic symmetry �iR. In this case, we have

(�iR)� = eiβi,R�, (39)

which allows us to similarly define a corresponding symmetry
operation for HB as

f2(�iR) =
(

e−iβi,R�iR
Ke−iβi,R�iRK

)
. (40)

In the following, we will discuss in detail the implications of
these symmetry operators for HB. To do so, we need to treat
the two magnetic phases separately because their correspond-
ing condensate wave functions possess different symmetry
subgroups of D̃4 and also different nonsymmorphic symme-
tries.

C. Perpendicular magnetization phase

As previously found, the condensate wave function � in
the perpendicular magnetization phase preserves the C̃4 sym-
metry. In Table I, we display the character table of relevant 1D
irreducible representations of the C̃4 group. We again take the
case of Mz > 0 as an example, where our calculation shows
that � is the basis function of the 1D irreducible representa-
tion A5 of the C̃4 group. Thus, from Eq. (36), we have

eiθR = χ (A5 )(R), (41)

where χ (
)(R) denotes the character of R in the 1D repre-
sentation 
 of C̃4. With this phase factor so determined, it is
straightforward to show from Eq. (37) that f1(R) · f1(R′) =
f1(R · R′) for arbitrary R, R′ ∈ C̃4. This means that all the
f1(R) operations for R ∈ C̃4 form a symmetry group of HB

isomorphic to C̃4, which we denote as C̃4 ≡ { f1(R) : ∀R ∈
C̃4}. Since the solutions of the BdG equation are nondegen-
erate, the existence of this symmetry group implies that V n0

is the basis function of some 1D irreducible representation
of C̃4, denoted by 
n. Each of 
n can be found by calculat-
ing f1(R)V n0 and comparing the result to the character table
in Table I. For example, it is easy to show that 
0 is the
trivial representation A1. In addition, by direct calculations
of f1(R)J± f −1

1 (R), we find that the operators J± are also
basis functions of certain 1D irreducible representations of C̃4,
denoted by 
±. Comparing these calculations to the character
table of the 1D representations of C̃4 in Table I, we find that

+ = A2 and 
− = A3.

Now, we are in a position to discuss the selection rule of the
matrix element 〈V n0|J+|V 00〉 required by the C̃4 symmetry
group. The matrix element should transform as a constant
when any symmetry group operation is applied to the states
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and the operator J+ simultaneously; otherwise, it must be
zero. In the language of group theory [34], this is saying that
such a matrix element must vanish if


n 	= 
0 ⊗ 
+. (42)

Similarly, we have 〈V n0|J−|V 00〉 = 0 if


n 	= 
0 ⊗ 
−. (43)

The first consequence of this selection rule is that the gen-
eral expressions of the Hall conductivity in Eqs. (24) and
(25) can be immediately simplified. Applying the rule to
the matrix elements product 〈V 00|J+|V n0〉〈V n0|J+|V 00〉 =
(〈V n0|J−|V 00〉)∗〈V n0|J+|V 00〉, we see that it must vanish due
to the fact that 
+ 	= 
−. In view of Eqs. (34) and (27),
this immediately leads to In = 0. Consequently, within the
Bogoliubov theory, the Hall conductivity takes the form of

Re σH (ω) = 2

Ah̄

∑
n 	=0

I ′
n

(h̄ω)2 − (En0 − E00)2
(44)

and

Im σH (ω) = − π

Aωh̄2

×
∑
n 	=0

[δ(h̄ω + En0 − E00) + δ(h̄ω − En0 + E00)]I ′
n, (45)

where the Bogoliubov quasiparticle energy En0 is determined
from the BdG equation and

I ′
n = −N (|〈V n0|J+|V 00〉|2 − |〈V n0|J−|V 00〉|2). (46)

We note that the real part of the complex Hall conductivity
is reactive, while the imaginary part is absorptive, the same
as those found in condensed matter systems. The quantity I ′

n
is not finite for all n due to the selection rule; it vanishes for
those states whose corresponding 1D C̃4 group representation
satisfies both Eqs. (42) and (43). In other words, the selection
rule of the C̃4 symmetry allows only transitions to states whose
1D C̃4 group representation is either A2 or A3. In addition,
the nonsymmorphic symmetry imposes further restrictions
among these states. Because the condensate wave function
satisfies the nonsymmorphic symmetry �x, a corresponding
symmetry operation, f2(�x ) defined by Eq. (40), exists for
the Bogoliubov Hamiltonian. Under this operation, J± and
the Bogoliubov amplitude V n0 transform as

f2(�x )J± f −1
2 (�x ) = J±,

f2(�x )V n0 = λnV n0. (47)

This means that transitions to those states for which λn 	= λ0

are forbidden by the nonsymmorphic symmetry. In Fig. 6, we
show a table of calculated 
n and λn for the first 12 bands.
As can be checked from this table, the combination of the
two sets of selection rules limits the relevant excited bands to
n = 2, 9, 11.

In Fig. 7, we have shown an example of Re σH (ω), where
we find resonances located precisely at the 
 point excitation
energies of these bands. The imaginary part Im σH(ω), shown
in Fig. 8, is given by the summation of a series of δ functions
centered at these excitation energies, with weights determined
by the corresponding I ′

n. Notably, our calculations show a

0 1 2 3 4 5
–0.1

–0.05

0

0.05

0.1

FIG. 7. Real part of the frequency-dependent Hall conductivity
for the system in the perpendicular magnetization phase. The specific
excitation bands corresponding to the resonances are indicated by the
arrows. Here, ρu is the number of atoms per unit cell.

finite dc Hall conductivity Re σH (0) for the perpendicular
magnetization phase, which is in sharp contrast with the in-
plane magnetization phase to be discussed below. We will
return to the issue of dc Hall conductivity later in Sec. V.

D. In-plane magnetization phase

In comparison to the perpendicular magnetization phase,
the condensate wave function in the in-plane magnetization
phase preserves the D̃1 symmetry. To be specific, we take the
condensate wave function considered in Sec. III as an exam-
ple. Our calculation shows that this condensate wave function
is the basis function of the 1D irreducible representation B4 of
the D̃1 group (see the character table of the representations of
the D̃1 in Table II). Letting

eiθR = χ (B4)(R), (48)

we can again form a symmetry group of HB, D̃1 ≡ { f1(R) :
∀R ∈ D̃1}, which is isomorphic to D̃1. We now show that
I ′
n = 0 as a result of this symmetry. It can be easily checked

0 1 2 3 4 5

–3

–2

–1

0

1

2

FIG. 8. Imaginary part of the frequency-dependent Hall conduc-
tivity for the system in the perpendicular magnetization phase. Here
the δ peaks are broadened using a Lorentzian with a width parameter
0.01.
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TABLE II. Character table of D̃1.

D̃1 e s̃1 s̃2
1 s̃3

1

B1 1 1 1 1
B2 1 −1 1 −1
B3 1 i −1 −i
B4 1 −i −1 i
E 2 0 2 0

that for s̃1 ∈ D̃1,

f1(s̃1)J+ f −1
1 (s̃1) = iJ−. (49)

Indeed, it turns out that J+ and J− are the basis functions of
a 2D representation of D̃1 group, denoted here by 
J . The
above transformation, together with the fact that V n0 is the
basis function of a 1D representation of the D̃1 group, leads to

|〈V n0|J+|V 00〉| = |〈V n0|J−|V 00〉|. (50)

In view of Eqs. (34) and (27), we then arrive at I ′
n = 0 and

Re σH (ω) = π

Aωh̄2

∑
n 	=0

[δ(h̄ω + En0 − E00)

− δ(h̄ω − En0 + E00)]In, (51)

Im σH (ω) = − 1

Aωh̄2

∑
n 	=0

2(En0 − E00)

(h̄ω)2 − (En0 − E00)2
In, (52)

where

In = −iN (〈V 00|J+|V n0〉〈V n0|J+|V 00〉 − c.c.). (53)

Interestingly, the form of the complex Hall conductivity here
is drastically different from that in the perpendicular magne-
tization phase, in that the real part is absorptive whereas the
imaginary part is reactive. In particular, the dc Hall conduc-
tivity Re σH (0) vanishes completely.

Similar to previous analysis of the perpendicular magne-
tization phase, we can determine the selection rules of the
matrix elements 〈V 00|J±|V n0〉 by first ascertaining the repre-
sentations of the D̃1 group whose basis functions correspond
to V 00, V n0, and J±. For operators J± that construct a higher
than 1D representation, the generalization of the selection rule
given earlier states that the matrix elements 〈V 00|J±|V n0〉
vanish if 
n is not contained in the 1D decomposition of the
direct product 
J ⊗ 
0 [34]. From direct calculation and the
character table, we find that 
J = E and thus


J ⊗ 
0 = B1 ⊕ B2. (54)

As shown in Fig. 9, it turns out that 
n is in fact either B1 or
B2 for the first 11 excited bands, meaning that for these bands
no restriction of transition is placed by this rule. However,
this is not the case with respect to the selection rule of the
nonsymmorphic symmetry. Recalling that the condensate here
is invariant under �xr̃2, we can define the corresponding sym-
metry operation f2(�xr̃2) for the Bogoliubov Hamiltonian.
Considering In under the following transformations:

f2(�xr̃2)J± f −1
2 (�xr̃2) = −J±,

(55)
f2(�xr̃2)V n0 = λ′

nV n0,

FIG. 9. Bogoliubov bands in the in-plane magnetization phase.
Although it appears that this phase has two gapless modes, the ex-
panded view of the neighborhood of the 
 point shows that this is not
the case. On the right side, the 
n and the λ value corresponding to
the k = 0 state of the nth band are given. According to the selection
rule explained in the text, the transition is forbidden from the ground
state to those bands indicated by dashed lines.

it is not difficult to see that In 	= 0 only if λ′
n = −λ′

0. Accord-
ing to the table of λ′

n values shown in Fig. 9, this rule then
eliminates transitions to those states from the bands indicated
by dashed lines. Again, this is consistent with the detailed
calculations of Im σH(ω) and Re σH(ω), shown in Figs. 10 and
11, respectively.

V. DC HALL CONDUCTIVITY

In the previous section, we have demonstrated the exis-
tence of the anomalous Hall effect by explicit calculations of
the frequency-dependent Hall conductivity. We found that the
current transition matrix elements obey certain selection rules
dictated by symmetry principals, which are used to explain
the various resonances exhibited in the frequency-dependent
Hall conductivities as well as the absence of the dc Hall
conductivity in the in-plane magnetization phase. However,

0 1 2 3 4
–0.1

–0.05

0

0.05

0.1

4.55 4.56 4.57 4.58 4.59
–0.1

–0.05

0

0.05

0.1

FIG. 10. Imaginary part of the frequency-dependent Hall con-
ductivity for the system in the in-plane magnetization phase. The
specific excitation bands corresponding to the resonances are indi-
cated by the arrows.
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0 1 2 3 4

–0.5

0

0.5

FIG. 11. Real part of the frequency-dependent Hall conductivity
for the system in the in-plane magnetization phase. Here the δ peaks
are broadened using a Lorentzian with a width parameter 0.01.

these calculations do not provide underlying reasons for why
the dc AHE is present in one phase but not in the other.
In this section, we focus on the dc Hall conductivity and
explore, from both a real- and momentum-space perspective,
a deeper understanding of the causes of the AHE in the atomic
superfluid. From the real-space perspective, we argue that the
chirality of the superfluid is directly responsible for a finite
dc Hall conductivity; from the momentum-space perspective,
we show that finite Berry curvature at the condensation mo-
mentum of the noninteracting band underpins the dc Hall
conductivity.

A. Real-space perspective: Chirality

In addition to the magnetization, chirality is another funda-
mental property that distinguishes the two magnetic phases. In
contrast to the in-plane magnetization phase, the condensate
in the perpendicular magnetization phase carries a finite total
angular momentum and is thus a chiral superfluid. Such an
atomic chiral superfluid is reminiscent of the fermionic chiral
superfluid in 3He -A [37] or the chiral superconductor such
as Sr2RuO4 [38], although in these fermionic systems the
angular momenta are carried by the relative motion of Cooper
pairs. Like these fermionic counterparts, the atomic chiral
superfluid also gives rise to a nontrivial dichroic response
[39,40]. To be specific, let us consider the responses of the
system to two rotating potentials,

V±(r, t ) = 2F (x cos ωt ± y sin ωt ), (56)

where F is the force constant. Under such a perturbation, the
excitation rate out of the ground state per unit area can be
calculated by the Fermi’s golden rule as [39,40]

W±(ω) = 8π

h̄A

(
F

ω

)2 ∑
n

|〈n|Ĵ±|0〉|2δ(En − E0 − h̄ω). (57)

If the system is chiral, it naturally responds to the pertur-
bations V+ and V− differently such that W+(ω) 	= W−(ω).
Defining the following integrated excitation rates:

W±,int ≡ h̄

4πF 2

∫ ∞

0
dωW±(ω), (58)

0 0.5 1 1.5 2 2.5 3
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10
-3

W
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W
-,int

FIG. 12. Integrated excitation rates W±,int due to the rotating
potentials in Eq. (56), as a function of the SO-coupling strength.

the difference of these two quantities in fact yields the real
part of the dc Hall conductivity, namely [39,40],

Re σH (0) = W+,int − W−,int. (59)

Thus, this analysis shows that the system’s chirality implies
a finite dc Hall conductivity. To demonstrate this explicitly,
we show in Fig. 12 the calculated W±,int as a function of
the SO-coupling strength, where we find W+,int = W−,int for
the in-plane magnetization phase while W+,int > W−,int for the
perpendicular magnetization phase.

B. Momentum-space perspective: Berry curvature

A complementary way of understanding the dc AHE in the
atomic chiral superfluid is to make use of the relation between
the dc Hall conductivity and the Berry curvature of the Bloch
bands. In ferromagnetic materials where the anomalous Hall
effect was originally discovered, the SO coupling gives rise
to electronic bands with finite Berry curvatures, which can
play the role of a magnetic field in deflecting the electrons
moving under an electric field. The dc Hall conductivity is
given by the summation of Berry curvatures of the occupied
Bloch states. From this perspective, even a thermal gas of
bosons in topologically nontrivial bands may exhibit the AHE
[29,41,42].

Take the noninteracting bands in our SOC system as an
example and suppose that fermions instead of bosons occupy
these bands. The zero-temperature dc Hall conductivity would
then be given by

Re σH (0) = 1

h̄A
∑

nk

�n(k), (60)

where the summation of n, k is restricted to the occupied
Bloch states. Here, �n(k) is the Berry curvature of the nth
band,

�n(k) = i(〈∂kxunk|∂kyunk〉 − 〈∂kyunk|∂kxunk〉), (61)

where unk(r) ≡ e−ik·rφnk(r) and 〈∂kxunk|∂kyunk〉 is a shorthand
notation for the inner product of the spinor wave functions,∑

σ

∫
dr∂kxunkσ (r)∂kyunkσ (r). Now, because of the double
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FIG. 13. The dc Hall conductivity as a function of M0 for
various values of interaction strengths. Here, (ρg↑↑, ρg↑↓) =
ζ (0.35Er, 0.3Er ). The solid line represents the right-hand side of
Eq. (64).

degeneracy of the bands, the Berry curvature �n(k) is actu-
ally ambiguous without specifying the Bloch wave function
φnk(r). For spin-polarized states φ±

mk introduced in Sec. III,
the Berry curvatures are generally finite. Let us consider the
bottom two bands as an example. If we take φ0,k = φ+

0,k and
φ1,k = φ−

0,k, we find

�0(k) = −�1(k) 	= 0. (62)

On the other hand, for any state that is a superposition of φ+
m,k

and φ−
m,k with equal weight, the Berry curvature is zero.

In our system, the origin of the dc Hall conductivity can
also be discussed in this framework if we neglect the atomic
interactions. The dc Hall conductivity in Eq. (29) can be
written as

Re σH (0) = − 1

Ah̄
Im

∑
n 	=0

Jx,0nJy,n0 − Jy,0nJx,n0

(En0 − E00)2

= 2
N

Ah̄

∑
n 	=0

|J+,n0|2 − |J−,n0|2
(En0 − E00)2

, (63)

where the second line is obtained by the Bogoliubov theory.
In the noninteracting limit, the above expression reduces to

Re σH (0) = −2
N

Ah̄

∑
n 	=0

Im[〈φ00|px|φn0〉〈φn0|py|φ00〉]
(εn0 − ε00)2

= ρu

h̄Su
�0(k = 0), (64)

where Su is the area of the Wigner-Seitz cell and ρu is the num-
ber of atoms per cell. This is exactly what we expect because
all the atoms condensate at the same φ00 state in the nonin-
teracting limit. Since �0(k = 0) is finite in the perpendicular
magnetization phase and is zero in the in-plane magnetization
phase, the difference in the dc Hall conductivities between
these two phases can be immediately understood from the
above equation. In Fig. 13, we have plotted Re σH (0) calcu-
lated for various values of (ρg↑↑, ρg↑↓) = ζ (0.35Er, 0.3Er ),
which clearly shows that the noninteracting result in Eq. (64)
is recovered as ζ → 0.

Lastly, we comment on the difference between the AHE
discussed in our bosonic system and that in fermionic systems
such as the Haldane model. The first obvious difference is the
quantum statistics. In our system of bosonic gas, all atoms oc-
cupy one particular state due to Bose condensation and so, as
long as that state has nonzero Berry curvature, the system has
a finite dc Hall conductivity. In contrast, the Haldane model
consists of fermions and its dc Hall conductivity is given by
the summation of Berry curvatures of the occupied states. In
the case of a filled band, this summation corresponds to the
Chern number of the band. Second, atomic interactions play
a role in our system. As we have just seen from Fig. 13, the
total dc Hall conductivity in our superfluid can be viewed as
the contribution from the Berry curvature at the condensation
state of the noninteracting band plus an interaction-induced
correction. Such a correction does not exist in the AHE of the
Haldane model as it consists of noninteracting fermions.

VI. EXPERIMENTAL PROPOSAL

Since the SOC condensate has already been realized in
experiments, it is crucial to ask whether the predicted AHE
can be detected with currently available experimental tools.
In trapped atomic systems, it is difficult to directly measure
the current response function and hence the Hall conductivity.
In earlier discussions on the relation between chirality and
the anomalous Hall effect, we have in fact shown earlier that
the dichroism probe can be used to measure the dc Hall con-
ductivity. In this section, we discuss an experimental method
to probe the frequency dependence of the Hall conductiv-
ity and, in particular, to reveal the resonances exhibited in
the Hall conductivity. The idea is to make use of a close
relation between the current and the center-of-mass (COM)
response functions, so that one can deduce the conductivity
tensor from the responses of the COM to a time-periodic
linear potential. This was first discussed in Ref. [27] and was
later implemented experimentally to measure the longitudinal
conductivity of a lattice Fermi gas [28].

To be more specific, let us consider the transverse re-
sponse of the center-of-mass (COM) degree of freedom, R̂ =
1
N

∑
σ

∫
rψ̂†

σ (r)ψ̂σ (r)dr, to the following time-periodic linear
potential:

V (r, t ) = −Fx cos ωt, (65)

where F is the force constant. If the system has a finite Hall
conductivity, such a force along the x direction will generate
a response of the COM along the y direction. Within linear
response theory, the COM response can be written as

〈R̂y(t )〉 = Ry(ω) cos[ωt − φy(ω)], (66)

where Ry(ω) is the amplitude and φy(ω) is the phase lagging.
It turns out that the finite-frequency Hall conductivity σH (ω)
is related to the amplitude and phase of this response by [27]

σH (ω) = Nω

iAF
Ry(ω)eiφy (ω). (67)

Thus, by measuring the COM response along the y direction to
the potential in Eq. (65), we can infer the ac Hall conductiv-
ity. Now, from Eq. (67) we may also calculate the expected
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behavior of the COM response from knowledge of σH (ω).
Inverting Eq. (67), we find

Ry(ω) = AF

Nω
|σH (ω)|, (68)

φy(ω) = tan−1 [−Re σ (ω)/Im σ (ω)]. (69)

In view of previous calculations of the Hall conductivity, we
expect to find resonant behavior for the amplitude of the
responses in both phases.

VII. CONCLUDING REMARKS

In this paper, we have calculated the finite-frequency Hall
conductivity of a 2D SOC Bose gas at zero temperature in the
absence of an artificial magnetic field, and we have demon-
strated the existence of ground-state intrinsic anomalous Hall
effects across the magnetic phase transition of the system.
In the perpendicular magnetization phase, the SOC system
realizes a chiral superfluid for which the ac Hall conductivity
exhibits a behavior similar to that of a previously realized
chiral superfluid in a boron nitride optical lattice. Namely,
the real part of the ac Hall conductivity is reactive, while
the imaginary part is absorptive. Importantly, we find a finite,
albeit nonquantized, dc Hall conductivity in this phase. In con-
trast, it is exactly the opposite in the in-plane magnetization
phase, where the ac Hall conductivity has an absorptive real

part and a reactive imaginary part, and the dc Hall conduc-
tivity vanishes. In both phases, the ac Hall responses exhibit
various resonances in frequency, which can be explained by
the selection rules derived from the symmetry analysis. Fur-
thermore, the contrast in the dc Hall conductivities of the two
phases can be understood using the connection between the
dc Hall conductivity and the chirality and the Berry curvature.
Finally, we show that the AHEs discussed in this work can
be readily probed experimentally by a measurement of COM
responses of the condensate under a periodic driving. We
expect that the amplitude of the COM motion will exhibit
resonances at certain driving frequencies for the condensate
in both magnetic phases. However, the difference in behavior
of the frequency-dependent conductivity in the two phases
will be reflected by the phase lagging of the COM motion
since that latter is determined by the ratio of the real and the
imaginary parts of the conductivity.
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